Vol.13 No.4 J. of Comput. Seci. & Technol. Jul. 1998

Graph Traversal and Top-Down Evaluation of
Logic Queries

Chen Yangjun {58 %)
Technical Institute of Changsha, Changsha £10073, P.R. China
Received October 22, 1996; revised May 25, 1997.

Abstract

In this paper, an optimal method to handle cyclic and acyclic data relations in the
linear recursive queries is proposed. High efficiency is achieved by integrating graph
traversal mechanisms into a top-down evalwation. In such a way, the subsumption
checks and the identification of cyclic data can be done very efficiently. First, based on
the subsumption checks, the search space can be reduced drastically by avoiding any
redundant expansion operation. In fact, in the case of non-cyclic data, the proposed
algorithm requires only linear time for evaluating a linear recursive query. On the other
hand, in the case of cyclic data, by using the technique for isolating strongly connected
compenents a lot of answers can be generated directly in terms of the intermediate
results and the relevant path information instead of evaluating them by performing
algebraic operations. Since the cost of generating an answer is much less than that of
evaluating an answer by algebraic operations, the time consumption for cyclic data can
be reduced by an order of magnitude or more.

Keywords: recursive query, top-down evaluation, RQA /FQI strategy, logic query,
graph traversal.

1 Introduction

In recent years, there has been considerable effort directed toward the integration of
many aspects of the artificial intelligence field with the database field. An outcome of
this effort is deductive databases which can be described simply as advanced database sys-

- tems augmented with rule processing. A number of strategies for the problem have been
developed[* =20, In this paper, we present an optimal method for handling recursive queries,
based on the integration of graph traversal techiniques such as the identifications of strongly
connected components (SCCs}, feedback nodes and linear cycle covers, intoe a top-down but
set-oriented method, the so-called RQA/FQI (Recursive Query Answering/Frozen Query
Tteration) algorithm. RQA/FQI has been introduced for handling recursive axioms in de-
ductive databases by Nejd1l!®l. Tt is a variant of the QSQR method[18-20) and proves to be
complete over all kinds of linear recursion defined by means of function free Horn Clauses(4.
The algorithm consists of two steps. In the first step of it, the search tree is expanded
top-down, storing not only the answers already found but also incomplete branches. In

the second step, all incomplete branches of the search tree are processed by completing the
repeated subqueries iteratively. We show that RQA/FQI can be improved significantly by
integrating the algorithm for finding SCCs into its first step to do subsumption checks effi-
ciently, based on which the search space can be reduced by removing redundant expansion
operations. In this way, a linear time is achieved for non-cyclic data. Further, we utilize

the techniques for identifying SCCs in such a way that a lot of answers can be generated di-

rectly in terms of the answers already found and the corresponding path information without
performing algebraic operations. '

No.d Graph Traversal and Top-Down Evaluation of Logic Queries 301

e e A T

Because the search space is smaller than that of RQA/FQI and the cost of generating an
answer is much less than that of evaluating an answer by performing algebraic operations,
the refined algorithm improves the efliciency of RQA /FQI non-trivially. '

As with the other top-down strategies, a preprocessor is implemented to reorder the
body predicates such that the predicates with some of their variables bound to constants
(in terms of the query submitted to the system) are before the predicates whose variables
have no bindings. In addition, a further step is required. If any two correlated non-recursive
predicates are separated by a recursive predicate, we change the position of the one appearing
after the recuisive predicate such that both of them are before the recursive predicate. (We
say that two predicates are correlated if they have at least one shared variable.} This
requirement is not only for optimization, but also for the application of the technique for
generating answers directly.

" As an example, consider the well-known same-generation program below!4), If the query
issued is of the form ?-sg (c, ¥) (where ¢ is a constant}, the following two rules are well
reordered,

(1) sg{x,y) - sibling(x,y),

(2) sg(z,y) - parent{z, z), sg(z, w), parent(y, w)

These two rules define a popular function-free linear recursion, sg, which indicates that x
and y are same-generation relatives if they are siblings or their parents are same-generation
relatives. Another example is the following rules defining infection risks of a disease (w.r.t.
a query of the form ?-infection_risk(c, y)).

(3) infection.risk(z,y) - found(z,y),infectious(y),

(4) infection risk{z,y) :- connected(, z),infection_risk(y, z), strong(y).

Here, the first rule expresses that there exists an infection risk of disease y in area z if y is
found in = and y is infectious. The second rule says that if there exists an infection risk of
some strongly infectious disease y in area z and area « is connected with z (by bus, train or
flight), then there exists an infection risk of ¥ in @, too.

In the remainder of the paper, we assume that all rules are reordered in this way.

In the next section, we briefly outline the RQA/FQI algorithm!['®l, based on which our
method is developed. In Section 3, we describe the main ideas of the improvements. First,
we discuss, in Subsection 3.1, how the algorithm for identifying SCCs can be integrated into
RQA/FQI to do a subsumption check. Then, in Subsection 3.2, we show two possibilities
of refinements: the reduction of search spaces and the direct generation of answers in terms

" of the answers already found. In Section 4, we give a complete description of the refined

algorithm. In Section 5, we analyze and compare the computational complexity of the
refined algorithm. Section 6 is a short conclusion.

2 RQA/FQI and Relevant Definitions

In this section, we briefly describe the RQA/FQI algorithm and some relevant concepts
which are necessary for clarifying the main ideas of our refined algorithm. For further details,
please refer to the description in [16].

RQA/FQI is a top-down, but set-oriented method. That is, although bindings for ar-
guments are propagated in a tuple-oriented manner, queries over database predicates or
database views (database equivalent predicates—described by non-recursive predicates)
are processed set-oriented. The newly produced answers are stored in a Prolog database
and retrieving these tuples from the Prolog database is done tuple-oriented again. In or-
der to avoid infinite derivations, RQA/FQI distinguishes between two classes of repeatedly
appearing subgoals and treats them differently. First, we have the following two definitions.

302 J. of Comput. Sci. & Technol, Vol.13

Definition 2.1. A substitution 6 is a finite set of the form {vi/t1,. .., vnfta}, where each
v; 1s a variable, each t; is a term (in the absence of function symbols, a term is a constant
or a variable) distinct froin v; and the variables v1,...,v, are distinct. Bach element v;/t;
is called a binding for v;. 0 is called a ground substitution if t; are all ground terms. @ is
called o variable-pure substitution if t; are all variables.

Definition 2.2. Let s and t be two predicates. We say that s subsumes t if there

exists a substitution 8 = {v1/ty,...,vnfta} such that s@ = t, where s is a new predicate
" obtained from s by simultaneously replacing each occurrence of the variable v; in s by term
i {i:l,...,n). '

Based on the subsumption concept, the classification of repeatedly appearing subgoals
can be defined as follows,

Definition 2.3. A repeated incomplete query (RIQ) is a query which is subsumed by
previous query which has not yet been answered completely (i.e., subsumned by a query which
appeared earlier on the same derivation path as the RI Q).

For instance, query s{c, v) appearing in the search tree of Example 2.1 is an RIQ since
it is subsumed by s(c,) (see Fig.1). '

The RIQs are the only nodes which cannot be expanded during an expansion process (in
order to avoid cycles). However, cutting the execution path in the search tree at an RIQ
may affect the completeness of any goal relying on this subgoal. If an RIQ is encountered,
only the answers already produced can be used in the further expansion of the search tree.
(In RQA /FQI, such expansions are postponed to a second step and dome iteratively.)

Deflnition 2.4. A repeated complete query (RCQ) is a query which is subsumed by a
previous query which has already been answered completely (i.e., subsumed by a query which
has already appeared but is not on the same derivation path as the RCQ)

For example, query s(d, v) appearing in the search tree of Example 2.1 is an RCQ since
it is subsumed by s{d, w).

If an RCQ is encountered, all its answers can be taken from the answers already produced.

In order to guarantee the completeness, RQA/FQI introduces an artificial subgoal added
in front of each recursive subgoal to record the bindings evaluated so far. After the expansion
process, we can then compute the remaining answers in terms of the instantiations of these
subgoals in some way. This consideration leads to the following three definitions.

Definition 2.5. A propagation subgoal (PSG) is a special artificial subgoal added in
front of each recursive subgoal in a clause. This can be done manually or by a preprocessor.

For example, the rules defining same-generation relatives can be transformed by a pre-
processor into:

Sg(iﬂ,y) - szblzng(a,, y)) !)

sg(=, y) - parent(z, z)a PSG(id, =y, Z)l sg(z, w),parent(y, w),
where “id” is the identifier of the PSG. The purpose of adding PSGs in a clause is to record
and propagate the arguments instantiated so far. Therefore, a PS@G for a recursive predicate
contains the arguments occurring in the predicate of the head of the clause and the predicates
of the body occurring before the recursive subgoal in the original clause (assuming that we
proceed from left to right). The rule augmented with a PSG is called the transformed rule,

Definition 2.6. A frozen query (FQ) is a query defined by a newly constructed clause
(when an RIQ is encountered during the expansion process) which is constructed by elimi-
nating those predicates appearing before the PSG from a transformed rule.’

For example, if @ :- E, P, Sis a clause and P is an RIQ, then Q@ is a frozen query. It
will be stored in the form of FQ (@ :- PSG, P, S), where PSG is a propagation subgoal.

Together with a set of different instantiations of the propagation subgoal a frozen query
stores the current step of the evaluation for a clause which cannot be evaluated completely
in an expansion process.

No.4 Graph Traversal and Top-Down Evaluation of Logic Queries 303

Definition 2.7. A critical path (CP) is a path of the search tree which cannot be
completely evaluated in the expansion of the search tree (i.e., a path from an RIQ to its
subsuming query; for example, the path from “s(c,v), (v, w), g{w,x)” to “s(c, 2)” shown in
Fig.l is a CP.). Each critical path is represented by a frozen query and o sef of different
instantiations of the associated PSG and can be used to evaluate the remaining answers in
an iteration process (see below).

Ezample 2.1. The following program helps to understand the above definitions well.

Axioms: (1) s{z,y) - (=, 9),
(2) .S‘(:E, y) - p(:c, z)) S(za T.U), Q(w:y)'
Facts: p(e, d), p(c, b), p(b, o), p(b,),
q(e? a)’ Q(a! i)} q(i7 0),
r(d, e). .
Query: 7-s(c, =)

e, X
e, %) N S(,el-gritc%led)
1n database,
| | z={db} -
fail s{{d, b}, w), glw, X} eeeee- tuple-oriented
T (ir? Prolog database)

s{d, W), glw, x) s(b, w). glw, x)

\‘-
r(d,), glw,) pld, w), sCie, ¥), gOv W), g0, X)) (b, w), glw,x) pb, 1), s{ue, v}, glv, W), g{ w, x)

I w=e I | E u={d, c}
gle, X) fail fail $({d, ¢}, v), g, w), 0w, x)
| x=a . .
a s(d, v), 9(v, W), g(w, x) s{e, ¥), glv, W), g(w, x)
| v=e s [
Ree qle. w), qlw, x) RIQ oo
| w=a
qla, x)
| x=i
=}

Fig.1. The search trec when goal ?-s(c, =) is evaluated.

Fig.1 depicts the search tree when the goal 7-s(c, @) is evaluated against the above rules
and facts. Note that in the search tree, “co” represents an infinite branch (i.e. cycles).
Based on the above description, RQA /FQI can be summarized as follows:

In the first step of the algorithm, a recursive processing strategy like that of PROLOG
is used, expanding the search free top-down. Answers to recursive queries ave stored to be
re-used later. The expansion stops whenever RIQs are encountered, or after subqueries are
answered completely using basic facts and nonrecursive predicates. The second step uses
a different approach. There are still branches (critical paths) in the search tree which are
incomplete because of subsumed queries (RIQ), and therefore have been stored as frozen
clauses (frozen queries and the set of instantiations of propagation subgoals). These are
processed using an efficient variant of Least Fixpoiné iteration over these frozen clauses,
working bottom-up both from database facts and from facts which have already been found
as answers to recursive queries. I'his step is necessary in order to propagate all answers of
the evaluated subsuming goal to its corresponding frozen counterparts (subsumed goals).
It corresponds to plugging new answers into subsumed queries and using these answers to
expand the search tree further. If new recursive subgoals are found during the iteration
step, they are expanded by means of calling the top-down evaluation strategy recursively
(in linear recursion, it will not happen).

304 J. of Comput. Sci. & Technol, Vol,13

3 Main Ideas of Refinement

Now we present our refined algorithm. First, we discuss how the algorithm for identifying
SCCs can be integrated into RQA/FQI o do a subsumption check. Then, we show two
possibilities of refinements: the reduction of search spaces and the direct generation of
answers in terms of the answers already found.

3.1 Subsumption Checks

From the above definitions, we see that there are two kinds of subsumption checks which
must be handled differently. When an RIQ) is encountered, the traversal should be suspended
and the corresponding cycle should be recorded explicitly; when an RCQ is encountered,
it should be expanded immediately using the answers already found. In addition, as we
will see later, the ways in which RIQs and RCQs are used to speed up the evaluation are
different. However, distinguishing RCQs from RIQs is not trivial and a more sophisticated
technique is needed. To this end, we combine the technigue for finding a topological order for
a directed graph (digraph for short) with the technique for isolating the strongly connected
components of a digraph®! in such a way that the task can be done in linear time. More
concretely, we integrate a labeling technique into RQA/FQI (i.e., during a derivation each
node will be labeled in some way) such that RIQs and RCQs can be distinguished by a
simple checking of labels associated with them. In fact, a top-down process is a depth-first
search process. Therefore, the technique used in Tarjan’s algorithm for identifying SCCs
can be utilized®? for identifying RIQs. But for our purpose, this algorithm is extended by
combining the idea for finding topological orders with it to facilitate the identification of
RCQs. In addition, this combination improves Tarjan’s algorithm non-trivially (but not by
an order of magnitude), since many stack searches for identifying SCCs can be saved. In the
following, we discuss this issue in detail. First, we classify a kind of nodes as guery nodes.

Definition 3.1. A node in a search tree is called a query node if it corresponds to a
recursive subguery, i.e., if it is of the form: A,,..., Ay, where each A; is a predicate and
especially, Ay is a recursive predicate with some variables instantiated.

For example, node “s{c, v}, ¢(v,w), g{w,z)” in the search tree of Example 2.1 is a query
node, while “p(b, u), s(u,v), ¢{v,w), g(w,z)” is not. However, we notice that by the above
definition we assume that each node is treated from left to right. But if we use another
computation rulel®? A, should be replaced with “the selected atom in that node”. Then,
a query node is a node whose “selected atom” is a recursive predicate with some variables
instantiated. Based on this concept, we define a query subgraph for a search tree as follows.

Deflnition 3.2. A query subgraph for a search tree is a digraph where there are a node
for each recursive subgquery and an edge from a to b iff there is a path from a to b in the
search tree, which contains no other query nodes except a and b,

* For example, the query subgraph of the search tree shown in Fig.1 is as shown in Fig.2.

ALY
heY

"s(d, w), g(w, x)" N, subsumed

)

subsumed "sge, V), qlv, W), glw, %)"

~
Seal

“s{d, v), g(v, w), glw,)"

Fig.2. Query subgraph.

The purpose of query subgraphs is to explain the control mechanism used in our method.

No.4 Graph Traversal and Top-Down Evaluation of Logic Queries 305

In fact, it is sufficient to perform subsumption checks only on those nodes of a search tree,
which appear also in its query subgraph (see next subsection). Therefore, we give the
following algorithin over a query subgraph instead of a search tree so as to illustrate the key
ideas clearly.

We associate each node v of a query subgraph with three integers df snumber(v), topl-
number(v) and lowlink(v). dfsnumber is used to number the nodes of a query subgraph
in the order they are reached during the search. toplnumber is used to number the nodes
with the property that all descendants of a node having toplnumber value m have a lower
toplnumber value than m, i.e. a topological order numbering. Note that all nodes in an
SCC should be taken to be identical in the sense of topological order. Thus, they will have
the same toplnumber value, In the following algorithm, we use toplnumber values to check
whether a node is an RCQ. lowlink is used to number the nodes in such a way that if two
nodes v and w are in the same SCC, then lowlink(v) = lowlink(w). Therefore, it can be
used to identify the “root” of an SCC (a root is a node of an SCC, which is first visited
during the traversal). With the help of a stack structure, all SCCs can be feasibly found
based on the calculation of lowlink values.

Essentially, the algorithm presented below is a m0d1ﬁed version of Tarjan’s algorithm
The difference between them consists in the use of toplnumber in the modified algorithm,
which facilitates the identification of an SCC. (In the original algorithm, a stack structure
must be searched to do this.) In addition, for our purposes, each RCQ is marked.

(21],

Procedure graph-algo(v) (¥depth-first traversal of a graph rooted at v™¥)
begin .
1= 07 = 1; (¥ and j are two global vanables, used to calculate
df snumber and toplnumber, respectively™®)
toplnumber(v) := 0; .
graph-search(v); {(*go into the graph®)
end
Procedure graph-search(v)
begin
i 1= i+ 1; dfsnumber(v) ;= i; lowlink{v)} := {; (¥initiate lowlink value;
it may be changed during the search*)
put v on stack S; (*§ is used to store SCCs if any™)
generate all sons of v;
for éach son w of v do
begin
if w is not topologically numbered then
toplnumber(w) = 0; (¥*when a node is encountered for the
first time, its toplnumber value is 0%}
end
for each son w of v do
begin
subsumption checkmg for w;
if w is not subsumed by any already visited node then
begin
call graph- sem‘ch(w), {(*go deeper into the graph*)
lowlink{v) := min(lowlink(v), lowlink(w));
{*the root of a subgraph will have the least lowlink value¥}
end
else (*w is subsumed by some node*)
{suppose that w is subsumed by u;
if df snumber(u) < df snumber(v) then
if toplnumber{y) > 0 then
(*if u is topologically numbered, it cannot be an ancestor node of v *)
mark w to be an ROQ;
else (*a cycle is encountered®)
{mark w to be an RIQ;
lowlink(v} := min(lowlink{v), df snumber(u));}} (*this operation will make

306 J. of Comput, Sci. & Technol. Vol.13

all nodes of an SCC have the same lowlink value as the root.¥)
end .
if (lowlink(v) = df snumber(v)) then (*v is a root of some SCC*)
begin
while w on the stack 9 satisfies df snumber(w) > df snumber(v) do
{delete w from the stack $ and put w in current SCC (rooted at v);
toplnumber(w) == j;} (*topological order numbering*)
ji=7+ 1; (¥ is used to calculate toplnumber®
end :
end

In the above algorithm, we notice the difference between lowlink and toplnumber:

1. lowlink is numbered top-down as df snumber; but it will be changed dynamically in such a
way that all nodes in an SCC possess the same lowlink value, Therefore, it is employed to
identify the “root” of an SCC,

2. toplnumber is numbered bottom-up. All nodes in an identified SCC will be assigned the same
toplnumber.

By a simple analysis, we know that this aigorithm requires only linear time (see [21]).
Fig.3 shows a directed graph, its dfsnumber, lowlink and toplnumber values, and its
strongly connected components when the graph is traversed with n; being the start node.

each node is of the form:
ni{dfsnumber, lowlink, toplnumber)

RO ny(4,1,2) g
na(2,2,1) @ * ng n2
na
— n
ny T!i(l,l,?.) \RIQ 1
(a) graph (b} traversal {c) strongly connected components

Fig.3. Graph traversal.

3.2 Reduction of Search Spaces and Direct Generation of Answers

In this subsection, we clarify the main ideas of the improvement by tracing the steps
of RQA/FQI for two examples, each being used to show what the search space reduction
means and how some answers can be directly generated, respectively. As the first example,
consider the following program: :

Ezample 3.1, Axioms: (1) s(z,y) - r(z,9),
(2) S(:’B,y) - p(a:rz):'s(z: w)!‘](w»y)'
Facts: p(a, a2), p(ay, as), p(az, a3),
7'(&3, b3),
q(b3; b2): Q(bz’ bl)

The corresponding version of RQA/FQI is:

(1) 5("31'9) = 7(z,y),

(2) s(z,¥) - p(z, z), PSG(id, z,y, #), s(z,w), q(w, y).
Given the query ?-s(as, ¥), the search tree depicted in Fig.4 will be generated by RQA/FQIL.

This is a normal behaviour of the top-down strategy except that the path information is
explicitly recorded as a set of instances of the propagation subgoal. {When a propagation
subgoal is encountered, we only store it and do nothing else.) Since no cyclic path exists
(no RIQs are encountered during the expansion), the second step needn’t be executed. Note

No.4 Graph Traversal and Top-Down Evaluation of Logic Queries 307

that the path information is very useful for optimizing the expansion step. For example,
during the above process, two paths shown in Fig.5 are recorded. {For exposition, we assume
that the propagation subgoal for the initial query 7-s(a1, y) is PSG(id, , ., a1).)

s{ag, »

T T ‘ set-oriem.ed
ray, ¥} play, 2, PSG(id, a), y, 2), s(z w), 0w, ») (in databas)
I . l z={ay a3}
fail PSGUid, y, % {2, 85)), 8¢5y, B3} W), abw,)
PSG(id, ap, ¥, 27)

/ \ PSGIid, ag, », a3)

s{ay, wh qlw, ¥) o ey ?")-3_‘("”;)_7} « e fupleoliedted -

(in Prolog datebidte) -~
T~ . RCQ IS E R

t{ay, wh qlw, ¥) play u), PSGUd, a3, w, w), 504, 1), .:g(;_{' w},-_ci(w. N0 plagu) PSG(id.’_éiJ.}ij,_;l:Jf)_, :S_(Ilf;;_'rl'),

alv.), qlw,) , IR AUN TR

fail PSG(id, a3, w, a3), s(a. V), Ay . mi
alv, w).qlw, 3) . | ety '

PSG(id, a3, w, a3) [

oy

..

s{az, ¥), (v w), qlw, 3)

/ \

ey,

: réay V), atv, w), (%, 3) plag, B |
: v=b; 1
i : & ’ fil
¢ alby w)glw) :
by, ¥) H
¥=b E
[~ OO :
] Fig.4. Search tree for Example 3.1
£ by b
[F PO R .
path 1: PSG(i, .. . awl ,\y, as) PSG(id, 23, w, a3) v
J&—«___.__-V’ ‘\[:,3
LT S
path 2: PSG(id, _, . ay) PSG(id, ay, y, a3} o
T N \bj

by
— = path connection

-------- . propagation of instantiations for variables
Fig.5. Paths recorded as sets of instances of PSGs.

After the subtree rooted at “s(ag,v), g(v,w), ¢{w,y)” (enclosed by a dotted rectangle in
Fig.4) is expanded, variables v, w and y appearing on the first path are instantiated to bs,
b, and bj, respectively. From this and the fact that the fourth argument of PSG(id, ag,
w, ag) (on the fivst path) has the same value (a3) as the fourth argument of PSG(id, a1, v,
az) (on the second path), we can directly instantiate the variables appearing on the second
path instead of expanding the corresponding'subtree. That is, we instantiate variables w
and y on the second path to by and by, respectively, without searching the subtree rooted
at “s(as, w), g(w,y)” (marked with a gray rectangle in Fig.4). The reason for this is that
since the fourth argument of PSG(id; ag, w, a3) on the first path is instantiated to the same
value as the fourth argument of PSG(id, a;,y, as) on the second path (in other words,
“s(ag,w),q(w,y)" is subsumed by “s(as,v), ¢(v,w),¢(w,y)"), variable w on the second path
will have the same value as variable v. on the first path, Further, in terms of the program
property described in the introduction, variable y on the second path will he instantiated to

308 J. of Comput. Sci. & Technol. Vol.13

the same value as variable w on the first path, and so on. Fig.h helps to clarify this claim.
(If the first path is shorter than the second, only some of the answers for the second path
can be generated and the remaining answers must be evaluated by the standard methods.}

In this way, any subtree rooted at some RCQ can be cut off, since in this case, we can
feasibly find the relevant answers in terms of the path information available, Therefore,
much time will be saved.

Next, we show another possibility of optimization in the case of cyclic data. In this case,
several critical paths will be stored during the first step and will be processed iteratively in
the second step. Here, we only explain how the answers can be generated directly in terms
of the answers already found. We omit the discussion about the problems w.r.t. linear cycle
covers due to space limitation. For illustration, consider the following example.

Brample 3.2. Axioms: (1) s(x,y) - v{z,u),
(2) 3(5[:1 y) = P(m, z)a S(zl w):‘l(w:y)'
Facts: p(c, d), p(c, b), p(b, <), p(b, £), p(f, c),
r(d, e),
g(e, a), q(a, i}, q(i, 0}, q(o; 8).
" Given the query 7-s(c, y}, RQA/FQI first generates a search tree as shown in Fig.7.
During the expansion step, two answers, s(d, e) and s(c, a), are produced. In addition,
a set of propagation facts:
PSG(id, ¢, y, d),
PSG(id, ¢, y, b),
PSG(id, b, w,),
PSG(id, b, w, c),
PSG(id, f, v, ¢),
is generated and aflozen query: FQ(s(z,y) - PSG(id, x,y, 2), s(z,w), g(w, y)) is constructed.
By running the frozen query against the propagation facts and the answers already found
(in a bottom-up manner), the following answers will be found:
s(b, i), s{c, o), s(b, g),
s(f, 1), s(b, 0), s{c, g), s(f, g).
Observe that the set of propagation facts corresponds to two critical paths (cyclic paths, see

I lg.ﬁ).
CPl: PSG(ld a4 b) PSG(d E), W, C)
\‘—‘—.——'—j

CP2: PSG(id, ¢, by . PSG(id,b,w,) P8G(id, £, v, ¢).
N g e
Fig.6. Two critical paths.

- In this case, we can further optimize RQA /FQI by elaborating the second step as follows.
First, we only evaluate some answers for the first critical path. Then we generate the answers
for the second path directly from the associative PSGs and the answers already found. For
example, the answers for the first path are s(b, 1), s(c, o} and s(b, g), and so we can directly
generate s(f, i) from s(b, i) and the third PSG (P8G(id, f, v, c)) on the second critical
path instead of evaluating it by.performing algebraic operations. Similarly, we can directly
generate s(b, o) from s(c, o) and the second PSG (PSG(id, b, w, f)) on the second critical
path, and so on. Fig.8 helps to illustrate this feature.

In general, the new answers generated for'one critical path can further be used to generate
new answers for the other critical path again. For the above example, we can imagine two
circles (Cy and Cp) with each corresponding to a cyclic path. We run respectively along

No.4 _ Graph Traversal and ‘Top-Down Evaluation of Logic Queries 309

C,; and C; in the same direction and generate some answers for Gy from C; at each step.

. We do this continually until no new answers for Ca can be generated. Then we generate

new answers for C; from C; in the same way. This process is repeated until no more new
answers can be generated, We describe this process formally as shown in Fig.9.

(e y)

—

(e, y) ple, 2), PSGlid, ¢, y, 2), s(z W), glw, ¥)
I | e=tav)
fail p(c, 2, PSG(id, ¢, y, {d, b}, s({d, b, w), glw, »

PSGlid, ¢, y,) \PSG(id, ¢,y b)

s(d, W), 0w, ¥} s(b, w), qlw, y)
rd, w), glw, ¥ \ / T~ .
pld, 1), PSG(id, d, w, u), s, v}, (b, w), g(w, ¥} p(b, 1), FSG(d, b, w, 1}, s{u, v),
l w=g q(v, w), q(W, y) I.' q{"'- w), G(W:)’)
a6,) lu=ten
! fail fail PSG(d, b, w, {c, [}), s({c, f}, v}, glu w),
| ¥=2 glw, ¥)

u] -
PSG(id, b, w, D) PSG(id, b, w, <)

s(f, ¥), glv, w), gGw,) s(e, v), glv, w), gl ¥)

N

iE, v, glv, w) qOv, ¥) plE,m}, PSG@d, f, v, m), s, n), A subsumed subgoal is
I gin, v}, glv, w), glw, ¥) encountered, Construct
’ | the corresponding FQ and
stop.
PSG(d, £, ¢), s{e,n),
qln.), gv, w), glw, ¥)
PSG(d, f,v, <) |

s{e, 1), gl v} qlv, w), glw,)

fail

A subsumed subgoal is
encountered. Construct
st&)% corresponding FQ and

Fig.7. Search tree for Example 3.2,

answers on the first criticat path @ s(c, 8) ~—s=s(b, i) —= s{c, 0)7-—5- sb, g)-~.,

P .

kLT

=R T
ga, awe=

answers on the second critical path : s(c, a) JE—— .s(f s(b, 0) .s(c,

PSd, £, 3, c)--—PSG(ld P t)—»"i’SGtid e 3 b
——= evaluating® eeeeeees ¥= generaling

Fig.8. Answers on two critical paths associated with ¥Q(s(x, y) - PSG(idy, =z, y, 2), s(z,w), q(w,y)):

Let C; be the first cycle psgy ¢ psgg ¢+ ¢ DSgn ¢ Dsg1. A1 = {81, .y 85,y 8041,

v 827y wrey Biny vy Rintj } bhe answer set evaluated along C;, where ¢, j are integers and 0
< 4 < n. (It should be noticed that each a; (1 <1 < #n+7) is a subset which is evaluated by
running the frozen query with the PSG subgoal bemg instantiated to psgy, where l'= T?‘L-}- A

for some integer 7.) Let Cz be the second cycle psg} « psgh + <+« 4 psgl, + psg} (see

Fig.9 for illustration). In addifion, we define
Ay = { Aptly ooy A2ny rory Diny 0oy Aintj }5

310 J. of Comput. Sci. & Technol. Vol.13

Az = { 820415 oy Bingeens Bindg b
A; = { Biny 5 Aintj }'
Then, in terms of Ay (1 <k < i) and Cp, we can generate the first part of answers for
G, as follows. (Note that we do not necessarily compute all Ay (1 < k < 1). In practice,
‘each time an Ay neceds to be used in the computation, we shrink Ay_; by leaving out certain
sets (some a;’s)). Without loss of generality, we assume that n < m.

Al 8 o 8y e By e A e eee By o By AL Bigrps o Biny
bll’ blml b],m+l bl,n’m+r [bill e b*fj
psgp’ e oo DSy’ PSBY' o DSEm' - PSE;’ P61’ - PSEm

where i-n+j=tm+r
Fig.9. Iilustration of answer generation,

If n == m, no more new answers can be generated after this step. Otherwise, in terms of
C; and the newly generated answers for Cyp, we can further generate some new answers for
C; in the same way. To this end, we first merge the newly generated answers.

by = by U bgg Ur--Uby,
brmtr = Prmart o)
(Hereafter, this process is called a merging operation.) Then, we construct By, (1< k < -1)
in the following way. ' :
Bi = { bl: ey bhn+‘r}:
By = { bm-l-l,) blm+r},
Bs = { bamt1s «s Blmsr}s
B, = { bhn+1y ey blm-{-r}-
(Hereafter, this process is called a separaling operation.)

In terms of C; and By, (2 < k < 1), some new answers for (Y can be generated as described
above. Note that B; will not be used in this step. It is because no new answers can be
generated in terms of it, i.e,, using if, only the same answer set as A; can be generated.
In the next step, some new answers for Cy can be generated in terms of Cy and the newly
generated answers for Cy. In general, this technique can be applied to any number of cycles
if they contain a common node.

Because evaluating answers by performing algebraic operations requires access to the
external storage or search of large relations but the “generating” operation happens always
in the main memory and requires only access to small data sets (i.e. the answers already
evaluated or generated on the other critical path), the generation of answers is much more
officient than the evaluation of answers. Thus, the algorithm is optimal in time complexity

in comparison with RQA/FQL

4 Description of the Refined Algorithm

Based on the analysis above, the new algorithm (for linear recursion) should be composed .
of four processes:

No.4 Graph Traversal and Top-Down Evaluation of Logic Queries 311

1. expansion process which acts like that of Prolog, but with “search space reduction” being
integrated;

2. generation process for RCQs, by which all answers for repeated complete queries (RCQs) are
generated directly in terms of the associated path information and its subsuming query;

3. iteration process, by which some answers for the first critical path are evaluated in a bottom-
up fashion;

4. generation process for RIQs, by which all answers for the other critical paths are generated
directly from the associated PSGs and the answers already found,

In some cases, there may be several classes of critical paths with all paths in one class
corresponding to the same subsuming query. In these cases, we need to execute the third
step and fourth step above for each class, since the answers for a path in some class can not
be generated from the answers evaluated or generated for other classes. For simplicity, in
the following description of the algorithm, we assume that there is only one class of critical
paths, However, it is not difficult to replace the corresponding part by a complete version in
this algorithm. In addition, in the expansion process,; each query node n is associated with
three integers df snumber(n), toplnumber(n) and lowlink(n) to do subsumption checks. But

~we do not describe this mechanism in the following algorithm for ease of exposition. In fact,
this is no more than what is discussed in Subsection 3.1.

Before the algorithm is applied, a preprocessor has to be executed to add a PSG in
front of each recursive predicate in a rule and to reorder the predicates in the body of the .
rule such that the predicates occurring after a recursive predicate are only correlated with
the recursive predicate. On the other hand, we employ the normal optimization strategy
of reordering subqueries, i.e. we put the predicates with some of their variables bound to
constants before the predicates whose variables have no bindings. It is necessary to reorder
the predicates in such a way that we can save as many operations over the predicates which
are only correlated with the recursive predicate as possible.

In the algorithm, certain set variables are associated with recursive predicate g:

Loc_.M.g— a global set of instances for g, indicating the instantiated arguments of ¢

Loc_Ans—- a local set of tuples which is used during the expansion to store the answers
already found
FQ set— a global set of frozen gqueries

path_set;——a global set of critical paths for each F'Q;

path_set— the set of path_set;

Sin— a local set of tuples which is used during the iteration to store the answers
evaluated or generated in the n-th step of the m-th critical path

Procedure evaluation(q, Loc.M_g)}
begin
for each i in Loc.M_g do
{expaunsion(g, i); (*Note that “generation_for RCQ" will be called by “expansion®.*)
iteration{Loc_Ans, FQ_set, path_set);
generation for. RIQ(Loc_Ans, path set)};
end

Procedure expansion(g, 1)
(* Input: ¢, i ; Output: Loc.Ans, FQ.set, path.set *)
for each clause O defining ¢ do
repeat
begin

choose the first/next predicate according to a selection function;
generate the corresponding generalized query Py;
if P, is a propagation subgoal)

then insert Py in the corresponding path in a path_set; of the path_set;

312 J. of Comput. Sci. & Technol.) Vol.13

if P is non-recursive :
then evaluate Fr by standard non-recursive methods and store the results in Loc_Ans;
if P, is an RIQ
then {generate an FQ (incomplete part of current rule + instantiation in the form of a PSG);
FQ_set := FQ set U the current FQ} (* If FQ is already stored, only the new PSG has to be
asserted.*)
if Py is an RCQ then call generation_for RCQ(path;, pathz); (*path; is the path associated with
the subsuming query; paths is the path associated with the subsumed query.¥}
end
until there are no more predicates in the body of ;.

Procedure generation_for RCQ({pathy, patha)
(*Input: path; {path associated with the subsuming query), pathg (path associated with the subsumed
query);
Qutput: some new answers*)
begin
{generating new answers In terms of path; and pathg;
Loc.Ans := Loc_Ans U new_answers}
end

Procedure iteration{Loc_Ans, FQ_set, path_set)
(*Input: Loc. Ans, FQ.set, path.set; Output: set of 81mn™)
for each F'Q; in FQ.set do
{*producing answers for the first critical path which cannot be generated from the answers

on the other critical path and the associated PSGUs *)
forallmndo Spn = (Fm>1L,n>0%) ’
S10 := subset of Loe.Ans satisfying (g, i);
let P be the first path in the path_set;;

repeat
forl = 0 to L — 1 do (*I. = Length(P) represents the number of PSGs contained in P.¥)
begin

get instantiation for the'corresponding PSG;
get answers for g from 81 tmedr;
for each predicate p occurring after ¢ do
if p is a recursive predicate then evaluation(p, Loc_M_p)
else evaluate p by standard non-recursive methods;
S1,141moedL :='Sl,z+1nwd,[’_.,.u new_answers; {*After all predicates occurring after ¢ are
evaluated, some new answers are produced and stored in S1,141modz-~)

end
until no more answers for the path arve evaluated.

Procedure generation_for RIQ(Loc_Ans, path_set)
(*generating all answers for each critical path™®)
for m = 2 to |pathset;| do
repeat)
for each k,j € {1,2,...,m} do
for I = 0 to L; — 1 do (*L; = Length(F;) represents the number of PSGs contained in P;.*)
{generating new answers from S imodr, and the corresponding PSG;
; Sj,ImndLj:: Sjtmoar; U new_answersj
until no new answers are generated.

In the first step of the algorithm, we expand the search tree top-down. During the process,
the queries over database predicates or database views are evaluated in a set-oriented way
and the answers produced are stored in Loc.Ans. If a propagation subgoal is encountered, it
will be inserted into the corresponding critical path which is stored in some path_set;. If an
RIQ is encountered, the expansion stops and the corresponding FQ is constructed, which is
stored in FQ_set. If an RCQ is encountered, generation_for RCQ will be called to generate
some new answers in terms of the path information assoclated with both the RCQ and its
subsuming query. The second step of the algorithm is separated into two phases. In the
first phase, only some of the answers for the first critical path are evaluated with some of

No.4 Graph Traversal and Top-Down Evaluation of Logic Queries 313

the answers already produced (during the expansion) as initial values. In the second phase,
all remaining answers for each critical path are generated directly from the corresponding
PSG’s and the answers already produced or generated on the other critical path.

Ezample 4.1, Given the rules and facts as in Example 3.1, let 7 -s(a;,z) be .the query.
The expansion process of the refined algorithm will produce the following answers:

answers evaluated for the first path: s(as, bg), s(as, be), s(a1, b1);
answers generated for the second path: s(as, bz}, s(a1, ba).

The last two answers are generated directly by calling “generation for RCQ".
Ezample 4.2. Given the rules and facts as in Example 3.2, let 7-s(c,) be the query.
The refined algorithm will produce the following answers:

answers evaluated in the first step: s(d, e), s(c, a);
answers evaluated in the first phase of the second step: s(b, 1), s(c, 0), s(b, g);
answers generated in the second phase of the second step: s(i), s(b, o), s(c, 8), s(f, g). -

5 Comparison with Other Stratég'ies

In order to compare the time complexity of the refined algorithm with RQA/FQI, we

consider the following lnear recursive program:
s(a:,y) - ?‘((L‘,y),
s(z,y) - plz, 2}, 8(z, w), q(w,y).

Assume that the graph representing the relation for “r” contains n, nodes and e, edges,
the graph for “p” contains n, nodes and e, edges, and the graph for “g" contains ng nodes
and e, edges. At an abstract level, the expansion phase of RQA/FQI can be viewed as two
processes: a constant propagation process and a variable instantiation process. The former
corresponds to the traversal of the graph for “p”. The latter corresponds to the traversal of
the graphs for " and “g". If the indegree and outdegree of each node ¢ in the graph are
denoted as mdegree(z) and outdegree(z) respectweiy, then the cost of the expansion phase
of RQA/FQI is:

O(ep) + Ofey) + O(Z indegree(i) X outdegree(j)),

(1.9)eA
where A denotes the set of answer tuples. Ofe,) is the cost for the traversal of the graph
for “p". Ofe,) is the cost for the traversal of the graph for “»”. The cost for the traversal

of the graph for “g” is O(F(; jye 4 indegree(i) x outdegree(:})) = O(ep - e4). Fig.10(a) helps
to clarify the result.

From Fig.10(a), we see that crossing the edge (¢, f), each edge incident to j will be visited
mdegree(t) times. Similarly, the expansion process of the refined algorithm can be viewed
as two processes. However, due to the answer generation for RCQs, the cost is reduced to

O(ep) + Ofer} + O(Z outdegree(g)). (See Fig.10(b) for illustration.)
some(i,f)€A . ' .

On one hand, due to the “answer generation”, each edge incident to j can be visited at
most once. On the other hand, some answer tuples may not be traversed for the same
reason. Therefore, its time complexity is less than O(n, - €5). In order to achieve a linear
time, we need to do subsumption checks on more nodes, i.e., we check the subsumption
not only on query nodes, but also on their son nodes. In other words, the nodes of the
form: g(z1,22),¢(x2,23),. . ., (i1, 2;) will be checked. Each of them is generated by in-
stantiating a node such as s(zg, 1), q(1, @2), ¢(22, 23), .., ¢(¥i-1, 2;). Consider nodes ny =
g(w1, 22}, (w2, ®3), ..., g(@i1,®;) and ng = q(yl,yz),q(yz,ys), 2 q(¥5-1,95). Without-loss

314 J. of Comput. Sci. & Technol! Vol.13

of generality, assume ¢ < J. If n5.1s subsumed by ny, i.e., y1 will be bound to the same con-
stant as @y, then g(z1,), a(@, 23), r @(wio1, i) and g(y1,%2), q(y2,Y3)s - 4(Yi-1, %1) can
be treated as a commom expression. If the answer set produced by evaluating g{za,23), -+
q(zi—1,®;) is denoted as 5, then we compute the following formula for ns:

S b i, Yopr) 2+ - 2 Q(Y5-1,75)-

In this way, cach edge in the graph for “q” will be visited at most once and so no redundant
work will be done. Since each edge in the graph for “p” is also visited at most once, the
refined algorithm requires only linear time for non-cyclic data,

an answer tuple (7, jyin A

) graph for "p"
an answer tuple (£, fin A 1 for g
raph for "p" graphior °q
graph for "p (. ; e
graph for "g" At -
N g
A’
- o,
o
this answer tuple will not
be visited

Fig.10. Illustration for time complexity analysis.

In .the above analysis, we do not take the cost for “generating answers” into account.
In fact, in comparison with the cost of evaluating an answer (by algebraic operations: join,
selection, projection, ...), the cost of generating an answer is very little such that we needn't
consider it, (In practice, the time complexity of a computation mainly depends on the
number of accesses to the external storage which in turn depends on the number of the
relations participating in the computation and their cardinalities). Now we derive the time
complexity of handling cycles. We consider only the case of linear recursion. To simplify
the description of the results of the analysis, we assume that cach cycle has the same length
(by “length” we mean the number of PSGs contained in a cycle) and along each cycle the
number of new answers got by the algorithm from an initial value or an evaluated answer
in one step is d. Thus, if each cycle has the length m and the number of iterations over &
eycle is [, then the time complexity of the second step of RQA/FQI is in the order of

m-{) dml—lu_l
A AT C=A G
i=1

where \ is the number of the cycles associated with an I'Q and C represents the cost of
evaluating an answer in the iteration step. In the worst case, C' is the elapsed time of a read
access to the external storage, i:e. each evaluation in the step requires an I/0.

In the fourth process of the refined algorithm, (d™ — 1)/(d — 1) answers are evaluated
using the assumption above. The remaining answers for each cycle are all generated in the
fifth process. Let § be the cost of generating an answer in the generation process, then the
running time for the fifth process of the refined algorithm is

1 m T
m[(d 1) C+(A—1) (d™-1)-4]

No.4 Graph Traversal and Top-Down Evaluation of Logic Queries 315

Since § < ¢, the saving on time is significant. If §/C < nfd™, (A1) (d™ —1) -6 is
less than some constant, and therefore the time complexity of the fourth and fifth processes
of the refined algorithm is O(d™ - C). Therefore, the refined algorithm may reduce the
worst-case time complexity of RQA/FQI by a factor A, the number of the cycles, if we do
not take the cost of generating an answer into account, '
Many other strategies have been proposed to handle this problem, among which the
magic set method receives much attention. For the above simple program, the magic set
method works in a two-phase manner. In the first phase, the magic set is produced by
executing magic rules®4, In the second phase, modified rules are executed using the magic
sel to restrict the bottom-up computation. Essentially, these two phases correspond to the
constant propagation process and the variable instantiation process of a top-down evaluation,
respectively. Therefore, the cost of the magic set method is Ofe, - eg) (see [15] for details).
The counting method is an indexed version of the magic set method!#17, " It improves
the magic set method by a constant factor. In fact, its time complexity is O(ny - e5). In
addition, a lot of experiments have been donel® and they show that QSQR, another top-
down strategy[!®-20 has the same time complexity- as the magic set method. Therefore,

our method is also better than QSQR.

6 Conclusior}

In this paper, a top-down but set-oriented algorithm for the evaluation of recursive
queries has been presented which is much more efficient than RQA/FQI and other well-
known strategies such as QSQR, magic set method and counting method. The key idea of
the improvements is to distinguish between RCQs and RIQs and to use the path information
associated with them elaborately. We may reduce the search space by cutting off any subtree
rooted at an RCQ because we can feasibly find the relevant answers in terms of the path
information available. Then we minimize the time complexity by separating the second step
of RQA/FQI into two phases and generating most answers for each critical path directly from
the intermediate results and the associated PSGs after some answers for the first critical
path are evalnated, without performing algebraic operations. In practice, since performing
algebraic operations requires access to the external storage or search of large relations but
the “generating” operation happens always in the main memory and requires only access
to small data sets, the cost of generating an answer is much less than that of evaluating an
answer. Thus, the refined algorithm is optimal. The proof of the correctness of the refined
algorithm can be found in (8]. .

References
[1] Aly"H, Ozsayoglu 2 M, Synchronized counting method. In Proc. &th Intl Gonf. Data Bnginecring, Los
Angeles, 1989,

[2] Balbin I, Port G § , Ramamchanarao K, Meenakshi K. Efficient bottom-up computation of queries on
stratified databases. J. Logic Programming, Nov, 1991, 205-344.

[3] Beeri C, Ramakrishna R. On the power of magic sets. Intl J. Logic Programming, 1891, 10: 255-299.
{4] Ceri 8, Gottlob G, Tanca T. Logic Programming and Databases. Springer-Verlag, Berlin, 1890.

{5] Chen Y. A botlom-up query evaluation method for stratified databases. In Proceedings of 9th Interna-
tional Conference on Data Engineering, Vienna, Austria, April 1993, pp.568-575,

{6] Chen Y, Hirder T. An optimal graph traversal algorithm for evaluating linear binary-chain programs. In
CIKM'94 — The 3rd International Conference on Information and Knowledge Managemen, Gaithers-
burg, Maryland, USA: ACM, Nov. 1994, pp.34-41. N

316

J. of Comput. Sci. & Technel. Vol.13

(71
(8]
[0
(10]
(11]
(12)

[13]

(1]
[15)
6]
(17}
18]
(19}
[20)

[21]
(22]

Chen Y, Hirder T. On the optimal top-dewn evaluation of recursive queries, In Proc. 5th Int'l DEXA
Conf. Database and EBzpert Systems Applications, (ireece, Springer-Verlag, Sept. 1994, pp.47-56.

Chen Y. Processing of recursive rules in knowledge-based systems—Algorithms for handling recur-
sive Tules and negative information and performance measurements. Ph.D. thesis, Computer Science
Department, University of Kaiserslautern, Germany, Feb. 1995.

Chen Y. Magic sets revisited. Journal of Computer Science and Technology, July 199"[12{4): 346-365.
Chen Y, Magic sets and stratified databases, Int’t Journal of Inte!hgent Systems, March 1997, 12(3):
203-231.

Chen Y. OLDT-based evaluation method for handling recursive queries in deductive clatabases. accepted
by Science Sinica, 1997,

Chen Y. Counting and topological order. Journm! of Computer Science and Technology, 1997, 12(6):
497-500.

Han J. Chain-based evaluation—A bridge linking recursive and nonrecursive query evaluation. In Proe.
fnd Int’l Workshop on Research Issues on Data Engineering: Transaction and Query Processing, Los
Alamitos, CA, February 1992, pp.132-139.

Joannidis Y, Weng E., Towards an algebraic theory of recursion. Journal of the Assaciation for Com-
puting Machinery, April 1991, 38(2): 329-381.

Marchetti-Spaccamela A, Pelaggi A, Sacca D. Comparison of methods for logic-query implementation,
J, Lagic Programming, 1991, 10: 333 360.

Nejd] W. Recursive strategies for answering recursive queries—The RQA/FQI strategy. In Proc. 13th
VLDE Conf., Brighton 1987, pp.43-50. .

Wu C, Henschen I J. Answering linear recursive queries in cyclic databases. In Proc. 1988 Int’l Conf.
Fifth Generation Computer Systems, Tokyo, 1988.

Vieille L. Recursive axioms in deductive databases: The query-subquery approach, In Proc. First Int’l
Conf. Expert Dotabase System, L. Kerschberg (ed.), Charleston, 1986.

Vieille L. A database complete proof procedure based on SLD resolution. In Proe. 4#h Int'l Conf. Logic
Prograrmming ICLP’87, Melbourne, Australia, May 1987.

Vieille L. From QSQ to QoSaQ: Global optimization of recursive queries. In Proc. 2th Int'l Conf. Expert
Database System, L. Kerschberg (ed.), Charleston, 1988.

Tarfan R. Depth-first search and Hnear graph algorithms. SIAM J. Comput., June 1972, 1(2): 146-140.
Lloyd I W, Foundation of Logic Programming. Springer-Verlag, Berlin, 1987,

Chen Yangjun received his B.S. degree in information system engineering from the Technical

Institute of Changsha, China in 1982, and his Diploma and Ph.D. degrees in computer science from

the

University of Kaiserslautern, Germany in 1990 and 1995, respectively. Dr. Chen is currently

an Assistant Professor of the Technical University of Chemnitz-Zw2ickau, Germany. His research
interests include deductive databases, federative databases, constraint satisfaction problem, graph
theory and combinatorics. He has about 40 publications in these areas.

