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Statement of Problem 

 String matching with k differences: to find all the occurrences of a 

pattern string x = x1x2 … xm in a target string y = y1y2 ... yn with at most 

k differences, where xi, yj  , a given alphabet. In general, we 
distinguish among three kinds of differences: 

1. A character of the pattern corresponds to a different character of 

the target. In this case we say that there is a mismatch between 

the two characters; 

2. A character of the target corresponds to ''no character'' in the 

pattern (an insertion into the pattern); and 

3. A character of the pattern corresponds to ''no character'' in the 

target (a deletion from the pattern). 

 3 3 



Statement of Problem 

4 

 String matching with k differences: 

 to find all the occurrences of a pattern string x = x1x2 

… xm in a target string y = y1y2 ... yn with at most k 

differences. 

4 

 b p d q e   g h 

 c b c d  

Example: k = 3 pattern 

target e f g h i  



Related Work 

 Exact string matching 

 -  On-line algorithms: 

Knuth-Morris-Pratt, Boyer-Moore, Aho-Corasick 

- Index based: 

  suffix trees (Weiner; McCreight; Ukkonen), suffix arrays (Manber, Myers), BWT-

 transformation (Burrow-Wheeler), Hash (Karp, Rabin) 

 Inexact string matching 
- String matching with k mismatches - Hamming distance (Landau, Vishkin; Amir at al.; 

Cole; Chen, Wu) 

- String matching with k differences - Levelshtein distance (Chang, Lampe) 

- String matching with wild-cards (Manber, Baeza-Yates) 
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Basic Techniques 

 Dynamic Programming 

 - to calculate distance between pattern and 

  targets  

 BWT transformation 

 - to ‘fold’ the target strings 
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Dynamic Programming 
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- Xi = x1x2 … xi 

- Yj = y1y2 … yj 

D(0, j) = j, 0  j  n; D(i, 0) = i, 0  i  m;  

D(i, j) = min 

D(i – 1, j) + w(xi, ) 

D(i – 1, j - 1) + (xi, yj) 

D(i, j - 1) + w(, yj) 

 

 

 

 

 

 

Time complexity: O(mn) 

where w(xi, yj) is the cost to change xi to yj, and (xi, yj) is 

1 if xi = yj. Otherwise (xi, yj) = w(xi, yj).      

   

D(i-1, j) D(i-1, j-1) 

D(i, j-1) D(i, j) 
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Dynamic Programming 

 Example: X = gcaca, Y = acatatg, k = 2. For each yj, 
the distance between y1…yj and x1…xi for all xi will be 
calculated. 

j 0 1 2 3 4 5 6 7 

i a c a t a T g 

0 0 0 0 0 0 0 0 0 

1 g 1 1 1 1 1 1 1 0 

2 c 2 2 1 2 2 2 2 1 

3 a 3 2 2 1 2 2 3 2 

4 c 4 2 2 2 2 3 3 3 

5 a 5 4 3 2 3 2 4 4 
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BWT Transformation 

 BWT array L of y, denoted as BWT(Y), can be 

established by using the suffix array SA of y: 

L[i] = $, if SA[i] = 0; 

L[i] = y[SA[i] – 1], otherwise. 

 BWT array was proposed by M. Burrows and D.J. Wheeler in 
1994. (M. Burrows, D.J. Wheeler, (1994), A block sorting lossless data 

compression algorithm, Technical Report 124, Digital Equipment 

Corporation.) 

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.html
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BWT Transformation 

Suffix Sorted suffix SAy rF F Sorted rotations L rL 

gtataca$ $ 7 - $ $g1t1a1t2a2c1a3 a 1 

tataca$  a$ 6 1 a a3$g1t1a1t2a2c1 c 1 

ataca$  aca$ 4 2 a a2c1a3$g1t1a1t2 t 1 

taca$ ataca$  2 3 a a1t2a2c1a3$g1t1 a 2 

aca$ ca$ 5 1 c c1a3$g1t1a1t2a2 a 2 

ca$ gtataca$ 0 1 g g1t1a1t2a2c1a3$ $ - 

a$ taca$ 3 1 t t2a2c1a3$g1t1a1 a 3 

$ tataca$ 1 2 t t1a1t2a2c1a3$g1 g 1 

L = BWT(Y) 



BWT Transformation 

 Burrows-Wheeler Transform (BWT) 

 y = g1t1a2t2a3c1a3$ 
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$   g1 t1  a1  t2  a2  t2  a3 

a3  $  g1  t1  a1  t2  a2  c1 
a2  c1 a3  $   g1  t1  a1  t2 

a1  t2 a2  c1  a3  $   g1  t1 

c1  a3  $   g1  t1  a1  t2  a2 

g1  t1 a1  t2  a2  c1  a3  $ 
t2  a2  c1  a3  $  g1  t1  a1 

t1  a1  t2  a2  c1 a3  $   g1 

 

 rkF 

- 

1 
2 
3 
1 
1 
1 
2 

 rkL   

1 

1 
1 

2 

2 

- 
3 
1 

F L 

rank: 3 

rank: 3 

g1  t1 a1  t2  a2  c1  a3  $ 
t1  a1  t2  a2  c1 a3  $   g1 

a1  t2 a2  c1  a3  $   g1  t1 

t2  a2  c1  a3  $  g1  t1  a1 

a2  c1 a3  $   g1  t1  a1  t2 

c1  a3  $   g1  t1  a1  t2  a2 

a3  $  g1  t1  a1  t2  a2  c1 
$   g1 t1  a1  t2  a2  t2  a3 

 

 

Rank correspondence: 

L[i] = $, if SA[i] = 1; 

L[i] = y[SA[i] – 1], otherwise. 

BWT construction: 

SA[…] – suffix array 

rkF(e) = rkL(e)  

A suffix array can be 
established in O(n). 

Sort these sequences 
lexicographically. 

7 
6 
4 
2 
5 
0 
1 
2 

Suffix Array 



 y = g1t1a1t2a2c1a3$ 

 x = tata 

 

Backward Search of BWT-Index 
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Backward Search 

F L  
$ a3        
a3 c1        
a2 t2        
a1 t1         
c1 a2        
g1 $        
t2 a1      
t1 g1 

<z, [, β]>, if z appears in L; 

, otherwise. 
search(z, ) = 

Z: a character : a range in F 

L: a range in L, corresponding to  

F L  
$ a3        
a3 c1        
a2 t2        
a1 t1         
c1 a2        
g1 $        
t2 a1      
t1 g1 

F L  
$ a3        
a3 c1        
a2 t2        
a1 t1         
c1 a2        
g1 $        
t2 a1      
t1 g1 

F L  
$ a3        
a3 c1        
a2 t2        
a1 t1         
c1 a2        
g1 $        
t2 a1      
t1 g1 



Backward Search of BWT-Index 

S(t, <a, [1, 3]>) 

<a, [1, 3]> <t, [1, 2]> <a, [3, 3]> 

S(a, <t, [1, 2]>) 

Search sequence: 
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F L  
$ a3        
a3 c1        
a2 t2        
a1 t1         
c1 a2        
g1 $        
t2 a1      
t1 g1 

F L  
$ a3        
a3 c1        
a2 t2        
a1 t1         
c1 a2        
g1 $        
t2 a1      
t1 g1 

F L  
$ a3        
a3 c1        
a2 t2        
a1 t1         
c1 a2        
g1 $        
t2 a1      
t1 g1 

F L  
$ a3        
a3 c1        
a2 t2        
a1 t1         
c1 a2        
g1 $        
t2 a1      
t1 g1 

S(t, <a, [3, 3]>) 

<t, [2, 2]> 
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rankAll 

 Arrange || arrays each for a character X   such that AX[i] (the ith entry 

in the array for X) is the number of appearances of X within L[1 .. i].  

 Instead of scanning a certain segment L[ .. ] (  ) to find a subrange 

for a certain X  , we can simply look up AX to see whether AX[ - 1] = 

A[]. If it is the case, then  does not occur in  .. ]. Otherwise, [AX[ - 1] 

+ 1, AX[] ] should be the found range.  
A$ Aa Ac Ag At 

0  1 0 0 0 

0 1 1 0 0 

0 1 1 0 1 

0 1 1 0 2 

0 2 1 0 2 

1 2 1 0 2 

1 3 1 0 2 

1 3 1  1 2 

 

Example 

To find the first and the last appearance 

of t in L[1 .. 3], we only need to find 

At[1 – 1] = At [0] = 0 and At [3] = 2. So the 

corresponding range is 

[At[1 - 1] + 1, At[3]] = [1, 2]. 

F L  
$ a3        
a3 c1        
a2 t2        
a1 t1         
c1 a2        
g1 $        
t2 a1      
t1 g1 
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Reduce rankAll-Index Size 

 F-ranks: F = <a; xa, ya>  

 BWT array: L 

 Reduced appearance array: A with bucket 

 size . 

 Reduced suffix array: SA* with bucket size .  

 
F L rkL 

$ a3 1 

a3 c1 1 

a2 t2 1 

a1 t1 2 

c1 a2 2 

g1 $ - 
t2 a1 3 

t2 g1 1 

L   
a3  
c1 

t2        
t1         
a2       
$       
a1     
g1        

F = <; x, y>  
7 
6 
4 
2 
5 
0 
1 
2 

SA* 

7 
6 
4 
2 
5 
0 
1 
2 

SA 

F$ = <$; 1, 1> 
Fa = <a; 2, 4> 
Fc = <c; 5, 5> 
Fg = <g; 6, 6> 
Ft = <t; 7, 8> 
 
 
 
 

 

+ + + 

Find a range: 
top  F(x) + A[ (top -1)/] + r +1 

bot  F(x) + A[ bot/] + r 
 
 
r is the number of 's appearances within 
 L[(top - 1)/ .. top - 1] 

r’ is the number of 's appearances within 
 L[bot/ .. bot ] 

A$ Aa Ac Ag At 

0  1 0 0 0 

0 1 1 0 0 

0 1 1 0 1 

0 1 1 0 2 

0 2 1 0 2 

1 2 1 0 2 

1 3 1 0 2 

1 3 1  1 2 
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String Matching with k Differences 

 Different from the evaluation of an exact string matching, to find all 

the occurrences of 𝒙  = z1z2 … zm = xm xm-1 … x1 in BWT(y) for a target 

string y with k differences, a tree, instead of a single sequence, will be 
dynamically created. In such a tree, each path 

 v0  v2  …  vl 

 corresponds to a search sequence. Each vj is labeled with <ej, [j, j ]>. 

 The D-vector of v0 is <0, 1, …, m>T. 

 For j > o, we have 

        Dj[0] = Dj-1[0] + 1 
   

     
Dj[i] = min{Dj[i -1] + w(zi, ), Dj-1[i] + w(, ej), Dj-1[i - 1] + (zi, ej), }, for i > 0.
         



Search Trees 

Definition (search tree) A search tree (S-tree for short) T 

with respect to x and y is a tree structure to represent the 
search of 𝒙  against BWT(y). In T, each node is labeled with 

a pair <e, [, ]> and there is an edge from v (= <e, [, 

]>) to u (= <e, [, ]> ) if S(e, v) = u. In addition, a 

special node is designated as the root, labeled with <-, 

[1,|L|]>, representing the whole BWT-array L = BWT(y). 

17 



Search Trees 

 pattern: x = acacg (𝑥  = gcaca); 

 target: y = gtataca (𝒚  = acatatg);  

 k = 2.  
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<-, [1, 8]>

  

<a, [1, 3]>

  
<c, [1, 1]>

  

<a, [2, 2]>

  

<t, [1, 2]>

  

<a, [3, 3]>

  

<t, [2, 2]>

  

<c, [1, 1]>

  
<a, [2, 2]>

  

<t, [1, 1]>

  

<g, [1, 1]>

  

v0 

 

v1 

 
v9 

 
v13 

 
v2 

 
v4 

 

v10 

 

v3 

 

v5 

 

v10 

 

v6 

 
P1 

 

P2 

 

P3 

 

P4 

 

<a, [3, 3]>

  

v11 

 

v15 

 

v14 

 

T: 

 

<g, [2, 2]>

  

v7 

 

<g, [1, 1]>

  

v8 

 

<t, [1, 2]>

  
<a, [3, 3]>

  

<t, [2, 2]> 

<g, [1, 1]>

  

v16 

 

v17 

 

P5 

 

P6 

 

P7 

 

F L  
$ a3        
a3 c1        
a2 t2        
a1 t1         
c1 a2        
g1 $        
t2 a1      
t1 g1 



String Matching with k Differences 

D-vectors: 

D0 

- 

0 

1 

2 

3 

4 

5 

D1 

a 

1 

1 

2 

2 

3 

4 

D2 

c 

2 

2 

1 

2 

2 

3 

D3 

a 

3 

3 

2 

1 

2 

2 

D4 

t 

2 

2 

2 

3 

3 

4 

D5 

a 

3 

3 

3 

2 

3 

3 

D6 

t 

4 

4 

4 

3 

3 

4 

D7 

g 

5 

4 

5 

4 

4 

4 

D8 

g 

3 

2 

3 

3 

3 

4 

D9 

c 

1 

1 

1 

2 

3 

5 

D10 

a 

0 

1 

2 

3 

4 

4 

D11 

t 

3 

3 

3 

2 

2 

3 

D12 

a 

4 

4 

4 

3 

3 

2 

D13 

t 

1 

1 

2 

3 

4 

5 

D14 

a 

2 

2 

2 

2 

3 

4 

D15 

t 

3 

3 

3 

3 

3 

4 

D16 

g 

2 

1 

2 

3 

4 

5 

D17 

g 

1 

0 

1 

3 

4 

5 
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Computational Complexities 

 Time complexity 

 Worst case: O(k|T|) 

 Average time complexity: O(k||2k)  

 Space complexity 

 Worst case: O(km + n) 

 Existing methods:  

time complexity – O(kn); space complexity – O(m + n) 
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 Searching suffix trees over patterns to replace searching part of T 

 - pattern: x = acacg (𝑥  = gcaca); target: y = gtataca (𝒚  = 

 acatatg); k = 2.  

21 

<-, [1, 8]>

  

<a, [1, 3]>

  
<c, [1, 1]>

  

<a, [2, 2]>

  

<t, [1, 2]>

  

<a, [3, 3]>

  

<t, [2, 2]>

  

v0 

 

v1 

 

v2 

 
v4 

 
v3 

 

v5 

 
v6 

 
P1 

 

P2 

 

P3 

 

T: 

 

<g, [2, 2]>

  

v7 

 

<g, [1, 1]>

  

F L  
$ a3        
a3 c1        
a2 t2        
a1 t1         
c1 a2        
g1 $        
t2 a1      
t1 g1 

Improvement-1 

D4 

2 

2 

2 

3 

3 

4 

… …
  



 Suffix tree over 𝑥  = gcaca 

Improvement-1 

1 2 3 4 5 6 

gcaca$ 
c a 

aca$ a$ $ 

$ 

ca$ 
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Improvement-2 

 Recognizing similar paths 

u 

w 

v 

u1 

w1 <e0, [0, 0]> 

<e1, [1, 1)]> 

<e0, [0′, 0′]> 

<e1, [1′, 1′]> 

[0, 0]  [0′, 0′]  

[1, 1]  [1′, 1′] 

… …
  

… …
  

… …
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Pattern Partition 

 As k increases, the performance of our algorithm 

degrades. 

 Partition a pattern to get subpatterns with smaller k 

values. 

 Quickly find all those substrings in a target, which 

match a subpattern with smaller k differences. 

 For each surviving substring, recheck it to see 

whether it is an occurrence of the pattern, but with k 

differences.  
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Pattern Partition 

 Two-step method: Filtering and Exact matching 

 Filtering  

 In the first step, we partition the pattern x = x1 … xm evenly into l  

 segments, denoted as x = P1P2 ... Pl with each Pi = x(i-1)r+1 ... Xir 

 for 1   I   l - 1, and Pl = x(l-1)r+1 … xm, where r = m/l. Then, we check 

 each Pi against BWT(y) with k' = k/l differences in turn to find all the 

 occurrences of Pi (1  i  l) in y. Each occurrence is represented by 

 (i, j), indicating that Pi matches a segment ending at position j in y with 

 k' differences. 
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Pattern Partition 

 Two-step method 

• Exact checking 

 In the second step, for each occurrence (i, j) found in the first step, the 

 substring of the target: si,j = yj-ir+1-k ... yj-ir+1+m+k will be again closely 

 checked  against x with k differences by using a classical algorithm. 

 The length of si,j is m + 2k. 
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Pattern Partition 

 Illustration for pattern partition 

target string y 

pattern string x 

 m/l 
r r … … 

Pi 

j – I  r + 1 + k j – I  r + m + k 

m + 2k 
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Experiments 

 In our experiments, we have tested altogether 7 strategies: 

1. Ukkonen's onlline method (u-o for short, [57]),   

2. Chang-Lawer’s first method (ch-1 for short, [14]),   

3. Chang-Lawer's second method (ch-2 for short, [14]),  

4. Ukkonen's index-based method (u-i for short, [58]),  

5. Myers's index-based method (m-i for short, [44]),  

6. Peri-Culpepper's index-based method (pc-i for short, [49]), and 

7. ours, discussed in this paper. 
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Experiments 

 Test bed 

1. All codes are written in C++ and compiled by GNU g++ 

compiler version 5.4.0 with compiler option `-O2’.  

2. All tests run on a 64-bit Ubuntu OS with a single core of Intel 

Xeon E5-2637 @3.50Ghz. The system memory is of 64 GB. 
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Experiments 

 Test bed 

1. For time measurements, we used the Unix time commands. 

In addition, the suffix trees for patterns (in the Chang-

Lawler's method and ours), as well as for reference 

sequences (in the Ukkonen's index-based method) are 

constructed by using the algorithm described in [59]. 

2. To construct the suffix arrays and the BWT-arrays, we used a 

code found in the libdivsufsort library (https://github.com/ 

 Y256/libdivsufsort) 

https://github.com/
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Experiments 

 Data 

Reference sequences* Num. characters Time (s) for building BWT(y) 

Gorilla 3,063,403,506 406.817 

Danio Rerio (ZebraFish) 1,373,472,378 173.142 

Gorilla Chr1 228,908,641 25.03 

Protein-1 144,000,000 15.92 

Protein-2 30,000,000 3.04 

*The first three are genome sequences while the last two are protein 

sequences. For genomes, || = 4. For protein sequences, || = 20. 



32 

Experiments 

 Experiments on the string matching with small number of 

differences 

- Pattern length = 100 characters 

Gorilla genome ZebraFish genome Gorilla Chr1 
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Experiments 

k 1 2 3 4 5 6 7 

|T| 1.4k 25k 278.5k 2M 10M 39.72M 92M 

Number of nodes in T (Gorilla) 



Experiments 

Protein 1 Protein 2 
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Experiments 

 Experiments on the string matching with large number of 

differences (for which the two-step method is used.) 

- Pattern length = 300 characters 

 

ZebraFish genome Gorilla genome 
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Experiments 

k 20 25 30 35 40 45 

Step-1 23.1s 23.1s 173.2s 172.9s 1187.0s 1187.5s 

Step-2 97.41s 122.1s 263.4s 311.7s 492.32s 565.58s 

num. of surviving segments 30.5k 30.5k 52.9k 52.7k 69.5k 69.3k 

Size of a segment 353 364 388 399 428 439 

Two-step execution details on Gorilla genome 

k 20 25 30 35 40 45 

Step-1 58.73s 58.57s 187.5s 187.6s 953.0s 952.4s 

Step-2 18.41s 21.48s 32.24s 38.85s 60.33s 60.70s 

num. of surviving segments 3638 3633 4709 4702 6376 6365 

Size of a segment 423 423 444 455 463 474 

Two-step execution details on ZebraFish genome 
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Experiments 

 Experiments on the string matching with large number of 

differences (for which the two-step method is used.) 

- Pattern length = 300 characters  

Gorilla Chr1 Protein 1 Protein 2 
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Experiments 

 Experiments on number of subpatterns 

 - Pattern length = 300 characters 

 

Gorilla genome ZebraFish genome Gorilla Chr1 

l: the number of subpatterns 
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Experiments 

K 20 25 30 35 40 45 

l =10 30.5k 30.5k 52.9k 52.7k 69.5k 69k 

l = 12 28.7k 56.2k 56.0k 55.8k 60.5k 61.4k 

l = 15 30.5k 30.5k 52.9k 52.7k 69.5k 69.3k 

Number of segments checked in Step-2 by the pattern 

partition 
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Experiments 

 Experiments on different lengths of patterns 

Gorilla genome ZebraFish genome Gorilla Chr1 
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Experiments 

 Experiments on different lengths of patterns 

Protein 1 Protein 2 
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Conclusion 

 Main contribution 

 - An algorithm for the string matching with k differences 
 Combination of dynamic programming and BWT indexes for 

the problem of string matching with k difference 

 Concept of search trees and two branch cutting methods 

 Pattern partition 

 - Extensive tests 

 Future work 
 - String matching with don’t care symbols (using BWT 

transformation as indexes)   
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Thank you!  


