
On the String Matching with k Differences in DNA

Databases

Yangjun Chen and Hoang Hai Nguyen

Dept. of Applied Computer Science

University of Winnipeg, Canada

1

Outline

 Motivation

 - Statement of Problem

 - Related work

 Basic Techniques

 - Dynamic programming

 - BWT Arrays – A space-economic Index for String Matching

 Main algorithm for string Matching with k Differences

 - Search trees

 - Suffix trees over patterns, Similar paths, Pattern partition

 Experiments

 Conclusion and Future Work
2

Statement of Problem

 String matching with k differences: to find all the occurrences of a

pattern string x = x1x2 … xm in a target string y = y1y2 ... yn with at most

k differences, where xi, yj , a given alphabet. In general, we
distinguish among three kinds of differences:

1. A character of the pattern corresponds to a different character of

the target. In this case we say that there is a mismatch between

the two characters;

2. A character of the target corresponds to ''no character'' in the

pattern (an insertion into the pattern); and

3. A character of the pattern corresponds to ''no character'' in the

target (a deletion from the pattern).

 3 3

Statement of Problem

4

 String matching with k differences:

 to find all the occurrences of a pattern string x = x1x2

… xm in a target string y = y1y2 ... yn with at most k

differences.

4

 b p d q e g h

 c b c d

Example: k = 3 pattern

target e f g h i

Related Work

 Exact string matching

 - On-line algorithms:

Knuth-Morris-Pratt, Boyer-Moore, Aho-Corasick

- Index based:

 suffix trees (Weiner; McCreight; Ukkonen), suffix arrays (Manber, Myers), BWT-

 transformation (Burrow-Wheeler), Hash (Karp, Rabin)

 Inexact string matching
- String matching with k mismatches - Hamming distance (Landau, Vishkin; Amir at al.;

Cole; Chen, Wu)

- String matching with k differences - Levelshtein distance (Chang, Lampe)

- String matching with wild-cards (Manber, Baeza-Yates)

 5

6

Basic Techniques

 Dynamic Programming

 - to calculate distance between pattern and

 targets

 BWT transformation

 - to ‘fold’ the target strings

7

Dynamic Programming

7

- Xi = x1x2 … xi

- Yj = y1y2 … yj

D(0, j) = j, 0 j n; D(i, 0) = i, 0 i m;

D(i, j) = min

D(i – 1, j) + w(xi,)

D(i – 1, j - 1) + (xi, yj)

D(i, j - 1) + w(, yj)

Time complexity: O(mn)

where w(xi, yj) is the cost to change xi to yj, and (xi, yj) is

1 if xi = yj. Otherwise (xi, yj) = w(xi, yj).

D(i-1, j) D(i-1, j-1)

D(i, j-1) D(i, j)

8

Dynamic Programming

 Example: X = gcaca, Y = acatatg, k = 2. For each yj,
the distance between y1…yj and x1…xi for all xi will be
calculated.

j 0 1 2 3 4 5 6 7

i a c a t a T g

0 0 0 0 0 0 0 0 0

1 g 1 1 1 1 1 1 1 0

2 c 2 2 1 2 2 2 2 1

3 a 3 2 2 1 2 2 3 2

4 c 4 2 2 2 2 3 3 3

5 a 5 4 3 2 3 2 4 4

9 9

BWT Transformation

 BWT array L of y, denoted as BWT(Y), can be

established by using the suffix array SA of y:

L[i] = $, if SA[i] = 0;

L[i] = y[SA[i] – 1], otherwise.

 BWT array was proposed by M. Burrows and D.J. Wheeler in
1994. (M. Burrows, D.J. Wheeler, (1994), A block sorting lossless data

compression algorithm, Technical Report 124, Digital Equipment

Corporation.)

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html

10

BWT Transformation

Suffix Sorted suffix SAy rF F Sorted rotations L rL

gtataca$ $ 7 - $ $g1t1a1t2a2c1a3 a 1

tataca$ a$ 6 1 a a3$g1t1a1t2a2c1 c 1

ataca$ aca$ 4 2 a a2c1a3$g1t1a1t2 t 1

taca$ ataca$ 2 3 a a1t2a2c1a3$g1t1 a 2

aca$ ca$ 5 1 c c1a3$g1t1a1t2a2 a 2

ca$ gtataca$ 0 1 g g1t1a1t2a2c1a3$ $ -

a$ taca$ 3 1 t t2a2c1a3$g1t1a1 a 3

$ tataca$ 1 2 t t1a1t2a2c1a3$g1 g 1

L = BWT(Y)

BWT Transformation

 Burrows-Wheeler Transform (BWT)

 y = g1t1a2t2a3c1a3$

11

$ g1 t1 a1 t2 a2 t2 a3

a3 $ g1 t1 a1 t2 a2 c1
a2 c1 a3 $ g1 t1 a1 t2

a1 t2 a2 c1 a3 $ g1 t1

c1 a3 $ g1 t1 a1 t2 a2

g1 t1 a1 t2 a2 c1 a3 $
t2 a2 c1 a3 $ g1 t1 a1

t1 a1 t2 a2 c1 a3 $ g1

 rkF

-

1
2
3
1
1
1
2

 rkL

1

1
1

2

2

-
3
1

F L

rank: 3

rank: 3

g1 t1 a1 t2 a2 c1 a3 $
t1 a1 t2 a2 c1 a3 $ g1

a1 t2 a2 c1 a3 $ g1 t1

t2 a2 c1 a3 $ g1 t1 a1

a2 c1 a3 $ g1 t1 a1 t2

c1 a3 $ g1 t1 a1 t2 a2

a3 $ g1 t1 a1 t2 a2 c1
$ g1 t1 a1 t2 a2 t2 a3

Rank correspondence:

L[i] = $, if SA[i] = 1;

L[i] = y[SA[i] – 1], otherwise.

BWT construction:

SA[…] – suffix array

rkF(e) = rkL(e)

A suffix array can be
established in O(n).

Sort these sequences
lexicographically.

7
6
4
2
5
0
1
2

Suffix Array

 y = g1t1a1t2a2c1a3$

 x = tata

Backward Search of BWT-Index

12

Backward Search

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

<z, [, β]>, if z appears in L;

, otherwise.
search(z,) =

Z: a character : a range in F

L: a range in L, corresponding to

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

Backward Search of BWT-Index

S(t, <a, [1, 3]>)

<a, [1, 3]> <t, [1, 2]> <a, [3, 3]>

S(a, <t, [1, 2]>)

Search sequence:

13

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

S(t, <a, [3, 3]>)

<t, [2, 2]>

14

rankAll

 Arrange || arrays each for a character X such that AX[i] (the ith entry

in the array for X) is the number of appearances of X within L[1 .. i].

 Instead of scanning a certain segment L[..] () to find a subrange

for a certain X , we can simply look up AX to see whether AX[- 1] =

A[]. If it is the case, then does not occur in ..]. Otherwise, [AX[- 1]

+ 1, AX[]] should be the found range.
A$ Aa Ac Ag At

0 1 0 0 0

0 1 1 0 0

0 1 1 0 1

0 1 1 0 2

0 2 1 0 2

1 2 1 0 2

1 3 1 0 2

1 3 1 1 2

Example

To find the first and the last appearance

of t in L[1 .. 3], we only need to find

At[1 – 1] = At [0] = 0 and At [3] = 2. So the

corresponding range is

[At[1 - 1] + 1, At[3]] = [1, 2].

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

15

Reduce rankAll-Index Size

 F-ranks: F = <a; xa, ya>

 BWT array: L

 Reduced appearance array: A with bucket

 size .

 Reduced suffix array: SA* with bucket size .

F L rkL

$ a3 1

a3 c1 1

a2 t2 1

a1 t1 2

c1 a2 2

g1 $ -
t2 a1 3

t2 g1 1

L
a3
c1

t2
t1
a2
$
a1
g1

F = <; x, y>
7
6
4
2
5
0
1
2

SA*

7
6
4
2
5
0
1
2

SA

F$ = <$; 1, 1>
Fa = <a; 2, 4>
Fc = <c; 5, 5>
Fg = <g; 6, 6>
Ft = <t; 7, 8>

+ + +

Find a range:
top F(x) + A[(top -1)/] + r +1

bot F(x) + A[bot/] + r

r is the number of 's appearances within
 L[(top - 1)/ .. top - 1]

r’ is the number of 's appearances within
 L[bot/ .. bot]

A$ Aa Ac Ag At

0 1 0 0 0

0 1 1 0 0

0 1 1 0 1

0 1 1 0 2

0 2 1 0 2

1 2 1 0 2

1 3 1 0 2

1 3 1 1 2

16

String Matching with k Differences

 Different from the evaluation of an exact string matching, to find all

the occurrences of 𝒙 = z1z2 … zm = xm xm-1 … x1 in BWT(y) for a target

string y with k differences, a tree, instead of a single sequence, will be
dynamically created. In such a tree, each path

 v0 v2 … vl

 corresponds to a search sequence. Each vj is labeled with <ej, [j, j]>.

 The D-vector of v0 is <0, 1, …, m>T.

 For j > o, we have

 Dj[0] = Dj-1[0] + 1

Dj[i] = min{Dj[i -1] + w(zi,), Dj-1[i] + w(, ej), Dj-1[i - 1] + (zi, ej), }, for i > 0.

Search Trees

Definition (search tree) A search tree (S-tree for short) T

with respect to x and y is a tree structure to represent the
search of 𝒙 against BWT(y). In T, each node is labeled with

a pair <e, [,]> and there is an edge from v (= <e, [,

]>) to u (= <e, [,]>) if S(e, v) = u. In addition, a

special node is designated as the root, labeled with <-,

[1,|L|]>, representing the whole BWT-array L = BWT(y).

17

Search Trees

 pattern: x = acacg (𝑥 = gcaca);

 target: y = gtataca (𝒚 = acatatg);

 k = 2.

18

<-, [1, 8]>

<a, [1, 3]>

<c, [1, 1]>

<a, [2, 2]>

<t, [1, 2]>

<a, [3, 3]>

<t, [2, 2]>

<c, [1, 1]>

<a, [2, 2]>

<t, [1, 1]>

<g, [1, 1]>

v0

v1

v9

v13

v2

v4

v10

v3

v5

v10

v6

P1

P2

P3

P4

<a, [3, 3]>

v11

v15

v14

T:

<g, [2, 2]>

v7

<g, [1, 1]>

v8

<t, [1, 2]>

<a, [3, 3]>

<t, [2, 2]>

<g, [1, 1]>

v16

v17

P5

P6

P7

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

String Matching with k Differences

D-vectors:

D0

-

0

1

2

3

4

5

D1

a

1

1

2

2

3

4

D2

c

2

2

1

2

2

3

D3

a

3

3

2

1

2

2

D4

t

2

2

2

3

3

4

D5

a

3

3

3

2

3

3

D6

t

4

4

4

3

3

4

D7

g

5

4

5

4

4

4

D8

g

3

2

3

3

3

4

D9

c

1

1

1

2

3

5

D10

a

0

1

2

3

4

4

D11

t

3

3

3

2

2

3

D12

a

4

4

4

3

3

2

D13

t

1

1

2

3

4

5

D14

a

2

2

2

2

3

4

D15

t

3

3

3

3

3

4

D16

g

2

1

2

3

4

5

D17

g

1

0

1

3

4

5

20 20 20 20

Computational Complexities

 Time complexity

 Worst case: O(k|T|)

 Average time complexity: O(k||2k)

 Space complexity

 Worst case: O(km + n)

 Existing methods:

time complexity – O(kn); space complexity – O(m + n)

21 21

 Searching suffix trees over patterns to replace searching part of T

 - pattern: x = acacg (𝑥 = gcaca); target: y = gtataca (𝒚 =

 acatatg); k = 2.

21

<-, [1, 8]>

<a, [1, 3]>

<c, [1, 1]>

<a, [2, 2]>

<t, [1, 2]>

<a, [3, 3]>

<t, [2, 2]>

v0

v1

v2

v4

v3

v5

v6

P1

P2

P3

T:

<g, [2, 2]>

v7

<g, [1, 1]>

F L
$ a3
a3 c1
a2 t2
a1 t1
c1 a2
g1 $
t2 a1
t1 g1

Improvement-1

D4

2

2

2

3

3

4

… …

 Suffix tree over 𝑥 = gcaca

Improvement-1

1 2 3 4 5 6

gcaca$
c a

aca$ a$ $

$

ca$

23 23

Improvement-2

 Recognizing similar paths

u

w

v

u1

w1 <e0, [0, 0]>

<e1, [1, 1)]>

<e0, [0′, 0′]>

<e1, [1′, 1′]>

[0, 0] [0′, 0′]

[1, 1] [1′, 1′]

… …

… …

… …

24

Pattern Partition

 As k increases, the performance of our algorithm

degrades.

 Partition a pattern to get subpatterns with smaller k

values.

 Quickly find all those substrings in a target, which

match a subpattern with smaller k differences.

 For each surviving substring, recheck it to see

whether it is an occurrence of the pattern, but with k

differences.

25

Pattern Partition

 Two-step method: Filtering and Exact matching

 Filtering

 In the first step, we partition the pattern x = x1 … xm evenly into l

 segments, denoted as x = P1P2 ... Pl with each Pi = x(i-1)r+1 ... Xir

 for 1 I l - 1, and Pl = x(l-1)r+1 … xm, where r = m/l. Then, we check

 each Pi against BWT(y) with k' = k/l differences in turn to find all the

 occurrences of Pi (1 i l) in y. Each occurrence is represented by

 (i, j), indicating that Pi matches a segment ending at position j in y with

 k' differences.

26 26

Pattern Partition

 Two-step method

• Exact checking

 In the second step, for each occurrence (i, j) found in the first step, the

 substring of the target: si,j = yj-ir+1-k ... yj-ir+1+m+k will be again closely

 checked against x with k differences by using a classical algorithm.

 The length of si,j is m + 2k.

27

Pattern Partition

 Illustration for pattern partition

target string y

pattern string x

 m/l
r r … …

Pi

j – I r + 1 + k j – I r + m + k

m + 2k

28

Experiments

 In our experiments, we have tested altogether 7 strategies:

1. Ukkonen's onlline method (u-o for short, [57]),

2. Chang-Lawer’s first method (ch-1 for short, [14]),

3. Chang-Lawer's second method (ch-2 for short, [14]),

4. Ukkonen's index-based method (u-i for short, [58]),

5. Myers's index-based method (m-i for short, [44]),

6. Peri-Culpepper's index-based method (pc-i for short, [49]), and

7. ours, discussed in this paper.

29

Experiments

 Test bed

1. All codes are written in C++ and compiled by GNU g++

compiler version 5.4.0 with compiler option `-O2’.

2. All tests run on a 64-bit Ubuntu OS with a single core of Intel

Xeon E5-2637 @3.50Ghz. The system memory is of 64 GB.

30 30

Experiments

 Test bed

1. For time measurements, we used the Unix time commands.

In addition, the suffix trees for patterns (in the Chang-

Lawler's method and ours), as well as for reference

sequences (in the Ukkonen's index-based method) are

constructed by using the algorithm described in [59].

2. To construct the suffix arrays and the BWT-arrays, we used a

code found in the libdivsufsort library (https://github.com/

 Y256/libdivsufsort)

https://github.com/

31

Experiments

 Data

Reference sequences* Num. characters Time (s) for building BWT(y)

Gorilla 3,063,403,506 406.817

Danio Rerio (ZebraFish) 1,373,472,378 173.142

Gorilla Chr1 228,908,641 25.03

Protein-1 144,000,000 15.92

Protein-2 30,000,000 3.04

*The first three are genome sequences while the last two are protein

sequences. For genomes, || = 4. For protein sequences, || = 20.

32

Experiments

 Experiments on the string matching with small number of

differences

- Pattern length = 100 characters

Gorilla genome ZebraFish genome Gorilla Chr1

33

Experiments

k 1 2 3 4 5 6 7

|T| 1.4k 25k 278.5k 2M 10M 39.72M 92M

Number of nodes in T (Gorilla)

Experiments

Protein 1 Protein 2

35

Experiments

 Experiments on the string matching with large number of

differences (for which the two-step method is used.)

- Pattern length = 300 characters

ZebraFish genome Gorilla genome

36 36

Experiments

k 20 25 30 35 40 45

Step-1 23.1s 23.1s 173.2s 172.9s 1187.0s 1187.5s

Step-2 97.41s 122.1s 263.4s 311.7s 492.32s 565.58s

num. of surviving segments 30.5k 30.5k 52.9k 52.7k 69.5k 69.3k

Size of a segment 353 364 388 399 428 439

Two-step execution details on Gorilla genome

k 20 25 30 35 40 45

Step-1 58.73s 58.57s 187.5s 187.6s 953.0s 952.4s

Step-2 18.41s 21.48s 32.24s 38.85s 60.33s 60.70s

num. of surviving segments 3638 3633 4709 4702 6376 6365

Size of a segment 423 423 444 455 463 474

Two-step execution details on ZebraFish genome

37

Experiments

 Experiments on the string matching with large number of

differences (for which the two-step method is used.)

- Pattern length = 300 characters

Gorilla Chr1 Protein 1 Protein 2

38

Experiments

 Experiments on number of subpatterns

 - Pattern length = 300 characters

Gorilla genome ZebraFish genome Gorilla Chr1

l: the number of subpatterns

39

Experiments

K 20 25 30 35 40 45

l =10 30.5k 30.5k 52.9k 52.7k 69.5k 69k

l = 12 28.7k 56.2k 56.0k 55.8k 60.5k 61.4k

l = 15 30.5k 30.5k 52.9k 52.7k 69.5k 69.3k

Number of segments checked in Step-2 by the pattern

partition

40

Experiments

 Experiments on different lengths of patterns

Gorilla genome ZebraFish genome Gorilla Chr1

41

Experiments

 Experiments on different lengths of patterns

Protein 1 Protein 2

42

Conclusion

 Main contribution

 - An algorithm for the string matching with k differences
 Combination of dynamic programming and BWT indexes for

the problem of string matching with k difference

 Concept of search trees and two branch cutting methods

 Pattern partition

 - Extensive tests

 Future work
 - String matching with don’t care symbols (using BWT

transformation as indexes)

43

Thank you!

