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A b s t r a c t .  The classical approximate string-matching problem of finding the lo- 
cations of approximate occurrences P '  of pattern string P in text string T such 
that  the edit distance between P and P '  is < k is considered. We concentrate on 
the special case in which T is available for preprocessing before the searches with 
varying P and k. It is shown how the searches can be done fast using the suffix 
tree of T augmented with the suffix links as the preprocessed form of T and apply- 
ing dynamic programming over the tree. Three variations of the search algorithm 
are developed with running times O(mq + n), O(mq log q + size of the output), and 
O(m2q + size of the output). Here n = ITI, m = IPh and q varies depending on the 
problem instance between 0 and n. In the case of the unit cost edit distance it is 
shown that  q = O(min(n, m TM ISI k)) where S is the alphabet. 

1 Introduct ion 

The approximate string-matching problem is to find the approximate occurrences of 
a pattern in a text. We will consider the problem in the following form: Given text 
T = ti t2.  �9 "tn and pattern P = PiP2 "" "Pro in alphabet S,  and a number k > 0, find 
the end locations j of all substrings P '  of T such that  the edit distance between P 
and P '  is < k. 

The edit distance between P and P '  is the minimum possible total cost of a 
sequence of editing steps that  convert P to P' .  Each editing step applies a rewriting 
rule of the forms a --~ e (deletion), c --~ b (insertion), or a --* b (change) where 
a, bE hY, a # b .  

The problem has the following four subcases: 
1. k = 0, no preprocessing of T (exact on-line string-matching). 
2. k = 0, with preprocessing of T (exact off-line string-matching). 
3. k > 0, no preprocessing of T (approximate on-line string-matching). 
4. k > 0, with preprocessing of T (approximate off-line string-matching). 

Case 1 leads to the well-known Boyer-Moore and Knuth-Morris-Prat t  algo- 
rithms. Case 2 has optimal solutions based on suffix trees [16, 25] or on suffix au- 
tomata  ( 'DAWG') [3, 6, 7]. Case 3 has recently received lot of attention [8, 9, 26]. The 
simplest solution is by dynamic programming in time O(mn) where m = IPI and 
n = [T[. For the k-differences problem (each edit operation has cost 1) fast special 
methods are possible, including O(kn) time algorithms, see e.g. [14, 10, 23, 19, 5, 21]. 

* This work was supported by the Academy of Finland and by the Alexander yon Humboldt 
Foundation (Germany). 
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This paper deals with Case 4, which also could be called the problem of approxi- 
mate  string searches over indexed files. The problem is to find a suitable preprocess- 
ing for T and an associated search algorithm that  finds the approximate occurrences 
of P using the preprocessed T for varying P and k. We show how this can be solved 
fast using the suffix tree (for simplicity, the algorithms will be formulated for the 
suffix-trie) of T augmented with the suffix links, and applying dynamic program- 
ming over the tree. Recall that  a suffix tree for T is, basically, a trie representing all 
the suffixes of T. It can be constructed in time O(n). Therefore the preprocessing 
phase of our algorithms will be linear. 

Perhaps the most natural way of applying dynamic programming over a suffix 
tree is to make a depth-first traversal that  finds all substrings P' of T at a distance 

k from P.  (Note that  this is not exactly our problem; we want only the end points 
of such strings pi . )  The search is easy to organize because all possible substrings of 
T can be found along some path starting from the root of the tree. Each path is 
followed until the edit distance between the corresponding substring and all prefixes 
of P becomes > k. The backtracking point can be found using the column of edit 
distances that  is evaluated at each node visited during the traversal. This type of 
method is described and analyzed by Baeza-Yates ~: Gonnet [2] (see also Remark 
2 of [13]). The method is further applied in [2, 11] for finding significant alignments 
between all pairs of substrings of T. 

In the worst case, the above method evaluates O(rnn) columns of edit distances 
which is more than the n columns evaluated by the simple on-line algorithm with 
no preprocessing of T. In this paper we show how to apply dynamic programming 
over the suffix tree such that  in the worst case the number of evaluated columns 
stays < n and can in a good case be much smaller. 

To explain the idea, let T = aaaaaaaabbbbbbbb, P -- abbb, and k -- 1. In this 
case there is lot of repetition in the on-line dynamic programming algorithm. It 
evaluates a table which has a column of m q- 1 entries for each symbol t/ of T. We 
call an entry essential if its value is < k. The occurrences of P can be found using 
only the essential entries: if the last entry of a column is essential then there is an 
approximate occurrence whose edit distance from P is _~ k ending at that  column. 
A column and its essential part in particular can depend only on a substring of T of 
length O(m). We call this substring a viable k-approximate prefix of P in T. If two 
columns have same viable prefix then their essential part must be identical. In our 
example, the eight columns corresponding to the eight a's at the beginning of T will 
have the same viable prefix and hence the same essential part  of the column. 

To avoid evaluating a column whose viable prefix has occurred earlier we store 
columns into the suffix tree. A column with viable prefix Q is stored with the state 
that  can be reached along the Q-path  from the root. The search algorithm performs 
a traversa] over the tree that spells out string T. The traversal can follow both the 
normal trie transitions and the suffix transitions. During the traversal, new columns 
are evaluated for each tj except if we can conclude that  the viable prefix at tj will be 
the same as some older prefix. In this case the evaluation can be skipped; we have 
already stored a column with the same essential part. 

The number of columns evaluated by the method is _~ n and proportional to q 
where q is the total number of different viable prefixes in T. For small k, q can be 
considerably smaller than n. 
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We elaborate the above idea into three algorithms of different degree of sophis- 
tication. The introductory Algorithm A (Section 4) runs in time O(mq + n) and 
always needs time 12(n). This undesirable dependency on n is eliminated by us- 
ing more complicated data  structures in Algorithm B (Section 5) which has run- 
ning time O(mq log q) + size of the output) .  Algori thm C (Section 6) is finally an 
easy- to- implement  simplification of Algorithms A and B. It can evaluate more than 
n columns and has running time O(m2q + size of the output).  We also show that  
q < min(n, 12 _ ~-(m + 1)k+l(IZl + 1) k) = O(min(n, m k+l Isl~)). 

The exponential growth of q as a function of k suggests that  while our methods 
can be very fast for small k, their running time rapidly approaches the time of the 
on-line algorithm when k grows. In an interesting paper [17] (see also [1]), Myers 
points out that  this inherent difficulty in our problem can be relieved by dividing 
P into smaller subpatterns and performing the search with a reduced error level for 
each subpattern. This filters out the interesting regions of T where one then at tempts 
to expand the approximate occurrences of the subpatterns into k-approximate oc- 
currences of the whole P.  A simpler 'q-gram'  method along similar lines is described 
in [13]. 

2 The  approximate  string matching  problem 

An edit operation is given by any rewriting rule of the form a --+ c (a deletion), e ~ a 
(an insertion), or a ~ b (a change), where a, b are any symbols in alphabet S ,  a ~ b, 
and r is the empty string. Each operation x ~ y has a cost c(x ~ y) > O. 

Operation a --+ a is called the identity operation for all a E S .  It has cost 
c(a ---* a) = O. 

Let A = a l a 2 " " a m  and B = blb2. . .bn be strings over ~ .  A trace from A to 
B is any sequence r = (~1 --* yl ,x2 ~ Y2 , . . . ,Zh  ~ Yh) of edit operations and 
identity operations such that  A = z l z 2 . "  "zh and B = YlY2"" "Yh. The cost of a 
trace r is c(r) h = ~i=1 c(zi --* Yi). The edit distance E(A,  B) between A and B is 
the minimum possible cost of a trace from A to B [24]. The unit cost edit distance 
which means that  each edit operation has cost = 1 is denoted as El(A,  B). 

The intuition behind this definition is that  E(A,  B) will be the minimum possible 
total  cost of a sequence of editing steps that  convert A into B such that  each symbol is 
rewritten at most once. Distance E(A,  B) can be evaluated in time O(mn)  by a very 
simple form of dynamic programming [24]. The method evaluates an ( m +  1) x ( n +  1) 
table e such that  e( i , j )  = E(al  . . .h i ,  b l "  .bj). Hence E(A,  B) = e(m, n). 

If E(A,  B) < k we say that B is a k-approximation of A. 

Definition. Let P = PiP2 "" "Pro be a pattern string and T = tit2 " "tn a text string 
over S ,  and let k be a number >_ 0. The approximate string matching problem with 
threshold k is to find all j such that the edit distance E(P, P~) between P and some 
substring P~ = tj . . . .  tj of T ending at tj is < k. Then P has a k-approximate 
occurrence P~ at position j of T. 

The approximate string matching problem can be solved on-line, without pre- 
processing of T, with a very slightly modified form of the dynamic programming for 
the the edit distance [18]: Let D( i , j )  be the minimum edit distance between the 



231 

prefix Pi = Pa'" "Pi of P and the substrings of T ending at t j .  The (m + 1) x (n + 1) 
table D ( i , j ) ,  0 < i < m,  0 < j < n, of such values can be evaluated from 

D ( O , j ) - O ,  O < j < n ;  (1) 

D ( i  - 1, j )  + c(pi --* e) 
D ( i , j )  = rain D ( i  - 1 , j  - 1) + (ifpi = t j  then 0 else c(pl --* t j ) )  (2) 

D ( i , j  - 1) + c(e --* t j )  

for 1 < i < m, 0 ~ j < n. It should be emphasized that  all entries D(0, j )  on row 
0 of this table have value 0 while in the corresponding table for the edit distance 
between P and T only the (0, 0)-entry gets value 0. 

The solution to the problem can be read from the last row of table D: there is a 
k-approximate occurrence of P in T at position j if and only if D ( m ,  j )  ~ k. 

In the sequel; an important technical tool will be the length L(i ,  j )  of the shortes t  
substring of T ending at t j  whose edit distance from P~ equals D(i ,  j ) .  Value L(i ,  j )  
obviously satisfies 

n ( 0 , j ) = 0 ,  0 < j _ < n ;  (3) 

L(i ,  j)  = if D(i ,  j )  = D ( i  - 1, j )  + c(pi ~ c) then n ( i  - 1, j )  (4) 

elsif D ( i , j )  = D ( i  - 1 , j  - 1) + (ifpi = t j  then 0 else c(pi --~ t j ) )  

then L ( i -  1 , j -  1) + 1 

else L(i ,  j - 1) + 1 

for l < i < rn, O < j < n. 
Tables D and L can be conveniently evaluated, column-by-column, in an on-line, 

left-to-right scan over T. Columns D(*, j)  and L(*, j)  can be produced from D(*, j -  
1), L(*, j - 1), and symbol t j  of T. The evaluation can be organized as function dp, 
given below, which will return (D(*, j) ,  L(*, j)) as dp(D(* ,  j - 1), L(*, j - 1), t j ) :  

f u n c t i o n  dp( d' (O . . . rn), l' (O . . . m) ,  t): 
d(0) l(0) 0; 
for  j ~-- 1 to  m do 

d(i)  ~ d(i  - 1) + c(pi ~ e) 
l(i)  +- l ( i -  1) 
i f  d'(i - 1) + ( ifpi  = t j  t h e n  0 else c(pi --~ t j ) )  < d(i)  t h e n  

d(i)  ~-- d '( i  - 1) + ( ifpi  = t j  t h e n  O e l s e ' e ( p i  ~--- t j ) )  
l(i)  ~ l '( i  - 1) + 1; 

i f  d'(i)  + c(e --+ t j )  < d(i)  t h e n  
d(i)  *-- d'(i)  + e(e ~ t j )  
l(i) +--- l '(i)  + 1 

r e tu rn (d ,  l). 

This takes time O(m) and the evaluation of D and L therefore takes total time 
of O ( m n ) .  Other on-line algorithms running in O ( k n )  expected time [20, 4] (these 
methods can easily be incorporated into procedure dp) or in O ( k n )  worst-case time 
(for the unit cost edit distance) [10, 23] are also known. 

In the next sections we develop algorithms that are off-line with respect to T. We 
assume that  T has been preprocessed into a suffix tree and study how the evaluation 
of D can be organized in a more efficient way. 
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3 k - a p p r o x i m a t e  p r e f i x e s  o f  P 

The on-line solution to our problem in Section 2 has the drawback that  dynamic 
programming is explicitly repeated over identical repeated substrings of T. This may 
create unnecessary work because the content of each column D(*, j )  of D depends 
only on a relatively short substring of T. If such a substring occurs again in T, the 
dynamic programming would give a column that  is equal to an old column. Our new 
algorithms avoid the repetition of such identical calculations. 

To make this precise we first define the essential entries of D. The approximate 
string matching problem can be solved using only entries D(i, j) < k of D. Therefore 
we call each entry D(i , j )  < k an essential entry. By (1), (2), an essential entry 
depends only on other essential entries in the sense that  the inessential entries of D 
could be replaced by default value r162 without affecting the content of the essential 
part. 

Let D(*, i) and D(*, j)  be any two columns of D and let L(*, i) and L(*, j)  be the 
corresponding columns of L. Then pairs (D(. ,  i), L(*, i)) and (D(*, j) ,  L(*, j)) are 
called equivalent, denoted ( D( *, i), L( *, i) ) =_ ( D( *, j), L(*, j)), if the essential entries 
of D(*, i) and D(*, j)  have identical contents and the corresponding entries of L( . ,  i) 
and L(*, j )  have identical contents. In other words, if D(h, i) < k or D(h, j) < k for 
some 0 < h < m, then D(h, i) = D(h, j) and L(h, i) = L(h, j). 

Next we define the substring Qj of T that determines the essential part of D(*, j) .  
Recall here that  the Knuth-Morris-Prat t  algorithm of exact string matching has the 
property that  it finds at each text location j the longest prefix Pl "" "Pi of pattern 
P that  occurs at j ,  i.e., Pl �9 "" Pi = t j_i+l  �9 �9 �9 tj is a 0-approximation of Pl "" "Pi that  
occurs at j .  The use of Qj can be seen as a generalization of this to the approximate 
case: Qj will be a k-approximation of pl .. "Pi that  occurs at j in T. 

Let 7) = t l . . . t j  be the prefix o f T  ending at j ,  and let )~(Tj) --- L(i , j )  where i is 
the largest index such that  D(i, j) is essential. Obviously, Pi = pl " " p i  is the longest 
prefix of P that  has a k-approximation at the end of Tj. String tj-~(T~)+l "" .tj is 
such an approximation, in fact, the shortest one. 

De f in i t i on .  String Qj = tj_)~(T/)+l " ' '  tj is called the viable k-approximate prefix of 
P at j (viable prefix at j ,  for short). If ~(Tj) = 0 then Qj = e. 

String Qj is 'viable' in the sense that it can be a prefix of a k-approximate 
occurrence of the whole P. 

Viable prefix Qi determines the essential part of column D(. ,  i): 

T h e o r e m  1. I f  Oi = Oj then (D(*, i), L(*, i)) -- (D(*, j), L(*, j)). 

Proof. It is helpful to consider table D as a solution to a shortest path problem in 
the edit graph associated with our pattern matching problem. 

Such a graph consists of nodes G(i,j),  0 < i < m, 0 < j <_ n, and of weighted 
directed arcs that  form a regular grid as follows: There is an arc (G(i - !, j), G(i, j)) 
with weight c(pi ---* e) for all 1 < i < m, 0 < j g n; an arc G(i - 1 , j -  1),G(i, j))  
with weight 0 if pi = tj and with weight c(pi --* tj) otherwise for all 1 < i < m, 
1 g j <_ n; and an arc (G(i , j  - 1),G(i,j)) with weight c(e ---~ t j )  for all 1 < i < m, 
1 < j < n. Then D(i, j) gives the length of a shortest path in this graph among all 
paths that  lead from any node G(0, j ' )  on the row 0 to node G(i, j). Value L(i, j) 
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indicates the start  node of a steepest path: L(i, j)  is the smallest value such that  a 
shortest path to G(i, j) starts from G(O, j - L(i, j)). 

Let now i and j be as in the theorem and let h be the largest index such that  
n(h, i )  <_ k. Hence IQil = i (h, i) .  Then for each r _< h, there is a shortest path 
to G(r, i) that  starts from some node G(0, i - IQil), G(0, i - IQil + 1 ) , . . . ,  G(0, i). 
To evaluate the essential entries of column D(*, i) correctly it therefore suffices 
to consider only subgraph Gi of the edit graph spanned by nodes G(r,s), 0 < 
r _~ m, i -  IQil _< s < i. Similarly, to evaluate the essential entries of column 
D(*, j )  correctly it suffices to consider only subgraph Gj spanned by nodes G(r, s), 
0 < r < m, j -  [Qjl ~ s _~ j.  Graphs Gi and Gj have identical topology and weights 
because Qi = Qj. Hence their shortest path problems have identical solutions, in 
particular, the essential entries of D(*, i) and D(* ,  j )  have to be identical as well as 
the corresponding entries of L(*, i) and L(*, j ) .  [] 

E x a m p l e .  Let T = aaaaaaaabbbbbbbb, P = abbb, and k = 1. Assume the unit cost 
model of the edit distance (each edit operation has cost = 1). Then table D is 

a a a a a a a a b b b b b b b b  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

a 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1  
b 2 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1  
b 3 2 2 2 2 2 2 2 2 1 0 1 1 1 1 1 1  

b 4 3 3 3 3 3 3 3 3 2 1 0 1 1 1 1 1  

and table L is 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
i 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0  
1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1  
1 1 1 1 1 1 1 1 2 3 2 2 2 2 2 2  
1 1 1 1 1 1 1 1 2 3 4 3 3 3 3 3  

The viable prefixes are Q1 = a (because D(2, 1) is the last essential entry of D(*, 1), 
and L(2, 1) = 1), Q2 = Q3 . . . .  = Qs = a, Q9 = ab, Qi0 = abb, Qi i  = abbb, 
Q12 . . . .  = Q16 = bbb. There are five different viable prefixes. [] 

For each j we let Q~ = Qj-l t j .  The following theorem says that viable prefix Qj 
can not start properly before Qj-1. 

T h e o r e m  2. Qj is a suffix of Q~.. 

Proof. Using the interpretation of D as a solution to the shortest path problem (see 
the proof of Theorem 1), one first notices that  values L(h,j)  are non-decreasing 
when h grows: If h < h' then L(h, j) < L(h', j). The rest of the proof is a simple 
case analysis of how L(h, j) where h is the largest index such that  D(h, j) <_ k can 
depend on the entries of L(*,j - 1). [] 

4 D y n a m i c  p r o g r a m m i n g  o v e r  s u f f i x  t r e e s  

We will evaluate table D using T represented as a suffix tree. First we recall the 
alternative forms of such trees. 
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Suff ix  t r e e  o f  T. The suffix tree of T is a data structure representing all the suffixes 
T i = ti " . . tn ,  1 < i < n + 1, of T. We distinguish three versions of such a structure. 

The uncompacted version of a suffix tree is called a suffix lrie of T, denoted 
STr ie (T) .  It is the unique deterministic finite-state automaton that  recognizes the 
suffixes T i of T and nothing else, and has tree-shaped transition graph. The transi- 
tion graph is the trie representing strings T i. 

Let root denote the initial state and g the transition function of STr ie (T) .  We say 
that  there is a goto-transi t ion from state r to state s on input a E 27 if s = g(r, a). 
If there is a goto-transit ion path from r to s on input symbols whose catenation is 
string x we write s = g(r, x). 

We augment STr ie (T)  with the suffix funct ion f ,  defined for each state s, s # 
root, as follows: As s # root, there is a symbol a and a string z in Z* such that  
g ( r o o t , a z )  = s. W e  set f ( s )  = r where r is the state such that  g(root, z )  = r. We 
say that  there is a suffix transition from s to r. A suffix transition does not consume 
any input. 

The size of STr ie (T)  is O(]T]2). STr ie (T)  is easy to construct (see e.g. [23, 22]) 
but  its quadratic size makes it impractical. Fortunately, STr ie (T)  has linear size 
representations that  can be constructed in linear time, namely the (compact) suffix 
tree [25, 16, 22] and the suffix automaton (DAWG) [3, 6, 7]. 

For simplicity, the suffix trie STr ie (T)  consisting of functions g and f will be 
used in the description of our algorithms. However, the actual implementation will 
be done using the standard linear-size suffix tree or suffix automaton for T. This 
does not change the complexity bounds derived here for STr ie (T) .  

A l g o r i t h m  A. The algorithm will traverse in STr ie (T)  a path of goto and suffix 
transitions that  starts from root and spells out in its goto-transitions string T. 
Combined with this the columns of D that  correspond to different viable prefixes 
Qi will be evaluated. Each such column D(*, i) together with column L(*, i) will be 
stored with state ri = g(root, Qi) as d(ri)  ~ D ( . ,  i), l(ri) ~ L(*, i). 

The traversal goes through states r0, sl, �9 �9 ra, s2, �9 �9 rn-1,  sn, �9 �9 r,, where 7"0 = 
root, ri = g(root,  Qi), and si = g(root,Q~).  The transition from ri-1 to si is a 
goto-transit ion for ti because si = g(root, Q~) = g(root,  Qi -x t i )  = g ( r i - l , t i ) .  The 
transition path from si to ri consists of zero or more suffix transitions; such a path 
exists by Theorem 2. 

Consider the subpath from r j -1  to rj.  The goto:ttansit ' i0n g ( r j _ l , t j )  = sj is 
taken first. After that  there are two cases: 

Case 1. If sj has already been visited during the traversat, then follow the suffix 
transition path until the first state r is encountered such that  d(r)  and l(r) have 
non-empty  values. Then r = rj.  

Case 2. If sj has not been visited yet, then evaluate a pair (d, l) of columns as 
(d, l) *- dp(d ( r j_ l ) ,  l ( r j_ l ) ,  t j) .  Then (see Lemma 4 below) (d, l) - (D(*, j ) ,  L(*, j )) .  
This equivalence implies that  d(h) = D(h ,  j )  and l(h) = L ( h , j )  = IQj], where h is 
such that  d(h) is the last essential entry of d. The algorithm then follows the suffix 
link path from sj to the state r whose depth (distance from root) is ]Qj I. Then r = rj 
and the algorithm saves columns (d, l) as d(r) ~ d , / ( r )  ~ I. 

To make the whole traversal the above is repeated for j = 1, . . . ,  n. As an initial- 
ization we set d(root)  ~ D(*,  0), l(root) ~ L(*, 0). By (2), entry D(h,  0) of D( . ,  0) 
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is given as D(h, O) = ~h=l c(pi --* e), and by (4), entry L(h, 0) of L(*, 0) is given as 
L(h, O) = O. 

The algorithm has to output  j whenever D(m, j) < k. This is implemented such 
that  Algorithm A outputs j whenever d(rj)(m) <_ k during the traversal. 

Consider then the correctness of Algorithm A. We need a notation: If x is a suffix 
of y, we write y]x, and if, moreover, y is a suffix of z, we write z]ylx. 

The crucial point where Algorithm A saves compared to the on-line algorithm 
is Case 1. Assume that  sj = g(root, Q~) has been visited earlier. This means that  
sj has to belong to the suffix link path between si and ri for some i < j ,  that  is, 

! ! QilQj [Qi. On the other hand we have: 

! / 
L e m m a 3 .  If  Qi[Qj[Qi for some i < j, then Qj = Qi. 

Proof. This is immediate when D is viewed as a solution to the shortest path problem 
(see the proof of Theorem 1). 1:3 

This implies, noting Theorem 1, that  a pair of columns equivalent to (D( . ,  j ) ,  L(*, j ) )  
has already been stored as (d(ri), l(ri)). The dynamic programming can be skipped; 
the algorithm just follows the suffix transition path from sj to r i  : rj. Hence Case 
1 is correct. 

It is correct to use in Algorithm A columns that  are only equivalent to the actual 
columns of D and L. The essential entries of a new column of D are determined by 
the essential entries of the previous column. Therefore we have the following lemma. 

L e m m a 4 .  If(d!,l ~) - ( D ( , , j - 1 ) , L ( . , j - 1 ) )  and (d, 1) = dp(d',l',tj), then (d,l) 
(D(*,j) ,L(*,j)) .  

Hence Algorithm A correctly outputs all j such that  D(m, j) < k. 

Ana lys i s .  Let Q = {Qi I 1 < i < n}, and let q = IQI be the size of Q, i.e. 
the number of different viable prefixes. Moreover, let Q'  = {Q~ I 1 < i < n} and 

q' = Iq ' l -  
Algorithm A evaluates < q~ pairs of columns of D and L, and stores q of them. 

As the evaluation of each pair of columns takes time and space O(m), and the 
time consumption for the rest is proportional to n (note that  the traversal takes n 
goto-transitions and at mo.st u suffix transitions), we obtain: 

T h e o r e m  5. Algorithm A runs in time O(mq ! + n) and needs working space O(mq) 
for storing the columns of the tables. 

Next we analyze the growth of q in more detail in the special case of the unit 
cost edit distance. Let Uk(P) = {x E S*[EI(P, x) <_ k} be the set of strings whose 
unit cost edit distance from P is _< k. The size of Uk(P) has the following bound; 
c.f. Lemma 3 of [17]. 

T h e o r e m 6 .  IUk(P)[ <_ ~ ( m  + 1)k([Z[ + 1) k. 

Proof. The size of Uk (P)  is _< the number of different traces (edit scripts) of length 
_< k that  can be applied on P.  Each trace consists of < k actual editing steps and 
of zero or more identity steps a ~ a. The number of traces equals the number of 
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different possibilities to select the actual steps. This can be estimated by bounding 
the number of different ways of applying exactly k steps that  can include both actual 
steps and identity steps. 

The k steps are divided into two groups: The steps of the form a --* x where 
a E Z,  z E 2 U  {e} ( = group A; this contains the possible identity operations), and 
the steps of the form e --* a where a E ~U (-- group B). 

In group A, each step a --* z has a unique p~ such that  a = p/. Moreover, z can 
be selected in [E[ + 1 different ways. Hence a group A consisting of t steps can be 
selected in < (~)([2[  + 1)* different ways. 

In group B, each step e --* a can be selected in ( m +  1)[57[ different ways because 
e refers to any of the m + 1 intervals between the m letters of P,  and because a can 
be selected independently of e in [E I different ways. Each interval can be selected 
arbitrarily many times. Hence a group B consisting of t steps can be selected in 
<_ (m + 1)'1~[ ~ different ways. 

This gives 

k 

IU~,(P)l _< ~-~.[(~)(121 + 1)' + (m + 1)k-'lZ'l k-'] 
t=O 

k 

= 5~.[(V)(IZl + 1)' + (m + O'lX:l'l] 
t----O 

k 

_< 2 ~ ( m  + 1)*(IZ'l + 1)' _< ~ ( m  + 1)~'(IZ'l + 1) k 
t=O 

where we have assumed that  m > 1 and 121 > 2. [] 

As q <_ ~'~i~=k Uk(Pl . . "Pi) <_ m . IUk(P)[, we have by Theorem 6 

q _< -~(m + 1)"+~(121 + 1) k = O(m'~+l121~). (5) 

As q' < 121q, we further obtain 

q' < ~(m + 1)k+~(121 + 1) k+ l  = O(mk+ll21~+~ ). (6) 

Noting that  q < q' < n, Theorem 5 with (5) and (6) gives: 

T h e o r e m  7. Algor i thm A runs f o r  the k-di f ferences  problem in t ime 
O( m . min(n, m k+l ]2[ k+l) + n) and needs working space of  O( m . min(n, m k +1121k ) ). 

5 F i n d i n g  t h e  n e x t  v i a b l e  p r e f i x  f a s t  

The method of this section can be understood as an advanced implementation of 
Algorithm A. Algorithm A always needs time 12(n) because it scans symbol by 
symbol over the whole text T. In Algorithm B to be developed next this dependency 
on n will be eliminated. Columns of D for different viable prefixes will be found 
using dictionary operations implemented with balanced search trees. The method is 
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based on Lemma 3 and its implementation heavily depends on the special properties 
of STrie(T).  

Assume that  Algorithm A has performed the dynamic programming at ti, has 
obtained (d, l) equivalent to (D(*, i), L(*, i)), and has stored them as d(r~) *--- d, 
l(ri) *-- l where ri = g(root, Qi). Algorithm A will next examine the state Si+l = 
g(ri, ti+l). If Si+l has already been visited, Algorithm A knowns by Lemma 3 that  
dynamic programming can be skipped because Qi+l has to be equal to Qh for some 
h < i. State ri+l = g(root, Qh) = g(root, Qi+I) is found by following the suffix link 
path from si+t. Then Algorithm A will examine si+~ = g(ri+l,ti+2), and so on. 
Finally an unvisited state sj will be found, and dynamic programming is resumed. 

To find sj directly after si, we first observe: 
�9 the set of different viable prefixes can grow at si and again at sj,  but  it remains 

unchanged between them; 
�9 the set of the visited states remains unchanged between si and sj ; 
�9 the string on the path from root to any state si+l,.  �9 sj is of the form Qha 

for some a E Z', h < i. 
Hence states si+l,.  �9 �9 sj belong to the set 

Si = {s [ s = g(root, Qha) for some h _< i, a e ZT} 

of states that are at the distance of one goto-transit ion from some state that  can be 
reached from root along some viable prefix Qh. 

A l g o r i t h m  B. For any state s of STrie(T),  let Key(s)  denote the string such that  
g(root, Key(s) )  = s, and for a set S of states, let Keys (S )  be the set of strings 
Key(s) ,  where s �9 S. We will associate with each state s in Si value loc(s) (to be 
defined precisely below) that gives the smallest index h > i such that  Key(s)  'could 
be' equal to Q~. During Algorithm B the uneliminated states s in Si will be kept in 
dictionary H.  The records in the dictionary are of the form (s, loc(s)) where loe(s) 
is used as the search-key for s. The dictionary has to support insertions, deletions, 
and minimum extractions. By extracting the minimum element from H we get the 
state s with the smallest Ioc(s). This state s will be sj and j = loc(sj). Then new 
columns have to be evaluated by dynamic programming from d(r) and l(r), where 
r = father(sj),  and from symbol a such that g(r, a) = sj. 

For a precise definition of loc(s) we need the concepts of eliminalion and covering. 
To introduce the latter, consider strings Q~, i +  1 < v < j ,  in more detail. As already 
mentioned, each Q~ ~- Qv- l tv  has to be equal to Qha for some Qh, h <_ i. Hence 
we have Qv-1 = Qh. Moreover, viable prefix Q, -1  is the longest among all viable 
prefixes of T that  are suffixes of T~-I = t i t 2 . . . t ~ - l :  

L e m m a 8 .  IfT~_I]Q~ then Qv-IlQ~- 

Proof. Use the interpretation of D as a solution to the shortest path problem as 
presented in the proof of Theorem 1. [] 

This implies that  each Q~, i +  1 < v < j ,  has to be the longest string in Keys (S i )  
tha t  is a suffix of T,.  If more than one string in Keys(S i )  is a suffix of T~,, then 
these strings have to be suffixes of the longest one. With this in mind we make the 
following definition. 

D e f i n i t i o n .  String X covers an occurrence of string Y at v if T, IXIY.  
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String Key(s)  is the longest element of Keys(S i )  at v if and only if T,~ [Key(s) 
and no other string in Keys(Si )  covers Key(s) at v. 

We still need the concept of elimination. Its purpose is to incorporate Lemma 3 
into our algorithm. 

D e f i n i t i o n .  Strings Q~ and Qh eliminate a state s and string Key(s) if Q~h [Key(s)[Qh. 

Note that  the states visited by Algorithm A and the eliminated states defined 
here are same. By Lemma 3, dynamic programming need not be performed when 
entering an eliminated state. 

We now define 

f co, if Key(s) is eliminated by some Q~h, Qh where h _< i; 
loc(s) 

v, .  otherwise, 

where v > i is the first occurrence of Key(s)  after location i in T that  is not covered 
by some other string in Keys(Si) .  Note that  loc(s) is defined for all states s, not 
only for members of Si. The algorithm also maintains these values for all s. 

The algorithm selects j ~-- minses, loc(s) using dictionary H that contains 
(s, loc(s)) for states s in Si. The dynamic programming is performed next at sj 
such that  loc(sj ) = j.  

After this some loc-values have to be changed and H must be updated such that  
it represents Sj instead of Si. The algorithm follows the suffix link path from sj to 
rj = g(root, Qj). All states s on this path become now eliminated if they are not 
eliminated earlier (this can be the case for all s r sj). Hence loe(s) ~ co; this is 
implemented simply by removing s from H.  

We have still to add into H new elements corresponding to Sj - Si and to make 
the updates on loc-values due to covering. This happens only if rj is a new state not 
visited earlier. Then (s, loc(s)) is inserted into H for all uneliminated s such that  
s = g(rj,  a) for some symbol a. Moreover, the appropriate changes to loc(w) have 
to be done for all w such that Key(w)  is covered by some Key(s).  

Here, again, the suffix transitions can be used. We call a state w primary if 
Key(w)  = t l . .  "th for some h. (Note that the suffix transitions constitute a tree, 
with primary states as the leaves and root as the root.) The next lemma follows 
from the definition of loc and gives a method for updating; recall that  f denotes the 
suffix function. 

L e m m a 9 .  I f  w is an eliminated state then loc(w) : co; if  w is primary but not 
eliminated then loc(w) = depth(w); otherwise 

loc(w) = minloc(w') 

where the minimum is over all w' such that f (w ' )  = w and w' is not in Si. 

(7) 

This means, each loc(w) that  needs updating can be found by traversing the 
suffix link path from each new state s E Sj - Si. At each uneliminates state w, 
w r s, on such path the updated loc(w) is evaluated from (7). As there are at most 
[Z[ different w' such that  f (w ' )  = w, the minimization in (7) can be done in time 
O(log [Z D. If (w, loe(w)) is in H,  the update is performed in H,  too. 
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In summary, Algorithm B starts by inserting (root, loc(root) = 0) into an initially 
empty dictionary H.  Then (sj , j)  ~-- extract-min(H) is performed, H and the loc- 
values are updated, and this is repeated until H becomes empty. Whenever a column 
d(r) is stored such that  d(r)(m) < k, state r is marked for output.  The final output  
phase lists all occurrences of Key(r) in T, for all states r marked for output .  These 
occurrences can be found from STrie(T) by standard methods. 

The preprocessing phase creates STrie(T) and initializes values loc(s) using the 
method of Lemma 9 with Si = O. 

Theor e m 10. Algorithm B runs in time O(mq log q + size of the output) and needs 
working space of O(mq) for dictionary H and the columns of dynamic programming 
tables. 

Proof. Algorithm B evaluates q~ columns of D and L. Dictionary H is implemented 
as a balanced search tree which takes O(log Ial) t ime per dictionary operation. 
The algorithm performs the following q~ times: selection of next sj from H in t ime 
O(log IHI); evaluation of new columns in time O(m); traversal from sj to rj, removal 
of the eliminated states from H in time O(m log IHI); insertion of states s = g(rj, a) 
into g in time O(1271 log IHI). Moreover, for each new state s inserted into H during 
the algorithm, loc(w) has to be updated for states w on the suffix link path from 
s to root and the corresponding changes have to be done in H. The length of each 
such path is O(m), hence the updates take total t ime of O(IHIm(log 1271 + log IHI)). 

This gives total time bound O(q'(log IHl+m+m log IHI)+lHlm(log 1271+1og IHI)) 
which is O(mqlogq) because q' < ISIq, Inl < 1271q, and 1271 is assumed constant. 

The output  time can be made linear in the size of the output  if some care is 
devoted to the elimination of duplicated output.  

The space requirement is O(mq) for the columns and 0(1271q ) for H,  hence 
O(mq). [] 

Theorem 10 together with upper bound (6) of q shows that  for small k and large 
n Algorithm B can be faster than Algorithm A. 

6 Simple algorithm 

Dictionary H and the other mechanisms of Algorithm B for maintaining values loc(s) 
create relatively large overhead. We describe next Algorithm C, a simplified version 
of Algorithm B that  uses only elimination of states but does not use Ioc-values. 
Algorithm C is easy to implement and has low overhead. 

Algorithm C makes a depth-first-search over the uneliminated states. All states 
with a saved pair (d, l) of columns are now kept in a stack. When there is a transition 
g(r, a) = s from the top state r of the stack to an uneliminated state s, new columns 
are evaluated as (d, l) ~-- dp(d(r), l(r), a). Columns (d, l) and state r '  are saved in 
the stack; state r I is the state on the suffix link path from s such that  its distance 
from root, depth(r'), equals the length of the viable prefix associated with (d, l). 

The resulting algorithm is given below. Function viable-prefix-length(d, l) gives 
the length of the viable prefix represented by columns (d, l), i.e., the value of l(h) 
where h is the largest index such that d(h) < k. Function output-mark(r) adds state 
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r to the list of states that  represent the locations of the k-approximate occurrences 
of P in T. 

A l g o r i t h m  C. 
1. eliminated(root) ~ t r u e  
2. search(root, D(*, 0), n(*, 0)). 
3. p r o c e d u r e  search(r, d'(O.., m), l'(O.., m)): 
4. fo r  each state s = g(r, a) for some a E E d o  
5. i f  not(eliminated(s)) t h e n  
6. (d, l) ~ dp(d', l', a) 
7. length ~-- viable-prefix-length(d, l) 
8. i f  depth(s) > length d o  
9. eliminated(s) true; s f ( s )  
10. u n t i l  depth(s) = length or  eliminated(s) 
11. i f  depth(s) = length and not(eliminated(s)) t h e n  
12. i f  d(m) < k t h e n  output-mark(s) 
13. eliminated(s) *-- t r u e  
14. w ~ - s  
15. wh i l e  f(w) # root a n d  

eliminated(f(w')) : t r u e  fo r  all w' such that  f(w') = f(w) d 
16. w ~ / ( w ) ;  eliminated(w) ~ t r u e  
17. search(s, d, l). 

In Algorithm C the selection order of the next state s is not based on loc(s). 
Therefore Algorithm C can select a state s that would have never been selected by 
Algorithm B; the optimal selection order implemented in Algorithm B can result 
into total covering of s and therefore into an elimination of s before it would come 
selected. 

Fortunately, it is not a fatal error to select such an s. It only means that  the 
algorithm first finds a too short viable prefix for some locations of T but will find 
the correct, long-enough prefix later. All different essential parts of columns of D 
will ult imately be evaluated. 

Each viable prefix is of length O(m). Before finding the correct prefix Algorithm 
C may find one or more of its proper suffixes. Therefore the total number of ex- 
t ra  columns evaluated is O(mq). In any case, the algorithm evaluates the same q~ 
columns as Algorithm B. Thus the total number of columns is O(mq + q') = O(mq) 
and we have the following theorem. 

T h e o r e m l l .  Algorithm C runs in time O(m2q + size of the output) and needs 
working space of O(m2q). 

7 Concluding remarks 

Several relevant questions concerning the new algorithms remained unanswered. 
Most notably, these include theoretical analysis of the expected running times and 
experimental comparison of these and related algorithms from [2, 13, 17]. 

For modestly long T it is feasible to implement our algorithms using the (com- 
pact) suffix tree of T. Adapting the methods for suffix automata  seems simple, too. 
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However, for very long texts it is better  to use the more space economical suffix array 
[15, 12] instead. The details and a practical f ine-tuning of such an implementa t ion  
are a subject for further study. 
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