
Methods Experiments

On the String Matching with k Differences in DNA Databases
Yangjun Chen and Hoang Hai Nguyen

Dept. Applied Computer Science, University of Winnipeg, Canada

The generation of BWT(y) can also be described in a different way, which is a little

tedious, but enables us to observe why it can be used to speed up the string matching

❑ BWT array L of y, denoted as BWT(Y), can be established by using the suffix
array SA of y:

Introduction Methods (continued) Conclusions

Bibliography

1. W.I. Chang and E.L. Lawler. 1994. Sublinear Approximate String-Matching
and Biological Applications. Algorithmica 12, 4 (1994), 327–344.

2. E. Ukkonen. 1993. Approximate String-Matching over Suffix Trees. In Proc of
the .4th Annual Symposium on Combinatorial Pattern Matching. Springer-
Verlag, 228–242.

3. M. Burrows and D. J. Wheeler, A Block-sorting Lossless Data Compression
Algorithm, Systems Research Center, May 1994.

4. B. Langmead, Introduction to the Burrows-Wheeler Transform and FM Index ,
http://www.cs.jhu.edu/langmea/resources/bwt_fm.pdf, 2013.

In this paper, a new index-based method is discussed for solving the string
matching with k differences. This is highly important to searching genome
and protein sequences in modern DNA databases, as well as genetics
research, especially, for very long sequences. The average time complexity
of our method is bounded by O(k||2k). Together with pattern partition, our
method can achieve more than 1000-fold improvement than the existing
methods.

Prefix of pattern: Xi = x1x2 … xi; prefix of target: Yj = y1y2 … yj

The following example shows an occurrence of a pattern in a target with k = 3.

b p d q e g h

c b c d e f g h i

pattern

target

❑ The basic method based on Dynamic Programming paradigm

D(0, j) = j, 0  j  n; D(i, 0) = i, 0  i  m;

D(i, j) = min

D(i – 1, j) + w(xi, )

D(i – 1, j - 1) + (xi, yj)

D(i, j - 1) + w(, yj)

D(i-1, j)D(i-1, j-1)

D(i, j-1) D(i, j)

where D(i, j) represents the distance between xi and yj, w(xi, yj) is the cost to
change xi to yj. (xi, yj) is 1 if xi = yj; therwise (xi, yj) = w(xi, yj).

j 0 1 2 3 4 5 6 7

i a c a t a T g

0 0 0 0 0 0 0 0 0

1 g 1 1 1 1 1 1 1 0

2 c 2 2 1 2 2 2 2 1

3 a 3 2 2 1 2 2 3 2

4 c 4 2 2 2 2 3 3 3

5 a 5 4 3 2 3 2 4 4

L[i] = $, if SA[i] = 0;

L[i] = y[SA[i] – 1, otherwise.

Suffix Sorted suffix SAy r
F

F Sorted rotations L rL

gtataca$ $ 7 - $ $g1t1a1t2a2c1a3 a 1

tataca$ a$ 6 1 a a3$g1t1a1t2a2c1 c 1

ataca$ aca$ 4 2 a a2c1a3$g1t1a1t2 t 1

taca$ ataca$ 2 3 a a1t2a2c1a3$g1t1 a 2

aca$ ca$ 5 1 c c1a3$g1t1a1t2a2 a 2

ca$ gtataca$ 0 1 g g1t1a1t2a2c1a3$ $ -

a$ taca$ 3 1 t t2a2c1a3$g1t1a1 a 3

$ tataca$ 1 2 t t1a1t2a2c1a3$g1 g 1

To produce BWT(y), we first rotate y consecutively to create |y| different strings,

sort them lexicographically. Then, write them stacked vertically as shown in the

6th column of the following table, where each character is subscripted to

represent its position in the original y. (That is, we rewrite y as g1t1a1t2a2c1a3.) For

example, a2 represents the second appearance of a in y; and t1 the first

appearance of t in y. In the same way, we can check all the other appearances of

different characters.

❑ To find all occurrences of x in y, search x backwards against L = BWT(y):

F L
$ a3

a3 c1
a2 t2
a1 t1
c1 a2

g1 $
t2 a1

t1 g1

F L
$ a3

a3 c1
a2 t2
a1 t1
c1 a2

g1 $
t2 a1

t1 g1

F L
$ a3

a3 c1
a2 t2
a1 t1
c1 a2

g1 $
t2 a1

t1 g1

F L
$ a3

a3 c1
a2 t2
a1 t1
c1 a2

g1 $
t2 a1

t1 g1

<a, [1, 3]> <t, [1, 2]> <a, [3, 3]>Search sequence: <t, [2, 2]>

S(t, <a, [1, 3]>) S(a, <t, [1, 2]>) S(t, <a, [3, 3]>)

pattern: x = acacg (ҧ𝑥 = gcaca);

target: y = gtataca (BWT(y)= actta$ag);

<-, [1, 8]>

<a, [1, 3]> <c, [1, 1]> <t, [1, 2]> <g, [1, 1]>

<g, [1, 1]> <t, [1, 2]> <a, [2, 2]> <a, [3, 3]> <g, [1, 1]>

<a, [2, 2]> <a, [3, 3]> <g, [1, 1]> <t, [1, 1]>

<t, [2, 2]> <a, [3, 3]>

<g, [2, 2]>

Data

Reference sequences* Num. characters Time (s) for building BWT(y)

Gorilla 3,063,403,506 406.817

Danio Rerio (ZebraFish) 1,373,472,378 173.142

Gorilla Chr1 228,908,641 25.03

Protein-1 144,000,000 15.92

Protein-2 30,000,000 3.04

y = g1t1a1t2a2c1a3$

x = tata

<z, [, β]>, if z appears in L;

, otherwise.
search(z, ) =

k = 2.

<t, [2, 2]>

In the above ‘search tree’, each path represents a search sequence.

1. Replacing part of a search tree by searching part of the suffix
tree built for a pattern with no dynamic programming matrix
established

2. Recognizing similar paths

3. Pattern partition to get subpatterns each with a smaller k value

Gorilla genome ZebraFish genome

Gorilla Chr1 Protein 1 Protein 2

In this paper, we discuss an efficient and effective index mechanism for the
string matching with k differences, by which we will find all the substrings of a
target string y of length n that align with a pattern string x of length m with not
more than k insertions, deletions, and mismatches. A typical application is the
searching of a DNA database, where the size of a genome sequence in the
database is much larger than that of a pattern.

❑ String Matching with k Differences

To find all the occurrences of a pattern string x = x1x2… xm in a target string y =
y1y2 ... yn with at most k differences, where xi, yj  , a given alphabet. In
general, we distinguish among three kinds of differences:

1. A character of the pattern corresponds to a different character of the
target. In this case we say that there is a mismatch between the two
characters;

2. A character of the target corresponds to ''no character'' in the pattern (an
insertion into the pattern); and

3. A character of the pattern corresponds to ''no character'' in the target (a
deletion from the pattern).

Combine Dynamic Programming Paradigm with BWT Array Searching ❑ String matching by using the BWT array can be represented as a
sequence, called a search sequence:

❑ By the dynamic programming computation, replace the target string by
the corresponding search sequence.

❑ Three possible improvements:

❑ In our experiments, we have tested altogether 7 strategies:

1. Ukkonen's onlline method (u-o for short),

2. Chang-Lawer’s first method (ch-1 for short),

3. Chang-Lawer's second method (ch-2 for short),

4. Ukkonen's index-based method (u-i for short),

5. Myers's index-based method (m-i for short),

6. Peri-Culpepper's index-based method (pc-i for short), and

7. ours, discussed in this paper.

