
Vo]. 42 No. 3 SCIENCE IN CHINA (Series E) J,~e 1999

On the graph traversal method for evaluating linear
binary-chain programs

CHEN Yangiun (~ ~ ~)
(Technical Institute of Changsha, Changsha 410073, China; Department of Computer Science,

Technical University of Chemnitz, 09106 Chemnitz, Germany)

Received December 23, 1997 ; revised December 23, 1998

Abstract Grahne et al. have presented a graph algorithm for evaluating a subset of reeursive queries. This method
consists of two phases. In the first phase, the method transforms a linear binary-chain program into a set of equations
over expressions containing predicate symbols. In the second phase, a graph is constructed from the equations and the
answers are produced by traversing the relevant paths. A new algorithm is described which requires less time than
Grahne' s . The key idea of the improvement is to reduce the search space that will be traversed when a query is invoked.
Further, the evaluation of cyclic data is speeded up by generating most answers directly in terms of the answers already
found and the associated "path information" instead of traversing the corresponding paths as usual. In this way, this al-
gorithm achieves a linear time complexity for both acyclic and most of cyclic data.

Keywords: graph traversal method, linear blmuT-chMn programs.

In recent years there has been considerable effort directed toward the integration of many aspects

of the artificial intelligence field with the database field. An outcome of this effort is the notion of

knowledge-based system, which can be described simply as an advanced database system augmented

with a mechanism for rule processing. An important matter of research in such systems is the efficient

evaluation of recursive queries. Various strategies for processing recursive queries have been proposed

(see refs. [l q 9]) . These strategies include evaluation methods such as naive evaluation [l't~ , semi-

naive evaluation Ill] , query/subquery [12] , RQA/FQI [13] , Heuscben-Naqvi [14] , and the methods used

in compiling recursive queries [s'14-17] . Another class of strategies, called query optimization strate-

gies, are used to transform queries into a form that is more amenable to the existing optimization tech-

niques developed for relational databases. Several examples of this class of approaches are magic

sets [ls] , counting [ls] and their generalized versions [5'19] . In this paper, we discuss a graph method

which has been presented for handling a subset of recursive queries, the so-called binary-chain pro-

grams, by Grahne et al. [2~ . (We refer to this method as Grahne's algorithm afterwards.) Binary

relations form an important subcase of n-ary relations. This is not only because binary queries are fre-

quently encountered in practical application, but also because any set of relations can be represented

as a set of binary relations[13y 21] . Therefore, any rule (in the Horn-clause form) can be transformed

into a set of binary-chain rules. Compared to the SLD resolution [22] and its different variants [12J3"23] ,

the graph method is advantageous due to the following two benefits: (i) Repeated firing of rules with

the same head predicate can be avoided; (ii) instead of maintaining a large "goal node" in each reso-

lusion step as done in SLD strategy, a simple structure is used to record nodes encountered during a

graph traversal.

226 SCIENCE IN CHINA (Series E) u 42

Grahne's method works in a two-phase approach. In the fu~t phase, a program is transformed

into a set of equations of the form: r = e,, where r is a derived predicate symbol and e, is an expres-

sion whose arguments are predicate symbols and whose operators are chosen from among U (union),

�9 (composition), and * (reflexive transitive closure). In the second phase, a directed graph G(r) is

constructed from each equation of the form : r = e, such that r (x , y) is true if and only if G (r) con-

tains a path from a node representing x to a node representing y . This result means that evaluation

problems for the predicate r reduce to traversal problems for the graph G (r) or the hierarchy of

G (r) ' s (see below). We show that this method proceeds redundantly in certain cases and can be

improved by elaborating its second phase. First, we try to reduce the search space that will be tra-

versed by Grahne' s algorithm. We do this by recognizing all similar portions of a graph and manage to

produce all the relevant answers by consu'ucting only one of them. The other refinement is concerned

with the treatment of cyclic data. In this case, a cycle is stoical when it is encountered at the first

time. We then suspend the traversal along the corresponding path to avoid duplicate work. However,

as many intermediate answers may not be used to produce new answers along a cyclic path, suspend-

ing the traversal along the cyclic path may affect the completeness. Therefore, we develop a process to

evaluate the remaining answers by iterating on each cyclic path with a different initial value each

time. In this iteration process, we further optimize the evaluation by generating most answers for

cyclic data directly from the answers already found and the associated path information instead of

traversing the relevant subgraphs as usual. In this way, we can decrease the time complexity by one

order of magnitude or more. This is because traversing paths ~luires access to the external storage or

search of large relations but the "generating" operations happen always in the main memory and re-

quire only access to small data sets (i . e . the answers already found). As a consequence, our algo-

rithm requires only linear time for both cyclic and acyclic data.

This paper is organized as follows. In the next section, we introduce the necessary terminology

from refs. [20 ,21] . In sec. 2, we briefly describe the main idea of Grahne's algorithm. In sec. 3,

we give our refined graph traversal algorithm for evaluating linear binary-chain programs. In sec. 4,

we compare the computational complexity of our algorithm with the existing strategies. See. 5 is a

short conclusion.

1 Basle concepts

A rude of the form

q(xl , x~§ p2(x2,x3), "", p~(x~,, x~+l),

where m 3 0 and x l , ' " , x~+ 1 are all distinct variables, is called a binary-chain rule. A Datalng pro-

gram in which the predicates are all binary predicates and the rules in the intensional database are all

binary-chain rules is called a binary-chain program.

For a program, we may construct a dependency graph representing a "refer to" relationship be-

tween the predicates. This is a dh'ected graph where there is a node for each predicate and an arc from

node q to node p if and only if the predicate q occurs in the body of a rule whose head predicate is

p . A predicate p depends on a predicate q if there is a path of length greater than or equal to one

from q to p . We denote the relation p depends on q by p r where depends on is the transitive

closure of the "refer to" relation. A predicate p is recursive if p~=p. Two predicates p and q are

No. 3 GRAPH TRAVERSAL METHOD FOR EVALUATING LINEAR BINARY-CHAIN PROGRAMS 227

mutually recursive if p r q and q ~ p.

A rule in which the head predicate is mutually recursive to one of the body predicates is called a

recursive rule. If the body of a recursive rule contains at most one literal whose predicate is mutually

recursive to the head predicate, the rule is called a linearly recursive rule. A program that contains at

least one such rule is called a linearly recursive program.

A binary-chain rule

q(xl,Xm+l) ~-- p l (x l , x2) , p2(x2 ,x3) ," ' ,p~, (x , , , xm+l)

is a fight-linear rule if none of the predicates Pl,"" ,P,,-1 is mutually recursive to p , and a left-lin-

ear rule ff none of the predicates P2 , " " , P,~ is mutually recursive to p. A derived predicate is a regu-

lar predicate if its definition is fight-linear or left-linear. A binary-chain program is a regular program

if all its derived predicates are regular.

In addition, the relations for the predicates appearing left to the recursive predicate is called the

left-hand side relations and those right to the recursive predicate is called the right-hand side rela-

tions.

2 Grahne's method

In this secion, we briefly describe Grahne's algorithm, which is necessary for introducing our

refined method.

2.1 Program transformation

Grahne' s method works in a two-phase manner. In the first phase of Grahne' s method, any lin-

ear binary-chain program is transformed into a system of equations of the form

r = E r

with the following properties (see ref. [21]) :

(i) For each derived predicate, there is exactly one equation;

(ii) Er is an expression whose arguments are predicate symbols of the program and whose opera-

tom are chosen from among 13 (union) ," (composition), and * (reflexive transitive closure) ;

(iii) in each equation r = Er, the expression Er does not contain any occurrences of regular de-

rived predicates.

In this way, repeated firing of rules can be avoided since each derived predicate is associated

with only one equation no matter how many times it appears in the program. See the following example

for illustration.

Examp/e 2 .1 . Consider the following program:

p (x , y) : - b (x , z) , q (z , y) ,
q (x , y) : - c (x , z) , p (z , y) ,
q (x , y) : - d (x , z) , r (z , y) ,
r (x , y) : - a (x , y) ,
r (x , y) : - e (x , z) , q (z , y) ,

where a, b, c , d and e are base predicates, while p , q and r are derived predicates. This pro-

gram can be transformed into the following equations by means of the transformation algorithm given -in

ref. [21] :

p = b �9 (c " b [3 d . e) " �9 d " a , (2 .1)

228 SCIENCE IN CHINA (Series E) eel. 42

q = (c " b U d - e) " �9 d . a , (2 .2)

r = a U e . (c . b U d . e)" " d " a . (2 .3)

For further detaila, please refer to the description in reference [21] .

2 .2 Description of Grahne' s algorithm

The algorithm proposed by Grabne et al. can be described as follows. Let r = E, be an equa-

tion. The algorithm represents the equation as a nondeterministic automaton, denoted by M (E ,) ,

which can be obtained by the standard technique from E, when we regard E, as a regular expression

over the alphabet consisting of all predicate symbols appearing in Er. For example, eq. (2 . 1) given

above can be represented as the automaton shown in

figure 1.Here q, , qfand qi'(i = 1 , 2 , ' " , 7) repre-

sent the initial, final, and intermediate states, re-

spectively.

If r = E, is a recursive equation, a hierarchy of

automata will be constructed in evaluating answers to

the query. The ith level in the hieraxchy, denoted by

E M (r , i) , corresponds to the ith recursive call of r
Fig. 1. Autonmton for eq. (2 . 1) . Here "id" is inter-
preted as the identity relation. (which appears in E,) with some of its variables

bound to constants. First, EM (r , 0) is the initial

state q, and EM (r , 1) is a copy of M (E,) , and then the interpretation graph of EM (r , 1) is tra-

versed. An interpretation graph of EM(r , i) is a directed graph with a set of nodes (q , u) where q

is a state in EM(r , i) and u is a domain element of some base relation labelling a transition leaving

q, and with a set of edges of the form, (q , u) - (q ' , v) , where, for some base relation a , q

q' is a transition in E M (r , i) such that a (u , v) is true. (Afterwards, we use the term graph to refer

to a directed graph, since we do not discuss undirected ones at all.)

Now we consider the evaluation of a query of the form r (c , y) , where c is a constant. The e-

valuation algorithm will generate a sequence of interpretation graphs of EM(r ,0) [.J "'" U EM(r , i) , i

1. We denote an interpretation graph of EM (r , i) (with a variable bound to d) by G (r , d , i) .

In general, an EM (r , i) will have several interpretation graphs.

The algorithm starts with G (r , c , 0) , which is the graph with a set containing only one node

(q , , c)((q , , c) is called the source node) and with no arcs. Here q, is the initial state of all EM

(r , i) , i>~l. During the ith iteration of the main loop, G(r ,c ' , i - 1) will be extended to G(r,
c ' , i) . Note that here c , c ' , c" are different constants to which one of the variables appearing in the

predicate of the query is bound. This extension is done by performing a depth-first tmversal (i . e.

G(r,c ' , i - 1) is traversed using a depth-first search strategy.) When i = 1, the traversal starts

from the node (q , , c) . All paths not containing arcs labelled with derived predicates are traversed.

Whenever a node (q , u) not visited before is entered, all transitions in EM (r , i) leaving q are ex-

amined. For any transition q - - ~ q ' where a is a base predicate and for any term v such that a (u ,

v) is true and the node (q ' , v) has not yet been generated, the algorithm generates (q ' , v) and con-

tinues the traversal from this node.

At the end of the iteration, it is examined whether or not any new nodes (q , u) (which are

No. 3 GRAPH TRAVERSAL METHOD FOR EVALUATING LINEAR BINARY-CHAIN PROGRAMS 229

called extension or continuation points) have been generated, where EM (r , i) contains a transition

leaving q and labelled with a derived predicate. If not, the algorithm terminates, and the answers to

the query will be Arts = { (u , v) I for some i , (q~, u) , (q~, v) E G (r , u , i) [, where q~ and q~

are the initial and the final state of EM (r , i) , respectively. Otherwise, the algorithm starts a new it-

eration, the (i + 1)th. The following example helps for illustration. (See ref. [21] for a detailed de-

scription.)

Examp/e 2 .2 .

Rules :

Facts:

Consider the following program:

rp(x , y) : - f l a t (x , y) ,

r p (x , y) : - u p (x , z) , r p (z , w) , d o w n (w , y) .

(2 .4)

(2 .5)

u p (a l , a 2) , u p (a l , a 3) , u p (a 2 , a l) , u p (a 2 , a 3) ,

fiat(a 3 , b3),

down(b3, b2), down(b2, b l) .

The program is a binary-chain program, and the predicate rio is linearly recursive. The equation for

rp is

rp = flat U up �9 rp �9 down.

The corresponding automaton is shown in figure 2.

Given the query ? -rp (a l , y) , the algorithm pro-

posed by Grahne et al. will traverse the graph shown in

fig. 3. The corresponding EM (r , i)

u re4 .

Now we trace the evaluation for

hag.

' s are shown in rig-

a better understand-

In the beginning, EM(rp ,0) is the initial state q, r~s. 2. Automaton M(e~) for expre~ion

and G (rio, a 1,0) contains only node (qs, al). During e,, = flat O up- rp �9 down.
Here q, is the initial state and q! is the final we . The

the fwst iteration, EM(rp, I) will be established, which
symbol "id" is in terpreted a s the identity relation.

is as in fig. 2; and G(rp, a l , 1) will be traversed,

producing two intermediate answers; rp (a3, b3) , rp (a l , b2). The portion enclosed by a broken

line in fig. 3 shows G (rp, a l , 1). Whenever predicate rp is encountered during the traversal,

EM(rp ,2) will be generated. It is just a copy of E M (r p , l) . Then, G(rp , a2, 2) is traversed, e-

valuating another group of answers: rp(a3, b3), r p (a 2 , b2), r p (a l , b l) . In a similar way, we

construct EM(rp ,3) and traverse G (r p , a I , 3) . The process repeats until no new G (r p , c o n t , i)

for some coat and i > 0 can be generated or the upper bound on the number of iterations (established

manually) is reached. In fact, Grahne' s algorithm for this example does not terminate if no such up-

per bound is established since similar nodes can be met infinitely many times due to cyclic data.

3 Refined algorithm

Now we present our refined algorithm. First, in subsection 3 . 1 , we present the concept of sub-

sumption cheeks. Then, we discuss several refinements based on this concept in subsection 3 . 2 .

Next, in subsection 3 .3 , the concept of linear cycle covers is proposed, which makes the refinment

230 SCIENCE IN CHINA (Series E) Vol. 42

f

(qt, at)
$ id

(q ~ , at)

(qs "~, al). �9

aP~C(q,",a,) ~.-~a
, ~ ,A id

(qt, az) ~ (q2 Ya3)
~ id

(q,, aO
I id

(q2, a~ , flat
~ u p (qs ia3) up

id

= (q2. a3)

(qf". b3)
id

(q3'~b~)' d..~ ~ (q4 ~', b2)
id ,t

~I id

(q4,ll bl) 1
(q3, b3) dow....._~n (q4, b2)

Fig. 3. Graph(rp,al,l)YG(rp,a2,2)YG(rp,a3,2)UG(rp,a3,3) withrespecttoExample2.2.

.

~ d fiat = ~ d

~ n D ,~d f~T iddown | 1 7 4
id t id

�9 .,' = Q

Fig. 4. Hierarehye~ama,,mtaEM(rp,0)U..-UEM(rp,3) with respect to E, n*mple2.2.
implementable.

3 .1 . Subsumption checks

As described in sec. 2, Grabne' s algorithm has no mechanism to do subsumption cheeks.

Therefore, much redundant work will be done due to repeated accesses to similar portions of a graph.

Thus, the first step of the refinement is to develop an efficient algorithm for doing subsumption

checks. Then, based on the checks of similarities, we try to eliminate a lot of redundant computations

by avoiding the traversal of similar subgraphs and by generating answers directly in terms of "path in-

formation" stored explicitly. First, we have the following two definitions.

Definition 3.1 . A substitution 6 is a finite set of the form { vl/tl , "", vn/tn }, where each vl
is a variable, each t~ is a term (in the absence of function symbols, a term is a constant or a,vari-

able) distinct from v~ and the variables vl , " " , vn are distinct. Each element vi/ti is called a binding

for vi. 0 is called a ground substitution if the ti are all ground terms. ~ is called a variable-pure sub-

stitution if the ti are all variables.

No. 3 GRAPH TRAVERSAL METHOD FOR EVALUATING LINEAR BINARY-CHAIN PROGRAMS 231

Definition 3 .2 . Let s and t be two predicates. We say that s subsumes t if there exists a

substitution 0 = t v l / t ~ , "" , vn/tn I such that s6 = t , where sO is a new predicate obtained from s by

simultaneously replacing each occurrence of the variable v~ in s by term t~ (i = 1 , " ' , n) .

Based on the subsumption concept, the classification of repeatedly appearing nodes can be de-

fined as follows.

Definition 3.3 . A node of the form : (q ' , c ') is subsumed by a node of the form: (q~ , c n) if

c' = c ~ and q' and q~ are two different appearances of the same state on two different levels of an au-

tomaton hierarchy.

For example, node (q~, al) of the graph shown in fig. 3 is subsumed by (q, , al) . In that

graph, q~ and q~ are the same state, appearing on the first and third levels, respectively.

In addition, a node is usually thought of as being subsumed by itself.

Defin/tion 3 .4 . A repeated incomplete node (RIN) is a node which is subsumed by a previous

node which has appeared earlier on the same path as the RIN.

For example, node (q,~, a i) of the graph shown in fig. 3 is an RIN because it is subsumed by

(q, , al) which has appeared earlier on the same path.

The RINs are the only nodes which cannot be traversed further during the traversal process.

However, cutting off such a path in the graph may affect the completeness, because some answers re-

lying on this node cannot be evaluated. Therefore, a mechanism is needed to evaluate the remaining

answers in some way.

Def-m/tion 3 .5 . A repeated complete node (RCN) is a node which is subsumed by a previous

node which has appeared earlier hut not on the same path as the RCN.

For example, node (q,", a3) of the graph shown in fig. 3 is an BCN because it is subsumed by

(q' , , a3) which has appeared earlier but not on the same path.

From the above definitions, we see that there are two kinds of subsumption checks which must

be handled differently. When an BIN is encountered, the traversal should be suspended and the cor-

responding cycle should be recorded explicitly, while when an BCN is encountered, it should be ex-

panded immediately using the answers already found. In addition, as we will see later, the ways in

which RINs and RCNs are used to speed up the evaluation are different. However, distinguishing

RCNs f~om RINs is not trivial and a more sophisticated technique is needed. To this end, we combine

the technique for finding a topological order for a directed graph with the technique for isolating the

strongly connected components (SCC) of a directed graph Iu] in such a way that the task can be done

in linear time.

In what follows, we describe this method in detail.

Note that in fig. 3 the node (q", , a 3) is an RCN (subsumed by (q',, a 3)) and the node

(~ , a l) is an RIN (subsumed by (q , , a l)) . Because (%", a l) is subsumed by node (q , , a l)

that has appeared earlier on the same path, we expect to extend a series of subgraphs similar to the

first one from this node, which has already been traversed. Therefore, the algor/thm will run infinitely

if no control mechanism is provided. (To guarantee both the termination and the completeness,

Grahne's method establishes an upper bound on the number of iterations which is sufficiently large to

allow all the answers to be found.) Thus, the traversal along a cyclic path has to be cut off to guaran-

tee the termination. However, curing off a path may affect the completeness. We then have to record

232 SCIENCE IN CHINA (Series E) Vol. 42

cycles explicitly and evaluate the corresponding answers along the cycles in a subsequent phase: In

contrast, each RCN must be handled immediately to get some new answers, which may be re-used in

the subsequent traversals.

Below is a graph traverse] algorithm which can isolate all cycles of a graph being traversed and at

the same time recognize all RCNs of the graph in linear time. Combining this algorithm with tech-

niques described in the next subsection, an optimal strategy for evaluating linear binary-chain pro-

grams can be obtained. Its time complexity remains linear.

For convenience, we call the graph shown in fig. 3 the interpretation graph, the partial graph

left to the broken vertical line the up-graph and the partial graph right to the broken vertical line the

down-graph. In addition, for ease of exposition, we define a character graph for an up-graph (down-

graph) as follows.

Defin/t/on 3 .6 . A character graph for an up-graph (down-graph) is a digraph where there is a

node for each node of the form (q~, u)((q~, v)) in the up-graph (down-graph) and an edge from

node a to node b if and only if there is a path from a to b in the up-graph (down-graph), which

contains no other nodes of the form (q~, u) ((q~, v)) .

For example, the character graph of the up-graph shown in fig. 3 is as shown in figure 5:

The purpose of character graphs is to explain the con-

trol mechanism used in our method. In fact, it is sufficient

to perform subsumption checks only on those nodes of an in-

terpretation graph, which appear also in its cliaracter graphs

(see next subsection). Therefore, we give the following al,

gorithm over a character graph instead of an interpretation

Fig. 5. Character sr, ph. graph so as to illustrate the key ideas clearly.
We associate each node v of a character graph with

three integers dfsnumber (v) , toplnumber (v) and lowlink (v) . dfsnumher is used to number the

nodes of a character graph in the order they are reached during the search, toplnumher is used to

number the nodes with the property that all descendants of a node having toplnumber value m have a

lower toplnumber value than m, i . e . a topological order numbering. It is used, here, to test whether

a node is an BCN or an RIC. lowlink is used to number the nodes in such a way that if two nodes v

and w are in the same strongly connected component, then lowlink(v) = lowlink(w). Therefore, it

can be used to identify the "root" of a strongly connected component (a root is a node of a strongly

connected component, which is first visited during the traversal). With the help of a stack structure,

all strongly connected components can be feasibly found based on the calculation of lowlink values.

Essentially, the algorithm presented below is a modified version of Tarjan' s algorithm C~] . The

difference between them consists in the use of toplnumber in the modified algorithm, which facilitates

the identification of a strongly connected component. (In the original algorithm, a stack structure

must be searched to do this.) In addition, for our purposes, each RCN is marked.

At last, we notice thai the subsumption check can always be done in constant time. Suppose that

node u subsumes node v. Then u and v must be of the form (q , c) and (q' , c) , respectively,

where q and q' are two different states and c is a domain element. If the input base relations are

stored as graphs and each visited element is marked with the state associated with it when it is ac-

No. 3 GRAPH TRAYERSAL METHOD FOR EVALUATING LINEAR BINARY-CHMN PROGRAMS 233

cessed at the first t ime, we know that any newly generated node (during the graph traversal) with a

marked element is a subsumed one.

p rocedure graph-algo(v) (* depth-first traversal of a graph rooted at v *)

begin
i := O; j := O; (* i and j are two global variables, used to calculate dfsnumber and toplnum-

ber, respectively. *)

toplnumber(v) := 0 ;

graph-search(v) ; (* go into the graph *)

end

procedure graph-search(v)

i := i + 1; d f snumber (v) := i ; l owl ink (v) := i ; (* initiate lowlink value; it may be changed

during the search *)

put v on stack S ; (* S is used to store strongly connected components if any*)

generate all sons of v if they exist;

for each son w of v do

begin
if w is not topologically numbered then

toplnumber(w) : = 0 ; (* when a node is encountered at the first time, its toplnumher val-

ue isO ' ')

end

for each son w of v do

begin
subsumption checking for w;

if w is not subsumed by any node then

begin
call graph-search(w) ; (* go deeper into the graph *)

lowlink (v) := min (lowlink (v) , dfsnumber (w)) ; (* the root of a subgraph will have

the least lowlink value")

end

e l se (" w is subsumed by some node*)

{suppose that w is subsumed by u ;

if dfsnumber(u) < dfsnumber(v) then

if toplnumber (n) > 0 then (* if u is typologically numbered, it cannot be an ancestor

node of v . *)

mark w to be an RCN;

else (" a cycle is encountered")

{mark w to be an RIN;

lowlink (v) := min (lowlink (v) , dfsnumber(u)) ; } } (" this operation will make all

nodes of a strongly connected component have the same lowlink value

as the root. see ref. [24] *)

234 SCIENCE IN CHINA (Series E) Vol. 42

end

i f (lowlink(v) = dfsnumber(v)) then (* v is a root of some strongly connected component")

begin
while w on the stack S satisfies dfsnumber(w) ~> dfsnum~r(v) d o

I delete w from the stack S and put w in current strongly connected component (rooted

a t v) ;

toplnumber(w) := j ; } (" topological order numbering; all the nodes in an SCC have the

same toplnumbor*)

j := j + 1; (* j is used to calculate toplnumber*)

e n d

e n d

In the above algorithms, we notice the difference between lowlink and toplnumber:

(i) lowhnk is used to number the nodes top-down as dfsnumber; but it will be changed dynami-

cally in such a way that all nodes in a SCC possess the same lowlink. Therefore, it is employed to i-

dentify the "root" of a SCC.

(ii) toplnumber is used to number the nodes bottom-up. All nodes in an identified SCC will be

assigned the same toplnumber.

By a simple analysis, we know that this algorithm requires only linear time (see ref. [24]) .

Fig. 6 shows a directed graph, its defnumber, lowlink and toplnumber values, and its strongly con-

nected components.

tit

(a) Graph

n2

Each node is of the form:

nt(defnumber, lowlink, toplnumber)
.m- RCN n2(4, I, 2)

"~RIN
(b) Traversal

Fig. 6. Graph traversal.

n4
�9 n 2

(c) Strongly connected components

3.2 Answer generation

Based on the mechanism for subsumption checks, we have developed three methods for generat-

ing answers directly in terms of different "path information": (i) answer generation for RCNs; (ii)

answer generation when an up-graph (or a down-graph) contains cycles; and (iii) answer generation

when both the up-graph and the down-graph contain cycles.

Due to limitation of space, we discuss here only the second method, from which the other two

methods can be derived.

Answer generation when an up-graph (or a down-graph) contains cycles

Example 3.1. Continuing our running program. But suppose that the database contains the

following facts :

flat(c4, c5),

up(c3,c4), up(c3,c2), up(c2,c3), up(c2,cs), up(cs,c3),

No. 3 GRAPH TRAVERSAL METHOD FOR EVALUATING LINEAR BINARY-CHAIN PROGRAMS 235

down(c 5 , c1), down(ci, c6), down(c6, c7), down(c7, c9).

Given the query ? - r p (c 3 , y) , the algorithm proposed by Grahne et al. will traverse the graph shown

in fig. 7. h n s e the nodes (q ~ , c 3) a n d (q ' ~ , %) are subsumed by the node (q , , c3), we expect
to extend a lot of similar subgraphs that have been traversed earlier.

... (qs ", c3) (q~", q) uP-- Cq d"I, Cq,t)
tq/,[~

(q3, c6) ~ (q4'. c))
up / (qs"~ c3).-. (ql~'kc,) id |

�9 id,~ : I% V ,

idt~ �9
~q, . c~) tqs . *.0 (q/. c7)

id y id id i
(q~, c~) (q3, c9

c " ~ " down id id
(ql, 3) " - ~ (q2, c4) (q3, r ~ (q4. r

~id ~ id ~ ,

*" (qs , c3) . ; (qf , c 1) (qp c7) (qp c9)

Fig. 7. Graph G(rp, c 3 , 1) U ' " U G (r p , c ~ , 4) with respect to Example2.2.

Therefore, the traversal along a cycle should be cut off and an iteration process should be used

to find the remaining answers. We do this as follows. By performing subsumption checks, two cycles

will be recorded explicitly. One of them consists of the starting points: (q~, c3), (q~, ca) and (q,,

ca). Traversing the corresponding path in the down-graph (the path from q~ to q f in the down-graph

shown in fig. 7) repeatedly (each time with a newly produced value as the initial value), we will

evaluate the following answers: rp(c3, c l) , rp(ca, c6), rp (c3 ,c 7) and rp(c2 ,c9) . The other

cyclic path consists of (qT, c3), (q~, Cs), (q~, c2) and (q,, c3). Similarly, traversing the corre-

sponding path in the down-graph (the path from q~ of q f in the down-graph shown in fig. 7) repeat-

edly, we will produce r p (c 3 , c l) , rp(c8 ,c6) , rp(ca ,cT) , rp (c3 ,c9)and rp(cs ,cg) . An obser-

vation shown that the answers evaluated along the second cycle can be directly generated from the an-

swers produced along the first path. For example, we can directly generate rp (ca, c6) from rp (c2,

c6) on the fast cyclic path and the second node ((q,", Cs)) of the second cyclic path and rp (c 2,

c7) from rp(c3,c~) and the third node ((q~ , c2)) and so on, instead of traversing the path again.

Fig. 8 helps to illustrate this feature.

Below we describe this method more formally.

Let Cl be the first cycle v f '~ - v 2 "~'- v ,, "~-- v l a n d A l = I a l , " " , a ,, , a ,, § 1 , ' " , a 2 ,, , " " , a ~ ,

" " , a i , , . # } t h e answer set evaluated along C ~ , where i , j are integers and O ~ j ~ n. (It should be

noticed that each a~ (1 ~< l ~ / n + j) is a subset which is evaluated when the nodes of the form (~ ,

c) of the A th level interpretation graph are encountered, where c stands for a constant and l = m +

for some integer r.) Let C2 be the second cycle w f * - w 2 " - - w , , ' * - W l . In addition, we define

A2 = { a~+~ , " ' , a2~ , " ' , a i~ , ' " , a /~+ /} ,

236 SCIENCE IN CHINA (Series E) Vol. 42

Answers on the first cyclic path: rp(r 3, cl) -~ . rp(c 2, c 6) ~ rp(~, c 7) ~ rp(c 2, c 9)

Answers on the second cyclic path: rp(c3, Cl) rp(r rp(c2.cT) ff~(c3,c9)
. . | u �9

?; ~, .

SSI ~'~ rS �9 ~ �9 oA'S
T h e second cyc l i c pa th : (c~ , c3) (cs , c8) (q , , c2) (oa , C3)

rp(c3, c7) ~ rp(c2, c9)

i * J i t

rp%, c9 rp(cs, cg)

. .,
r

f # #

�9 J
tl, J �9

(~ , c~---- (R, , c2)

Ev~u~ing

.. e,. Generating

Fig. 8. mustration of senerating answers with respect to Example 3~ 1.

A3 --- { • 2 n + l ' ' ' ~ 1 7 6 1 7 6 "
~ 1 7 6 1 7 6

Ai = { a i n + l , ' " , ai~+y~ �9

Then, in terms of Ak (1 ~< k <~ i) and C 2 , we can generate the first part of answers for C2 as shown in

fig. 9 . (Note that we do not need to compute all A k (1 ~< k ~< i) . In practice, each time an A k needs

to be used in the computation, we shrink Ak- I by leaving out certain a i ' s) . Without loss of generali-

ty, we assume that n ~< m.

AI: al ... a n ... a m a2n ain ain+j Ai: ain+l, ..., ain+j

bll blm, bl.m+l bl.2m bl,lm+r biI bij

, ,
"~WI ~ Wl W m

where i.n + j = l.m + r

Fig. 9. Illustration of answer generation.

If n = m , no more new answers can be generated after this step. Otherwise, in terms of C 1 and

the newly generated answers for C2, we can further generate some new answers for C 1 in the same

way. To this end, we first merge the newly generated answers as shown in fig. 10 (a) (hereafter, this

process is called a merging operation.) .

Then, we construct Bk (I <~ k<~ l) as shown in fig. l O (b) (hereafter , this process is called a

separating operat ion).

In terms d Cl and Bk (2 ~< k ~< l) , some new answers for C x can be generated as described

above. Note that B 1 will not be used in this step. It is because no new answers can be generated in

terms d it, i . e . using it, only the same answer set as A l can be generated. In the next step, some

new answers for C2 can be generated in terms of C 2 and the newly generated answers for C1-

The correctness d this method is based on the following proposition.

P r o p o s i t i o n 3 . 1 . Let { v l , V z , . . . , v ~ t and { w l , w 2 , ' " , w , ~ } be two cyclez having the ~ m e

starting po in t . Suppose that each v i i s o f the f o r m (q~, c ,) and each wj i s o f the forra (q~, a j) . Let

No. 3 GRAPH TRAVERSAL METHOD FOR EVALUATING LINEAR BINARY-CHAIN PROGRAMS 237

bl = b l l tJb21 kg ... U bil,

blm+r = b l , im+r L:

(a)

Fig. 10.

B I = {b I blm+r},
B 2 = {bin+ 1 blm+r},
B 3 = {b~,,+! btm+~},

B I = {b/m+l blm+r}.

(b)

Merging operation and separating operation.

(c i , h) be an answer. Then , pair (dy, h) corresponds to an answer i f i , j satisfy the equation :

k " m + j = l . n + i

for some integers k and l(O<~ k ~ n - 1 ,0< . l <. m - 1) .

Proof. The proof of the proposition is similar to Proposition 2.1 and Proposition 2 .2 of refer-

ence [5] .

3 .3 Linear cycle covers for a strongly connected graph

Obviously, we have to first enumerate all cycles of an SCC prior to the direct generation of an-

swers in the case of cyclic data. Unfortunately, this cannot always be done in linear time. Using

Johnson's algorithm [zS] , this task requires time 0 (n~c c + e~c~)cse c , where ns~ c and e,o~ are numbers of

nodes and edges, respectively and c,~c is the number of cycles in the SCC. In many cases, the num-

ber of cycles c ~ can grow faster with n,~ than the exponential 2 n . For example, in a complete di-

rected graph (CDG) with n nodes there are exactly
m-t n)

cycles. In fig. 11, we show a complete directed graph with 4 nodes (4-CDG), which contains 20 cy-

des.

In addition, the technique for generating answers cannot be applied efficiently to the graph

shown in fig. 12(a) , since there is no common node among the cycles contained in it and the task of

selecting a cycle, along which the answers will be evaluated, becomes difficult. (Remember that for

the first cycle, the answers have to be evaluated by the graph traversal).

Fig. 11. Complete graph with 4 nodes.

(a)

Fig. 12.

(b)

Cycles without comn~n nodes.

To overcome these difficulties, we define several new concepts and propose a method to make the

technique for generating answers useful.

Definition 3 . 7 . Let G be an SCC. A feedback node of G is a node contained in every cycle

of G.

238 SCIENCE IN CHINA (Series E) Vol. 42

For example, node p in the graph shown in fig. 12(b) is a feedback node.

Definition 3 .8 . A set of cycles C contained in an SCC is called a cycle cover of the SCC, if

each edge of the SCC appears at least in one cycle of C. We denote the cardinality of C by I C I.

Definition 3 .9 . A cycle cover w. r . t . an SCC is a linear cycle cover if its cardinality is in the

order O (e , ~) , where e,~c is the number of the edges of the SCC.

Based on the above definitions, we develop a method to underlie the technique for generating an-

swers. The main idea behind it is to identify first a feedback node and then, using the feedback node

as a pivot, to perform a depth-f'mst search to find a linear cycle cover. Using Garey's algorithm [261 ,

one feedback node in an SCC can be found in linear time if any. Thus, we can use Garey' s algorithm

to check for an SCC whether some feedback node exists. If not, we traverse the SCC in a normal way.

Otherwise, if a feedback point exists, we take it as the start node and execute the following algorithm

to fred a linear cycle cover of the SCC, to which the technique for generating answers can be applied.

Below is an algorithm for finding a linear cycle cover w. r. t. an SCC containing a feedback

node. In the algorithm each node n is marked with a boolean value val(n) and in the beginning, all

v a l (n) ' s are set to 0. During the depth-first traversal (starting from the feedback node) , we set

va l (n) to 1, when the corresponding node n is visited for the first time. Then, we have a simple

property that when a node n with va l (n) = 1 is met, at least one cycle through the feedback node and

n must already be generated. In terms of this property, when a node n with val(n) = 1 is encoun-

tered, a new cycle can immediately be constructed by taking the current path and the path from n to

the feedback node (which appears in some already generated cycle) together.

Procedure cycle-cover(tim, SCC)("Jbn is a feedback node of SCC.")

1 begin

2 for all node in SCC do

3 val(node) := O;

4 N : = f i n ;

5 val(./bn) := 1 ;

6 seareh(./bn) ;

7 end

procedure search(n)

8 begin

9 generate all sons of n;

10 for each son m do

11 ff v (m) = 0 then { v (m) : = 1; sea rch(m) l

12 else

13 {take one of the paths (from m to N) which have been visited and the current path

from N to m to form a new cycle; store the new cyele t ;

14 end

In the following, we show that the cycles enumerated by cycle-cover() constitute a linear cycle

coveF.

Propmition 3 . 2 . Let C be a set of cycles (o f an arbitrary SCC) found by cycle-cover () .

No. 3 GRAPH TRAVERSAL METHOD FOR EVALUATING LINEAR BINARY-CHAIN PROGRAMS 239

Then C is a cycle cover for the SCC.

Proof. Assume, to the contrary, that C is not a cycle cover. Then there exists at least one

edge in the SCC that does not appear in any cycle in C. Suppose (rt i , rtj) is such an edge. Thus,

(h i , nj) has not been visited by cycle-cover() . Obviously, n i is not visited either. Otherwise, from

lines 9 - - 1 1 , we see that (h i , nj) will certainly be traversed after n i is visited, which contradicts the

assumption. For the same reason, any edge with rt i being the tail (for an edge (n , m) , n is the tail

and m is the head of the edge) will not be visited. Consider one of such edges, say (nk , n~). Then

n~ is also unvisited. In this way, we can find a sequence ni, n k , " " , nl with nt = N, which is not

visited by cycle-cover() . But it contradicts the behaviour of the algorithm. Thus, C is a cycle cover.

Proposition 3 . 3 . The cycle cover found by cycle-cover() is linear.

Proof. We denote the number of the found cycles passing a set of nodes n l, n2, "'", nk by

numcycles(n l , n2, " " , nk). If the indegree and outdegree of each node n i in an SCC are denoted as

in (n i) and out(n i) , respectively, the number of the cycles found by cycle-cover() can be computed

as follows :

numcycles = numcyc le s (v) , (3 . 1)

where v is the start node (a feedback point).
~t(v)

numcycles(v) = ~] numcycles(v, n i)
i f f i l

= ~ ~] n u m c y c l e s (v , ;'l,i, II, i]) , (3 . 2)
i= l j = l

where each n i stands for a son of v , while each nij stands for a son of n i .

If we use outedges(n,) to denote the set of edges incident out of n i and inedges(nil) the edges

incident into nij, we have U outedges(ni) = U inedges (n i l) . This equation can be proved as fol-

lows. First, we have U outedges (n i) C_ U inedges (nii) (see fig. 13 for illustration). Then we prove
i t , J

U~ outedges(hi) _D U. inedges(nij). Assume, to the contrary, that there exists a node n such that for

some n k (n , n k) ~ U, outedges (n i) but E U,.. inedges (n i l) . In terms of the property of SCCs, there

must be a path connecting nk and n as shown in fig. 14. Then the cycle composed of this path and

the edge (n , n~) does not contain v, which is a contradiction with the fact that v is a common node

of all cycles contained in the SCC.

12

nA ~ nit

V flit

. ,.* *"-, ...k
rt)~ �9 j~ - "

Fig. 13. Illustration for the relationship between inde- Fig. 14. A cycle which does not contain v.

glees and outdegrees.

In terms of the above analysis, (3 . 2) can be rewritten as follows:

240 SCIENCE IN CHINA (Series E) Y d . 42

~t(.) ~,t(,,,) ..(,,~)

~ numcycles(v, n, , nij) = ~ ~ numcycles(v, n i , n 1). (3.3)
i =1 j = l j m : l

Note that on the right-hand side of (3 . 3) each n i stands for a son of v. Since in the above algorithm

only one of the paths which follows a node n (from n to N) is taken to form a new cycle when n is

met once ~ (see line 13 in cycle-cover() ; see also the thick edges shown in fig. 13 for illustra-

tion. Along each of them only one path will be considered), we have the following equation.

~ numcycles(v, n l , n i) = ~ (numcycles(v, n{, nj) + in (n j) - 1)
./ ~ - I 1

: ~ numcycles(b , n/, nj) + ~ in(n i) . - j
i 1

: ~] n u m c y c l e s (v , n J , n ~ , n t) + ~-~jin(ni) + ~ -] i n (n t) - (j + k)
j t

= i n (v) + ~-] in (n t) - (n , ~ - o u t (v))

= o (e m - n ~ + 1) . (3.4)
Here n{ stands for a father node of ny, through which nj is visited for the first time. Therefore, the

cycle cover found by cycle-cover() is linear.

In the worst case, the length of a cycle is in the order of 0 (n ~ ,) . Then the space complexity of

cycle-cover() will be 0 (n m �9 e ,~) . It is not desired for the optimization purpose. In addition, if we

generate answers simply along each cycle without any control, some answers may be repeatedly pro-

duced many times due to the common part of cycles. Therefore, we do not enumerate all the cycles of

a cycle cover using cycle-cover() , but integrate its idea into the process for generating answers.

Another important question is whether the answers produced by traversing an entire SCC is the

same as those produced by traversing only one of its cycle covers. In the following, we prove a propo-

sition to give a positive reply to this.

Defin/t/on 3 .10 . Let Pi and P1 be two answers to a recursive query. If Pl can be evaluated on

Pi' we say that pj is a predecessor of Pi, and Pi is a successor of pj , denoted predecessor(pi) and

successor(pj) respectively.

PrOlmSlflon 3 . 4 . Let Am and A ~ . ~ , be two sets of answers produced by traversing some SCC

in the up-graph, which contains at least one feedback node, and by one of its cycle covers, respective-

ly. Then Am : Ac,~o,,.r.

Proof. For any a E Acycl~.co,er, we have trivially a E A m . Then A crr C_ Am. In the fol-

lowing, we prove that A m ~ Acycl~.~o,e ,. For any a E Am, there must be a path Vo--~vl--~v2 -~ ' ' ' -~

vi in the SCC (with Vo being a feedback node and each vi(0 < j~< i) being also a node in the charac-

ter graph) such that Ao0 = predecessor(Ao,), A~, = predecessor(A~), " " , A,,., = predecessor(A,)

and a E A~, where A~(O~j<<. i) stands for a set of answers produced by traversing path vj--~vj+l

(corresponding to an edge in the character graph) and the corresponding path in the down-graph. In

terms of the property of cycle covers, there is a set of cycles C in cycle-cover such that the paths vo

--~vi, v f -~v2, "'" , and vi_i--~vi are covered by C. Then, by the first traversal along C, we wiU get

AOo. By the second traversal along C, we will get A,, and so on. Obviously, by the ith travetsal a-

No. 3 GRAPH TRAVERSAL METHOD FOR EVALUATING LINEAR BINARY-CHAIN PROGRAMS 241

long C, A,, will be produced. Therefore, a E At,el Thus, A ~ C Ac,ch. which completes

the proof.

4 Complexity analysis and comparison

In the analysis below, we assume that the rule set is like that of Example 2 .1 . e and n denote

the number of edges and nodes, respectively, in the graph representing the input relations.

At first, we point out that our algorithm uniformly outperforms Grahne's algorithm. On the one

hand, the subsumption check is unproblematic, since it requires only linear time. On the other hand,

our method will traverse a much smaller graph if there exist RCNs. Suppose that after node i is en-

countered, ei edges will be traversed. Then ~-']e~ < e , because any repeated accesses to an edge are
i

avoided by means of removing each subgraph rooted at some RCN. (We generate the corresponding

answers in a similar way as discussed in 3 . 2) . In addition, in the case of cyclic data, each cycle is

traversed only once. If the length of the longest cycle in up is m and the length of the longest cycle

in down is l , then the cost of our algorithm is O (m + l) . In sum, the time complexity of our algo-

rithm is O (n + e).

In contrast, the cost of Grahne' s algorithm is 0 (n 3) in the case of cyclic data. This is because

m" l iterations of the maln loop must be performed for the case mentioned above. In the worst case,

every single execution of the main loop may entail accessing 0 (n) nodes.

Various strategies for processing recursive queries have been proposed. However, all these algo-
rithms require at least O(e 2) or O (e n) time [s'll'ls'lg'27-29] .

When the input relations contain no cycles, the cost of Counting is O (en) , better than that of

Magic Sets which is O(e2) [3~ . For cyclic cases, ref . [17] proposed a method which takes O (n e)

time. However, this method requires O (e 2) time for preprocessing. Ref. [31] presented an algo-

rithm that runs a counting method until a cycle is detected, then switches over to Magic Sets. This al-

gorithm is also O(e 2) on cyclic data. The method proposed in ref. E27] requires O (n 3) time. But

in some cases, the complexity can be reduced to O (n 2). The algorithm proposed in ref. [29] re-

quires O (ne) time.

Note that a little more space is required by our algorithm than Grahne's algorithm. This is be-

cause each node, in our method, occupies not only the state and the domain (range) value, but also

three integers. If the space complexity of Grahne' s algorithm is S, then 4 �9 S space is required by

OUrs .

At last, it should be pointed out that to use our algorithm to treat with rules in the normal Horn-

clause form, some more time is needed to make the rule transformation. But this task can be shifted

to a pre-process phase, which has no effect on the actual execution of the algorithm.

$ Conclusion

In this paper, a graph traversal algorithm has been presented which is much more efficient than

Grahne's algorithm. The key idea of the improvement is to recognize all the similar portions of a

graph and to produce all the relevant answers by constructing only one of them. In the case of acyclic

data, the algorithm optimizes the evaluation by traversing each path only once and generating the re-

maining answers directly from the answers already found. In the case of cyclic data, a lot of graph op-

242 SCIENCE IN CHINA (Series E) Vol. 42

timization techniques are employed to speed up the evaluation, such as the combination of Tarjan's
algorithm and the topological numbering, and the algorithm for finding feedback nodes as well as for

cycle covers. In this way, most of answers for cyclic paths can also be generated directly by traversing

the corresponding subgraphs. Since traversing a path requires access to the external storage or search

of large relations but the "generating" operations require only access to small data sets and happen al-

ways in main memory, we may suppose that the time complexity of generating answers is 0 (1) , and

therefore a linear time is achieved.

References

1 Chang, C., On the evaluation of queries containing derived relmions in relational database, in Advances in Data Base Theory,
Vo.l, New York: Plenum Press, 1981.

2 Chen, Y., Harder, T. , Improving RQA/FQI recursive query algorithm, in Proceedings ISMM-First Int. Conf. on lnformazion
and Enowledge M ~ , Balgmore, MarTland, Nov. 1992, New York: ACM, 1992, 106--115.

3 Chert, Y. , A bottom=up query evaluation method for stratified datalmses, in Proc, eedinss of 9 tit lnteruaz~n~ C o n ~ on Data
Engineering, Vienna, Austria, April 1993, California : IEEE, 1993, 568--575.

4 Chen, Y. , Harder, T . , On the optimal top-dawn evaluation of rocursive queries, in Proc. of 5th Int. Conf. on Database
and ~ Systems App//cat/ons, Greece, Athens, Sept. 1994 (ed. Kamgiannis, D .) , Berlin: Sprlnger-Verlag, 1994, 47--

56.
5 Chen, Y. , Processing of recursive rules in knowledge-based systems Algorithms for handling recursive rules and negative

information and performance measurements, Ph.D. Thesis, Computer Science Department, University of Kaiserehmteru, C, er-

many, Feb. 1995.
6 Chen, Y. , On the bottom-up evaluation of recursive queries, Int. J. Intelligent Systems, 1996, 11(I0). 807.
7 Chen, Y. , Magic sets and stratified databases, Int. J. lnteUigentsystems, 1997, 12(3): 203.
8 Han, J . , Chain-split evaluation in deductive databases, IEEE Trans. Knowledge and Data Engineering, 1995, 7: 261.
9 Ullman, J. D. , Principles of Databases and Knowledge-base Systems, Rockville: Computer Science Press, 1989.

10 Shapiro, S. , Mckay, D. , Inference with recursive rules, in Proceedings of the I st Annual National Conference on Arc~fwial In-
(ed. Bszler, R .) , California. MIT Preee, 1980, 151--156.

11 Bancilbon, F . , Naive evaluation of recumively defined relations, On Knowledge Base M ~ n t Systems-Integrating Databa~

and AIsystems (ed. Bancibon, F .) , Berlin: Springer.Verlag, 1985, 165--178.
12 Vieille, L. , From QSQ to QoSsQ: Global optimization of recursive queries, in Proc. 2nd Int. Conf. on Expert Database Sys-

tem, Charleston (ed. Kerschber$, L .) , Vir~nia: Benjamin Cummings, 1988, 743--748.
13 Nejdl, W., Recursive strategies for answering recursive queries-The RQA/FQI strategy, in Proc. 13th VLDB Conf.,

Brlgb~on, Er~gland (ed. Stocker, P.M.) , California: Morgan Kaofmann, 1987, 43--$0.
14 Hensehan, L. J . , Naqvi, S . , On compiling queries in recursive first-onler database, J. ACM, 1984, 31(1) : 47.
15 Han, J . , Zeng, K. , Lu, T . , Normall,ation of linear recureionin deductive databeses, in Prec. ofthe9thlnterua~nalConf.

on Data Engineering, Vienna, Austria, April 1993, California: IEEE, 1993, 559--567.
16 Han, J . , Chen, S. , Graphic representation of linear recursive rules, International Journal of lnte///gent Systems, 1992, 7:

317.
17 Han, J . , Henschan, L. J . , The level-oycle merglng method, in Proc. ofthe lstlnternational Conf. on Deducti~ and Object-

oriented Databases, Kyoto (ed. Kim, W.) , Berlin ' Springer-Verlag, 1989, 113-- 129.
18 Baneilhon, F . , Maier, D. , Sagiv, Y. et a l . , Magic sets and other strange ways to implement logic ~ , in Proc. 5th

ACMSymp. Principles of Dntabase Systems , Cambridge, MA, March 1986 (ed. Zaniolo', C .) , California: ACM, 1986, 1--
15.

19 Beeri, C. , Ramakrlshnan, R. , On the power of magic, J . Log/c Programm/ng, 1991, November, 10:' 255.

20 Grabne, G. , Sippo, S. , Soisalon-Soininen, E . , Efficient evaluation for a subset of recureive queries, in Proceedings Of ACM-
PODS, California: ACM, 1987, 284--293.

21 Grahne, G., Sippo, S. , Soisalon-Soininen, E . , Efficient evaluation for a subset of recursive queries, J. Log/c P r o s ~ / n g ,
1991, 10: 301.

22 Lloyd, J. W. , Foundations of Logic Prosramming , Berlin: Springer-Verlag, 1987.

No. 3 GRAPH TRAVERSAL METHOD FOR EVALUATING LINEAR BINARY-CHAIN PROGRAMS 243

23 Kanamori, T . , Kawamura, T . , Abstract interpretation based on OLDT resolution, J . Log/c. Prosramm/~, 1993, 15: 1.
24 Tarjan, R . , Depth-first search andlinear graph algorithm, SIAMJ. Compat., 1972, 1(2): 146.
25 Johnson, D. B. , Finding all elementa~ eireuits d a directed graph, $IAMJ. Compat., 1975, 4 (1) : 50.

26 Garey, M. R. , Tarjan, R. E . , A linear-time algorithm for finding all feedback vertices, Information Processing Letters, 1978,
7(6) : 274.

27 Aly, H. , Ozsoyoglu, Z. M., Synchronized counting method, in Prec. of the 5 tlt International Conf. on Data Engineering,
Angdes, California: IEEE, 1989, 366--373.

28 Bancilhon, F . , Ramakrishnan, R. , An amateur's introduction to rccursive query processing strategies, in Prec. 1986 ACM-
SIC, MOD Conf. Management of Da~a , Washington, DC , May 1986, California: ACM, 1986, 16--52.

29 Wu, C. , Henschen, L. J. , Answering linear recursive queries in cyclic databases, in Prec. of the 1988 International Conf.
on Fifth Gen. C o m p u t e r . ~ , Tokyo, California: ACM, 1988, 16--52.

30 Marchetti-Spaccamela, A. , Pelnggi, A. , Sacea, D. , Worst ease complexity analysis of methods for logic query implementa-
tion, in Prec. of ACM-POD$ 87, California: ACM, 1987, 294--301.

31 Saeea, D. , Zaniolo, C. , On the implementation of a simple class of logic queries for databases, in Proceedings of the 5 tit ACM
$1GMOD-SIC, ACT Symposium on Principles of ~ e Systems, California: ACM, 1986, 16--23.

