On the String Matching with k Differences in DNA Databases

Yangjun Chen and Hoang Hai Nguyen
Dept. of Applied Computer Science University of Winnipeg, Canada

Outline

, Motivation

- Statement of Problem
- Related work
- Basic Techniques
- Dynamic programming
- BWT Arrays - A space-economic Index for String Matching
- Main algorithm for string Matching with k Differences
- Search trees
- Suffix trees over patterns, Similar paths, Pattern partition
, Experiments
, Conclusion and Future Work

Statement of Problem

, String matching with k differences: to find all the occurrences of a pattern string $x=x_{1} x_{2} \ldots x_{m}$ in a target string $y=y_{1} y_{2} \ldots y_{n}$ with at most k differences, where $x_{i}, y_{j} \in \sum$, a given alphabet. In general, we distinguish among three kinds of differences:

1. A character of the pattern corresponds to a different character of the target. In this case we say that there is a mismatch between the two characters;
2. A character of the target corresponds to "no character" in the pattern (an insertion into the pattern); and
3. A character of the pattern corresponds to "no character" in the target (a deletion from the pattern).

Statement of Problem

, String matching with k differences:
$>$ to find all the occurrences of a pattern string $x=x_{1} x_{2}$... x_{m} in a target string $y=y_{1} y_{2} \ldots y_{n}$ with at most k differences.

Example: $k=3$

pattern
target

Related Work

, Exact string matching

- On-line algorithms:

Knuth-Morris-Pratt, Boyer-Moore, Aho-Corasick

- Index based:
suffix trees (Weiner; McCreight; Ukkonen), suffix arrays (Manber, Myers), BWTtransformation (Burrow-Wheeler), Hash (Karp, Rabin)
, Inexact string matching
String matching with k mismatches - Hamming distance (Landau, Vishkin; Amir at al.; Cole; Chen, Wu)

String matching with k differences - Levelshtein distance (Chang, Lampe)
String matching with wild-cards (Manber, Baeza-Yates)

Basic Techniques

, Dynamic Programming

- to calculate distance between pattern and targets
, BWT transformation
- to 'fold' the target strings

Dynamic Programming

- $X_{i}=x_{1} x_{2} \ldots x_{i}$

Time complexity: O(mn)

- $Y_{j}=y_{1} y_{2} \ldots y_{j}$
$D(0, j)=j, 0 \leq j \leq n ; D(i, 0)=i, 0 \leq i \leq m ;$

$$
D(i, j)=\min \left[\begin{array}{lr}
D(i-1, j)+w\left(x_{i}, \phi\right) & D(i-1, j-1) \\
D(i-1, j-1)+\delta\left(x_{i}, y_{j}\right) & D(i, j-1)
\end{array}\right] \quad \begin{aligned}
& D(i-1, j) \\
& D(i, j)
\end{aligned}
$$

where $w\left(x_{i}, y_{j}\right)$ is the cost to change x_{i} to y_{j}, and $\delta\left(x_{i}, y_{j}\right)$ is 1 if $x_{i}=y_{j}$. Otherwise $\delta\left(x_{i}, y_{j}\right)=w\left(x_{i}, y_{j}\right)$.

Dynamic Programming

, Example: $X=$ gcaca, $Y=$ acatatg, $k=2$. For each y_{j}, the distance between $y_{1} \ldots y_{j}$ and $x_{1} \ldots x_{i}$ for all x_{i} will be calculated.

	\boldsymbol{j}	0	1	2	3	4	5	6	7
\boldsymbol{i}			a	c	a	t	a	T	g
0		0	0	0	0	0	0	0	0
1	g	1	1	1	1	1	1	1	0
2	c	2	2	1	2	2	2	2	1
3	a	3	2	2	1	2	2	3	2
4	c	4	2	2	2	2	3	3	3
5	a	5	4	3	2	3	2	4	4

BWT Transformation

> BWT array L of y, denoted as BWT(Y), can be established by using the suffix array SA of y :

$$
\begin{array}{ll}
L[i]=\$, & \text { if } S A[i]=0 ; \\
L[i]=y[S A[i]-1], & \text { otherwise } .
\end{array}
$$

, BWT array was proposed by M. Burrows and D.J. Wheeler in 1994. (M. Burrows, D.J. Wheeler, (1994), A block sorting lossless data compression algorithm, Technical Report 124, Digital Equipment Corporation.)

BWT Transformation

Suffix	Sorted suffix	SA $_{V}$	r_{F}	F	Sorted rotations	L	r_{L}
gtataca\$	$\$$	7	-	$\$$	$\$ g_{1} t_{1} a_{1} t_{2} a_{2} c_{1} a_{3}$	a	1
tataca	$a \$$	6	1	a	$a_{3} \$ g_{1} t_{1} a_{1} t_{2} a_{2} c_{1}$	c	1
ataca\$ $\$$	aca\$	4	2	a	$a_{2} c_{1} a_{3} \$ g_{1} t_{1} a_{1} t_{2}$	t	1
taca\$	ataca\$	2	3	a	$a_{1} t_{2} a_{2} c_{1} a_{3} \$ g_{1} t_{1}$	a	2
aca\$	ca $\$$	5	1	c	$c_{1} a_{3} \$ g_{1} t_{1} a_{1} t_{2} a_{2}$	a	2
ca\$	gtataca $\$$	0	1	g	$g_{1} t_{1} a_{1} t_{2} a_{2} c_{1} a_{3} \$$	$\$$	-
a\$	taca\$	3	1	t	$t_{2} a_{2} c_{1} a_{3} \$ g_{1} t_{1} a_{1}$	a	3
$\$$	tataca $\$$	1	2	t	$t_{1} a_{1} t_{2} a_{2} c_{1} a_{3} \$ g_{1}$	g	1

BWT Transformation

, Burrows-Wheeler Transform (BWT)

> $y=g_{1} t_{1} a_{2} t_{2} a_{3} c_{1} a_{3} \$$
Rank correspondence:
Suffix Array BWT construction:
$g_{1} t_{1} a_{1} t_{2} a_{2} c_{1} a_{3} \$$
$t_{1} a_{1} t_{2} a_{2} c_{1} a_{3} \$ g_{1}$
$a_{1} t_{2} a_{2} c_{1} a_{3} \$ g_{1} t_{1}$
$t_{2} a_{2} c_{1} a_{3} \$ g_{1} t_{1} a_{1}$
$a_{2} c_{1} a_{3} \$ g_{1} t_{1} a_{1} t_{2}$
$c_{1} a_{3} \$ g_{1} t_{1} a_{1} t_{2} a_{2}$
$a_{3} \$ g_{1} t_{1} a_{1} t_{2} a_{2} c_{1}$
$\$ g_{1} t_{1} a_{1} t_{2} a_{2} t_{2} a_{3}$
Sort these sequences
rank: 3
lexicographically.
$r_{F} F \quad L r k_{l}$

4
2
5
$1 g_{1} t_{1} a_{1} t_{2} a_{2} c_{1} a_{3} \$-\quad 0$
$1 t_{2} a_{2} c_{1} a_{3} \$ g_{1} t_{1} a_{1} 3 \quad$ A suffix array can be established in $O(n)$.

Backward Search of BWT-Index

> $y=g_{1} t_{1} a_{1} t_{2} a_{2} c_{1} a_{3} \$$
, $\mathrm{x}=$ tata
$\operatorname{search}(z, \pi)=\left\{\begin{array}{l}\langle z,[\alpha, \beta]> \\ \phi,\end{array}\right.$
if z appears in $L_{\pi^{\prime}}$ otherwise.
Z : a character π. a range in F
L_{π} a range in L, corresponding to π

Backward Search of BWT-Index

	L								F	L
\$	a_{3}		\$	a_{3}		\$	a_{3}		\$	a_{3}
a_{3}	c_{1}		a_{3}	c_{1}		a_{3}	c_{1}		a_{3}	c_{1}
a_{2}	t_{2}		a_{2}	t_{2}		a_{2}	t_{2}		a_{2}	t_{2}
a_{1}	t_{1}		a_{1}	t_{1}		a_{1}	t_{1}	\longrightarrow	a_{1}	t_{1}
c_{1}	a_{2}		c_{1}	a_{2}		c_{1}	a_{2}	14	c_{1}	a_{2}
g_{1}	\$		g_{1}	\$		g_{1}	\$	1	g_{1}	\$
t_{2}	a_{1}		t_{2}	a_{1}	$\xrightarrow{ } \rightarrow$	t_{2}	a_{1}		t_{2}	a_{1}
t_{1}	g_{1}		t_{1}	g_{1}		t_{1}	g_{1}		t_{1}	g_{1}

rankAll

, Arrange $|\Sigma|$ arrays each for a character $x \in \Sigma$ such that $A_{X}[i]$ (the ith entry in the array for x) is the number of appearances of x within $L[1$.. $i]$.
, Instead of scanning a certain segment $L[\alpha$.. $\beta](\alpha \leq \beta)$ to find a subrange for a certain $x \in \Sigma$, we can simply look up A_{X} to see whether $A_{X}[\alpha-1]=$ $A_{\alpha}[\beta]$. If it is the case, then α does not occur in α.. $\left.\beta\right]$. Otherwise, $\left[A_{x}[\alpha-1]\right.$ $\left.+1, A_{x}[\beta]\right]$ should be the found range.

Example

To find the first and the last appearance of t in $L[1$.. 3], we only need to find $A_{t}[1-1]=A_{t}[0]=0$ and $A_{t}[3]=2$. So the corresponding range is
$\left[A_{t}[1-1]+1, A_{t}[3]\right]=[1,2]$.

F	L
$\$$	a_{3}
a_{3}	c_{1}
a_{2}	t_{2}
a_{1}	t_{1}
c_{1}	a_{2}
g_{1}	$\$$
t_{2}	a_{1}
t_{1}	g_{1}

\mathbf{A}_{ξ}	\boldsymbol{A}_{a}	\boldsymbol{A}_{c}	\boldsymbol{A}_{g}	\boldsymbol{A}_{t}
0	1	0	0	0
0	1	1	0	0
0	1	1	0	1
0	1	1	0	2
0	2	1	0	2
1	2	1	0	2
1	3	1	0	2
1	3	1	1	2

Reduce rankAll-Index Size

- F-ranks: $F_{\alpha}=\left\langle a ; x_{a}, y_{a}\right\rangle$
- BWT array: L
- Reduced appearance array: A_{α} with bucket size β.
- Reduced suffix array: SA* with bucket size γ.

F	L	$r k_{L}$	$\frac{S A}{7}$
$\$$	a_{3}	1	7
a_{3}	c_{1}	1	6
a_{2}	t_{2}	1	4
a_{1}	t_{1}	2	2
c_{1}	a_{2}	2	5
$\mathrm{~g}_{1}$	$\$$	-	0
t_{2}	a_{1}	3	1
t_{2}	g_{1}	1	2

$F_{\alpha}=\left\langle\alpha ; x_{\alpha}, y_{\alpha}\right\rangle$
$F_{s}=\langle \$; 1,1\rangle$
$F_{a}=\langle a ; 2,4\rangle$
$F_{c}=\langle c ; 5,5\rangle$
$F_{g}=\langle g ; 6,6\rangle$
$F_{t}=\langle t ; 7,8\rangle$

+| \underline{L} |
| :--- |
| a_{3} |
| c_{1} |
| t_{2} |
| t_{1} |
| a_{2} |
| $\$$ |
| a_{1} |
| g_{1} |$+$

Find a range:
top ${ }^{\prime} \leftarrow F\left(\mathrm{x}_{\alpha}\right)+A_{\alpha}[\lfloor($ top -1$) / \beta\rfloor]+r+1$
bot $^{\prime} \leftarrow F\left(x_{\alpha}\right)+A_{\alpha}[$ [bot $\left./ \beta]\right]+r^{\prime}$
r is the number of α 's appearances within

$$
L[\lfloor(\text { top - 1)/ } \beta\rfloor \beta \text {.. top - 1] }
$$

r ' is the number of α 's appearances within L[\lfloor bot $/ \beta\rfloor \beta$.. bot]

A_{S}	A_{a}	A_{c}	A_{g}	A_{t}		
0	1	0	0	0		
0	1	1	0	0		
0	1	1	0	1		
0	1	1	0	2		
0	2	1	0	2		
1	2	1	0	2		
1	3	1	0	2		
1	3	1	1	2	$\quad+$	$S A^{*}$
:---:						
7						
6						
4						
2						
5						
0						
1						
2						

String Matching with k Differences

- Different from the evaluation of an exact string matching, to find all the occurrences of $\bar{x}=z_{1} z_{2} \ldots z_{m}=x_{m} x_{m-1} \ldots x_{1}$ in BWT(y) for a target string y with k differences, a tree, instead of a single sequence, will be dynamically created. In such a tree, each path

$$
v_{0} \rightarrow v_{2} \rightarrow \ldots \rightarrow v_{1}
$$

corresponds to a search sequence. Each v_{j} is labeled with $\left\langle e_{j}\left[\alpha_{j}, \beta_{j}\right]\right.$. The D-vector of v_{0} is $\langle 0,1, \ldots, m\rangle^{\top}$.
For $j>0$, we have

$$
\left\{\begin{array}{l}
D_{j}[0]=D_{j-1}[0]+1 \\
D_{j}[i]=\min \left\{D_{j}[i-1]+w\left(z_{i}, \phi\right), D_{j-1}[i]+w\left(\phi, e_{j}\right), D_{j-1}[i-1]+\delta\left(z_{i}, e_{j}\right),\right\}, \text { for } i>0 .
\end{array}\right.
$$

Search Trees

Definition (search tree) A search tree ($\$$-tree for short) T with respect to x and y is a tree structure to represent the search of \bar{x} against BWT(y). In T, each node is labeled with a pair <e, $[\alpha, \beta]>$ and there is an edge from $v(=<e,[\alpha$, $\beta]>$) to $u\left(=\left\langle e^{\prime},\left[\alpha^{\prime}, \beta^{\prime}\right]>\right)\right.$ if $S\left(e^{\prime}, v\right)=u$. In addition, a special node is designated as the root, labeled with <-, $[1,|L|]>$, representing the whole BWT-array L = BWT (y).

Search Trees

, pattern: $\mathrm{x}=\operatorname{acacg}(\bar{x}=\mathrm{gcaca})$;
> target: $y=$ gtataca ($\bar{y}=$ acatatg);
> $k=2$.
T:

$$
v_{0}<-,[1,8]>
$$

F	L
$\$$	a_{3}
a_{3}	c_{1}
a_{2}	t_{2}
a_{1}	t_{1}
c_{1}	a_{2}
g_{1}	$\$$
t_{2}	a_{1}
t_{1}	g_{1}

$$
\begin{array}{llll}
v_{13}<t,[1,2]> & <g,[1,1]> \\
v_{14}, & v_{17} \\
\langle a,[3,3]> & \langle g,[1,1]> & v_{7}
\end{array}
$$

$$
<g,[2,2]>
$$

String Matching with k Differences

D-vectors:

D_{0}	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}	D_{6}	D_{7}	D_{8}	D9	D_{10}	D_{11}	D_{12}	D_{13}	D_{14}	D_{15}	D_{16}	D_{17}
-	a	c	a	\dagger	a	\dagger	g	g	c	a	\dagger	a	\dagger	a	\dagger	g	g
0	1	2	3	2	3	4	5	3	1	0	3	4	1	2	3	2	1
1	1	2	3	2	3	4	4	2	1	1	3	4	1	2	3	1	0
2	2	1	2	2	3	4	5	3	1	2	3	4	2	2	3	2	1
3	2	2	1	3	2	3	4	3	2	3	2	3	3	2	3	3	3
4	3	2	2	3	3	3	4	3	3	4	2	3	4	3	3	4	4
5	4	3	2	4	3	4	4	4	5	4	3	2	5	4	4	5	5

Computational Complexities

, Time complexity
Worst case: $\mathrm{O}(\mathrm{k} \cdot|\mathrm{T}|)$
Average time complexity: $\mathrm{O}\left(\mathrm{k} \cdot|\Sigma|^{2 k}\right)$

- Space complexity

Worst case: O(km + n)
, Existing methods:
time complexity - $\mathrm{O}(\mathrm{k} \cdot \mathbf{n})$; space complexity $-\mathrm{O}(m+n)$

Improvement-1

, Searching suffix trees over patterns to replace searching part of T

- pattern: $\mathrm{x}=$ acacg ($\bar{x}=$ gcaca); target: $\mathrm{y}=$ gtataca ($\bar{y}=$ acatatg); $k=2$.

F	L
$\$$	a_{3}
a_{3}	c_{1}
a_{2}	t_{2}
a_{1}	t_{1}
c_{1}	a_{2}
g_{1}	$\$$
t_{2}	a_{1}
t_{1}	g_{1}

Improvement-1

, Suffix tree over $\bar{x}=$ gcaca

Improvement-2

- Recognizing similar paths

Pattern Partition

, As k increases, the performance of our algorithm degrades.
, Partition a pattern to get subpatterns with smaller \boldsymbol{k}^{\prime} values.
, Quickly find all those substrings in a target, which match a subpattern with smaller k^{\prime} differences.
, For each surviving substring, recheck it to see whether it is an occurrence of the pattern, but with k differences.

Pattern Partition

, Two-step method: Filtering and Exact matching Filtering

In the first step, we partition the pattern $x=x_{1} \ldots x_{m}$ evenly into I segments, denoted as $x=P_{1} P_{2} \ldots P_{1}$ with each $P_{i}=x_{(i-1) r_{+1}} \ldots X_{i r}$ for $1 \leq I \leq I-1$, and $P_{I}=x_{(I-1) r+1} \ldots x_{m}$, where $r=\lceil m / I\rceil$. Then, we check each P_{i} against $B W T(y)$ with $k^{\prime}=\lfloor k / I\rfloor$ differences in turn to find all the occurrences of $P_{i}(1 \leq i \leq I)$ in y. Each occurrence is represented by
(i, j), indicating that P_{i} matches a segment ending at position j in y with k^{\prime} differences.

Pattern Partition

, Two-step method

- Exact checking

In the second step, for each occurrence (i, j) found in the first step, the substring of the target: $s_{i, j}=y_{j-i r+1-k} \cdots y_{j-i r+1+m+k}$ will be again closely checked against x with k differences by using a classical algorithm. The length of $s_{i, j}$ is $m+2 k$.

Pattern Partition

, Illustration for pattern partition

Experiments

, In our experiments, we have tested altogether 7 strategies:

1. Ukkonen's onlline method (u-o for short, [57]),
2. Chang-Lawer's first method (ch-1 for short, [14]),
3. Chang-Lawer's second method (ch-2 for short, [14]),
4. Ukkonen's index-based method (u-i for short, [58]),
5. Myers's index-based method (m-i for short, [44]),
6. Peri-Culpepper's index-based method (pc-i for short, [49]), and
7. ours, discussed in this paper.

Experiments

, Test bed

1. All codes are written in C++ and compiled by GNU g++ compiler version 5.4 .0 with compiler option '-O2'.
2. All tests run on a 64-bit Ubuntu OS with a single core of Intel Xeon E5-2637 @3.50Ghz. The system memory is of 64 GB .

Experiments

, Test bed

1. For time measurements, we used the Unix time commands. In addition, the suffix trees for patterns (in the ChangLawler's method and ours), as well as for reference sequences (in the Ukkonen's index-based method) are constructed by using the algorithm described in [59].
2. To construct the suffix arrays and the BWT-arrays, we used a code found in the libdivsufsort library (https://github.com/ Y256/libdivsufsort)

Experiments

, Data

Reference sequences*	Num. characters	Time (\mathbf{s}) for building BWT(y)
Gorilla	$3,063,403,506$	406.817
Danio Rerio (ZebraFish)	$1,373,472,378$	173.142
Gorilla Chr1	$228,908,641$	25.03
Protein-1	$144,000,000$	15.92
Protein-2	$30,000,000$	3.04

*The first three are genome sequences while the last two are protein sequences. For genomes, $|\Sigma|=4$. For protein sequences, $|\Sigma|=20$.

Experiments

, Experiments on the string matching with small number of differences

- Pattern length = 100 characters

Gorilla genome

ZebraFish genome

Gorilla Chr 1

Experiments

Number of nodes in T (Gorilla)

k	1	2	3	4	5	6	7
$\|T\|$	1.4 k	25 k	278.5 k	2 M	10 M	39.72 M	92 M

Experiments

Protein 1

Protein 2

Experiments

, Experiments on the string matching with large number of differences (for which the two-step method is used.)

- Pattern length = 300 characters

Gorilla genome

ZebraFish genome

Experiments

Two-step execution details on Gorilla genome

k	20	25	30	35	40	45
Step-1	23.1 s	23.1 s	173.2 s	172.9 s	1187.0 s	1187.5 s
Step-2	97.41 s	122.1 s	263.4 s	311.7 s	492.32 s	565.58 s
num. of surviving segments	30.5 k	30.5 k	52.9 k	52.7 k	69.5 k	69.3 k
Size of a segment	353	364	388	399	428	439

Two-step execution details on ZebraFish genome

k	20	25	30	35	40	45
Step-1	58.73 s	58.57 s	187.5 s	187.6 s	953.0 s	952.4 s
Step-2	18.41 s	21.48 s	32.24 s	38.85 s	60.33 s	60.70 s
num. of surviving segments	3638	3633	4709	4702	6376	6365
Size of a segment	423	423	444	455	463	474

Experiments

, Experiments on the string matching with large number of differences (for which the two-step method is used.)

- Pattern length $=300$ characters

Gorilla Chr1

Protein 1

Protein 2

Experiments

, Experiments on number of subpatterns

- Pattern length = 300 characters

Gorilla genome

ZebraFish genome

Gorilla Chr1

I: the number of subpatterns

Experiments

Number of segments checked in Step-2 by the pattern partition

K	20	25	30	35	40	45
$I=10$	30.5 k	30.5 k	52.9 k	52.7 k	69.5 k	69 k
$I=12$	28.7 k	56.2 k	56.0 k	55.8 k	60.5 k	61.4 k
$I=15$	30.5 k	30.5 k	52.9 k	52.7 k	69.5 k	69.3 k

Experiments

, Experiments on different lengths of patterns

Gorilla genome

ZebraFish genome

Gorilla Chr 1

Experiments

, Experiments on different lengths of patterns

Protein 1

Protein 2

Conclusion

, Main contribution

- An algorithm for the string matching with k differences
- Combination of dynamic programming and BWT indexes for the problem of string matching with k difference
- Concept of search trees and two branch cutting methods
- Pattern partition
- Extensive tests
, Future work
- String matching with don't care symbols (using BWT transformation as indexes)

Thank you!

