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Abstract Grahne et al. have presented a graph algorithm for evaluating a subset of reeursive queries. This method 
consists of two phases. In the first phase, the method transforms a linear binary-chain program into a set of equations 
over expressions containing predicate symbols. In the second phase, a graph is constructed from the equations and the 
answers are produced by traversing the relevant paths. A new algorithm is described which requires less time than 
Grahne' s .  The key idea of the improvement is to reduce the search space that will be traversed when a query is invoked. 
Further, the evaluation of cyclic data is speeded up by generating most answers directly in terms of the answers already 
found and the associated "path information" instead of traversing the corresponding paths as usual. In this way, this al- 
gorithm achieves a linear time complexity for both acyclic and most of cyclic data. 
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In recent years there has been considerable effort directed toward the integration of many aspects 

of the artificial intelligence field with the database field. An outcome of this effort is the notion of 

knowledge-based system, which can be described simply as an advanced database system augmented 

with a mechanism for rule processing. An important matter of research in such systems is the efficient 

evaluation of recursive queries. Various strategies for processing recursive queries have been proposed 

(see refs. [ l q 9 ]  ) .  These strategies include evaluation methods such as naive evaluation [l't~ , semi- 

naive evaluation Ill] , query/subquery [12] , RQA/FQI [13] , Heuscben-Naqvi [14] , and the methods used 

in compiling recursive queries [s'14-17] . Another class of strategies, called query optimization strate- 

gies, are used to transform queries into a form that is more amenable to the existing optimization tech- 

niques developed for relational databases. Several examples of this class of approaches are magic 

sets [ls] , counting [ls] and their generalized versions [5'19] . In this paper, we discuss a graph method 

which has been presented for handling a subset of recursive queries, the so-called binary-chain pro- 

grams, by Grahne et al. [2~ . (We refer to this method as Grahne's algorithm afterwards. ) Binary 

relations form an important subcase of n-ary relations. This is not only because binary queries are fre- 

quently encountered in practical application, but also because any set of relations can be represented 

as a set of binary relations[13y 21] . Therefore, any rule (in the Horn-clause form) can be transformed 

into a set of binary-chain rules. Compared to the SLD resolution [22] and its different variants [12J3"23] , 

the graph method is advantageous due to the following two benefits: ( i)  Repeated firing of rules with 

the same head predicate can be avoided; (ii) instead of maintaining a large "goal node" in each reso- 

lusion step as done in SLD strategy, a simple structure is used to record nodes encountered during a 

graph traversal. 
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Grahne's method works in a two-phase approach. In the fu~t phase, a program is transformed 

into a set of equations of the form: r = e,, where r is a derived predicate symbol and e, is an expres- 

sion whose arguments are predicate symbols and whose operators are chosen from among U (union), 

�9 (composition), and * (reflexive transitive closure). In the second phase, a directed graph G( r )  is 

constructed from each equation of the form : r = e, such that r ( x ,  y ) is true if and only if G ( r )  con- 

tains a path from a node representing x to a node representing y .  This result means that evaluation 

problems for the predicate r reduce to traversal problems for the graph G ( r )  or the hierarchy of 

G ( r ) ' s  (see below). We show that this method proceeds redundantly in certain cases and can be 

improved by elaborating its second phase. First, we try to reduce the search space that will be tra- 

versed by Grahne' s algorithm. We do this by recognizing all similar portions of a graph and manage to 

produce all the relevant answers by consu'ucting only one of them. The other refinement is concerned 

with the treatment of cyclic data. In this case, a cycle is stoical when it is encountered at the first 

time. We then suspend the traversal along the corresponding path to avoid duplicate work. However, 

as many intermediate answers may not be used to produce new answers along a cyclic path, suspend- 

ing the traversal along the cyclic path may affect the completeness. Therefore, we develop a process to 

evaluate the remaining answers by iterating on each cyclic path with a different initial value each 

time. In this iteration process, we further optimize the evaluation by generating most answers for 

cyclic data directly from the answers already found and the associated path information instead of 

traversing the relevant subgraphs as usual. In this way, we can decrease the time complexity by one 

order of magnitude or more. This is because traversing paths ~luires  access to the external storage or 

search of large relations but the "generating" operations happen always in the main memory and re- 

quire only access to small data sets ( i . e .  the answers already found). As a consequence, our algo- 

rithm requires only linear time for both cyclic and acyclic data. 

This paper is organized as follows. In the next section, we introduce the necessary terminology 

from refs. [20 ,21] .  In sec. 2, we briefly describe the main idea of Grahne's algorithm. In sec. 3, 

we give our refined graph traversal algorithm for evaluating linear binary-chain programs. In sec. 4, 

we compare the computational complexity of our algorithm with the existing strategies. See. 5 is a 

short conclusion. 

1 Basle concepts 

A rude of the form 

q(xl ,  x~§ p2(x2,x3), "", p~(x~,, x~+l), 

where m 3 0  and x l ,  ' " ,  x~+ 1 are all distinct variables, is called a binary-chain rule. A Datalng pro- 

gram in which the predicates are all binary predicates and the rules in the intensional database are all 

binary-chain rules is called a binary-chain program. 

For a program, we may construct a dependency graph representing a "refer to" relationship be- 

tween the predicates. This is a dh'ected graph where there is a node for each predicate and an arc from 

node q to node p if and only if the predicate q occurs in the body of a rule whose head predicate is 

p .  A predicate p depends on a predicate q if there is a path of length greater than or equal to one 

from q to p .  We denote the relation p depends on q by p r  where depends on is the transitive 

closure of the "refer to" relation. A predicate p is recursive if p~=p. Two predicates p and q are 
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mutually recursive if p r q and q ~ p.  

A rule in which the head predicate is mutually recursive to one of the body predicates is called a 

recursive rule. If the body of a recursive rule contains at most one literal whose predicate is mutually 

recursive to the head predicate, the rule is called a linearly recursive rule. A program that contains at 

least one such rule is called a linearly recursive program. 

A binary-chain rule 

q(xl,Xm+l) ~-- p l ( x l , x2 ) ,  p2(x2 ,x3) ," ' ,p~, (x , , ,  xm+l) 

is a fight-linear rule if none of the predicates Pl,"" ,P,,-1 is mutually recursive to p ,  and a left-lin- 

ear rule ff none of the predicates P2 , " " ,  P,~ is mutually recursive to p.  A derived predicate is a regu- 

lar predicate if its definition is fight-linear or left-linear. A binary-chain program is a regular program 

if all its derived predicates are regular. 

In addition, the relations for the predicates appearing left to the recursive predicate is called the 

left-hand side relations and those right to the recursive predicate is called the right-hand side rela- 

tions. 

2 Grahne's method 

In this secion, we briefly describe Grahne's algorithm, which is necessary for introducing our 

refined method. 

2.1 Program transformation 

Grahne' s method works in a two-phase manner. In the first phase of Grahne' s method, any lin- 

ear binary-chain program is transformed into a system of equations of the form 

r = E r 

with the following properties (see ref. [ 21 ] ) : 

( i )  For each derived predicate, there is exactly one equation; 

(ii) Er is an expression whose arguments are predicate symbols of the program and whose opera- 

tom are chosen from among 13 (union) ,"  (composition), and * (reflexive transitive closure) ; 

(iii) in each equation r = Er, the expression Er does not contain any occurrences of regular de- 

rived predicates. 

In this way, repeated firing of rules can be avoided since each derived predicate is associated 

with only one equation no matter how many times it appears in the program. See the following example 

for illustration. 

Examp/e 2 .1 .  Consider the following program: 

p ( x , y ) : - b ( x , z ) , q ( z , y ) ,  
q ( x , y )  : - c ( x , z ) , p ( z , y ) ,  
q ( x , y ) : - d ( x , z ) , r ( z ,  y ) ,  
r ( x , y ) : - a ( x , y ) ,  
r ( x , y )  : - e ( x , z ) , q ( z , y ) ,  

where a,  b,  c ,  d and e are base predicates, while p ,  q and r are derived predicates. This pro- 

gram can be transformed into the following equations by means of the transformation algorithm given -in 

ref. [21 ] : 

p = b �9 ( c "  b [3 d .  e ) "  �9 d "  a ,  (2 .1 )  
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q = ( c "  b U d -  e ) "  �9 d .  a ,  (2 .2)  

r = a U e . ( c .  b U d .  e )"  " d "  a .  ( 2 .3 )  

For further detaila, please refer to the description in reference [21 ] .  

2 .2  Description of Grahne' s algorithm 

The algorithm proposed by Grabne et al. can be described as follows. Let r = E, be an equa- 

tion. The algorithm represents the equation as a nondeterministic automaton, denoted by M ( E , ) ,  

which can be obtained by the standard technique from E, when we regard E, as a regular expression 

over the alphabet consisting of all predicate symbols appearing in Er. For example, eq. ( 2 . 1 )  given 

above can be represented as the automaton shown in 

figure 1.Here q, ,  qfand qi'(i = 1 , 2 , ' " , 7 )  repre- 

sent the initial, final, and intermediate states, re- 

spectively. 

If r = E, is a recursive equation, a hierarchy of 

automata will be constructed in evaluating answers to 

the query. The ith level in the hieraxchy, denoted by 

E M ( r , i ) ,  corresponds to the ith recursive call of r 
Fig. 1. Autonmton for eq. ( 2 . 1 ) .  Here "id" is inter- 
preted as the identity relation. ( which appears in E, ) with some of its variables 

bound to constants. First, EM ( r ,  0)  is the initial 

state q, and EM ( r ,  1 ) is a copy of M ( E, ) ,  and then the interpretation graph of EM ( r ,  1 ) is tra- 

versed. An interpretation graph of EM( r ,  i ) is a directed graph with a set of nodes ( q ,  u ) where q 

is a state in EM( r ,  i)  and u is a domain element of some base relation labelling a transition leaving 

q,  and with a set of edges of the form, ( q ,  u)  - ( q ' ,  v ) ,  where, for some base relation a ,  q 

q' is a transition in E M ( r ,  i )  such that a (  u , v )  is true. (Afterwards, we use the term graph to refer 

to a directed graph, since we do not discuss undirected ones at all. ) 

Now we consider the evaluation of a query of the form r ( c ,  y ) ,  where c is a constant. The e- 

valuation algorithm will generate a sequence of interpretation graphs of EM( r ,0) [.J "'" U EM( r ,  i ) ,  i 

1. We denote an interpretation graph of EM ( r ,  i ) (with a variable bound to d ) by G ( r ,  d ,  i ) .  

In general, an EM ( r ,  i ) will have several interpretation graphs. 

The algorithm starts with G ( r ,  c ,  0 ) ,  which is the graph with a set containing only one node 

(q , ,  c )(  ( q , ,  c ) is called the source node) and with no arcs. Here q, is the initial state of all EM 

( r , i ) ,  i>~l. During the ith iteration of the main loop, G(r ,c '  , i  - 1) will be extended to G(r, 
c ' ,  i ) .  Note that here c ,  c ' ,  c" are different constants to which one of the variables appearing in the 

predicate of the query is bound. This extension is done by performing a depth-first tmversal ( i .  e. 

G(r,c '  , i -  1) is traversed using a depth-first search strategy.) When i = 1, the traversal starts 

from the node ( q , ,  c ) .  All paths not containing arcs labelled with derived predicates are traversed. 

Whenever a node ( q ,  u)  not visited before is entered, all transitions in EM ( r ,  i ) leaving q are ex- 

amined. For any transition q - - ~ q '  where a is a base predicate and for any term v such that a ( u ,  

v ) is true and the node ( q ' ,  v ) has not yet been generated, the algorithm generates ( q ' ,  v ) and con- 

tinues the traversal from this node. 

At the end of the iteration, it is examined whether or not any new nodes ( q ,  u ) (which are 
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called extension or continuation points) have been generated, where EM ( r ,  i ) contains a transition 

leaving q and labelled with a derived predicate. If not, the algorithm terminates, and the answers to 

the query will be Arts = { ( u ,  v) I for some i ,  ( q~, u ) ,  ( q~, v) E G ( r ,  u ,  i )  [ ,  where q~ and q~ 

are the initial and the final state of EM ( r ,  i ) ,  respectively. Otherwise, the algorithm starts a new it- 

eration, the ( i + 1)th. The following example helps for illustration. (See ref. [21] for a detailed de- 

scription. ) 

Examp/e 2 .2 .  

Rules : 

Facts: 

Consider the following program: 

rp( x ,  y )  : - f l a t ( x ,  y ) ,  

r p ( x , y ) : - u p ( x , z ) ,  r p ( z , w ) ,  d o w n ( w , y ) .  

(2 .4 )  

(2 .5 )  

u p ( a l , a 2 ) ,  u p ( a l , a 3 ) ,  u p ( a 2 , a l ) ,  u p ( a 2 , a 3 ) ,  

fiat( a 3 , b3), 

down( b3, b2), down( b2, b l ) .  

The program is a binary-chain program, and the predicate rio is linearly recursive. The equation for 

rp is 

rp = flat U up �9 rp �9 down. 

The corresponding automaton is shown in figure 2. 

Given the query ? -rp ( a  l ,  y ) ,  the algorithm pro- 

posed by Grahne et al. will traverse the graph shown in 

fig. 3. The corresponding EM ( r ,  i ) 

u re4 .  

Now we trace the evaluation for 

hag. 

' s  are shown in rig- 

a better understand- 

In the beginning, EM(rp ,0 )  is the initial state q, r~s. 2. Automaton M(e~) for expre~ion 

and G ( rio, a 1,0) contains only node ( qs, al ). During e,, = flat O up- rp �9 down. 
Here q, is the initial state and q! is the final we .  The 

the fwst iteration, EM( rp, I )  will be established, which 
symbol "id" is in terpreted a s  the identity relation. 

is as in fig. 2; and G( rp, a l ,  1 ) will be traversed, 

producing two intermediate answers; rp ( a3, b3 ) ,  rp ( a l ,  b2). The portion enclosed by a broken 

line in fig. 3 shows G ( rp, a l ,  1 ).  Whenever predicate rp is encountered during the traversal, 

EM(rp ,2)  will be generated. It is just a copy of E M ( r p , l ) .  Then, G( rp ,  a2, 2) is traversed, e- 

valuating another group of answers: rp( a3, b3),  r p ( a 2 ,  b2),  r p ( a l ,  b l ) .  In a similar way, we 

construct EM(rp ,3 )  and traverse G ( r p ,  a I , 3) .  The process repeats until no new G ( r p , c o n t ,  i )  

for some coat and i > 0 can be generated or the upper bound on the number of iterations (established 

manually) is reached. In fact, Grahne' s algorithm for this example does not terminate if no such up- 

per bound is established since similar nodes can be met infinitely many times due to cyclic data. 

3 Refined algorithm 

Now we present our refined algorithm. First, in subsection 3 . 1 ,  we present the concept of sub- 

sumption cheeks. Then, we discuss several refinements based on this concept in subsection 3 . 2 .  

Next, in subsection 3 .3 ,  the concept of linear cycle covers is proposed, which makes the refinment 
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implementable. 

3 .1 .  Subsumption checks 

As described in sec. 2,  Grabne' s algorithm has no mechanism to do subsumption cheeks. 

Therefore, much redundant work will be done due to repeated accesses to similar portions of a graph. 

Thus, the first step of the refinement is to develop an efficient algorithm for doing subsumption 

checks. Then, based on the checks of similarities, we try to eliminate a lot of redundant computations 

by avoiding the traversal of similar subgraphs and by generating answers directly in terms of "path in- 

formation" stored explicitly. First, we have the following two definitions. 

Definition 3.1 .  A substitution 6 is a finite set of the form { vl/tl ,  "", vn/tn }, where each vl 
is a variable, each t~ is a term (in the absence of function symbols, a term is a constant or a,vari- 

able) distinct from v~ and the variables vl , " " ,  vn are distinct. Each element vi/ti is called a binding 

for vi. 0 is called a ground substitution if the ti are all ground terms. ~ is called a variable-pure sub- 

stitution if the ti are all variables. 
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Definition 3 .2 .  Let s and t be two predicates. We say that s subsumes t if there exists a 

substitution 0 = t v l / t ~ ,  "" ,  vn/tn I such that s6 = t ,  where sO is a new predicate obtained from s by 

simultaneously replacing each occurrence of the variable v~ in s by term t~ ( i = 1 , " ' ,  n ) .  

Based on the subsumption concept, the classification of repeatedly appearing nodes can be de- 

fined as follows. 

Definition 3.3 .  A node of the form : ( q ' , c ' )  is subsumed by a node of the form: (q~ , c  n) if 

c' = c ~ and q' and q~ are two different appearances of the same state on two different levels of an au- 

tomaton hierarchy. 

For example, node ( q~, al  ) of the graph shown in fig. 3 is subsumed by ( q, ,  al  ) .  In that 

graph, q~ and q~ are the same state, appearing on the first and third levels, respectively. 

In addition, a node is usually thought of as being subsumed by itself. 

Defin/tion 3 .4 .  A repeated incomplete node (RIN) is a node which is subsumed by a previous 

node which has appeared earlier on the same path as the RIN. 

For example, node ( q,~, a i ) of the graph shown in fig. 3 is an RIN because it is subsumed by 

( q, ,  al  ) which has appeared earlier on the same path. 

The RINs are the only nodes which cannot be traversed further during the traversal process. 

However, cutting off such a path in the graph may affect the completeness, because some answers re- 

lying on this node cannot be evaluated. Therefore, a mechanism is needed to evaluate the remaining 

answers in some way. 

Def-m/tion 3 .5 .  A repeated complete node (RCN) is a node which is subsumed by a previous 

node which has appeared earlier hut not on the same path as the RCN. 

For example, node ( q,", a3) of the graph shown in fig. 3 is an BCN because it is subsumed by 

(q' , ,  a3) which has appeared earlier but not on the same path. 

From the above definitions, we see that there are two kinds of subsumption checks which must 

be handled differently. When an BIN is encountered, the traversal should be suspended and the cor- 

responding cycle should be recorded explicitly, while when an BCN is encountered, it should be ex- 

panded immediately using the answers already found. In addition, as we will see later, the ways in 

which RINs and RCNs are used to speed up the evaluation are different. However, distinguishing 

RCNs f~om RINs is not trivial and a more sophisticated technique is needed. To this end, we combine 

the technique for finding a topological order for a directed graph with the technique for isolating the 

strongly connected components (SCC) of a directed graph Iu] in such a way that the task can be done 

in linear time. 

In what follows, we describe this method in detail. 

Note that in fig. 3 the node ( q", , a 3) is an RCN ( subsumed by ( q',, a 3 ) ) and the node 

( ~ ,  a l )  is an RIN (subsumed by ( q , ,  a l ) ) .  Because (%", a l )  is subsumed by node ( q , ,  a l )  

that has appeared earlier on the same path, we expect to extend a series of subgraphs similar to the 

first one from this node, which has already been traversed. Therefore, the algor/thm will run infinitely 

if no control mechanism is provided. (To guarantee both the termination and the completeness, 

Grahne's method establishes an upper bound on the number of iterations which is sufficiently large to 

allow all the answers to be found. ) Thus, the traversal along a cyclic path has to be cut off to guaran- 

tee the termination. However, curing off a path may affect the completeness. We then have to record 
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cycles explicitly and evaluate the corresponding answers along the cycles in a subsequent phase: In 

contrast, each RCN must be handled immediately to get some new answers, which may be re-used in 

the subsequent traversals. 

Below is a graph traverse] algorithm which can isolate all cycles of a graph being traversed and at 

the same time recognize all RCNs of the graph in linear time. Combining this algorithm with tech- 

niques described in the next subsection, an optimal strategy for evaluating linear binary-chain pro- 

grams can be obtained. Its time complexity remains linear. 

For convenience, we call the graph shown in fig. 3 the interpretation graph, the partial graph 

left to the broken vertical line the up-graph and the partial graph right to the broken vertical line the 

down-graph. In addition, for ease of exposition, we define a character graph for an up-graph (down- 

graph) as follows. 

Defin/t/on 3 .6 .  A character graph for an up-graph (down-graph) is a digraph where there is a 

node for each node of the form (q~, u)((q~, v)) in the up-graph (down-graph) and an edge from 

node a to node b if and only if there is a path from a to b in the up-graph (down-graph), which 

contains no other nodes of the form ( q~, u ) ( ( q~, v ) ) .  

For example, the character graph of the up-graph shown in fig. 3 is as shown in figure 5: 

The purpose of character graphs is to explain the con- 

trol mechanism used in our method. In fact, it is sufficient 

to perform subsumption checks only on those nodes of an in- 

terpretation graph, which appear also in its cliaracter graphs 

(see next subsection). Therefore, we give the following al, 

gorithm over a character graph instead of an interpretation 

Fig. 5. Character sr, ph. graph so as to illustrate the key ideas clearly. 
We associate each node v of a character graph with 

three integers dfsnumber ( v ) ,  toplnumber ( v ) and lowlink ( v ) .  dfsnumher is used to number the 

nodes of a character graph in the order they are reached during the search, toplnumher is used to 

number the nodes with the property that all descendants of a node having toplnumber value m have a 

lower toplnumber value than m,  i . e .  a topological order numbering. It is used, here, to test whether 

a node is an BCN or an RIC. lowlink is used to number the nodes in such a way that if two nodes v 

and w are in the same strongly connected component, then lowlink(v) = lowlink(w). Therefore, it 

can be used to identify the "root" of a strongly connected component (a  root is a node of a strongly 

connected component, which is first visited during the traversal). With the help of a stack structure, 

all strongly connected components can be feasibly found based on the calculation of lowlink values. 

Essentially, the algorithm presented below is a modified version of Tarjan' s algorithm C~] . The 

difference between them consists in the use of toplnumber in the modified algorithm, which facilitates 

the identification of a strongly connected component. (In the original algorithm, a stack structure 

must be searched to do this. ) In addition, for our purposes, each RCN is marked. 

At last, we notice thai the subsumption check can always be done in constant time. Suppose that 

node u subsumes node v. Then u and v must be of the form ( q ,  c ) and ( q' , c ) ,  respectively, 

where q and q' are two different states and c is a domain element. If the input base relations are 

stored as graphs and each visited element is marked with the state associated with it when it is ac- 
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cessed at the first t ime, we know that any newly generated node (during the graph traversal) with a 

marked element is a subsumed one.  

p rocedure  graph-algo( v ) ( * depth-first traversal of a graph rooted at v * ) 

begin 
i := O; j := O; (*  i and j are two global variables, used to calculate dfsnumber and toplnum- 

ber,  respectively. * ) 

toplnumber( v ) := 0 ; 

graph-search( v ) ;  (*  go into the graph * ) 

end 

procedure  graph-search( v ) 

i := i + 1; d f snumber (v ) :=  i ;  l owl ink (v ) :=  i ;  (*  initiate lowlink value; it may be changed 

during the search * ) 

put v on stack S ; ( * S is used to store strongly connected components if any* ) 

generate all sons of v if they exist; 

for each son w of v do 

begin 
if  w is not topologically numbered then  

toplnumber( w ) : = 0 ;  ( * when a node is encountered at the first time, its toplnumher val- 

ue isO ' ' )  

end 

for each son w of v do 

begin 
subsumption checking for w;  

if w is not subsumed by any node then  

begin 
call graph-search( w ) ; ( * go deeper into the graph * ) 

lowlink ( v ) := min (lowlink ( v ) ,  dfsnumber ( w ) ) ; ( * the root of a subgraph will have 

the least lowlink value" ) 

end 

e l se ("  w is subsumed by some node* ) 

{suppose that w is subsumed by u ;  

if dfsnumber( u ) < dfsnumber( v ) then  

if toplnumber ( n ) > 0 then  ( * if u is typologically numbered,  it cannot be an ancestor 

node of v . *  ) 

mark w to be an RCN; 

else ( " a cycle is encountered" ) 

{mark w to be an RIN; 

lowlink ( v ) := min ( lowlink ( v ) ,  dfsnumber( u ) ) ; } } ( " this operation will make all 

nodes of a strongly connected component have the same lowlink value 

as the root. see ref. [24]  * ) 
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end 

i f  (lowlink( v ) = dfsnumber( v ) ) then ( * v is a root of some strongly connected component" ) 

begin 
while w on the stack S satisfies dfsnumber( w ) ~> dfsnum~r( v ) d o  

I delete w from the stack S and put w in current strongly connected component (rooted 

a t v ) ;  

toplnumber(w) := j ; }  ( " topological order numbering; all the nodes in an SCC have the 

same toplnumbor* ) 

j := j + 1; ( * j  is used to calculate toplnumber* ) 

e n d  

e n d  

In the above algorithms, we notice the difference between lowlink and toplnumber: 

(i)  lowhnk is used to number the nodes top-down as dfsnumber; but it will be changed dynami- 

cally in such a way that all nodes in a SCC possess the same lowlink. Therefore, it is employed to i- 

dentify the "root" of a SCC. 

(ii) toplnumber is used to number the nodes bottom-up. All nodes in an identified SCC will be 

assigned the same toplnumber. 

By a simple analysis, we know that this algorithm requires only linear time (see ref. [24]) .  

Fig. 6 shows a directed graph, its defnumber, lowlink and toplnumber values, and its strongly con- 

nected components. 

tit 

(a) Graph 

n2 

Each node is of the form: 

nt(defnumber, lowlink, toplnumber) 
.m- RCN n2(4, I, 2) 

"~RIN 
(b) Traversal 

Fig. 6. Graph traversal. 

n4 
�9 n 2 

(c) Strongly connected components 

3.2  Answer generation 

Based on the mechanism for subsumption checks, we have developed three methods for generat- 

ing answers directly in terms of different "path information": ( i )  answer generation for RCNs; (ii) 

answer generation when an up-graph (or a down-graph) contains cycles; and (iii) answer generation 

when both the up-graph and the down-graph contain cycles. 

Due to limitation of space, we discuss here only the second method, from which the other two 

methods can be derived. 

Answer generation when an up-graph (or a down-graph) contains cycles 

Example 3.1.  Continuing our running program. But suppose that the database contains the 

following facts : 

flat( c4, c5),  

up(c3,c4), up(c3,c2), up(c2,c3), up(c2,cs), up(cs,c3), 
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down( c 5 , c1), down( ci, c6), down( c6, c7), down( c7, c9). 

Given the query ? - r p ( c 3 , y ) ,  the algorithm proposed by Grahne et al. will traverse the graph shown 

in fig. 7. h n s e  the nodes ( q ~ , c  3 )  a n d  ( q ' ~ ,  % )  are  subsumed by the node (q , ,  c3), we expect 
to extend a lot of similar subgraphs that have been traversed earlier. 

............................................... (qs ", c3) (q~", q) uP-- Cq  d"I, Cq,t) 
tq/,[~ 

(q3, c6) ~ (q4'. c)) 
up / (qs"~ c3).-. (ql~'kc,) id | 

�9 id,~ : I% V , 

idt~ �9 
~q, . c~) tqs . *.0 (q/. c7) 

id y id id i 
(q~, c~) (q3, c9 

c " ~ " down id id 
(ql, 3) " - ~  (q2, c4) (q3, r ~ (q4. r 

~id ~ id ~ , 

*" (qs , c3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; (qf , c 1) (qp c7) (qp c9) 

Fig. 7. Graph G(rp, c 3 , 1 ) U ' " U G ( r p , c ~ , 4 )  with respect to Example2.2.  

Therefore, the traversal along a cycle should be cut off and an iteration process should be used 

to find the remaining answers. We do this as follows. By performing subsumption checks, two cycles 

will be recorded explicitly. One of them consists of the starting points: ( q~, c3), ( q~, ca) and ( q,, 

ca). Traversing the corresponding path in the down-graph (the path from q~ to q f  in the down-graph 

shown in fig. 7) repeatedly (each time with a newly produced value as the initial value), we will 

evaluate the following answers: rp(c3, c l ) ,  rp(ca,  c6), rp (c3 ,c  7) and rp(c2 ,c9) .  The other 

cyclic path consists of ( qT, c3), ( q~, Cs), ( q~, c2) and ( q,, c3). Similarly, traversing the corre- 

sponding path in the down-graph (the path from q~ of q f  in the down-graph shown in fig. 7) repeat- 

edly, we will produce r p ( c 3 , c l ) ,  rp(c8 ,c6) ,  rp(ca ,cT) ,  rp (c3 ,c9)and  rp(cs ,cg) .  An obser- 

vation shown that the answers evaluated along the second cycle can be directly generated from the an- 

swers produced along the first path. For example, we can directly generate rp (ca,  c6) from rp (c2, 

c6) on the fast cyclic path and the second node ( ( q,", Cs) ) of the second cyclic path and rp ( c 2, 

c7) from rp(c3,c~) and the third node ((q~ , c2)) and so on, instead of traversing the path again. 

Fig. 8 helps to illustrate this feature. 

Below we describe this method more formally. 

Let Cl be the first cycle v f '~ -  v 2 . . . .  "~'- v ,, "~-- v l a n d  A l = I a l , " " ,  a ,, , a ,, § 1 , ' " ,  a 2 ,, , " " , a ~ , 

" " ,  a i , , . # }  t h e  answer set evaluated along C ~ ,  where i , j  are  integers and O ~ j ~  n. (It should be 

noticed that each a~ ( 1 ~< l ~ / n  + j )  is a subset which is evaluated when the nodes of the form ( ~ ,  

c) of the A th level interpretation graph are encountered, where c stands for a constant and l = m + 

for some integer r. ) Let C2 be the second cycle w f * - w 2  . . . .  " - - w , , ' * - W l .  In addition, we define 

A2 = { a~+~ , " ' , a2~ , " ' , a i~ , ' " , a /~+ /}  , 
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Answers on the first cyclic path: rp(r 3, cl) -~ .  rp(c 2, c 6) ~ rp(~, c 7) ~ rp(c 2, c 9) 

Answers on the second cyclic path: rp(c3, Cl) . . . .  rp(r . . . . .  rp(c2.cT) . . . .  ff~(c3,c9) 
. . | u  �9 

?; . . . . .  ~, . 

SSI ~'~ rS �9 ~ �9 oA'S 
T h e  second  cyc l i c  pa th :  (c~ , c3) (cs , c8) (q ,  , c2) (oa , C3) 

rp(c3, c7) ~ rp(c2, c9) 

i * J i t 

rp%, c9 ..... rp(cs, cg) 

. ., 
r 

f # # 

�9 J 
tl, J �9 

(~ , c~---- (R, , c2) 

Ev~u~ing 

.. . . . . . . . .  e,. Generating 

Fig. 8. mustration of senerating answers with respect to Example 3~ 1. 

A3 --- { • 2 n + l ' ' ' ~ 1 7 6 1 7 6  " 
~ 1 7 6 1 7 6  

Ai = { a i n + l , ' " ,  ai~+y~ �9 

Then,  in terms of Ak ( 1 ~< k <~ i ) and C 2 , we can generate the first part of answers for C2 as shown in 

fig. 9 .  (Note that we do not need to compute all A k ( 1 ~< k ~< i ) .  In practice, each time an A k needs 

to be used in the computation, we shrink Ak- I by leaving out certain a i ' s ) .  Without loss of generali- 

ty, we assume that n ~< m.  

AI: al  ... a n ... a m .. . . . .  a2n . . . . . . . . . . . . . . .  ain . . . . . .  ain+j Ai: ain+l, ..., ain+j 

bll  . . . . . . . . . . .  blm, bl.m+l . . . . . . . . .  bl.2m .. . . . .  bl,lm+r biI . . . . . . . .  bij 

, ...... , 
"~WI ~ ...... Wl . . . . . . . . . . . .  W m 

where i.n + j = l.m + r 

Fig. 9. Illustration of answer generation. 

If n = m ,  no more new answers can be generated after this step. Otherwise, in terms of C 1 and 

the newly generated answers for C2, we can further generate some new answers for C 1 in the same 

way. To this end,  we first merge the newly generated answers as shown in fig. 10 (a )  (hereafter, this 

process is called a merging operation. ) .  

Then,  we construct Bk ( I  <~ k<~ l ) as shown in fig. l O ( b )  (hereafter ,  this process is called a 

separating operat ion).  

In terms d Cl and Bk (2  ~< k ~< l ) ,  some new answers for C x can be generated as described 

above. Note that B 1 will not be used in this step. It is because no new answers can be generated in 

terms d it,  i . e .  using it,  only the same answer set as A l can be generated. In the next step, some 

new answers for C2 can be generated in terms of C 2 and the newly generated answers for C1- 

The correctness d this method is based on the following proposition. 

P r o p o s i t i o n 3 . 1 .  Let { v l  , V z , . . . , v ~ t  and  { w l  , w 2 , ' " , w , ~ }  be two cyclez having the ~ m e  

starting po in t .  Suppose that  each v i i s  o f  the f o r m  ( q~, c , )  and  each wj i s  o f  the forra ( q~, a j ) .  Let 
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bl = b l l  tJb21 kg ... U bil, 

blm+r = b l , im+r  L: . . . . . . .  

(a) 

Fig. 10. 

B I = {b I ..... blm+r}, 
B 2 = {bin+ 1 ..... blm+r}, 
B 3 = {b~,,+! ..... btm+~}, 

B I = {b/m+l ..... blm+r}. 

(b) 

Merging operation and separating operation. 

( c i ,  h ) be an answer.  Then ,  pair  ( dy, h ) corresponds to an answer i f  i , j  satisfy the equation : 

k "  m + j  = l .  n +  i 

for  some integers k and  l(O<~ k ~ n - 1 ,0< .  l <. m - 1 ) .  

Proof. The proof of the proposition is similar to Proposition 2.1 and Proposition 2 .2  of refer- 

ence [5 ] .  

3 .3 Linear cycle covers for a strongly connected graph 

Obviously, we have to first enumerate all cycles of an SCC prior to the direct generation of an- 

swers in the case of cyclic data. Unfortunately, this cannot always be done in linear time. Using 

Johnson's algorithm [zS] , this task requires time 0 (n~c c + e~c~ )cse c , where ns~ c and e,o~ are numbers of 

nodes and edges, respectively and c,~c is the number of cycles in the SCC. In many cases, the num- 

ber of cycles c ~  can grow faster with n,~ than the exponential 2 n .  For example, in a complete di- 

rected graph (CDG) with n nodes there are exactly 
m-t n ) 

cycles. In fig. 11, we show a complete directed graph with 4 nodes (4-CDG), which contains 20 cy- 

des. 

In addition, the technique for generating answers cannot be applied efficiently to the graph 

shown in fig. 12(a) ,  since there is no common node among the cycles contained in it and the task of 

selecting a cycle, along which the answers will be evaluated, becomes difficult. (Remember that for 

the first cycle, the answers have to be evaluated by the graph traversal). 

Fig. 11. Complete graph with 4 nodes. 

(a) 

Fig. 12. 

(b) 

Cycles without comn~n nodes. 

To overcome these difficulties, we define several new concepts and propose a method to make the 

technique for generating answers useful. 

Definition 3 . 7 .  Let G be an SCC. A feedback node of G is a node contained in every cycle 

of G. 
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For example, node p in the graph shown in fig. 12(b) is a feedback node. 

Definition 3 .8 .  A set of cycles C contained in an SCC is called a cycle cover of the SCC, if 

each edge of the SCC appears at least in one cycle of C. We denote the cardinality of C by I C I. 

Definition 3 .9 .  A cycle cover w. r . t .  an SCC is a linear cycle cover if its cardinality is in the 

order O ( e , ~ ) ,  where e,~c is the number of the edges of the SCC. 

Based on the above definitions, we develop a method to underlie the technique for generating an- 

swers. The main idea behind it is to identify first a feedback node and then, using the feedback node 

as a pivot, to perform a depth-f'mst search to find a linear cycle cover. Using Garey's  algorithm [261 , 

one feedback node in an SCC can be found in linear time if any. Thus, we can use Garey' s algorithm 

to check for an SCC whether some feedback node exists. If not, we traverse the SCC in a normal way. 

Otherwise, if a feedback point exists, we take it as the start node and execute the following algorithm 

to fred a linear cycle cover of the SCC, to which the technique for generating answers can be applied. 

Below is an algorithm for finding a linear cycle cover w. r. t. an SCC containing a feedback 

node. In the algorithm each node n is marked with a boolean value val( n ) and in the beginning, all 

v a l ( n ) ' s  are set to 0.  During the depth-first traversal (starting from the feedback node) ,  we set 

va l (n )  to 1, when the corresponding node n is visited for the first time. Then, we have a simple 

property that when a node n with va l (n )  = 1 is met, at least one cycle through the feedback node and 

n must already be generated. In terms of this property, when a node n with val( n ) = 1 is encoun- 

tered, a new cycle can immediately be constructed by taking the current path and the path from n to 

the feedback node (which appears in some already generated cycle) together. 

Procedure cycle-cover(tim, SCC)( "Jbn is a feedback node of SCC."  ) 

1 begin 

2 for all node in SCC do 

3 val(node) := O; 

4 N : = f i n ;  

5 val(./bn) := 1 ; 

6 seareh(./bn ) ; 

7 end 

procedure search( n ) 

8 begin 

9 generate all sons of n;  

10 for  each son m do 

11 ff v ( m ) = 0  then { v ( m ) : =  1; sea rch(m) l  

12 else 

13 {take one of the paths (from m to N)  which have been visited and the current path 

from N to m to form a new cycle; store the new cyele t ; 

14 end 

In the following, we show that the cycles enumerated by cycle-cover() constitute a linear cycle 

coveF.  

Propmition 3 . 2 .  Let C be a set of cycles (o f  an arbitrary SCC ) found by cycle-cover ( ) .  
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Then C is a cycle cover for the SCC. 

Proof. Assume, to the contrary, that C is not a cycle cover. Then there exists at least one 

edge in the SCC that does not appear in any cycle in C. Suppose (rt i , rtj) is such an edge. Thus, 

( h i ,  nj) has not been visited by cycle-cover( ) .  Obviously, n i is not visited either. Otherwise, from 

lines 9 - - 1 1 ,  we see that ( h i ,  nj) will certainly be traversed after n i is visited, which contradicts the 

assumption. For the same reason, any edge with rt i being the tail (for an edge ( n ,  m ) ,  n is the tail 

and m is the head of the edge) will not be visited. Consider one of such edges, say (nk ,  n~). Then 

n~ is also unvisited. In this way, we can find a sequence ni, n k , " " ,  nl with nt = N,  which is not 

visited by cycle-cover( ) .  But it contradicts the behaviour of the algorithm. Thus, C is a cycle cover. 

Proposition 3 . 3 .  The cycle cover found by cycle-cover() is linear. 

Proof. We denote the number of the found cycles passing a set of nodes n l,  n2, "'", nk by 

numcycles( n l ,  n2, " " ,  nk). If the indegree and outdegree of each node n i in an SCC are denoted as 

in (n i )  and out( n i ) ,  respectively, the number of the cycles found by cycle-cover() can be computed 

as follows : 

numcycles = numcyc le s (v ) ,  ( 3 . 1 )  

where v is the start node (a feedback point).  
~t(v) 

numcycles(v)  = ~ ]  numcycles( v,  n i) 
i f f i l  

= ~ ~ ] n u m c y c l e s ( v ,  ;'l,i, II, i ] ) ,  ( 3 . 2 )  
i= l  j = l  

where each n i stands for a son of v ,  while each nij stands for a son of n i . 

If we use outedges(n,) to denote the set of edges incident out of n i and inedges(nil) the edges 

incident into nij, we have U outedges(ni)  = U inedges (n i l ) .  This equation can be proved as fol- 

lows. First, we have U outedges ( n i ) C_ U inedges (nii)  (see fig. 13 for illustration). Then we prove 
i t , J  

U~ outedges(hi) _D U. inedges(nij).  Assume, to the contrary, that there exists a node n such that for 

some n k ( n ,  n k) ~ U, outedges ( n i ) but E U,.. inedges (n i l ) .  In terms of the property of SCCs, there 

must be a path connecting nk and n as shown in fig. 14. Then the cycle composed of this path and 

the edge ( n ,  n~) does not contain v,  which is a contradiction with the fact that v is a common node 

of all cycles contained in the SCC. 

12 

nA ~ nit 

V flit 

. ,.* *"-, ...k ................ 
rt)~ �9 j~ - .  . . . . . . .  " 

Fig. 13. Illustration for the relationship between inde- Fig. 14. A cycle which does not contain v. 

glees and outdegrees. 

In terms of the above analysis, ( 3 . 2 )  can be rewritten as follows: 
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~t(.)  ~,t(,,,) ..(,,~) 

~ numcycles( v,  n, ,  nij) = ~ ~ numcycles( v,  n i ,  n 1). (3.3) 
i =1  j = l  j m : l  

Note that on the right-hand side of ( 3 . 3 )  each n i  stands for a son of v. Since in the above algorithm 

only one of the paths which follows a node n (from n to N)  is taken to form a new cycle when n is 

met once ~ (see line 13 in cycle-cover( ) ; see also the thick edges shown in fig. 13 for illustra- 

tion. Along each of them only one path will be considered), we have the following equation. 

~ numcycles( v,  n l ,  n i )  = ~ (numcycles(  v,  n{, nj) + in (n j )  - 1) 
./ ~ - I  1 

: ~ numcycles( b ,  n/, nj) + ~ in( n i ) . -  j 
i 1 

: ~ ] n u m c y c l e s ( v , n J , n ~ , n t )  + ~-~jin(ni) + ~ - ] i n ( n t )  - ( j  + k) 
j t 

= i n ( v )  + ~- ] in (n t )  - ( n , ~ - o u t ( v ) )  

= o ( e  m - n ~  + 1 ) .  (3.4) 
Here n{ stands for a father node of ny, through which nj is visited for the first time. Therefore, the 

cycle cover found by cycle-cover() is linear. 

In the worst case, the length of a cycle is in the order of 0 ( n ~ , ) .  Then the space complexity of 

cycle-cover( ) will be 0 ( n m �9 e ,~) .  It is not desired for the optimization purpose. In addition, if we 

generate answers simply along each cycle without any control, some answers may be repeatedly pro- 

duced many times due to the common part of cycles. Therefore, we do not enumerate all the cycles of 

a cycle cover using cycle-cover() ,  but integrate its idea into the process for generating answers. 

Another important question is whether the answers produced by traversing an entire SCC is the 

same as those produced by traversing only one of its cycle covers. In the following, we prove a propo- 

sition to give a positive reply to this. 

Defin/t/on 3 .10 .  Let Pi and P1 be two answers to a recursive query. If Pl can be evaluated on 

Pi' we say that pj is a predecessor of Pi,  and Pi is a successor of pj ,  denoted predecessor(pi) and 

successor(pj) respectively. 

PrOlmSlflon 3 . 4 .  Let Am and A ~ . ~ ,  be two sets of answers produced by traversing some SCC 

in the up-graph, which contains at least one feedback node, and by one of  its cycle covers, respective- 

ly. Then Am : Ac,~o,,.r. 

Proof. For any a E Acycl~.co,er, we have trivially a E A m . Then A crr . . . . . .  C_ Am. In the fol- 

lowing, we prove that A m ~ Acycl~.~o,e ,. For any a E Am, there must be a path Vo--~vl--~v2 -~ ' ' ' -~  

vi in the SCC (with Vo being a feedback node and each vi(0 < j~< i)  being also a node in the charac- 

ter graph) such that Ao0 = predecessor(Ao,),  A~, = predecessor(A~),  " " ,  A,,., = predecessor(A,) 

and a E  A~, where A~(O~j<<. i )  stands for a set of answers produced by traversing path vj--~vj+l 

(corresponding to an edge in the character graph) and the corresponding path in the down-graph. In 

terms of the property of cycle covers, there is a set of cycles C in cycle-cover such that the paths vo 

--~vi, v f -~v2,  "'" , and vi_i--~vi are covered by C. Then, by the first traversal along C, we wiU get 

AOo. By the second traversal along C,  we will get A,, and so on. Obviously, by the ith travetsal a- 



No. 3 GRAPH TRAVERSAL METHOD FOR EVALUATING LINEAR BINARY-CHAIN PROGRAMS 241 

long C,  A,, will be produced. Therefore, a E At,el . . . . . .  . Thus, A ~  C Ac,ch. . . . . .  which completes 

the proof. 

4 Complexity analysis and comparison 

In the analysis below, we assume that the rule set is like that of Example 2 .1 .  e and n denote 

the number of edges and nodes, respectively, in the graph representing the input relations. 

At first, we point out that our algorithm uniformly outperforms Grahne's algorithm. On the one 

hand, the subsumption check is unproblematic, since it requires only linear time. On the other hand, 

our method will traverse a much smaller graph if there exist RCNs. Suppose that after node i is en- 

countered, ei edges will be traversed. Then ~-']e~ < e ,  because any repeated accesses to an edge are 
i 

avoided by means of removing each subgraph rooted at some RCN. (We generate the corresponding 

answers in a similar way as discussed in 3 . 2 ) .  In addition, in the case of cyclic data, each cycle is 

traversed only once. If the length of the longest cycle in up is m and the length of the longest cycle 

in down is l ,  then the cost of our algorithm is O ( m + l ) .  In sum, the time complexity of our algo- 

rithm is O ( n + e ). 

In contrast, the cost of Grahne' s algorithm is 0 (n  3) in the case of cyclic data. This is because 

m" l iterations of the maln loop must be performed for the case mentioned above. In the worst case, 

every single execution of the main loop may entail accessing 0 ( n )  nodes. 

Various strategies for processing recursive queries have been proposed. However, all these algo- 
rithms require at least O(e  2) or O ( e n )  time [s'll'ls'lg'27-29] . 

When the input relations contain no cycles, the cost of Counting is O ( en ) ,  better than that of 

Magic Sets which is O(e2) [3~ . For cyclic cases, ref . [17]  proposed a method which takes O ( n e )  

time. However, this method requires O ( e 2 ) time for preprocessing. Ref. [ 31 ] presented an algo- 

rithm that runs a counting method until a cycle is detected, then switches over to Magic Sets. This al- 

gorithm is also O(e  2) on cyclic data. The method proposed in ref. E27] requires O ( n  3) time. But 

in some cases, the complexity can be reduced to O ( n 2). The algorithm proposed in ref. [ 29 ] re- 

quires O ( ne ) time. 

Note that a little more space is required by our algorithm than Grahne's algorithm. This is be- 

cause each node, in our method, occupies not only the state and the domain (range) value, but also 

three integers. If the space complexity of Grahne' s algorithm is S,  then 4 �9 S space is required by 

OUrs .  

At last, it should be pointed out that to use our algorithm to treat with rules in the normal Horn- 

clause form, some more time is needed to make the rule transformation. But this task can be shifted 

to a pre-process phase, which has no effect on the actual execution of the algorithm. 

$ Conclusion 

In this paper, a graph traversal algorithm has been presented which is much more efficient than 

Grahne's algorithm. The key idea of the improvement is to recognize all the similar portions of a 

graph and to produce all the relevant answers by constructing only one of them. In the case of acyclic 

data, the algorithm optimizes the evaluation by traversing each path only once and generating the re- 

maining answers directly from the answers already found. In the case of cyclic data, a lot of graph op- 
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timization techniques are employed to speed up the evaluation, such as the combination of Tarjan's 
algorithm and the topological numbering, and the algorithm for finding feedback nodes as well as for 

cycle covers. In this way, most of answers for cyclic paths can also be generated directly by traversing 

the corresponding subgraphs. Since traversing a path requires access to the external storage or search 

of large relations but the "generating" operations require only access to small data sets and happen al- 

ways in main memory, we may suppose that the time complexity of generating answers is 0 ( 1 ) ,  and 

therefore a linear time is achieved. 
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