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Abstract OLDTNF resolution is an important mechanism used in a Prolog interpreter. This mechanism is extended 
and improved for evaluating recursive queries in deductive databases. The key idea of the refinement is to distinguish 
between two classes of lookup nodes in an OLDTNF derivation and to handle them differently. First, reduce the 
search apace by cutting of any auhtree rooted at a lookup node of the first class. Further, speed up the evaluation by 
processing the second class in a second phase and generate many solutions directly from the solutions already produced 
(and the corresponding keys of solution lists) instead of evaluating them by expanding the corresponding subtreea in 
terms of the new solutions stored in solution lists. 
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It has been recognized for some time that first-order database query languages are lacking in 
expressive power [1] . Since then many higher-order query languages have been investigated in the 

context of deductive databases. A language that has received considerable attention recently is 

Datalog, the language of logic programs (known also as Horn-clause programs) without function 

symbols, which is essentially a fragment of fixpoint logic [11 . A canonical example of Datalog is 

the following program that computes transitive closure, where we think of the database as a di- 

rected graph. 

p a t h ( x , y )  : - e d g e ( x , y ) ,  
p a t h ( x , y )  : - edge(x, z) ,  p a t h ( z , y ) .  

In this example, we take edge( ' ,  �9 ) to be an extensional database (EDB) predicate, that is, rep- 

resenting basic facts stored in the database. For example edge( 1, 5) is an EDB fact stating that 

there is an edge between nodes 1 and 5. The intensional database ([DB) predicate path( ' ,  �9 ) rep- 

resents facts deduced from the database via the logic program above: the first rule says that every 

directed edge forms a path, and the second rule tells how paths can be joined together. We can 

now query, for instance, path(l ,  7) or path(2, v) to determine, respectively, whether there is a 

path from node 1 to node 7, or what nodes v are connected to node 2 by a path. 

Recent works have addressed the problems of finding efficient evaluation methods for Datalog 

queries and developing optimization techniques for Datalog [2-6] . By "efficient", we refer to the 

size of the database. A typical approach to the problem of efficient evaluation involves identifying 

"nice" properties of Datalog programs that facilitate efficient computation of programs with these 

properties. For example, Ullman and Van Gelder [7] have identified the polynomial fringe proper- 

ty of Datalog programs, where every proof involves a number of EDB facts (at the "fringe" of the 

proof tree) at most polynomials in the size of the database. Although the complexity of evaluating 
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arbitrary Datalog programs can be PTIME-complete [8] , Ullman and Van Gelder have shown that 

the complexity of Datalog programs with the polynomial fringe property is in NC [7], that is, all 

facts can be deduced in parallel time polynomial in the logarithm of the size of the database, given 

a number of processors polynomial in the size of the database. 

At first, the problem of optimizing Datalog queries does not seem to be too difficult, since 

every rule in a Datalog program can be viewed as a conjunctive query. Conjunctive queries consti- 

tute a fragment of the class of first-order queries for which the optimization problem is completely 

solved [9]. Unfortunately, it is the recursive application of the rules that makes Datalog queries 

hard to evaluate. A possibility of optimizing Datalog queries is to remove recursions and to trans- 

form the original program to an equivalent one that contains no recursion. However, deciding 

whether it is possible to have some or all of the recursive predicates of a program removed, is un- 

decidable El~ . Then, we have to find an efficient method for a "direct" evaluation. 
In this paper, we identify a new "nice" property, the solution similitude property, and try to 

extend OLDTNF resolution to a top-down but set-oriented method for evaluating recursive queries 

against a stratified database, thereby using the solution similitude property to improve the effi- 

ciency. 

We say that a database is stratified if there exists a level mapping r ,  so that for every clause 

in the database (of the form) - 

B : - L t , ' " ,  L~. 

If L~ is positive, that is, an atom, then r ( Li ) ~ r ( B ), and if Li is negative, then r (L i )  < 

r(B) ,  for all i, l ~ i ~ n .  So, in a stratified database, recursion via negation as in the following 

program is not allowed. 

P :  - 7  q, 
q :  - p .  

The main obstacles which have to be faced in a top-down evaluation of recursive queries against a 

stratified database are 

- Floundering (due to negated body literals), and 
- Infinite derivations (due to the presence of recursions). 

We say that a query is floundering if during the evaluation of the query a negated body literal 

with unrestricted variable is encountered. It leads to the problems of domain-dependency [s~ and 

inefficiency. Today, this problem is well understood. The simplest possibility to exclude floun- 

dering computations is to restrict the attention to allowed queries, which were introduced by 
Clark In] . (A rule is Clark-allowed if every variable appears in at least one positive body literal). 

However, to avoid the infinite derivations, the subsumption has to be checked to cut off any infi- 

nite branch. The problem is that cutting off an infinite branch may affect the completeness and 
thus a mechanism has to be designed to find the lost solutions again. To this end, OLDTNF reso- 

lution [2'43 was proposed, which distinguishes between two kinds of nodes: solution nodes and 

lookup nodes, and handle them differently based on the tabulation technique. In this way, both 

termination and completeness can be guaranteed. We show that this method proceeds redundantly 

in certain cases and can be improved by further differentiating between two classes of lookup 
nodes. First, we try to reduce the search space that will be traversed by OLDTNF resolution. We 

do this by recognizing all similar portions of a graph and manage to produce all the relevant solu- 

tions by constructing only one of them (based on the identification of the first class of lookup 
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nodes). The  other refinement is concerned with the treatment of cyclic data. In this case, a cycle 

is stored when it is encountered at the first time (based on the identification of the second class of 

lookup nodes). We then suspend the traversal along the corresponding path to avoid duplicate 

work. However, as many intermediate solutions may not be used to produce new solutions along a 

cyclic path, suspending the traversal along the cyclic path may prevent us from obtaining all solu- 

tions. Therefore, we develop a process to evaluate the remaining solutions by iterating on each 

cyclic path with a different initial value each time. In this iteration process, we further optimize 

the evaluation by generating most solutions for cyclic data directly from the solutions already 

found and the associated path information instead of traversing the relevant subgraphs as usual. In 

this way, we can decrease the time complexity by an order of magnitude or more. This  is because 

traversing paths requires accesses to the external storage or search of large relations but  the "gen- 

erating" operations happen always in main memory and require only accesses to small data sets (i. 

e. the solutions already found).  

1 OLDTNF resolution 

O LDTNF  resolution is based on OLDT resolution, augmented with negation as failure rule, 

just as SLDNF resolution is based on SLD resolution [1] . OLDT resolution (OLD resolution with 

tabulation) is a mechanism used in a top-down Prolog interpreter with memo-ization. It was pro- 

posed by Tamaki-Sato [z], and similar work has been done by several researchers [3' 12]. Recently, 

OLDT resolution is widely used as an abstract interpretation engine [13' 14] 

The basic principle of OLDT resolution is to prevent the interpreter from repeatedly trying to 

solve the same goal (in the case of recursive programs) and thus to cut off any infinite computa- 

tion path, by introducing the tabulation technique into OLD derivation. (For  the other top-down 

strategies, different techniques are used [3] ).  An informal explanation of the behavior of OLDT 

resolution is as follows. When a goal first appears in a computation path, it is said to be a solution 

node. All solutions obtained from the solution node are stored in a table called the solution table. 

On the other hand, when a similar goal appears in a computation path, it is said to be a lookup 

node. A lookup node is resolved only with the atoms in the solution table, i . e .  atoms stored in 

the solution table are used as lemmas. When there is no solution resolvable with a lookup node, 

the computation of the lookup node suspends until new resolvable solutions are registered in the 

solution table. 

Now we describe O L D T N F  resolution according to ref. [4]  except for the use of association, 

the use of variant of instance, and the definition of O L D T N F  subrefutation. 

First, we introduce the following important concepts. 

A search tree is a tree satisfying the following conditions: (i)  Each node is classified into ei- 

ther a solution node or a lookup node and is labeled with a pair of a (possibly empty)  goal and a 

substitution. (The  distinction between solution nodes and lookup nodes can be seen later) .  (i i)  

Each edge is labeled with a substitution. 

A search tree of Ga ( G is a goal and a is a substitution) is a search tree whose root node is 

labeled with ( G,  a ) .  A node in a search tree is called a null node when the goal part of the label 

is [ ]  (which represents the empty goal). When a node in a search tree is labeled with ( " A t ,  A2, 

�9 " ,  A n" ,  a ) ,  the literal A 1 a is called the head literal of the node. A solution table is a set of en- 

tries. Each entry is a pair of the key and the solution list. The  key is a literal such that no variants 
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of this key appear (as keys) elsewhere in the solution table. The solution list is a list of literals, 

called solutions, such that each solution in it is an instance of the corresponding key. Let Tr be a 

search tree and Tb be a solution table. An association of Tr  and Tb is a set of pointers connecting 

from each lookup node in Tr  into some solution list in Tb such that the head literal of the lookup 

node and the key of the solution list are variants of each other. The tail of the solution list pointed 

from a lookup node is called the associated solution list of the lookup node. 

An OLDTNF structure of Gtr is a triple ( Tr ,  Tb,  A s ) ,  where Tr  is a search tree of Ga, Tb 

is a solution table, and As is an association of Tr  and Tb.  A node in a search tree of the OLDT- 

NF structure ( T r ,  Tb,  As )  labeled with ("A1,  Az, "" ,  An",  a)  is said to be OLDTNF resolvable 
when it satisfies either of the following conditions: (i) The node is a leaf solution node'of Tr ,  and 

there is some definite clause "B : - B 1, Bz,  "",  Bm" ( rn >~0) in program P such that A 1 a and B 
are unifiable, say by an m. g .u .  (most general unifier) 0. (We assume that, whenever a clause is 

used, a fresh variant of the clause is used. ) The pair of the (possibly empty) goal "B1, B2, "" ,  

Bin, A2, .... , An" and the substitution oa (or possibly the restriction of oa to the variables in 

"B1, B2, "" ,  Bin, A2, "" ,  An")  is called the OLDTNF resolvent. (ii) The node is a lookup node 

of Tr ,  and for some substitution 0 (for the variables in A a ) ,  there is a solution A in the associat- 

ed solution list of the lookup node such that A = A 1 oa. The pair of the (possibly empty) goal 

"Az,  "" ,  An" and the substitution oa (or possibly the restriction of oa to the variables in "A2, "" ,  

An" is called the OLDTNF resolvent. (iii) The node is a negative node. Let A1 = 7 Ao. That 

is, A1 is a negated literal. We create a new initial OLDTNF structure of Ao, where its solution 

table is also newly created. If there is a finitely failed OLDTNF structure, then ("A2,  "" ,  An",  

a) is called the OLDTNF resolvent. 
An OLDTNF subrefutation of a literal and an OLDTNF subrefutation of a goal are paths in a 

search tree (not necessarily starting from the root node) which are simultaneously defined induc- 

tively as follows: 

- A path with length more than 0 starting from a solution node is an OLDTNF subrefutation 

of an atom Aa with solution Ar  when 

- the initial node is labeled with a pair of the form ( " A ,  G" ,  a ) ,  the initial edge with, say 
substitution 0, and the last node with a pair of the form (" G" ,  a ' )  ; 

- the node next to the initial node is labeled with a pair of the form ("A1,  Az, " " , A n ,  G" ,  
oa),  and the path except the initial node and the initial edge is a substitution of (A1, A2, 

�9 " ,  An ) 8 with solution (A 1, A a, "" ,  An ) Or" ( n >~0) ; and 
- r is oar ' .  

- A path with length 1 starting from a lookup node is an OLDTNF subrefutation of an atom 

Aa with solution Ar  when 
- the initial node is labeled with a pair of the form ( " A ,  G" ,  a ) ,  the initial edge with, say 

substitution 0, and the last node with a pair of the form ( " G " ,  a" ) ;  and 

- r is oa. 

- A path with length I starting from a negative node is an OLDTNF subrefutation of a negat- 

ed literal ~ A0 with solution "true" and identity substitution when 

- the initial node is labeled with a pair of the form ("7 A0, G", a) and the last node with a 

pair of the form (" G", a). 

- A path with length 0, i.e. a path consisting of only one node, is an OLDTNF subrefuta- 
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tion of [ ]  a with solution [ ]  a .  

- A path with length more than 0 is an O L D T N F  subrefutation of a goal (A1,  A2, "" ,  A ,  )a  

with solution ( A  1, A2, "",  A ,  ) r ( n > 0) when 

- the initial node is labeled with a pair of the form ("A1,  A2, "" ,  An, H " ,  a ) ,  and the last 

node with a pair of the form ( " H " ,  a '  ) ; 

- the path is the concatenation of a subrefutation of A1 a with solution A l a r l ,  a subrefuta- 

tion of Aearl with solution A2art re,  "" ,  a subrefutation of Anarlr2"" rn-1 with solution 

AnRrl r2"'" rn -  1 r ,  ; and 

- r i s  ar l  rz""  r .  - 1 ~ ' n  �9 

In particular, a subrefutation of Aa is called a unit subrefutation of Aa. 
The  initial O L D T N F  structure of C-a is the O L D T N F  structure ( T r o ,  Tbo, Aso), where 

Tro is a search tree consisting of only the root solution node labeled with ( G, a), Tbo is the solu- 

tion table consisting of only one entry whose key is the head literal of the root node and whose so- 

lution list is an empty list [ ],  and Aso is an empty set of pointers. 

An immediate extension of OLDTNF structure ( T r ,  Tb, As) in program P is the result of 

the following operations, when node v of O L D T N F  structure ( Tr, Tb, As) is O LD TN F  resolv- 

able. 

- When v is a leaf solution node, let C1, C2, "" ,  C k ( k ~ l )  be all the clauses with which the 

node v is OLDTNF resolvable, and (G1,  O'1), ( G 2 ,  62 ) ,  "" ,  ( G k ,  ak) be the respective 

O L DTNF  resolvent. Then  add k child nodes of v labeled with (G1,  a l ) ,  (G2,  a2),  " ' ,  

(Gk, ak) to v. 
- When v is a lookup node, let Aa01, Aa02, "", A a 6 k ( k ~ l )  be all ( the  variants of ) the so- 

lutions in the associated solution list with which node v is O L D T N F  resolvable, and (G1,  

al ),  (G2,  a2),  "" ,  (Gk,  ak) be the respective O L D T N F  resolvent. Then  add k child nodes 

of v labeled with (G1,  a l ) ,  (G2,  a2),  "" ,  (Gk,  ak) to v .  

- When v is a negative node ("A1,  A2, ' " ,  An",  a ) ,  let A be the head literal of the node and 

A = "1 Ao. We create a new initial OLDTNF structure To of Ao, where its solution table 

is also newly created. We consider two cases. If there exists an extension (see below) of 

To which contains a success leaf, then v has no child and it is a failure leaf. If there is a 

finitely failed O L D T N F  structure which is an extension of To, then v has a unique child 

node v '  of the form ( "A2 ,  "" ,  A~",  a ) .  The  edge from v to v '  is labeled with identity 

substitution. 

- In all the above cases, the edges from v to the node labeled with ( Gi, ai) is labeled with 

Oi, where Oi is the substitution of the OLDTN F  resolution. A new node is a lookup node 

when the head literal is a variant of some key in Tb, and is a solution node or a negative 

node otherwise. If a new node is a lookup node, add a pointer from the new lookup node to 

the head of the solution list of the corresponding key. If a new node is a solution node, add 

a new entry whose key is the head atom of the new node and whose solution list is an empty 

list. Otherwise, it is a negative node. 

- For each unit subrefutation of literal Aa (if  any) starting from a solution node and ending 

with some of the new nodes, add its solution A r  to the end of the solution list of Aa in 

Tb, if A r  is not in the solution list. 
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An OLDTNF structure ( Tr', Tb', As') is an extension of OLDTNF structure ( Tr, Tb, 
As ) if ( Tr', Tb', As') is obtained from ( Tr, Tb, As ) through successive applications of immedi- 

ate extensions. Note that an immediate extension is applicable to any lookup node (so long as its 

associated solution list is nonempty),  whereas it is applicable to only leaf solution nodes and leaf 

negative node. 

An OLDTNF refutation of Ga in program P is a path from the root node to a null node in 

the search tree of some extension of the initial OLDTNF structure of Ga. The solution of an 

OLDTNF refutation is defined in the same way as that of an OLDTNF subrefutation. 

2 Main ideas of  refinements 

In the following discussion, we confine ourselves to the allowed stratified databases. In addi- 

tion, as with the other evaluation strategies, a preprocessor is implemented to reorder the body 

literals such that the literals with some of their variables bound to constants (in terms of the query 

submitted to the system) are before the literals whose variables have no bindings. Furthermore, 

any positive literal directly or indirectly correlated with a negative literal should be put before the 

negative literal. (We say that two literals are correlated if they have at least one shared variable. ) 

In this way, any reordered allowed program will have the property that when a negative body lit- 

eral is encountered during a top-down evaluation, all its arguments become instantiated. Using 

the negation-as-failure rule, such a negative body literal can always be evaluated in finite time. 

For the optimization purpose, an extra step is required. If any two correlated non-recursive liter- 

als are separated by a recursive predicate, we shift the latter such that both of them are before the 

recursive predicate. This requirement is not only for optimization, but also for the application of 

the technique for generating answers directly (see below). An example of so-reordered rules is the 

nonlinear version of the same-generation program (given a query like ?- sg(john, y)) 
sg ( x , y )  : - flat ( x , y ) ,  
sg ( x , y ) : -  u p ( x ,  z l ) ,  sg (Zl ,  z2) , flat (z2, z3), sg (z3,  z4),  down (z  4, y ) .  

Another example is the definition of reverse function (given a query like ? - reverse ( t 1, 3, 5, 4, 

21,y)) 
reverse ( M,  [ x l L ] ) : 

reverse ([  ] ,  [ ] ) ,  
append ( [ y l N ], K ,  

append ( [ ], K ,  K ) .  

- append ( N ,  [ x ], M ) ,  reverse ( N ,  L ) ,  

[ y l M ] ) :  - append ( N , K , M ) ,  

2.1 Subsumption checks 

We begin the discussion with an exact definition on similar goals. 

Definition 2.1 .  A non-negative node of the form: ( " A  1, A2, "", An", al) is subsumed by 

another non-negative node of the form: ("Bx,  B2, "" ,  Bin", a2) if A1 and B1 have the same predi- 

cate symbol and at the same time AlOt has the same bound arguments as Bla2. For example, 

node ( s ( z2, w2),  q ( w2, y2),  q (y2, y l  ) ; t z2/a I } ) of the graph shown in fig, 1 is subsumed by 

( s ( a 1, y )  ; { } ),  because both of them have the same bound argument. 

In addition, a node is usually thought of as being subsumed by itself. 

Definition 2.2. A repeated incomplete lookup node (RILN)  is a node which is subsumed 

by a previous node which has appeared earlier on the same path as the RILN.  For example, node 
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(S(~:2, W2), q(w2, Y2), q(Y2, Yl) ;t z2/alf) of the graph shown in fig. 1 is an RILN because it 

is subsumed by ( s ( a  1, y )  ; { } ) which has appeared earlier on the same path. 

?:-(s(al, 3): { }) 
01 = Xl/al, VA'I} . . . . . . . . ~ . ~ = { x l / a l ,  y/~,l} 

(r(xl, Yl); {xl/al }) (ptxl, zl), S(Zl. w I), q(w 1, Yl); {Xl/al }) 

I O3 = {zl/a2} ~ a4 Izl/afl  

Fail (s(zl. w t), q(wt, Yl); {zl/a2} ) (s(zl. Wl), q(wl, Yl); {zl/a3} ) 
o,=[x_,/a2, wlO,'2, / ~ , ~ 1 2 ,  Wl/),2 } 137 = { w l " ~ ' ~  ~ W l ~ 2 ]  

(r(x2, Y2), q0'2, Y I); { x2/a2 } ) (P(X2, z2)' s(z2, w2)' q(w2, Y2), (q(~'2, Y l); { y2/b3 }) (P(X2' z2)' s(z2" w2)' q(w2' Y2), 
q(r2, Yl); {x2/az}) I q(v2. Y0; {xzda3}) 

[ O9 = { z 2 / a 3 / ~  ~ ' ~ o = { z 2 l a l } ~  ] ~ = {Yl/b2} I 

Fail (s(z2, w2),q(w2,Y2), (s(z2, w2),q(w2, y2), (r-~; { }) Fail 
q(*'2, Yl); {zr/a3 D q(v2, Y0; {zz/al}) 

012 = {x3/a 3, w2A'3} / ~ x ~ v ' a 3 '  w2dv~ 
/ 

(r(x3, Y3), q(Y3, Y2), (P(X3, z 3) ,..; {x/a  3 }) 
q(Y2, Y0; [x/aal) 

] 014 = {y3/b3 } [ Fail 
(q(v3, Y2), q(v2, Yl); {YCb3}) 

] ~ = {y~b2} 
(q(Y2, Yl); {Y2/b2}) 

J O16 = {Yl/bl } 

(IS/; { }) 

P: p(al, Y) p(a2, y) r: r(al, y) r(a2, y ) r(a3, y) 

p(al, a 2) p(a 2, a 3 ) [] [] r(a3, b3) 
P(al, a 3) P(a2, a I) 

q: q(b3, y ) q(b2, y ) s: s(a 1, y) s(a2, y) s(a3, y ) 
s(al, bl) s(a 2, b2) s(a3, b3) 

q(b 3 , b 2 ) q(b 2, b I ) s(al ' b 2 ) 

Fig ,  1. Search  t ree  for E x a m p l e  1. 

The RILNs are the only nodes which cannot be expanded further in the expansion process. 

However, cutting off such a path in the graph may affect the completeness, because some solu- 

tions relying on this node cannot be evaluated. Therefore, a mechanism is needed to evaluate the 

remaining solutions in some way. 

Definition 2 .3 .  A repeated complete lookup node (RCLN) is a node which is subsumed by 

a previous node which has appeared earlier but not on the same path as the RCLN. For example, 

node (s ( z l ,  Wl) ,  q ( w l ,  Yl) ; t zl/a3 } ) of the graph shown in fig. 1 is an RCLN because it is 

subsumed by ( s ( z 2, w2) ,  q ( w2, y2 ), q ( y2, yl  ) ; t z2/a 3 f ), which has appeared earlier but not on 

the same path. 

From the above definitions, we see that there are two kinds of subsumption checks which 

must be handled differently. When an RILN is encountered, the expansion should be suspended 

and the corresponding cycle should be recorded explicitly, while when an RCLN is encountered, 

it should be expanded immediately using the solutions already found. In addition, as we will see 

later, the ways in which RILNs and RCLNs are used to speed up the evaluation are different. 

However, distinguishing RCLNs from RILNs is not trivial and a more sophisticated technique is 

needed. To this end, we combine the technique for finding a topological order for a digraph with 

the technique for isolating the strongly connected components of a digraph (i. e. Ta r j an ' s  algo- 

rithm [15]) in such a way that the task can be done in linear time. 

In what follows, we describe this method in detail. 

Example 1. Axioms: (1)  s (x , y ) :  - r ( x , y ) ,  
(2)  s (x , y ) :  - p (x ,  z), s(2,  w ) ,  q ( w , y ) .  

Facts: p(al, a2) ,  P(al, a3) ,  p(a2, a3) ,  p(a2, a l ) ,  

r ( a 3 ,  b3), 
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q(b3, b2), q(b2, bl) .  
Given the query ? - s ( a  1, y ) ,  the search tree depicted in fig. 1 will be generated by the 

OLDTNF resolution. The associated solution table is shown in the lower right part of figure 1. 

Note that in fig. 1 the node ( s ( z l ,  zvl ), q ( wt ,  y t )  ; { z t /aa I ) is an RCLN and the node 

(s ( z2, w2),  q ( ~:~2, Y2), q (Y2, yl  ) ; I z2/a 11 is an RILN.  Because ( s ( z2, ~2 ), q ( ~2 ,  Y2 ), 

q (Y2, Yl);t Z2/a4}) is subsumed by node (s ( a l ,  y ) ;  { t)  that has appeared earlier on the same 

path, we expect to extend a series of subgraphs similar to the first one from this node, which has 

already been traversed. Therefore, although the infiniteness can be avoided in an OLDTNF reso- 

lution by using tabulation, much redundant work may be done due to similar computations repeat- 

edly performed. Thus, the traversal along a cyclic path has to be cut off if we do not want to do 

any useless work. However, cutting off a path may affect the completeness. We then have to 

record cycles explicitly and evaluate the corresponding solutions along the cycles in a subsequent 

phase. In contrast, each RCLN must be handled immediately to get some new solutions, which 

may be re-used in the subsequent traversal. A careful observation shows that the subgraph rooted 

at an RCLN is always simitar to the one rooted at its subsuming node and this similarity can be 

employed to expedite the evaluation. 

Below is a graph traversal algorithm which can isolate all cycles of a graph being traversed 

and at the same time can recognize all RCLNs of the graph in linear time. Combining this algo- 
rithm with techniques described in the next subsection, an optimal strategy for evaluating recur- 

sire queries can be obtained. 

Obviously, for the above example, we do not need to check subsumptions over all nodes but 

only those whose head literal is with predicate name s. For this purpose, we introduce the notion 
of control graphs. 

Definition 2 .4 .  A control graph for an expansion process is a digraph where there is a node 

for each node ( in a search tree) of the form ( " A t ,  A2, "" ,  An" ,  a )  with At  being a recursive 
predicate and an edge from node a to node b if and only if there is a path from a to b in the origi- 

nal search tree, which contains no other nodes with a head recursive predicate. 
For example, the control graph of the expansion process shown in fig. 1 is as follows (figure 

2): 
(s(al, y); { }) 

subsumed 

\ wl~,'~(wt, 5'0: {zl/az}) 

(s(zz, w2), q(wz, Y2). q(Y2, Yl): Iz21al }) 
(s(z2. w2), q(w2, Y2), q(v2, Yl); {z2/a3 } ) 

Fig. 2. Control graph. 

The purpose of control graphs is to explain the control mechanism used in our method. In 

fact, it is sufficient to perform subsumption checks only on those nodes of a search tree, which 
appear also in its control graph (see next subsection). Therefore, we give the following algorithm 

over a control graph instead of a whole search tree so as to illustrate the key ideas clearly. 
We associate each node v of a control graph with three integers dfsnumber(v), toplnumber(v) and 

lowl ink(v) .  ~snumber  is used to number the nodes of a control graph in the order they are 

reached during the search, toplnumber is used to number the nodes with the property that all de- 
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scendants  of a node having top lnumber  value m have a lower top lnumber  value than  m ,  i . e .  a 

topological order  number ing .  It  is used, here, to test  whe the r  a node is an R C L N .  lowlink is used 

to n u m b e r  the nodes in such a way  tha t  if two nodes v and zv are in the  same s t rongly  connected 

component ,  then  l o w l i n k ( v )  = l o w l i n k ( w ) .  Therefore ,  it can be used to ident ify the " roo t "  of  a 

s t rongly connected componen t  (a  root is a node of a s t rongly  connected component ,  which is first 

visited during the t raversa l ) .  Wi th  the help of a s tack s t ructure ,  all s t rongly  connected compo-  

nents  can be feasibly found based on the calculation of lowlink values. 

Essential ly,  the  a lgor i thm presented below is a modif ied version of T a r j a n '  s a lgor i thm [ls] . 

T h e  difference be tween  t h e m  consists in the use of t op lnumber  in the modif ied algori thm, which 

facilitates the identification of a s t rongly  connected component .  ( I n  the original a lgor i thm,  a 

s tack s t ruc ture  mus t  be searched to do this.  ) In  addition, for our  purposes,  each R C L N  and each 

R I L N  are marked .  

procedure g r a p h - a l g o ( v )  ( " depth-f i rs t  traversal  of a g raph  rooted at v "  ) 

begin 
i :=  0 ;  j := 0 ;  ( "  i and j are two global variables,  used to calculate d f snumber  and 

top lnumber ,  respectively.  " ) 

top lnumber  ( v )  := 0 ; 

g raph-search  ( v )  ; ( * go into the g raph"  ) 

end 
procedure graph-search  ( v )  

begin 
i := i + 1 ; d f snumber  ( v )  := i ; lowlink ( v )  := i ; ( * init iate lowlink value;  it may  be 

changed during the  search ~ ) 

put  v on s tack S ; ( ~ S is used to store s t rongly  connected componen t s  if any ~ ) 

generate  all sons of v ;  

for each son w of v do 
begin 

top lnumber  ( w ) : = 0 ; ( ~ when  a node is encountered at the  first  t ime,  its 

top lnumber  value is set to be 0. * ) 

end 
for each son w of v do 

begin 
subsumpt ion  checking for w ;  

if w is not  subsumed by any  node then 
begin 

call g raph-search  ( w )  ; ( ~ go deeper  into the graph  ~ ) 

l o w l i n k ( v )  := rain(  lowlink(  v ) ,  d f snumber (  w ) )  ; ( ~ the root of a subgraph  

will have the  least lowlink value ~ ) 

end 
else ( " w is subsumed by some node ~ ) 

Isuppose tha t  w is subsumed by  u ;  

if dfsnumber  ( u ) "~ d f snumber  ( v )  then 
if top lnumber  ( u ) > 0  then ( "  if u is typologically numbered ,  it cannot  be an 
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ancestor node of v.  * ) 

mark w to be an RCLN; 

else ( * a cycle is encountered* ) 

t mark w to be an RILN;  

lowlink( v ) := min (lowlink( v ), dfsnumber ( u ) ) ; t t ( * this operation will 

make all nodes of a strongly connected component have 

the same lowlink value as the root. * ) 

end 

if  ( lowl ink(v)  = dfsnumber ( v ) )  then ( * v is a root of some strongly connected com- 

ponent* ) 
h~gin 

while w on the stack S satisfies dfsnumber (w)~>dfsnumber  ( v )  do 

t delete w from the stack S and put w in current component (rooted at v)  ; 

toplnumber ( v )  := j ; 1 ( * topological order numbering* ) 

j := j + 1 ; ( * j is used to calculate toplnumber* ) 

end 

end 

By a simple analysis, we know that this algorithm requires only linear time Els3 . Fig. 3 shows 

a directed graph, its defnumber, lowlink and toplnumber values, and its strongly connected com- 

ponents. 

each node is of the form: 

n l n i (deJhumber  , Iowlink, top lnumber)  

n4(2,2, 1) n3 * n4 
n4 n2(4, l, 2) 

(a) graph (b) traversal (c) strongly connected components 

Fig.  3.  Graph  traversal .  

2.2  Search space reduction and answer generation 

Based on the mechanism for subsumption checks, we develop two methods for generating so- 

lutions by using the solution similitude property and the corresponding "path information": ( i)  

solution generation for RCLNs; (ii) solution generation for RILNs.  

(1) Solution generation for RCLNs 

We clarify the first improvement by tracing the steps of the OLDTNF resolution for the fol- 

lowing allowed program: 

Example 2. Axioms: (1) s(x,  y) : - r (x ,  y), 
(2) s (x , y ) :  - p ( x , z ) , s ( z , w ) , t ( y ) , ' 3  q ( w , y ) .  

Facts: p(al ,  a2), P(al, a3),  P(a2, a3),  

r(a3, b3), 

t (b3 ) ,  t (b2 ) ,  t ( b l ) ,  

q( b3, b3), q( b3, bl), q( b2, b3), q( b2, b2). 
Given the query .9 _ s ( a 1, Y), the search tree depicted in fig. 4 will be generated by the 
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OLDTNF resolution. The associated solution table is shown in figure 5. 
?:-(sial, y); { l) 

~ ~ ~ 
(r(xl,yl); {Xl/al}) (P(Xl,al) $(Zl, Wl) /~'1) -sq(Wl Yl) IXl/alD 

% = {alia2} 

(s(zL w O, t(Yt), -q(wl, Yl); {zt/a2} ) 

o s = {x2/a 2, W l A 2 ~ / ~ . / ' ~ ' ~  ~ W l A . ' 2 l  

(r(.~2, Y2), t(~ 1), -'zlQ"2, Yl)', (P(x2. z2), 3(z2, ~'2), t(32), -~./( P"2, Y2), 
Ix2/a2~ ) t(v0, -'q(Y2, Yl); IxyuZ}) 

] o~={z/as! I 

Fail (s(z2. w2), t(Y2), "r Y2), I 
1 

tt.vl), "q(Y2, Y0; {azlas l) I 
O10 = {xsta3, Y 3 / W 2 | / ~ /  ~ { x 3 t a 3 ,  y.g'w2} 

(r(x~. Y3), t(Y2), "qO'3, Y2), (P(x3, z3) ""; |xffa3]) 
t(y! ), "~0'2, Yl); {x31a3 }) 

t Ol2= y3/b3 ] 
(tCV2), "q03, Y2), ~'1), "-r Y0; {y3163 l) Fail 

Ors= {y21lbl,b2, b3}} 
(~q(Y3, Y2), t(Yl), ~q(v2, Yl); 
{y31b 3, y~/Ibl, b2, b3} }) 

(~q(b3' bl)' tO'l)' (~q(b3, b2), t(Yl), (~q(b3, b3), t~Yl), 
-~1(~ 2, Yl); {y21bl I) "-x/(Y2, Yl); {y2/b2}) ~q0'2, Yl); {y21bs 1) 

I t I 
Fail (t0'l), ~q0'2, Yl); {y21b2}) Fail 

I Or4= {ylllbl,b2, b3}} 

(~q(Y2, Yj ); {Y21b2, Yl/(bl, b2, b3 } }) 

(~q(b2, bl); t }) (~q(b2, b2); 1 }) (~q(b2, b3); { I) 

I I I 
Fail ( r - I ;  { 1) Fail 

a4~I/as } 

(r(YO, "q(~2, YO; {yzJb~}) 

I 09={yllbt,bl. b3 } y21b3| 

("~/(V2, Yl); {Y21b3, yll{b I b2 b3}}) 

(-',q(b3. bl); { }) (--',q(b3. b2); { 1) (-,q(b3, b3); I 1) 

I I 1 
Fail (1~; { }) Fail 

(s(zl wl), t(yO, ",q(wl YO {z~/a3}) 

(r(xz.Y2), t(.vl), -'q(Y2, YI); Ix2 a31) (P(x2' z2)"'" {x2/a31) 

I t 
Fail 

(t(.Vl), ~qO2i Yl); {yzlb31) 

I 
("g/(Y2, Yl); {Y2/b3, Yl I bl. b2, b3 }) 

(-,q(b3, bl); { 1) ('-,q(b3, b2); { l) (-q(b3, b3); {'It) 

I I I 
Fail (r-I; I l) Fail 

Fig .  4 .  Search  tree  for E x a m p l e  2 .  

r (a l ,y )  r(a2, y) r(a3, y) s (al ,y)  S(az, y) s(a3, y) t (y)  
r: [] [3 r(as, bs) s: s(al, bl) s(az, b2) s(as, b~) t: t(bl)  

t~b2) 
s(al, b2) t(bs)  

p ( a l , y )  p(a2,  y )  
P: p (a l ,  a2) p(a2,  as) 

p(al, a3) 
Fig .  5 .  Solut ion table for E x a m p l e  2 .  

Observe that the node " ( s ( z l ,  w l ) ,  t ( y l ) , 7  q ( w l ,  Yl) ;{ z l / a3 t  )" (enclosed by a broken 
rectangle) in the graph shown in fig. 4 is an RCLN. It is because its head atom is the same as the 

head atom of the node "(s ( z2, w2),  t (y2) ,  ~ q ( wz,  y2),  t ( y l ) ,  -1 q (Y2, Yl  ) ; t z2/a3 [ )" (en- 
closed by a solid rectangle) which has appeared earlier but not on the same path. Thus, it can be 
resolved with the atoms in the corresponding solution table, i .e.  the entry: ( s ( a 3 ,  y ) ;  s (a3 ,  
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b3)) in the solution table shown in fig. 5. However, if we expand the search tree in a normal 

way, i .e.  if we expand this node using the clauses of the program, a subtree like that shown in 

the lower left grey rectangle of fig. 4 will be traversed, which is similar to the subtree rooted at 

"(S ( 2:2, W 2), t (y2), -3 q ( w2, Y2), t ( y l ) ,  -1 q (y2, Yl ) ; { Z2/a3 l )" except that the latter is three 
levels higher than the former. Obviously, if a mechanism for recording the "path information" is 

provided, we can cut off the subtree rooted at " ( s ( z l ,  wl ) ,  t(yl) ,-3 q (wl ,  Yl) ;[ zl/a3t )" and 
generate the relevant solutions using its subsuming counterpart. Concretely speaking, if the keys 

of the relevant entries in the solution table shown in fig. 5 is linked in a way as shown in fig. 6 

(a) (which corresponds to the control graph),  we can generate the solutions: s(al ,  b2) and s 

( a 3, b3 ) directly (after the subtree rooted at "( s ( 2:2, 723 2 ) ,  t ( Y2 ), "3 q ( w2, Y2 ), t ( Yt ), -3 q ( Y2, 
Yl ) ; { z2/a3 t )" is expanded) from the solutions already found and the associated path information 

instead of traversing the corresponding subtree (see fig. 6 ( b ) ) .  In this way, we can reduce the 

search space non-trivially. 

~<a, ,.~ .,'~,,,: ; ;  . . . . . . . . . . . . .  ' ~io,, b:! . .  . . . . . . . . . . . .  ~~ r''~ 
s(a 2, v) s(a3,  Y) . . . . .  

�9 s(a3" ' y) s(a3,  b3) s(a2" b2) 
I - . ,  . . . . . . . . . . . .  I 

s(a 3, y) - s~a-3 7 b3 ) 

(a) (b) 

Fig. 6 Generation of solutions for RCLNs. 

If the rules are reordered in the way as described at the beginning of this section, we can al- 

ways feasibly generate the corresponding solutions for any subtree rooted at such a lookup node in 
terms of its subsuming counterpart and the associated path information. However, if the associat- 

ed path is longer than the path of its subsuming counterpart, not all solutions for it can be gener- 

ated and the remaining solutions must be evaluated by 
$(UI, y) I${aD D|)I ~ this solution can 

1 I ! not be generated 

sta2, Y) s(a2, b2) s(ai, ~) 

Fig. 7. Illustration for solution generation. 

aa I ) " .  Thus, the remaining 

clarify this claim. 

(2) Solution generation 
Now, we show another 

input relations contain cyclic 
Example 3. Axioms: 

traversing the corresponding subtree. For instance, if 

we accidentally traverse the subtree rooted at "(s ( z l ,  
W l ) , t ( y l ) , - 3  q ( w l ,  y t ) ; { z l / a 3 } ) "  first, (produc- 

ing the solutions: s(al ,  b2) and s(a3, b3)) ,  we cannot 
generate all solutions for the subtree rooted at "( s( z2, 
W 2 ) ,  t ( y 2 ) ,  -I q ( VJ2, Y2 ) ,  t ( y l ) ,  -3 q ( Y2, YI ) ; t z 2 /  

solutions must be evaluated by the standard method. Fig. 7 helps to 

for RILNs 
possibility of optimization for the above class of programs, when the 

data. Consider the following example. 

(1) s ( x , y ) :  - r ( x , y ) ,  
(2) s ( x , y ) :  - p ( x , z ) , s ( z , w ) , q ( w , y ) .  

Facts. p(c,  d) ,  p(c ,  b), p (b ,  c), p ( b , f ) ,  p ( f ,  c), 
r ( d , e ) ,  
q(e, a), q(a,  i),  q( i, o), q(o, g).  

Given the query .9 _ s ( c, y ) ,  the search tree depicted in fig. 8 will be generated by the 

OLDTNF resolution. The associated solution table is shown in figure 9. 
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(s(c, y); | 1) 

( 1, P(XI.Zl)'S(ZI.V*'I),q(wI*Yl); {XI/C}) 

(s(zL wO, q(wl, Y0; IzdbD 

w l ~ . 2 ~ b ,  w].6'2 } 

(r(x2, Y2), q(Y2, Yl); (P(x2, Z2), S(Z2, w2), q(w2, Y2), 
{x~b}) q(v2, Yt); |x21b}) 

Fail (x(z2, w2), q(w2, Y2), (s(z2, w2)" q(w2" Y2), 
qtO'2. Y0; {z2h:'}) q(v2, Y0; {ZZ/.B) 

I 6'3 = Ix.dr' "~ '3 ' / /  N~={x,/f,w~v:O 
Look up node, (r(x3, Y3), q(Y3, Y2), (P(X3. z3), S(z3. w3), q(w3, Y3), 
suspended, q(Y2. Y0; I x:~ff} ) q~'3. Y2), q(Y2, Yl); Ix3/./} ) 
wait for new [ I 
solutions 0"12 = {Z31cl 

Fail (s(z3. w3)' q(w3' Y3), 
q(v3, Y2), q(Y2, Yl); {Z3/cl) 

I 
Look up node, suspended, 
wait for new solutions 

/ 
a 3 = {zl/d } / 

/ 
Fail ($(Zl Wl), q(w|, yl); {zlld} ) 

o s = | x ~  ar = {xfld, w/~2} 

/ / 
(r(x2. Y2), q(Y2, Y I); (P(X2; Z2), S(Z2, w2), q(w 2, Y2), 

Ix:,/dD q(Y2, Yt); Ix2/d}) 

[ ~ ly21e} I 
(q0'2, Yl); lY2/e }) Fail 

I 0.1o = {ylla} 

(""; { l) 

Fig.  8. Search tree for Example  3. 

r (c , y )  r ( d , y )  q(e ,y)  q (a , y )  q ( i , y )  q(o ,y)  
r :  [ ]  r (d , e )  q: q(e ,a)  q (a , i )  q ( i ,o )  q(o ,g)  

p (c ,~)  p (b ,~ )  p ( f , y )  s (c ,y )  s (b ,y )  s ( f ,  2/) 
P: p ( c , d )  p (b ,c )  p ( f , c )  s: s (c ,a)  s (b , i )  s ( f , i )  

p(c,b)  p (b , f )  s(c,o) s(b,g)  s ( f ,g )  
s(b,o)  

Fig.  9. Solution table for Example  3. 

Note that the node "( s ( z2, w 2 ) ,  q ( w2, y2) ,  q (y2,  Yt ) ; t z 2 / c  } )" and the node "( s ( z3, 
w3) ,  q ( w3, y3) ,  q (y3,  y2) ,  q (y2, yz)  ; I z 3 / c  I )" are both RILNs.  It is because both their head 

atoms are the same as the head atom of the node " ( s ( c ,  y )  ; t t )".  Especially, they appear on the 
same path as "( s ( c, y )  ; t f )", respectively. Therefore, the same goal will be derived infinitely 
many times if no other control mechanism is provided. During the execution of the OLDTNF res- 
olution, such lookup nodes are checked and are resolved only with the solutions stored in the solu- 
tion tables. If no solutions are available, the computation of these lookup nodes is suspended until 
new resolvable solutions are registered in the solution table. 

The node "( s ( z2,  w 2 ) ,  q ( w2 ,  Y2 ) ,  q ( Y2, Yl ) ,  I z 2 /  c I )" can be resolved after the solution 
"s ( c ,  a )" is stored in the corresponding solution table, producing the following solutions: 

s ( c ,  a ) ,  s ( b ,  i ) ,  s ( c ,  0 ) ,  s ( b ,  g ) .  

Similarly, by resolving the node " ( s ( z 3 , w3 ) , q (  w3 , y3 ) , q ( Y3 , Y2), q ( y z ,  y l )  ; { z 3/  c t )", 
we will find another group of solutions: 

s(a,c),  s ( f , i ) ,  s(b,o), s(c,g),  s ( f , g ) .  
As demonstrated in Example 2, the subtree rooted at "( s ( z2, w2), q ( w2, Y2), q ( y2 ,  y t )  ; 
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{ z2/cl )" does not need to be expanded, and the corresponding solutions can be generated directly 

in terms of the solutions already found if the relevant path information is recorded explicitly. The  

following figure illustrates this feature. 

~ / 1 " ~ "  ,(c, u) s(~., a) 

s(b, v) " .  . .  s(b, o) s(c, o) 

� 9  s(c, g) sCb, lr 
path information recorded �9 ~1 ~ . . . .  " "  ~ 

. i l- . . . .  " solutions already found by 
as linked keys s~, g) traversing the subtree rooted at 

generated solutions "(s(z2. w2). q(w2, Y2), q0'2, Y0; {z2/c})" 
for the subtree rooted 
at (s(z2. w2), q(w2, Y2), qb'2, Yl); {x2/b}) 

F i g .  1 0 .  G e n e r a t i o n  o f  s o l u t i o n s  f o r  R I L N s .  

In this case, the control of the generation of solutions is a bit more complicated. We can 

imagine two circles ( C1 and Ca) with each corresponding to a cyclic path. We run respectively a- 

long C1 and C2 in the same direction and generate some solutions for C2 from Ci at each step. We 

do this continually until no new solutions for C2 can be generated. Then we generate new solu- 

tions for Ct from C2 in the same way. This process is repeated until no more new solutions can be 

found. 

3 Description of refined algorithm 

From the above analysis, we know that in order to record the path information explicitly, a 

bit more complicated data structure must be provided. We do this by labeling each entry key of 

the solution table with an integer and at the same time adding to each entry key a field to store the 

pointers to those entry keys associated with its father nodes. In this way, we construct a graph 

which enables us to generate a lot of solutions without difficulty. 

The refined algorithm can be described as follows. 

As with OLDTNF resolution, the initial structure of the refined algorithm for Ga is ( Tro, 
Tbo, Aso), where Tro is a search tree consisting of only the root solution node labeled with ( G ,  

a), Tbo is the solution table consisting of only one entry whose key is the head literal of the root 

node and whose solution list is an empty list [ ], and Aso is an empty set of pointers. 

Let T be an O L D T N F  structure ( Tr, Tb, As) in program P .  An immediate extension of T 

by the refined algorithm is the result of the following operations, when node v of T is OLDTNF 

resolvable. 

procedure expansion 

(1)  When v is a leaf solution node, let C1, C2, "" ,  C k ( k ~ l )  be all the clauses with which 

the node v is O L D T N F  resolvable, and ( Gz, al ),  ( G2, a2) ,  "" ,  ( Gk, ak ) be the respective 

OLDTNF resolvents. Then  add k child nodes of v labeled with (Gz ,  az) ,  (G2,  a2),  "" ,  (Gk, ak) 

to v. If the head atom of v is a recursive predicate (which is defined only by recursive clauses), 

construct the label for v and the pointers to its father nodes. In this way, the control graph can 

be constructed. 
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(2.1)  When v is an RCLN (RCLNs can be identified using the algorithm introduced in sub- 

see. 2 .1) ,  generate the solutions in terms of its subsuming counterpart and the associated path in- 

formation. If the associated path is longer than the path of its subsuming counterpart, not all so- 

lutions for it can be generated and the remaining solutions must be evaluated by the standard 

method. We do this as follows. Let u be the last entry key on the path for which the solutions 

can be generated. Then, let AaOl, Aa02, "", AaOk(k~l) be all (the variants of) the solutions in 
the associated solution list with which node u is OLDTNF resolvable, and (G1, a l ) ,  (G2, a2), 
�9 " ,  ( Gk, ak ) be the respective OLDTNF resolvents. Then add k child nodes of u labeled with 

( G l , ~ l ) ,  (G2, a z ) , ' " , ( G , , a k )  to u. 
(2.2)  When v is an RILN, mark the node as "suspended". No child node is generated. 

(3) When v is a node corresponding to a root of some strongly connected component, call 

procedure "iteration" (see below). 

(4) When v is a negative node ("A1, A2, "", An", a) ,  let A be the head literal of the node 
and A = "n A0. We create a new initial OLDTNF structure To of A0, where its solution table is 
also newly created. We consider two cases. If there exists an extension of To which contains a 

success leaf, then v has no child and it is a failure leaf. If there is a finitely failed OLDTNF struc- 

ture which is an extension of To, then v has a unique child node v" of the form ("A2, "",  A , " ,  

a) .  The edge from v to v" is labeled with identity substitution. 
(5) In the cases of (1), (2.1)  and (4), the edge from u to the node labeled with (Gi, ai) 

is labeled with Oi, where 0i is the substitution of the OLDTNF resolution. A new node is a 

lookup node when the head literal is a variant of some key in Tb. Otherwise, it is a solution node 
or a negative node. If a new node is an RCLN, add a pointer from the new lookup node to the 

head of the solution list of the corresponding key. If a new node is a solution node, add a new en- 
try whose key is the head atom of the new node and whose solution list is an empty list. 

(6) For each unit subrefutation of atom Aa (if any) starting from a solution node and ending 
with some of the new nodes, add its solution Ar to the end of the solution list of Aa in Tb, if Ar 

is not in the solution list. 

In order to generate solutions for RILNs, the following procedure will be executed when a 

root of some strongly connected component is encountered during the expansion process. 
procedure iteration 

(1) Classify the cyclic paths such that all paths in a class has the same entry key. We find 

the cyclic paths in a search tree by recognizing the suspended node and tracing the pointers in the 
field added to the entry keys of solution table. 

(2) For each class of cyclic paths, expand nodes only along one path. 
(3) For each class of cyclic paths, generate solutions for all paths directly from the solutions 

already produced and the corresponding entry keys. This step is performed repeatedly until no 

new solutions can be generated (as described in subsection 2 .1 ) .  

Example 4. Given the rules and facts as in Example 2. Let q (a  1, x )  be the query. The 
expansion process of the refined algorithm will produce the following solutions: 

solutions evaluated by traversing the subtree rooted at "( (s (z2, w2), t (Y2), ~ q (w2, y2 ), 

t(yl),-I  q(Y2, Yl); {z2/a3t)": 
s(a3, b3), s(a2, b2), s(al, bl) ,  

answers generated for the subtree rooted at "( s (z  l, w 1), t ( y l ) ,  ~ q ( w  l, Y l );1 zt /a 3})": 
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s(a3, b3), s (a l ,  b2). 

The last two answers are generated directly from the solutions already found and the associated 

path information. 

Example 5. Given the rules and facts as in Example 3. Let q (c ,  x )  be the query. The re- 

fined algorithm will produce the following solutions: 

solutions evaluated in the expansion process: s ( d ,  e ),  s ( c, a ) ; 

solutions evaluated in the second step of the iteration process: s ( b, i ) ,  s ( c, o ) ,  s ( b, g )  ; 

solutions generated in the third step of the iteration process: s ( f ,  i ) ,  s (b ,  o ),  s (c ,  g ) ,  s ( f ,  
g ) .  

4 Correctness of the refined algorithm 

In this section, we prove the correctness of the refined algorithm for programs which are re- 

ordered as described at the beginning of Section 2. 

In order to prove the correctness of the refined algorithm, we have to specify that any solu- 

tion produced in some subtree (of O L D T N F  resolution) rooted at an RILN can be evaluated in the 

second step or generated in the third step of the iteration process of the refined algorithm. (For  

simplicity, we assume that RCLNs are handled in the same way that O L D T N F  resolution does. 

So we can concentrate ourselves on the correctness of the treatment of RILNs.  However, the cor- 

rectness of refinement for RCLNs can he derived from the proofs of the following theorems. ) For 

exposition, here we consider the case that there is only one set of the cyclic paths with a common 

node whenever the procedure "iteration" is called. 

Theorem 1. Let S be a solution produced in a subtree ( of  OLDTNF resolution) rooted at 

an RICN.  Then S can be evaluated or generated in the iteration process of  the refined algo- 

rithm. 

Proof. The proof of the theorem is by induction on the order, in which the solutions are 

produced in a subtree (of O L D T N F  resolution) rooted at an RILN.  The order is defined as fol- 

lows. Let  v be an RILN and A1, A2, "" ,  Ak be all the solutions in the associated solution list 

(with which node v is O L D T N F  resolvable) when v is first encountered. Then  eval-order(A1) 

= eval-order(A2) . . . . .  eval-order(Ak) = 0. These solutions may be utilized to produce new so- 

lutions ( through expanding nodes), say B t, B2, "" ,  Bin. Then  we have eval-order(B1) = eval-or- 

der(B2)  . . . . .  eval-order(Bk ) = 1. In general, if a solution T is produced on another solution S,  

then eval -order(T)  = eval-order( S ) + 1. 

Base Case: For each solution S with eval-order(S)  being 1, S is produced along the first 

cyclic path in OLDTNF resolution and so can be evaluated in the second step of the iteration pro- 

cess of the refined algorithm. 

Induction Step: Suppose that for some k, for all produced solutions with eval -order~ k, 

they can be produced or generated in the iteration process of the refined algorithm and that eval- 

o rde r (To)  = k + 1. We prove that To can also be produced or generated in the iteration process of 

the refined algorithm. Let  So be the solution, on which To is produced. Then  eval-order( S 0 ) ~  

k.  By the induction hypothesis, So can be produced or generated in the iteration process of the 

refined algorithm. Let  $1 be the solution, from which So is generated and T be a set of solutions 

produced on the Sx. We prove that any solution produced on So can be produced or generated 

from a solution in T .  Since all literals occurring after a recursive predicate are only correlated with 
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the recursive predicate and the bindings for their variables are completely determined by the bind- 

ings for certain variables of the recursive predicate, which do not appear as arguments of the liter- 

als occurring before the recursive predicate, the bindings for the unbound variables of the recursive 

predicate of the i th call are completely determined by the solutions to the recursive query of the 

( i + 1)th call. That is, the bindings for the unbound variables of the recursive predicate in the ( j  

+ 1)th step of some cyclic path is determined by the bindings for the unbound variables of the re- 

cursive predicate in the j t h  step of the cyclic path. Since So is generated from $1, they have the 
same bindings for the variables which are not bound to constants during the expansion. There- 

fore, a solution produced on So will have the same bindings for the variables which are unbound 

during the expansion as some solution in T. Assume that Tt E T has the same bindings for the 

unbound variables as To, then To can be generated from T1 in the iteration process of the refined 
algorithm. In the same way, we can find another solution, from which T1 can be generated. In 

general, we can find a sequence To, T1, "", Tm such that Ti is generated from Ti + 1 and eval-or- 

der( Tm) = 0 or eval-order( Tm ) ~ k .  By the induction hypothesis, Tm can be produced or gener- 
ated in the iteration process of the refined algorithm. Therefore, To can be produced or generated 

in the iteration process of the refined algorithm. 

Theorem 2. Let S be a solution generated in the iteration process of  the refined algorithm. 

Then S can be produced by OLDTNF resolution. 

Proof. The proof of the theorem is also by induction on the order, in which some solutions 
are generated in the third step of the iteration process of the refined algorithm. The order is de- 

fined as follows. Let A1, A2, "",  Ak be all the solutions evaluated in the second step of the itera- 

tion process of the refined algorithm. Then gen-order ( A 1 )  = gen-order ( A 2 )  . . . . .  
gen-order(Ak ) = 0. If B is generated directly from some Ai (and the key of the corresponding so- 

lution list), then gen-order(B ) = 1. In general, if a solution T is generated from another solution 

S (and the key of the corresponding solution list), then gen-order(T) = gen-order(S) + 1. 

Base Case : For each solution S with gen-order( S ) being 0, S is produced in the second 

step of the iteratoin process and so can be produced by OLDTNF resolution. 

Induction Step: Suppose that for some k, for all generated solutions of gen-order~k ,  

they can be produced by OLDTNF resolution and that gen-order(S0) = k + 1. We prove that So 

can also be produced by OLDTNF resolution. Let To be the solution from which So is generated. 

Then gen-order(T0) ~ k .  By the induction hypothesis, To can be produced by OLDTNF resolu- 
tion. Let T1 be the solution on which To is produced and from which a set S is generated. Con- 

sider a solution $1 E S on the same incomplete path as So. As demonstrated in the proof of Theo- 

rem 1, we know that So can be produced on $1 by OLDTNF resolution. In general, we can find 

a sequence So, St,  "", S, such that Si is produced on Si+l and gen-order(Sn) = 0 or gen- 
o rde r (Sn)~k .  By the induction hypothesis, Sn can be produced by OLDTNF resolution. There- 

fore, So can be produced by OLDTNF resolution. 

$ Conclusion 

In this paper, we present a top-down but set-oriented method, based on OLDTNF resolu- 

tion, to handle recursive queries in allowed stratified databases. The key idea of the optimization 

is to distinguish between two classes of lookup nodes in an OLDTNF derivation and handling 

them in different ways. That is, we use the first class of lookup nodes to reduce the search space 
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and develop an iteration process to generate most of the solutions for the second class of lookup 
nodes directly in terms of the path information and the solutions already found. In this way, we 
achieve high efficiency by minimizing the number of accesses to the external storage. 
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