
On the String Matching with k Differences in DNA

Databases

Yangjun Chen and Hoang Hai Nguyen

Dept. of Applied Computer Science

University of Winnipeg, Canada

1

Outline

 Motivation

 - Statement of Problem

 - Related work

 Basic Techniques

 - Dynamic programming

 - BWT Arrays – A space-economic Index for String Matching

 Main algorithm for string Matching with k Differences

 - Search trees

 - Suffix trees over patterns, Similar paths, Pattern partition

 Experiments

 Conclusion and Future Work
2

Statement of Problem

 String matching with k differences: to find all the occurrences of a

pattern string x = x1x2 … xm in a target string y = y1y2 ... yn with at most

k differences, where xi, yj  , a given alphabet. In general, we
distinguish among three kinds of differences:

1. A character of the pattern corresponds to a different character of

the target. In this case we say that there is a mismatch between

the two characters;

2. A character of the target corresponds to ''no character'' in the

pattern (an insertion into the pattern); and

3. A character of the pattern corresponds to ''no character'' in the

target (a deletion from the pattern).

 3 3

Statement of Problem

4

 String matching with k differences:

 to find all the occurrences of a pattern string x = x1x2

… xm in a target string y = y1y2 ... yn with at most k

differences.

4

 b p d q e g h

 c b c d

Example: k = 3 pattern

target e f g h i

Related Work

 Exact string matching

 - On-line algorithms:

Knuth-Morris-Pratt, Boyer-Moore, Aho-Corasick

- Index based:

 suffix trees (Weiner; McCreight; Ukkonen), suffix arrays (Manber, Myers), BWT-

 transformation (Burrow-Wheeler), Hash (Karp, Rabin)

 Inexact string matching
- String matching with k mismatches - Hamming distance (Landau, Vishkin; Amir at al.;

Cole; Chen, Wu)

- String matching with k differences - Levelshtein distance (Chang, Lampe)

- String matching with wild-cards (Manber, Baeza-Yates)

 5

6

Basic Techniques

 Dynamic Programming

 - to calculate distance between pattern and

 targets

 BWT transformation

 - to ‘fold’ the target strings

7

Dynamic Programming

7

- Xi = x1x2 … xi

- Yj = y1y2 … yj

D(0, j) = j, 0  j  n; D(i, 0) = i, 0  i  m;

D(i, j) = min

D(i – 1, j) + w(xi, )

D(i – 1, j - 1) + (xi, yj)

D(i, j - 1) + w(, yj)

Time complexity: O(mn)

where w(xi, yj) is the cost to change xi to yj, and (xi, yj) is

1 if xi = yj. Otherwise (xi, yj) = w(xi, yj).

D(i-1, j) D(i-1, j-1)

D(i, j-1) D(i, j)

8

Dynamic Programming

 Example: X = gcaca, Y = acatatg, k = 2. For each yj,
the distance between y1…yj and x1…xi for all xi will be
calculated.

j 0 1 2 3 4 5 6 7

i a c a t a T g

0 0 0 0 0 0 0 0 0

1 g 1 1 1 1 1 1 1 0

2 c 2 2 1 2 2 2 2 1

3 a 3 2 2 1 2 2 3 2

4 c 4 2 2 2 2 3 3 3

5 a 5 4 3 2 3 2 4 4

9 9

BWT Transformation

 BWT array L of y, denoted as BWT(Y), can be

established by using the suffix array SA of y:

L[i] = $, if SA[i] = 0;

L[i] = y[SA[i] – 1], otherwise.

 BWT array was proposed by M. Burrows and D.J. Wheeler in
1994. (M. Burrows, D.J. Wheeler, (1994), A block sorting lossless data

compression algorithm, Technical Report 124, Digital Equipment

Corporation.)

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html

10

BWT Transformation

Suffix Sorted suffix SAy rF F Sorted rotations L rL

gtataca$ $ 7 - $ $g1t1a1t2a2c1a3 a 1

tataca$ a$ 6 1 a a3$g1t1a1t2a2c1 c 1

ataca$ aca$ 4 2 a a2c1a3$g1t1a1t2 t 1

taca$ ataca$ 2 3 a a1t2a2c1a3$g1t1 a 2

aca$ ca$ 5 1 c c1a3$g1t1a1t2a2 a 2

ca$ gtataca$ 0 1 g g1t1a1t2a2c1a3$ $ -

a$ taca$ 3 1 t t2a2c1a3$g1t1a1 a 3

$ tataca$ 1 2 t t1a1t2a2c1a3$g1 g 1

L = BWT(Y)

BWT Transformation

 Burrows-Wheeler Transform (BWT)

 y = g1t1a2t2a3c1a3$

11

$ g1 t1 a1 t2 a2 t2 a3

a3 $ g1 t1 a1 t2 a2 c1
a2 c1 a3 $ g1 t1 a1 t2

a1 t2 a2 c1 a3 $ g1 t1

c1 a3 $ g1 t1 a1 t2 a2

g1 t1 a1 t2 a2 c1 a3 $
t2 a2 c1 a3 $ g1 t1 a1

t1 a1 t2 a2 c1 a3 $ g1

 rkF

-

1
2
3
1
1
1
2

 rkL

1

1
1

2

2

-
3
1

F L

rank: 3

rank: 3

g1 t1 a1 t2 a2 c1 a3 $
t1 a1 t2 a2 c1 a3 $ g1

a1 t2 a2 c1 a3 $ g1 t1

t2 a2 c1 a3 $ g1 t1 a1

a2 c1 a3 $ g1 t1 a1 t2

c1 a3 $ g1 t1 a1 t2 a2

a3 $ g1 t1 a1 t2 a2 c1
$ g1 t1 a1 t2 a2 t2 a3

Rank correspondence:

L[i] = $, if SA[i] = 1;

L[i] = y[SA[i] – 1], otherwise.

BWT construction:

SA[…] – suffix array

rkF(e) = rkL(e)

A suffix array can be
established in O(n).

Sort these sequences
lexicographically.

7
6
4
2
5
0
1
2

Suffix Array

 y = g1t1a1t2a2c1a3$

 x = tata

Backward Search of BWT-Index

12

Backward Search

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

<z, [, β]>, if z appears in L;

, otherwise.
search(z, ) =

Z: a character : a range in F

L: a range in L, corresponding to 

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

Backward Search of BWT-Index

S(t, <a, [1, 3]>)

<a, [1, 3]> <t, [1, 2]> <a, [3, 3]>

S(a, <t, [1, 2]>)

Search sequence:

13

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

S(t, <a, [3, 3]>)

<t, [2, 2]>

14

rankAll

 Arrange || arrays each for a character X   such that AX[i] (the ith entry

in the array for X) is the number of appearances of X within L[1 .. i].

 Instead of scanning a certain segment L[ .. ] (  ) to find a subrange

for a certain X  , we can simply look up AX to see whether AX[ - 1] =

A[]. If it is the case, then  does not occur in  .. ]. Otherwise, [AX[ - 1]

+ 1, AX[]] should be the found range.
A$ Aa Ac Ag At

0 1 0 0 0

0 1 1 0 0

0 1 1 0 1

0 1 1 0 2

0 2 1 0 2

1 2 1 0 2

1 3 1 0 2

1 3 1 1 2

Example

To find the first and the last appearance

of t in L[1 .. 3], we only need to find

At[1 – 1] = At [0] = 0 and At [3] = 2. So the

corresponding range is

[At[1 - 1] + 1, At[3]] = [1, 2].

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

15

Reduce rankAll-Index Size

 F-ranks: F = <a; xa, ya>

 BWT array: L

 Reduced appearance array: A with bucket

 size .

 Reduced suffix array: SA* with bucket size .

F L rkL

$ a3 1

a3 c1 1

a2 t2 1

a1 t1 2

c1 a2 2

g1 $ -
t2 a1 3

t2 g1 1

L
a3
c1

t2
t1
a2
$
a1
g1

F = <; x, y>
7
6
4
2
5
0
1
2

SA*

7
6
4
2
5
0
1
2

SA

F$ = <$; 1, 1>
Fa = <a; 2, 4>
Fc = <c; 5, 5>
Fg = <g; 6, 6>
Ft = <t; 7, 8>

+ + +

Find a range:
top  F(x) + A[(top -1)/] + r +1

bot  F(x) + A[bot/] + r

r is the number of 's appearances within
 L[(top - 1)/ .. top - 1]

r’ is the number of 's appearances within
 L[bot/ .. bot]

A$ Aa Ac Ag At

0 1 0 0 0

0 1 1 0 0

0 1 1 0 1

0 1 1 0 2

0 2 1 0 2

1 2 1 0 2

1 3 1 0 2

1 3 1 1 2

16

String Matching with k Differences

 Different from the evaluation of an exact string matching, to find all

the occurrences of 𝒙 = z1z2 … zm = xm xm-1 … x1 in BWT(y) for a target

string y with k differences, a tree, instead of a single sequence, will be
dynamically created. In such a tree, each path

 v0  v2  …  vl

 corresponds to a search sequence. Each vj is labeled with <ej, [j, j]>.

 The D-vector of v0 is <0, 1, …, m>T.

 For j > o, we have

 Dj[0] = Dj-1[0] + 1

Dj[i] = min{Dj[i -1] + w(zi, ), Dj-1[i] + w(, ej), Dj-1[i - 1] + (zi, ej), }, for i > 0.

Search Trees

Definition (search tree) A search tree (S-tree for short) T

with respect to x and y is a tree structure to represent the
search of 𝒙 against BWT(y). In T, each node is labeled with

a pair <e, [, ]> and there is an edge from v (= <e, [,

]>) to u (= <e, [, ]>) if S(e, v) = u. In addition, a

special node is designated as the root, labeled with <-,

[1,|L|]>, representing the whole BWT-array L = BWT(y).

17

Search Trees

 pattern: x = acacg (𝑥 = gcaca);

 target: y = gtataca (𝒚 = acatatg);

 k = 2.

18

<-, [1, 8]>

<a, [1, 3]>

<c, [1, 1]>

<a, [2, 2]>

<t, [1, 2]>

<a, [3, 3]>

<t, [2, 2]>

<c, [1, 1]>

<a, [2, 2]>

<t, [1, 1]>

<g, [1, 1]>

v0

v1

v9

v13

v2

v4

v10

v3

v5

v10

v6

P1

P2

P3

P4

<a, [3, 3]>

v11

v15

v14

T:

<g, [2, 2]>

v7

<g, [1, 1]>

v8

<t, [1, 2]>

<a, [3, 3]>

<t, [2, 2]>

<g, [1, 1]>

v16

v17

P5

P6

P7

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

String Matching with k Differences

D-vectors:

D0

-

0

1

2

3

4

5

D1

a

1

1

2

2

3

4

D2

c

2

2

1

2

2

3

D3

a

3

3

2

1

2

2

D4

t

2

2

2

3

3

4

D5

a

3

3

3

2

3

3

D6

t

4

4

4

3

3

4

D7

g

5

4

5

4

4

4

D8

g

3

2

3

3

3

4

D9

c

1

1

1

2

3

5

D10

a

0

1

2

3

4

4

D11

t

3

3

3

2

2

3

D12

a

4

4

4

3

3

2

D13

t

1

1

2

3

4

5

D14

a

2

2

2

2

3

4

D15

t

3

3

3

3

3

4

D16

g

2

1

2

3

4

5

D17

g

1

0

1

3

4

5

20 20 20 20

Computational Complexities

 Time complexity

 Worst case: O(k|T|)

 Average time complexity: O(k||2k)

 Space complexity

 Worst case: O(km + n)

 Existing methods:

time complexity – O(kn); space complexity – O(m + n)

21 21

 Searching suffix trees over patterns to replace searching part of T

 - pattern: x = acacg (𝑥 = gcaca); target: y = gtataca (𝒚 =

 acatatg); k = 2.

21

<-, [1, 8]>

<a, [1, 3]>

<c, [1, 1]>

<a, [2, 2]>

<t, [1, 2]>

<a, [3, 3]>

<t, [2, 2]>

v0

v1

v2

v4

v3

v5

v6

P1

P2

P3

T:

<g, [2, 2]>

v7

<g, [1, 1]>

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

Improvement-1

D4

2

2

2

3

3

4

… …

 Suffix tree over 𝑥 = gcaca

Improvement-1

1 2 3 4 5 6

gcaca$
c a

aca$ a$ $

$

ca$

23 23

Improvement-2

 Recognizing similar paths

u

w

v

u1

w1 <e0, [0, 0]>

<e1, [1, 1)]>

<e0, [0′, 0′]>

<e1, [1′, 1′]>

[0, 0]  [0′, 0′]

[1, 1]  [1′, 1′]

… …

… …

… …

24

Pattern Partition

 As k increases, the performance of our algorithm

degrades.

 Partition a pattern to get subpatterns with smaller k

values.

 Quickly find all those substrings in a target, which

match a subpattern with smaller k differences.

 For each surviving substring, recheck it to see

whether it is an occurrence of the pattern, but with k

differences.

25

Pattern Partition

 Two-step method: Filtering and Exact matching

 Filtering

 In the first step, we partition the pattern x = x1 … xm evenly into l

 segments, denoted as x = P1P2 ... Pl with each Pi = x(i-1)r+1 ... Xir

 for 1  I  l - 1, and Pl = x(l-1)r+1 … xm, where r = m/l. Then, we check

 each Pi against BWT(y) with k' = k/l differences in turn to find all the

 occurrences of Pi (1  i  l) in y. Each occurrence is represented by

 (i, j), indicating that Pi matches a segment ending at position j in y with

 k' differences.

26 26

Pattern Partition

 Two-step method

• Exact checking

 In the second step, for each occurrence (i, j) found in the first step, the

 substring of the target: si,j = yj-ir+1-k ... yj-ir+1+m+k will be again closely

 checked against x with k differences by using a classical algorithm.

 The length of si,j is m + 2k.

27

Pattern Partition

 Illustration for pattern partition

target string y

pattern string x

 m/l
r r … …

Pi

j – I  r + 1 + k j – I  r + m + k

m + 2k

28

Experiments

 In our experiments, we have tested altogether 7 strategies:

1. Ukkonen's onlline method (u-o for short, [57]),

2. Chang-Lawer’s first method (ch-1 for short, [14]),

3. Chang-Lawer's second method (ch-2 for short, [14]),

4. Ukkonen's index-based method (u-i for short, [58]),

5. Myers's index-based method (m-i for short, [44]),

6. Peri-Culpepper's index-based method (pc-i for short, [49]), and

7. ours, discussed in this paper.

29

Experiments

 Test bed

1. All codes are written in C++ and compiled by GNU g++

compiler version 5.4.0 with compiler option `-O2’.

2. All tests run on a 64-bit Ubuntu OS with a single core of Intel

Xeon E5-2637 @3.50Ghz. The system memory is of 64 GB.

30 30

Experiments

 Test bed

1. For time measurements, we used the Unix time commands.

In addition, the suffix trees for patterns (in the Chang-

Lawler's method and ours), as well as for reference

sequences (in the Ukkonen's index-based method) are

constructed by using the algorithm described in [59].

2. To construct the suffix arrays and the BWT-arrays, we used a

code found in the libdivsufsort library (https://github.com/

 Y256/libdivsufsort)

https://github.com/

31

Experiments

 Data

Reference sequences* Num. characters Time (s) for building BWT(y)

Gorilla 3,063,403,506 406.817

Danio Rerio (ZebraFish) 1,373,472,378 173.142

Gorilla Chr1 228,908,641 25.03

Protein-1 144,000,000 15.92

Protein-2 30,000,000 3.04

*The first three are genome sequences while the last two are protein

sequences. For genomes, || = 4. For protein sequences, || = 20.

32

Experiments

 Experiments on the string matching with small number of

differences

- Pattern length = 100 characters

Gorilla genome ZebraFish genome Gorilla Chr1

33

Experiments

k 1 2 3 4 5 6 7

|T| 1.4k 25k 278.5k 2M 10M 39.72M 92M

Number of nodes in T (Gorilla)

Experiments

Protein 1 Protein 2

35

Experiments

 Experiments on the string matching with large number of

differences (for which the two-step method is used.)

- Pattern length = 300 characters

ZebraFish genome Gorilla genome

36 36

Experiments

k 20 25 30 35 40 45

Step-1 23.1s 23.1s 173.2s 172.9s 1187.0s 1187.5s

Step-2 97.41s 122.1s 263.4s 311.7s 492.32s 565.58s

num. of surviving segments 30.5k 30.5k 52.9k 52.7k 69.5k 69.3k

Size of a segment 353 364 388 399 428 439

Two-step execution details on Gorilla genome

k 20 25 30 35 40 45

Step-1 58.73s 58.57s 187.5s 187.6s 953.0s 952.4s

Step-2 18.41s 21.48s 32.24s 38.85s 60.33s 60.70s

num. of surviving segments 3638 3633 4709 4702 6376 6365

Size of a segment 423 423 444 455 463 474

Two-step execution details on ZebraFish genome

37

Experiments

 Experiments on the string matching with large number of

differences (for which the two-step method is used.)

- Pattern length = 300 characters

Gorilla Chr1 Protein 1 Protein 2

38

Experiments

 Experiments on number of subpatterns

 - Pattern length = 300 characters

Gorilla genome ZebraFish genome Gorilla Chr1

l: the number of subpatterns

39

Experiments

K 20 25 30 35 40 45

l =10 30.5k 30.5k 52.9k 52.7k 69.5k 69k

l = 12 28.7k 56.2k 56.0k 55.8k 60.5k 61.4k

l = 15 30.5k 30.5k 52.9k 52.7k 69.5k 69.3k

Number of segments checked in Step-2 by the pattern

partition

40

Experiments

 Experiments on different lengths of patterns

Gorilla genome ZebraFish genome Gorilla Chr1

41

Experiments

 Experiments on different lengths of patterns

Protein 1 Protein 2

42

Conclusion

 Main contribution

 - An algorithm for the string matching with k differences
 Combination of dynamic programming and BWT indexes for

the problem of string matching with k difference

 Concept of search trees and two branch cutting methods

 Pattern partition

 - Extensive tests

 Future work
 - String matching with don’t care symbols (using BWT

transformation as indexes)

43

Thank you!

