
A p p r o x i m a t e S t r i n g - M a t c h i n g o v e r Suf f i x T r e e s *

Esko Ukkonen

Department of Computer Science, University of Helsinki
P. O. Box 26, SF-00014 University of Helsinki, Finland

ema~l: ukkonen@cs. Helslnki. FI

A b s t r a c t . The classical approximate string-matching problem of finding the lo-
cations of approximate occurrences P ' of pattern string P in text string T such
that the edit distance between P and P ' is < k is considered. We concentrate on
the special case in which T is available for preprocessing before the searches with
varying P and k. It is shown how the searches can be done fast using the suffix
tree of T augmented with the suffix links as the preprocessed form of T and apply-
ing dynamic programming over the tree. Three variations of the search algorithm
are developed with running times O(mq + n), O(mq log q + size of the output), and
O(m2q + size of the output). Here n = ITI, m = IPh and q varies depending on the
problem instance between 0 and n. In the case of the unit cost edit distance it is
shown that q = O(min(n, m TM ISI k)) where S is the alphabet.

1 Introduct ion

The approximate string-matching problem is to find the approximate occurrences of
a pattern in a text. We will consider the problem in the following form: Given text
T = ti t2. �9 "tn and pattern P = PiP2 "" "Pro in alphabet S, and a number k > 0, find
the end locations j of all substrings P ' of T such that the edit distance between P
and P ' is < k.

The edit distance between P and P ' is the minimum possible total cost of a
sequence of editing steps that convert P to P' . Each editing step applies a rewriting
rule of the forms a --~ e (deletion), c --~ b (insertion), or a --* b (change) where
a, bE hY, a # b .

The problem has the following four subcases:
1. k = 0, no preprocessing of T (exact on-line string-matching).
2. k = 0, with preprocessing of T (exact off-line string-matching).
3. k > 0, no preprocessing of T (approximate on-line string-matching).
4. k > 0, with preprocessing of T (approximate off-line string-matching).

Case 1 leads to the well-known Boyer-Moore and Knuth-Morris-Prat t algo-
rithms. Case 2 has optimal solutions based on suffix trees [16, 25] or on suffix au-
tomata ('DAWG') [3, 6, 7]. Case 3 has recently received lot of attention [8, 9, 26]. The
simplest solution is by dynamic programming in time O(mn) where m = IPI and
n = [T[. For the k-differences problem (each edit operation has cost 1) fast special
methods are possible, including O(kn) time algorithms, see e.g. [14, 10, 23, 19, 5, 21].

* This work was supported by the Academy of Finland and by the Alexander yon Humboldt
Foundation (Germany).

229

This paper deals with Case 4, which also could be called the problem of approxi-
mate string searches over indexed files. The problem is to find a suitable preprocess-
ing for T and an associated search algorithm that finds the approximate occurrences
of P using the preprocessed T for varying P and k. We show how this can be solved
fast using the suffix tree (for simplicity, the algorithms will be formulated for the
suffix-trie) of T augmented with the suffix links, and applying dynamic program-
ming over the tree. Recall that a suffix tree for T is, basically, a trie representing all
the suffixes of T. It can be constructed in time O(n). Therefore the preprocessing
phase of our algorithms will be linear.

Perhaps the most natural way of applying dynamic programming over a suffix
tree is to make a depth-first traversal that finds all substrings P' of T at a distance

k from P. (Note that this is not exactly our problem; we want only the end points
of such strings pi .) The search is easy to organize because all possible substrings of
T can be found along some path starting from the root of the tree. Each path is
followed until the edit distance between the corresponding substring and all prefixes
of P becomes > k. The backtracking point can be found using the column of edit
distances that is evaluated at each node visited during the traversal. This type of
method is described and analyzed by Baeza-Yates ~: Gonnet [2] (see also Remark
2 of [13]). The method is further applied in [2, 11] for finding significant alignments
between all pairs of substrings of T.

In the worst case, the above method evaluates O(rnn) columns of edit distances
which is more than the n columns evaluated by the simple on-line algorithm with
no preprocessing of T. In this paper we show how to apply dynamic programming
over the suffix tree such that in the worst case the number of evaluated columns
stays < n and can in a good case be much smaller.

To explain the idea, let T = aaaaaaaabbbbbbbb, P -- abbb, and k -- 1. In this
case there is lot of repetition in the on-line dynamic programming algorithm. It
evaluates a table which has a column of m q- 1 entries for each symbol t/ of T. We
call an entry essential if its value is < k. The occurrences of P can be found using
only the essential entries: if the last entry of a column is essential then there is an
approximate occurrence whose edit distance from P is _~ k ending at that column.
A column and its essential part in particular can depend only on a substring of T of
length O(m). We call this substring a viable k-approximate prefix of P in T. If two
columns have same viable prefix then their essential part must be identical. In our
example, the eight columns corresponding to the eight a's at the beginning of T will
have the same viable prefix and hence the same essential part of the column.

To avoid evaluating a column whose viable prefix has occurred earlier we store
columns into the suffix tree. A column with viable prefix Q is stored with the state
that can be reached along the Q-path from the root. The search algorithm performs
a traversa] over the tree that spells out string T. The traversal can follow both the
normal trie transitions and the suffix transitions. During the traversal, new columns
are evaluated for each tj except if we can conclude that the viable prefix at tj will be
the same as some older prefix. In this case the evaluation can be skipped; we have
already stored a column with the same essential part.

The number of columns evaluated by the method is _~ n and proportional to q
where q is the total number of different viable prefixes in T. For small k, q can be
considerably smaller than n.

230

We elaborate the above idea into three algorithms of different degree of sophis-
tication. The introductory Algorithm A (Section 4) runs in time O(mq + n) and
always needs time 12(n). This undesirable dependency on n is eliminated by us-
ing more complicated data structures in Algorithm B (Section 5) which has run-
ning time O(mq log q) + size of the output) . Algori thm C (Section 6) is finally an
easy- to- implement simplification of Algorithms A and B. It can evaluate more than
n columns and has running time O(m2q + size of the output). We also show that
q < min(n, 12 _ ~-(m + 1)k+l(IZl + 1) k) = O(min(n, m k+l Isl~)).

The exponential growth of q as a function of k suggests that while our methods
can be very fast for small k, their running time rapidly approaches the time of the
on-line algorithm when k grows. In an interesting paper [17] (see also [1]), Myers
points out that this inherent difficulty in our problem can be relieved by dividing
P into smaller subpatterns and performing the search with a reduced error level for
each subpattern. This filters out the interesting regions of T where one then at tempts
to expand the approximate occurrences of the subpatterns into k-approximate oc-
currences of the whole P. A simpler 'q-gram' method along similar lines is described
in [13].

2 The approximate string matching problem

An edit operation is given by any rewriting rule of the form a --+ c (a deletion), e ~ a
(an insertion), or a ~ b (a change), where a, b are any symbols in alphabet S , a ~ b,
and r is the empty string. Each operation x ~ y has a cost c(x ~ y) > O.

Operation a --+ a is called the identity operation for all a E S . It has cost
c(a ---* a) = O.

Let A = a l a 2 " " a m and B = blb2. . .bn be strings over ~ . A trace from A to
B is any sequence r = (~1 --* yl ,x2 ~ Y2 , . . . ,Zh ~ Yh) of edit operations and
identity operations such that A = z l z 2 . " "zh and B = YlY2"" "Yh. The cost of a
trace r is c(r) h = ~i=1 c(zi --* Yi). The edit distance E(A, B) between A and B is
the minimum possible cost of a trace from A to B [24]. The unit cost edit distance
which means that each edit operation has cost = 1 is denoted as El(A, B).

The intuition behind this definition is that E(A, B) will be the minimum possible
total cost of a sequence of editing steps that convert A into B such that each symbol is
rewritten at most once. Distance E(A, B) can be evaluated in time O(mn) by a very
simple form of dynamic programming [24]. The method evaluates an (m + 1) x (n + 1)
table e such that e(i , j) = E(al . . .h i , b l " .bj). Hence E(A, B) = e(m, n).

If E(A, B) < k we say that B is a k-approximation of A.

Definition. Let P = PiP2 "" "Pro be a pattern string and T = tit2 " "tn a text string
over S , and let k be a number >_ 0. The approximate string matching problem with
threshold k is to find all j such that the edit distance E(P, P~) between P and some
substring P~ = tj tj of T ending at tj is < k. Then P has a k-approximate
occurrence P~ at position j of T.

The approximate string matching problem can be solved on-line, without pre-
processing of T, with a very slightly modified form of the dynamic programming for
the the edit distance [18]: Let D(i , j) be the minimum edit distance between the

231

prefix Pi = Pa'" "Pi of P and the substrings of T ending at t j . The (m + 1) x (n + 1)
table D (i , j) , 0 < i < m, 0 < j < n, of such values can be evaluated from

D (O , j) - O , O < j < n ; (1)

D (i - 1, j) + c(pi --* e)
D (i , j) = rain D (i - 1 , j - 1) + (ifpi = t j then 0 else c(pl --* t j)) (2)

D (i , j - 1) + c(e --* t j)

for 1 < i < m, 0 ~ j < n. It should be emphasized that all entries D(0, j) on row
0 of this table have value 0 while in the corresponding table for the edit distance
between P and T only the (0, 0)-entry gets value 0.

The solution to the problem can be read from the last row of table D: there is a
k-approximate occurrence of P in T at position j if and only if D (m , j) ~ k.

In the sequel; an important technical tool will be the length L(i , j) of the shortes t
substring of T ending at t j whose edit distance from P~ equals D(i , j) . Value L(i , j)
obviously satisfies

n (0 , j) = 0 , 0 < j _ < n ; (3)

L(i , j) = if D(i , j) = D (i - 1, j) + c(pi ~ c) then n (i - 1, j) (4)

elsif D (i , j) = D (i - 1 , j - 1) + (ifpi = t j then 0 else c(pi --~ t j))

then L (i - 1 , j - 1) + 1

else L(i , j - 1) + 1

for l < i < rn, O < j < n.
Tables D and L can be conveniently evaluated, column-by-column, in an on-line,

left-to-right scan over T. Columns D(*, j) and L(*, j) can be produced from D(*, j -
1), L(*, j - 1), and symbol t j of T. The evaluation can be organized as function dp,
given below, which will return (D(*, j) , L(*, j)) as dp(D(* , j - 1), L(*, j - 1), t j) :

f u n c t i o n dp(d' (O . . . rn), l' (O . . . m) , t):
d(0) l(0) 0;
for j ~-- 1 to m do

d(i) ~ d(i - 1) + c(pi ~ e)
l(i) +- l (i - 1)
i f d'(i - 1) + (ifpi = t j t h e n 0 else c(pi --~ t j)) < d(i) t h e n

d(i) ~-- d '(i - 1) + (ifpi = t j t h e n O e l s e ' e (p i ~--- t j))
l(i) ~ l '(i - 1) + 1;

i f d'(i) + c(e --+ t j) < d(i) t h e n
d(i) *-- d'(i) + e(e ~ t j)
l(i) +--- l '(i) + 1

r e tu rn (d , l).

This takes time O(m) and the evaluation of D and L therefore takes total time
of O (m n) . Other on-line algorithms running in O (k n) expected time [20, 4] (these
methods can easily be incorporated into procedure dp) or in O (k n) worst-case time
(for the unit cost edit distance) [10, 23] are also known.

In the next sections we develop algorithms that are off-line with respect to T. We
assume that T has been preprocessed into a suffix tree and study how the evaluation
of D can be organized in a more efficient way.

232

3 k - a p p r o x i m a t e p r e f i x e s o f P

The on-line solution to our problem in Section 2 has the drawback that dynamic
programming is explicitly repeated over identical repeated substrings of T. This may
create unnecessary work because the content of each column D(*, j) of D depends
only on a relatively short substring of T. If such a substring occurs again in T, the
dynamic programming would give a column that is equal to an old column. Our new
algorithms avoid the repetition of such identical calculations.

To make this precise we first define the essential entries of D. The approximate
string matching problem can be solved using only entries D(i, j) < k of D. Therefore
we call each entry D(i , j) < k an essential entry. By (1), (2), an essential entry
depends only on other essential entries in the sense that the inessential entries of D
could be replaced by default value r162 without affecting the content of the essential
part.

Let D(*, i) and D(*, j) be any two columns of D and let L(*, i) and L(*, j) be the
corresponding columns of L. Then pairs (D(. , i), L(*, i)) and (D(*, j) , L(*, j)) are
called equivalent, denoted (D(*, i), L(*, i)) =_ (D(*, j), L(*, j)), if the essential entries
of D(*, i) and D(*, j) have identical contents and the corresponding entries of L(. , i)
and L(*, j) have identical contents. In other words, if D(h, i) < k or D(h, j) < k for
some 0 < h < m, then D(h, i) = D(h, j) and L(h, i) = L(h, j).

Next we define the substring Qj of T that determines the essential part of D(*, j) .
Recall here that the Knuth-Morris-Prat t algorithm of exact string matching has the
property that it finds at each text location j the longest prefix Pl "" "Pi of pattern
P that occurs at j , i.e., Pl �9 "" Pi = t j_i+l �9 �9 �9 tj is a 0-approximation of Pl "" "Pi that
occurs at j . The use of Qj can be seen as a generalization of this to the approximate
case: Qj will be a k-approximation of pl .. "Pi that occurs at j in T.

Let 7) = t l . . . t j be the prefix o f T ending at j , and let)~(Tj) --- L(i , j) where i is
the largest index such that D(i, j) is essential. Obviously, Pi = pl " " p i is the longest
prefix of P that has a k-approximation at the end of Tj. String tj-~(T~)+l "" .tj is
such an approximation, in fact, the shortest one.

De f in i t i on . String Qj = tj_)~(T/)+l " ' ' tj is called the viable k-approximate prefix of
P at j (viable prefix at j , for short). If ~(Tj) = 0 then Qj = e.

String Qj is 'viable' in the sense that it can be a prefix of a k-approximate
occurrence of the whole P.

Viable prefix Qi determines the essential part of column D(. , i):

T h e o r e m 1. I f Oi = Oj then (D(*, i), L(*, i)) -- (D(*, j), L(*, j)).

Proof. It is helpful to consider table D as a solution to a shortest path problem in
the edit graph associated with our pattern matching problem.

Such a graph consists of nodes G(i,j), 0 < i < m, 0 < j <_ n, and of weighted
directed arcs that form a regular grid as follows: There is an arc (G(i - !, j), G(i, j))
with weight c(pi ---* e) for all 1 < i < m, 0 < j g n; an arc G(i - 1 , j - 1),G(i, j))
with weight 0 if pi = tj and with weight c(pi --* tj) otherwise for all 1 < i < m,
1 g j <_ n; and an arc (G(i , j - 1),G(i,j)) with weight c(e ---~ t j) for all 1 < i < m,
1 < j < n. Then D(i, j) gives the length of a shortest path in this graph among all
paths that lead from any node G(0, j ') on the row 0 to node G(i, j). Value L(i, j)

233

indicates the start node of a steepest path: L(i, j) is the smallest value such that a
shortest path to G(i, j) starts from G(O, j - L(i, j)).

Let now i and j be as in the theorem and let h be the largest index such that
n(h, i) <_ k. Hence IQil = i (h, i) . Then for each r _< h, there is a shortest path
to G(r, i) that starts from some node G(0, i - IQil), G(0, i - IQil + 1) , . . . , G(0, i).
To evaluate the essential entries of column D(*, i) correctly it therefore suffices
to consider only subgraph Gi of the edit graph spanned by nodes G(r,s), 0 <
r _~ m, i - IQil _< s < i. Similarly, to evaluate the essential entries of column
D(*, j) correctly it suffices to consider only subgraph Gj spanned by nodes G(r, s),
0 < r < m, j - [Qjl ~ s _~ j. Graphs Gi and Gj have identical topology and weights
because Qi = Qj. Hence their shortest path problems have identical solutions, in
particular, the essential entries of D(*, i) and D(* , j) have to be identical as well as
the corresponding entries of L(*, i) and L(*, j) . []

E x a m p l e . Let T = aaaaaaaabbbbbbbb, P = abbb, and k = 1. Assume the unit cost
model of the edit distance (each edit operation has cost = 1). Then table D is

a a a a a a a a b b b b b b b b
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

a 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
b 2 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
b 3 2 2 2 2 2 2 2 2 1 0 1 1 1 1 1 1

b 4 3 3 3 3 3 3 3 3 2 1 0 1 1 1 1 1

and table L is

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
i 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 2 3 2 2 2 2 2 2
1 1 1 1 1 1 1 1 2 3 4 3 3 3 3 3

The viable prefixes are Q1 = a (because D(2, 1) is the last essential entry of D(*, 1),
and L(2, 1) = 1), Q2 = Q3 = Qs = a, Q9 = ab, Qi0 = abb, Qi i = abbb,
Q12 = Q16 = bbb. There are five different viable prefixes. []

For each j we let Q~ = Qj-l t j . The following theorem says that viable prefix Qj
can not start properly before Qj-1.

T h e o r e m 2. Qj is a suffix of Q~..

Proof. Using the interpretation of D as a solution to the shortest path problem (see
the proof of Theorem 1), one first notices that values L(h,j) are non-decreasing
when h grows: If h < h' then L(h, j) < L(h', j). The rest of the proof is a simple
case analysis of how L(h, j) where h is the largest index such that D(h, j) <_ k can
depend on the entries of L(*,j - 1). []

4 D y n a m i c p r o g r a m m i n g o v e r s u f f i x t r e e s

We will evaluate table D using T represented as a suffix tree. First we recall the
alternative forms of such trees.

234

Suff ix t r e e o f T. The suffix tree of T is a data structure representing all the suffixes
T i = ti " . . tn , 1 < i < n + 1, of T. We distinguish three versions of such a structure.

The uncompacted version of a suffix tree is called a suffix lrie of T, denoted
STr ie (T) . It is the unique deterministic finite-state automaton that recognizes the
suffixes T i of T and nothing else, and has tree-shaped transition graph. The transi-
tion graph is the trie representing strings T i.

Let root denote the initial state and g the transition function of STr ie (T) . We say
that there is a goto-transi t ion from state r to state s on input a E 27 if s = g(r, a).
If there is a goto-transit ion path from r to s on input symbols whose catenation is
string x we write s = g(r, x).

We augment STr ie (T) with the suffix funct ion f , defined for each state s, s #
root, as follows: As s # root, there is a symbol a and a string z in Z* such that
g (r o o t , a z) = s. W e set f (s) = r where r is the state such that g(root, z) = r. We
say that there is a suffix transition from s to r. A suffix transition does not consume
any input.

The size of STr ie (T) is O(]T]2). STr ie (T) is easy to construct (see e.g. [23, 22])
but its quadratic size makes it impractical. Fortunately, STr ie (T) has linear size
representations that can be constructed in linear time, namely the (compact) suffix
tree [25, 16, 22] and the suffix automaton (DAWG) [3, 6, 7].

For simplicity, the suffix trie STr ie (T) consisting of functions g and f will be
used in the description of our algorithms. However, the actual implementation will
be done using the standard linear-size suffix tree or suffix automaton for T. This
does not change the complexity bounds derived here for STr ie (T) .

A l g o r i t h m A. The algorithm will traverse in STr ie (T) a path of goto and suffix
transitions that starts from root and spells out in its goto-transitions string T.
Combined with this the columns of D that correspond to different viable prefixes
Qi will be evaluated. Each such column D(*, i) together with column L(*, i) will be
stored with state ri = g(root, Qi) as d(ri) ~ D (. , i), l(ri) ~ L(*, i).

The traversal goes through states r0, sl, �9 �9 ra, s2, �9 �9 rn-1, sn, �9 �9 r,, where 7"0 =
root, ri = g(root, Qi), and si = g(root,Q~). The transition from ri-1 to si is a
goto-transit ion for ti because si = g(root, Q~) = g(root, Qi -x t i) = g (r i - l , t i) . The
transition path from si to ri consists of zero or more suffix transitions; such a path
exists by Theorem 2.

Consider the subpath from r j -1 to rj. The goto:ttansit ' i0n g (r j _ l , t j) = sj is
taken first. After that there are two cases:

Case 1. If sj has already been visited during the traversat, then follow the suffix
transition path until the first state r is encountered such that d(r) and l(r) have
non-empty values. Then r = rj.

Case 2. If sj has not been visited yet, then evaluate a pair (d, l) of columns as
(d, l) *- dp(d (r j_ l) , l (r j_ l) , t j) . Then (see Lemma 4 below) (d, l) - (D(*, j) , L(*, j)) .
This equivalence implies that d(h) = D(h , j) and l(h) = L (h , j) = IQj], where h is
such that d(h) is the last essential entry of d. The algorithm then follows the suffix
link path from sj to the state r whose depth (distance from root) is]Qj I. Then r = rj
and the algorithm saves columns (d, l) as d(r) ~ d , / (r) ~ I.

To make the whole traversal the above is repeated for j = 1, . . . , n. As an initial-
ization we set d(root) ~ D(*, 0), l(root) ~ L(*, 0). By (2), entry D(h, 0) of D(. , 0)

235

is given as D(h, O) = ~h=l c(pi --* e), and by (4), entry L(h, 0) of L(*, 0) is given as
L(h, O) = O.

The algorithm has to output j whenever D(m, j) < k. This is implemented such
that Algorithm A outputs j whenever d(rj)(m) <_ k during the traversal.

Consider then the correctness of Algorithm A. We need a notation: If x is a suffix
of y, we write y]x, and if, moreover, y is a suffix of z, we write z]ylx.

The crucial point where Algorithm A saves compared to the on-line algorithm
is Case 1. Assume that sj = g(root, Q~) has been visited earlier. This means that
sj has to belong to the suffix link path between si and ri for some i < j , that is,

! ! QilQj [Qi. On the other hand we have:

! /
L e m m a 3 . If Qi[Qj[Qi for some i < j, then Qj = Qi.

Proof. This is immediate when D is viewed as a solution to the shortest path problem
(see the proof of Theorem 1). 1:3

This implies, noting Theorem 1, that a pair of columns equivalent to (D(. , j) , L(*, j))
has already been stored as (d(ri), l(ri)). The dynamic programming can be skipped;
the algorithm just follows the suffix transition path from sj to r i : rj. Hence Case
1 is correct.

It is correct to use in Algorithm A columns that are only equivalent to the actual
columns of D and L. The essential entries of a new column of D are determined by
the essential entries of the previous column. Therefore we have the following lemma.

L e m m a 4 . If(d!,l ~) - (D (, , j - 1) , L (. , j - 1)) and (d, 1) = dp(d',l',tj), then (d,l)
(D(*,j) ,L(*,j)) .

Hence Algorithm A correctly outputs all j such that D(m, j) < k.

Ana lys i s . Let Q = {Qi I 1 < i < n}, and let q = IQI be the size of Q, i.e.
the number of different viable prefixes. Moreover, let Q' = {Q~ I 1 < i < n} and

q' = Iq ' l -
Algorithm A evaluates < q~ pairs of columns of D and L, and stores q of them.

As the evaluation of each pair of columns takes time and space O(m), and the
time consumption for the rest is proportional to n (note that the traversal takes n
goto-transitions and at mo.st u suffix transitions), we obtain:

T h e o r e m 5. Algorithm A runs in time O(mq ! + n) and needs working space O(mq)
for storing the columns of the tables.

Next we analyze the growth of q in more detail in the special case of the unit
cost edit distance. Let Uk(P) = {x E S*[EI(P, x) <_ k} be the set of strings whose
unit cost edit distance from P is _< k. The size of Uk(P) has the following bound;
c.f. Lemma 3 of [17].

T h e o r e m 6 . IUk(P)[<_ ~ (m + 1)k([Z[+ 1) k.

Proof. The size of Uk (P) is _< the number of different traces (edit scripts) of length
_< k that can be applied on P. Each trace consists of < k actual editing steps and
of zero or more identity steps a ~ a. The number of traces equals the number of

236

different possibilities to select the actual steps. This can be estimated by bounding
the number of different ways of applying exactly k steps that can include both actual
steps and identity steps.

The k steps are divided into two groups: The steps of the form a --* x where
a E Z, z E 2 U {e} (= group A; this contains the possible identity operations), and
the steps of the form e --* a where a E ~U (-- group B).

In group A, each step a --* z has a unique p~ such that a = p/. Moreover, z can
be selected in [E[+ 1 different ways. Hence a group A consisting of t steps can be
selected in < (~)([2[+ 1)* different ways.

In group B, each step e --* a can be selected in (m + 1)[57[different ways because
e refers to any of the m + 1 intervals between the m letters of P, and because a can
be selected independently of e in [E I different ways. Each interval can be selected
arbitrarily many times. Hence a group B consisting of t steps can be selected in
<_ (m + 1)'1~[~ different ways.

This gives

k

IU~,(P)l _< ~-~.[(~)(121 + 1)' + (m + 1)k-'lZ'l k-']
t=O

k

= 5~.[(V)(IZl + 1)' + (m + O'lX:l'l]
t----O

k

_< 2 ~ (m + 1)*(IZ'l + 1)' _< ~ (m + 1)~'(IZ'l + 1) k
t=O

where we have assumed that m > 1 and 121 > 2. []

As q <_ ~'~i~=k Uk(Pl . . "Pi) <_ m . IUk(P)[, we have by Theorem 6

q _< -~(m + 1)"+~(121 + 1) k = O(m'~+l121~). (5)

As q' < 121q, we further obtain

q' < ~(m + 1)k+~(121 + 1) k+ l = O(mk+ll21~+~). (6)

Noting that q < q' < n, Theorem 5 with (5) and (6) gives:

T h e o r e m 7. Algor i thm A runs f o r the k-di f ferences problem in t ime
O(m . min(n, m k+l]2[k+l) + n) and needs working space of O(m . min(n, m k +1121k)).

5 F i n d i n g t h e n e x t v i a b l e p r e f i x f a s t

The method of this section can be understood as an advanced implementation of
Algorithm A. Algorithm A always needs time 12(n) because it scans symbol by
symbol over the whole text T. In Algorithm B to be developed next this dependency
on n will be eliminated. Columns of D for different viable prefixes will be found
using dictionary operations implemented with balanced search trees. The method is

237

based on Lemma 3 and its implementation heavily depends on the special properties
of STrie(T).

Assume that Algorithm A has performed the dynamic programming at ti, has
obtained (d, l) equivalent to (D(*, i), L(*, i)), and has stored them as d(r~) *--- d,
l(ri) *-- l where ri = g(root, Qi). Algorithm A will next examine the state Si+l =
g(ri, ti+l). If Si+l has already been visited, Algorithm A knowns by Lemma 3 that
dynamic programming can be skipped because Qi+l has to be equal to Qh for some
h < i. State ri+l = g(root, Qh) = g(root, Qi+I) is found by following the suffix link
path from si+t. Then Algorithm A will examine si+~ = g(ri+l,ti+2), and so on.
Finally an unvisited state sj will be found, and dynamic programming is resumed.

To find sj directly after si, we first observe:
�9 the set of different viable prefixes can grow at si and again at sj, but it remains

unchanged between them;
�9 the set of the visited states remains unchanged between si and sj ;
�9 the string on the path from root to any state si+l,. �9 sj is of the form Qha

for some a E Z', h < i.
Hence states si+l,. �9 �9 sj belong to the set

Si = {s [s = g(root, Qha) for some h _< i, a e ZT}

of states that are at the distance of one goto-transit ion from some state that can be
reached from root along some viable prefix Qh.

A l g o r i t h m B. For any state s of STrie(T), let Key(s) denote the string such that
g(root, Key(s)) = s, and for a set S of states, let Keys (S) be the set of strings
Key(s) , where s �9 S. We will associate with each state s in Si value loc(s) (to be
defined precisely below) that gives the smallest index h > i such that Key(s) 'could
be' equal to Q~. During Algorithm B the uneliminated states s in Si will be kept in
dictionary H. The records in the dictionary are of the form (s, loc(s)) where loe(s)
is used as the search-key for s. The dictionary has to support insertions, deletions,
and minimum extractions. By extracting the minimum element from H we get the
state s with the smallest Ioc(s). This state s will be sj and j = loc(sj). Then new
columns have to be evaluated by dynamic programming from d(r) and l(r), where
r = father(sj), and from symbol a such that g(r, a) = sj.

For a precise definition of loc(s) we need the concepts of eliminalion and covering.
To introduce the latter, consider strings Q~, i + 1 < v < j , in more detail. As already
mentioned, each Q~ ~- Qv- l tv has to be equal to Qha for some Qh, h <_ i. Hence
we have Qv-1 = Qh. Moreover, viable prefix Q, -1 is the longest among all viable
prefixes of T that are suffixes of T~-I = t i t 2 . . . t ~ - l :

L e m m a 8 . IfT~_I]Q~ then Qv-IlQ~-

Proof. Use the interpretation of D as a solution to the shortest path problem as
presented in the proof of Theorem 1. []

This implies that each Q~, i + 1 < v < j , has to be the longest string in Keys (S i)
tha t is a suffix of T,. If more than one string in Keys(S i) is a suffix of T~,, then
these strings have to be suffixes of the longest one. With this in mind we make the
following definition.

D e f i n i t i o n . String X covers an occurrence of string Y at v if T, IXIY.

238

String Key(s) is the longest element of Keys(S i) at v if and only if T,~ [Key(s)
and no other string in Keys(Si) covers Key(s) at v.

We still need the concept of elimination. Its purpose is to incorporate Lemma 3
into our algorithm.

D e f i n i t i o n . Strings Q~ and Qh eliminate a state s and string Key(s) if Q~h [Key(s)[Qh.

Note that the states visited by Algorithm A and the eliminated states defined
here are same. By Lemma 3, dynamic programming need not be performed when
entering an eliminated state.

We now define

f co, if Key(s) is eliminated by some Q~h, Qh where h _< i;
loc(s)

v, . otherwise,

where v > i is the first occurrence of Key(s) after location i in T that is not covered
by some other string in Keys(Si) . Note that loc(s) is defined for all states s, not
only for members of Si. The algorithm also maintains these values for all s.

The algorithm selects j ~-- minses, loc(s) using dictionary H that contains
(s, loc(s)) for states s in Si. The dynamic programming is performed next at sj
such that loc(sj) = j.

After this some loc-values have to be changed and H must be updated such that
it represents Sj instead of Si. The algorithm follows the suffix link path from sj to
rj = g(root, Qj). All states s on this path become now eliminated if they are not
eliminated earlier (this can be the case for all s r sj). Hence loe(s) ~ co; this is
implemented simply by removing s from H.

We have still to add into H new elements corresponding to Sj - Si and to make
the updates on loc-values due to covering. This happens only if rj is a new state not
visited earlier. Then (s, loc(s)) is inserted into H for all uneliminated s such that
s = g(rj, a) for some symbol a. Moreover, the appropriate changes to loc(w) have
to be done for all w such that Key(w) is covered by some Key(s).

Here, again, the suffix transitions can be used. We call a state w primary if
Key(w) = t l . . "th for some h. (Note that the suffix transitions constitute a tree,
with primary states as the leaves and root as the root.) The next lemma follows
from the definition of loc and gives a method for updating; recall that f denotes the
suffix function.

L e m m a 9 . I f w is an eliminated state then loc(w) : co; if w is primary but not
eliminated then loc(w) = depth(w); otherwise

loc(w) = minloc(w')

where the minimum is over all w' such that f (w ') = w and w' is not in Si.

(7)

This means, each loc(w) that needs updating can be found by traversing the
suffix link path from each new state s E Sj - Si. At each uneliminates state w,
w r s, on such path the updated loc(w) is evaluated from (7). As there are at most
[Z[different w' such that f (w ') = w, the minimization in (7) can be done in time
O(log [Z D. If (w, loe(w)) is in H, the update is performed in H, too.

239

In summary, Algorithm B starts by inserting (root, loc(root) = 0) into an initially
empty dictionary H. Then (sj , j) ~-- extract-min(H) is performed, H and the loc-
values are updated, and this is repeated until H becomes empty. Whenever a column
d(r) is stored such that d(r)(m) < k, state r is marked for output. The final output
phase lists all occurrences of Key(r) in T, for all states r marked for output . These
occurrences can be found from STrie(T) by standard methods.

The preprocessing phase creates STrie(T) and initializes values loc(s) using the
method of Lemma 9 with Si = O.

Theor e m 10. Algorithm B runs in time O(mq log q + size of the output) and needs
working space of O(mq) for dictionary H and the columns of dynamic programming
tables.

Proof. Algorithm B evaluates q~ columns of D and L. Dictionary H is implemented
as a balanced search tree which takes O(log Ial) t ime per dictionary operation.
The algorithm performs the following q~ times: selection of next sj from H in t ime
O(log IHI); evaluation of new columns in time O(m); traversal from sj to rj, removal
of the eliminated states from H in time O(m log IHI); insertion of states s = g(rj, a)
into g in time O(1271 log IHI). Moreover, for each new state s inserted into H during
the algorithm, loc(w) has to be updated for states w on the suffix link path from
s to root and the corresponding changes have to be done in H. The length of each
such path is O(m), hence the updates take total t ime of O(IHIm(log 1271 + log IHI)).

This gives total time bound O(q'(log IHl+m+m log IHI)+lHlm(log 1271+1og IHI))
which is O(mqlogq) because q' < ISIq, Inl < 1271q, and 1271 is assumed constant.

The output time can be made linear in the size of the output if some care is
devoted to the elimination of duplicated output.

The space requirement is O(mq) for the columns and 0(1271q) for H, hence
O(mq). []

Theorem 10 together with upper bound (6) of q shows that for small k and large
n Algorithm B can be faster than Algorithm A.

6 Simple algorithm

Dictionary H and the other mechanisms of Algorithm B for maintaining values loc(s)
create relatively large overhead. We describe next Algorithm C, a simplified version
of Algorithm B that uses only elimination of states but does not use Ioc-values.
Algorithm C is easy to implement and has low overhead.

Algorithm C makes a depth-first-search over the uneliminated states. All states
with a saved pair (d, l) of columns are now kept in a stack. When there is a transition
g(r, a) = s from the top state r of the stack to an uneliminated state s, new columns
are evaluated as (d, l) ~-- dp(d(r), l(r), a). Columns (d, l) and state r ' are saved in
the stack; state r I is the state on the suffix link path from s such that its distance
from root, depth(r'), equals the length of the viable prefix associated with (d, l).

The resulting algorithm is given below. Function viable-prefix-length(d, l) gives
the length of the viable prefix represented by columns (d, l), i.e., the value of l(h)
where h is the largest index such that d(h) < k. Function output-mark(r) adds state

240

r to the list of states that represent the locations of the k-approximate occurrences
of P in T.

A l g o r i t h m C.
1. eliminated(root) ~ t r u e
2. search(root, D(*, 0), n(*, 0)).
3. p r o c e d u r e search(r, d'(O.., m), l'(O.., m)):
4. fo r each state s = g(r, a) for some a E E d o
5. i f not(eliminated(s)) t h e n
6. (d, l) ~ dp(d', l', a)
7. length ~-- viable-prefix-length(d, l)
8. i f depth(s) > length d o
9. eliminated(s) true; s f (s)
10. u n t i l depth(s) = length or eliminated(s)
11. i f depth(s) = length and not(eliminated(s)) t h e n
12. i f d(m) < k t h e n output-mark(s)
13. eliminated(s) *-- t r u e
14. w ~ - s
15. wh i l e f(w) # root a n d

eliminated(f(w')) : t r u e fo r all w' such that f(w') = f(w) d
16. w ~ / (w) ; eliminated(w) ~ t r u e
17. search(s, d, l).

In Algorithm C the selection order of the next state s is not based on loc(s).
Therefore Algorithm C can select a state s that would have never been selected by
Algorithm B; the optimal selection order implemented in Algorithm B can result
into total covering of s and therefore into an elimination of s before it would come
selected.

Fortunately, it is not a fatal error to select such an s. It only means that the
algorithm first finds a too short viable prefix for some locations of T but will find
the correct, long-enough prefix later. All different essential parts of columns of D
will ult imately be evaluated.

Each viable prefix is of length O(m). Before finding the correct prefix Algorithm
C may find one or more of its proper suffixes. Therefore the total number of ex-
t ra columns evaluated is O(mq). In any case, the algorithm evaluates the same q~
columns as Algorithm B. Thus the total number of columns is O(mq + q') = O(mq)
and we have the following theorem.

T h e o r e m l l . Algorithm C runs in time O(m2q + size of the output) and needs
working space of O(m2q).

7 Concluding remarks

Several relevant questions concerning the new algorithms remained unanswered.
Most notably, these include theoretical analysis of the expected running times and
experimental comparison of these and related algorithms from [2, 13, 17].

For modestly long T it is feasible to implement our algorithms using the (com-
pact) suffix tree of T. Adapting the methods for suffix automata seems simple, too.

241

However, for very long texts it is better to use the more space economical suffix array
[15, 12] instead. The details and a practical f ine-tuning of such an implementa t ion
are a subject for further study.

References

1. Altschul, S., Gish, W., Miller, W., Myers, E. & Lipman, D. (1990): A basic local
alignment search tool.]. o] Molecular Biology 215, 403-410.

2. Baeza-Yates, R. A. & Gonnet, G. H.: All-against-all sequence matching (Extended
Abstract).

3. Blumer,A., Blumer,J., Haussler, D., Ehrenfeucht, A., Chen, M.T. and Seiferas, J.
(1985): The smallest automaton recognizing the subwords of a text. Theor. Comp.
Sci. 40, 31-55.

4. Chang, W. & Lampe, J. (1992): Theoretical and empirical comparisons of approxi-
mate string matching algorithms. Proc. Combinatorial Pattern Matching 199P, (Tuc-
son, April 1992), Lect. Notes in Computer Science 644 (Springer-Verlag 1992), pp.
175-184.

5. Chang, W. & Lawler, E (1990): Approximate string matching in sublinear expected
time. Proc. IEEE 1990 Ann. Syrup. on Foundations o] Computer Science, pp. 116-124.

6. Crochemore, M. (1986): Transducers and repetitions. Theor. Comp. Sci. 45, 63-86.
7. Crochemore, M. (1988): String matching with constraints. Proc. MFCS'88 Symposium.

Lect. Notes in Computer Science 324 (Springer-Verlag 1988), pp. 44-58.
8. Dowling, G. R. & Hall, P. (1980): Approximate string matching. ACM Comput. Surv.

12, 381-402.
9. Galil, Z. & Giancarlo, R. (1988): Data structures and algorithms for approximate string

matching. J. Complexity 4, 33-72.
10. Galil, Z. & Park, K. (1989): An improved algorithm for approximate string matching.

SIAM J. on Computing 19, 989-999.
11. Gonnet, G. H. (1992): A tutorial introduction to Computational Biochemistry using

Darwin. Informatik E. T. H. Zuerich, Switzerland.
12. Gonnet,G.H., Baeza-Yates,R.A. & Snider,T. (1991): Lexicographical indices for text:

Inverted files vs. PAT trees. Report OED-91-01, UW Centre for the New Oxford English
Dictionary and Text Research, 1991.

13. Jokinen, P. & Ukkonen, E. (1991): Two-algorithms for approximate string matching
in static texts. Proc. MFCS'91, Lect. Notes in Computer Science 520 (Springer-Verlag
1991), pp. 240-248.

14. Landau, G. & Vishkin, U. (1988): Fast string matching with k differences. J. Comp.
Syst. Sci. 37, 63-78.

15. Manber, U. & Myers, G. (1990): Suffix arrays: A new method for on-line string searches.
In: SODA-90, pp. 319-327.

16. McCreight, E. M. (1976): A space economical suffix tree construction algorithm, g.
ACM 23, 262-272.

17. Myers, E. W.: A sublinear algorithm for approximate keyword searching. TR 90-25,
Department of Computer Science, The Univ. of Arizona, Tucson (to appear in Algo-
rithmica).

18. Sellers, P. H. (1980): The theory and computation of evolutionary distances: Pattern
recognition. J. Algorithms 1,359-373.

19. Tarhio, J. & Ukkonen, E. (1990): Boyer-Moore approach to approximate string match-
ing. 2nd Scand. Workshop on Algorithm Theory, Lect. Notes in Computer Science 447
(Springer-Verlag 1990), pp. 348-359. Full version is to appear in SIAM J. Comput: PP.

242

20. Ukkonen, E. (1985): Finding approximate patterns in strings. J. Algorithms 6, 132-137.
21. Ukkonen, E. (1992): Approximate string-matching with q-grams and maximal

matches. Theoretical Computer Science 9P, 191-211.
22. Ukkonen, E. (1992): Constructing suffix trees on-line in linear time. In: J. van Leeuwen

(ed.), Algorithms, Software, Architecture. Information Processing 9P, vol. I, pp. 484-
492. Elsevier.

23. Ukkonen, E. & Wood, D.: Approximate string matching with suffix automata. Algo-
rithmica (to appear in 1993).

24. Wagner, R. A. & Fischer, M. J. (1974): The string-to-string correction problem. J.
ACM 21,168-173.

25. Weiner, P. (1973): Linear pattern matching algorithms. Proc. 14th IEEE Syrup. Switch-
ing and Automata Theory, pp. 1-11.

26. Wu, S. & Manber, U. (1992): Fast text searching allowing errors. Comm. ACM 35,
83-91.

