
Vol.:(0123456789)

SN Computer Science (2023) 4:260
https://doi.org/10.1007/s42979-023-01690-8

SN Computer Science

ORIGINAL RESEARCH

On the Multiple Pattern String Matching in DNA Databases

Yangjun Chen1  · Bobin Chen2 · Yujia Wu1

Received: 3 September 2021 / Accepted: 12 January 2023
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2023

Abstract
In this paper, we discuss an indexing method for solving the multiple string pattern matching problem, by which we are
given a set of short pattern strings R = { r1,..., rl } and required to locate all those substrings of a long target string s such
that each of them matches an rj in R . The main idea is to construct a pattern matching machine A over R and transform the
reverse s̄ of s to a Burrow-Wheeler-Transformation array as an index, denoted as L = BWT(s̄ ), and search A against it. Dur-
ing the process, the failure function of A is utilized to decrease the number of subranges in L to be searched at each step. In
addition, the Wavelet tree is used to reduce the searching cost of L, by which its single-character checking is changed to a
multi-character checking. In this way, multiple searches of a Wavelet tree are reduced to a single search, and high efficiency
can be achieved. Extensive experiments have been conducted, which shows that our method works better than almost all
the existing methods for this problem.

Keywords  String matching · DNA sequences · Multiple pattern machine · Automation · BWT-transformation

Introduction

By the multiple string pattern matching problem, we will
be given a set R = { r1,..., rl }, where each ri (1 ≤ i ≤ l) is a
(short) string (or say, a finite sequence of symbols) called
a pattern, and a (long) target string s. We are required to
locate and identify all substrings of s which are patterns in
R . This problem becomes very important as the next-gener-
ation sequencing technique [7] comes into use, which needs
to align a huge number of reads (short DNA sequences)
against a very long sequence, known as a genome, which

is previously well studied and often billions of characters
long, for earlier diagnosis of cancers, or some other pur-
poses. Normally, the number of reads is multiple millions
and the length of a read is about 100 characters (bps).

Other applications of this problem also include network
intrusion detection [25], digital forensics (file carving) [26,
64], business analytics, and natural language processing, just
to name a few.

This problem was studied as early as the mid-1970′ s. In
[1], Aho and Corasick proposed the first efficient algorithm,
by which a pattern matching machine ( PMM for short) or an
automaton A is constructed over R and then searched against
s by successively reading the characters in s, making state
transition and occasionally reporting output. The running
time of this process is bounded by O(

∑l

i=1
 |ri| + |s|).

This algorithm has been extensively used in practise,
such as bioinformatics [18, 19], multiple key-word searching
[31], and two-dimensional pattern searching [4]; and also
improved or modified by different researchers, as reported
in [16, 17, 55, 63]. However, the worst case time complexity
remains unchanged.

On the other hand, different indexes have been devel-
oped for the single string pattern searching in the past
several decades, such as suffix trees [47, 62], suffix arrays
[44], hashing [30], and BWT-arrays [9, 35, 53, 58]. How-
ever, no effort has been directed to building indexes over s

The article is a modification and extension of a conference paper: Y.
Chen and Y. Wu, Searching BWT against Pattern Matching Machine
to Find Multiple String Matches, in: Proc. Cyber2017, pp. 167–176,
Oct. 2017, Nanjing, China.

 *	 Yangjun Chen
	 y.chen@uwinnipeg.ca

	 Bobin Chen
	 chen.bobin@outlook.com

	 Yujia Wu
	 wyj1128@yahoo.com

1	 Department of Applied Computer Science, University
of Winnipeg, Winnipeg, Canada

2	 Department of Computer Science, University of Toronto,
Toronto, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-023-01690-8&domain=pdf
http://orcid.org/0000-0002-4991-9558

	 SN Computer Science (2023) 4:260 260   Page 2 of 18

SN Computer Science

to expedite the multiple string pattern matching described
above.

In this paper, we address this issue. We will show that
a kind of indexes over s, the so-called BWT-array (Bur-
row-Wheeler-Transformation array), can be established
quickly, which we can use to speed up scanning of s when
we search A in some way to bring down the searching
time to O(|A| ). (This time complexity does not include the
time for loading an index into main memory from hard
disk. However, in practice, this part of time can be com-
pletely ignored. For example, for reading the BWT-array
of a genome of 1,464,443,456 bytes, only 3 milliseconds
are used.)

Specifically, the following techniques will be utilized to
achieve high efficiency:

1.	 Folding target string. The positions with the same char-
acter in s will be clustered together by the BWT trans-
formation. Then, we are able to search s in ‘parallel′ .
That means, at each step, we will access a collection of
positions in s with a same character, instead of a single
one. In this sense, s is folded in some way, and becomes
shorter. Searching such a ”folded” and shorter string, we
can save much time for doing the task.

2.	 Subrange search reduction . During a search of A against
the BWT-array L for s̄ (the reverse of s), a series of sub-
ranges within L will be checked. By using the failure
function of A , the number of such subranges can be
greatly reduced.

3.	 Speeding up search of BWT(s̄) . In our method, L = BWT
(s̄ ) is stored as a Wavelet tree TL [22] and the search of a
certain value in L corresponds to a search along a path
of length |�| in TL . By changing a single-value searching
to a multi-value searching, the total cost of searching L
can be minimized.

In this way, our method can improve the running time of
both the on-line algorithm (like the Aho-Corasick’s algo-
rithm), and the index-based algorithm (like the suffix tree)
by 5–10 times.

The remainder of the paper is organized as follows. First,
in "Notations", we summarize all the symbols and notations
used throughout the paper. Then, in "Related Work", we
review the related work. In "Basic Techniques: PMM and
BWT", we briefly describe the PMM and the BWT transfor-
mation, based on which our method is established. "Algo-
rithm Description" is devoted to the discussion of our algo-
rithm for finding all occurrences of a set of pattern strings in
a target string. In "Integrating Wavelet Tree Searching into
PMM Searching", we discuss how to store an L as a Wavelet
tree to reduce the searching costs. "Experiments" reports the
test results. Finally, we conclude with a short summary and a
brief discussion on the future work in "Conclusion".

Notations

In this section, we summarize all the symbols and notations
used throughout the paper in the following Table 1.

Related Work

By a single pattern string matching problem, we will find all
the occurrences of a pattern string r in a target string s. By a
multi-pattern string matching problem, we are asked to identify
all the occurrences of patterns each coming from a set R in a
target string s. A huge number of algorithms have been pro-
posed to solve these two kinds of problems. But in the follow-
ing, we only review some of the most noteworthy strategies.

–	 Single pattern string matching

The first interesting algorithm for this problem is the famous
Knuth-Morris-Pratt ′ s algorithm [33], which scans both r and
s from left to right and uses an auxiliary next-table (for r)
containing the so-called shift information (or say,
failure function values) to indicate how far to shift the pattern
from right to left when the current character in r fails to

Table 1   Symbols and notations

R R = { r1...rl }, a set of patterns
T T = trie(R ) constructed over R
s A target string
trie(R) A trie built over R
BWT(s) BWT-array of s
T
L

A wavelet tree over L = BWT(s)
<e , [ � , �]> A range (segment) from rank � to � in F

e

� � = <e , [ � , �]>
L
�

A range in L = BWT(s), corresponding
to � = <e , [ � , �]> in F

e

L
1
�

Start position in L
�

L
2
�

End position in L
�

rk
F
(e) Rank of e ∈ array F

rk
L
(e) Rank of e ∈ array L

l(v) A character labeling a node v ∈ T
P(v) A path from root to v in T
f(v) A failure function associated with v ∈ T
I(v) An interval associated with v ∈ T
A A pattern matching machine A = T ∪ {f(v)|

v ∈ T}
� Alphabet
�

v
Set of characters associated with v in T

L

�
v

l
First half in �

v

�
v

r
Second half in �

v

SN Computer Science (2023) 4:260 	 Page 3 of 18  260

SN Computer Science

match the current character in s. Its time complexity is
bounded by O(m + n), where m = |r| and n = |s|. (By the shift
information, we mean a largest integer j associated with a
position i in r such that r[1.. j] = r[i − j + 1.. i] . Thus, if the
current character from the target does not match r[i + 1] , we
will compare r[j + 1] with the character next to the current
one at a next step.) The Boyer-Moore ′ s approach [8, 20, 21]
works a little bit better than the Knuth-Morris-Pratt ′ s. In
addition to the next-table, a skip-table skip of size |�| (also
for r) is kept, in which each entry skip[w] is a smallest integer
j such that r[m - j] = w. Here, � is the alphabet, from which
we take characters for both s and r′

j
 s. For a large alphabet and

small pattern, the expected number of character comparisons
is about n/m, and is O(m + n) in the worst case. By the hash-
table-based algorithms [30], short substrings called }seed�
will be first extracted from a pattern r and a signature (a bit
string) for each of them will be created. The search of a target
string s is similar to that of the Brute Force searching, but
rather than directly comparing the pattern at successive posi-
tions in s, their respective signatures are compared. Then,
stick each matching seed together to form a complete align-
ment. Its expected time is O(m + n), but in the worst case,
which is extremely unlikely, it takes O(m ⋅ n ) time. The hash
technique has also been extensively used in the DNA
sequence research [23, 39, 40, 59]. However, almost all
experiments show that they are generally inferior to the suffix
tree and the BWT index in both running time and space
requirements. The bit-parallelism introduced by Baeza-Yates
and Gonnet [5] takes advantage of the intrinsic parallelism of
the bit operations inside a computer word, allowing to cut
down the number of operations that an algorithm performs
by a factor up to w, where w is the number of bits in the com-
puter word.

In situations where a fixed string s is to be searched
repeatedly, it is worthwhile constructing an index over s,
such as suffix trees [47, 62], suffix arrays [44], and more
recently the Burrows-Wheeler transformation (or say, BWT
transformation) [9, 11, 41, 41]. A suffix tree is in fact a
trie structure [32] over all the suffixes of s; and by using
the Weiner′ s algorithm [62] it can be built in O(n) time.
However, in comparison with the BWT transformation, a
suffix tree needs much more space. Especially, for DNA
sequences, the BWT transformation works highly effi-
ciently due to the small alphabet � of DNA strings. By the
BWT transformation, the smaller � is, the less space will
be occupied by the corresponding indexes. According to a
survey done by Li and Homer [38] on sequence alignment
algorithms for next-generation sequencing, the average
space required for each character is 12–17 bytes for suffix
trees while only 0.5–2 bytes for the BWT transformation.
Our experiments also confirm this distinction [11, 14]. For
example, the file size of chromosome 1 of human is 270

Mb. But its suffix tree is of 26 Gb in size while its BWT
transformation needs only 390 Mb–1 Gb for different com-
pression rates of auxiliary arrays, completely handleable
on PC or laptop machines.

–	 Multi-pattern string matching

The first efficient algorithm for multi-pattern string matching
was proposed by Aho and Corasick in 1975 [1], by which s is
searched for occurrences of all patterns from a set: { r1 , r2,...,
rl }. Their algorithm needs only O(

∑l

i=1
 |ri| + |s|) time. Later

on, some variants of this algorithm have been suggested.
In [16], Commentz-Walter combines the Boyer-Moore ′ s
technique into the Aho-Corasick′ s algorithm. In [63], Wu
and Manber extend the Boyer-Moore′ s algorithm to con-
currently search multiple pattern strings. Instead of using
bad-character heuristics to compute shift values, they utilize
a character block containing 2 or 3 characters. In addition,
hash tables are created to link the blocks and the related pat-
terns. In [55], a concept of superalphabets is introduced, in
which each (super) character corresponds to a set of q-grams
(each being a substring from a certain pattern and repre-
sented as a bit string, called a signature, generated by using
a hash function.) In this way, a super automaton can be cre-
ated, in which each transition is labeled with a super char-
acter. s will also be handled as a sequence of q-grams and
searched in the same way as the Aho-Corasick ′ s algorithm.
The main problem of this method is the false positive and
entails a very time-consuming verification process. In [12],
Crochemore et al. combine the directed acyclic word graphs
into theAho-Corasick ′ s algorithm. If the total length of all
patterns is polynomial with respect to the shortest length m
of a pattern, the average number of comparisons is O((n/m)
log m).

However, all the improved algorithms have the same
worst-case time complexity as the Aho-Corasick′s.

In addition, several researchers have attempted to improve
the performance of multi-pattern string matching applica-
tions via the use of parallelism, such as those discussed
in [27, 28, 46, 50, 56, 57, 60, 64]. They either port the
Aho-Corasick ′ algorithm to different parallel machines,
such as the IBM Cell Broadband Engine (CBE) [56, 57, 64],
or GPUs [28, 60]; or simply execute any efficient on-line
string matching algorithm, such as the Knuth-Morris-Pratt
′ s [33], the Boyer-Moore ′ s [8], or the Wu-Manber ′ s [63],
over distributed patterns. But all of them are only suitable
for the cases when the number of patterns is limited, not
scaling well to massive sets of patterns. The hardware-based
method also suffers from the same problem [2]. However,
by our method, even for many millions of patterns, the high
performance can be achieved. In addition, our algorithm
itself can also be executed in parallel, by porting the BWT-
arrays to CBEs.

	 SN Computer Science (2023) 4:260 260   Page 4 of 18

SN Computer Science

In Table 2, we compare our method with all the repre-
sentative on-line, as well as index-based strategies.

Finally, we point out that there is a bunch of work on the
inexact string matching, such as [12, 13, 36] for the string
matching with k differences, and [10, 15, 37, 52] for the
string matching with k differences, as well as [45] for the
string matching with wild-card symbols. Due to the mis-
matches, differences, and wild-cards, the match relation is
no longer transitive and therefore the techniques established
to solve these problems cannot be employed for the multiple
pattern string matching.

An interested reader is referred to [3, 49] for a brief, but
complete survey on the string matching problem.

Basic Techniques: PMM and BWT

In this section, we briefly describe two basic techniques uti-
lized in our method. They are the pattern matching machine
and the BWT transformation.

Pattern Matching Machine

Similar to the Aho-Corasick ′ s algorithm, we need first to
construct a pattern matching machine ( PMM ) A over R =
{ r1..., rl } . Different from it, however, we will not search A
against s, but against BWT(s̄).

Intuitively, the pattern matching machine A over R is con-
sidered as a directed graph composed of two parts: a trie T,
denoted as trie(R ), and a failure function f(v) (v ∈ T).

First of all, for each rj (j = 1,..., l), we will attach a special
character $ , which does not appear in any rj , to its end and
construct trie(R ) as described below.

If |R| = 0, trie(R ) is, of course, empty. For |R| = 1, trie(R )
is a single node. If |R| > 1, R is split into |�| = k (possibly
empty) subsets R1 , R2,..., Rk so that each Ri (i ∈ {1,..., k})

contains all those strings with the same first character. The
tries: trie(R1 ), trie(R2,),..., trie(Rk ) are constructed in the
same way except that at the ith step, the splitting of sets is
based on the ith characters in the sequences. They are then
connected from their respective roots to a single node to
create trie(R).

Example 1  As an example, consider a set of four pattern
strings:

r1 : �����
r2 : ��
r3 : �����
r4 : ��

For these pattern strings, a trie can be constructed as
shown in Fig. 1a.

In this trie, v0 is a virtual root, representing an empty
string while any other node v stands for a string equal to the
concatenation of all characters labelling the nodes on the
path from v0 to v, denoted as P(v). Especially, if v is a leaf,
P(v) must be a string in R . For instance, the path from v0 to
v8 spells out the third pattern r3 = �����$ in Fig. 1. In addi-
tion, however, we may associate some nodes v with an output

Table 2   Comparison of
strategies

*m—the shortest length of a pattern

Indexing time Preprocessing time Matching time

Suffix trees [62] O(n) 0 O(
∑l

i=1
�r

i
�)

Suffix arrays [44] O(n) 0 O(
∑l

i=1
�r

i
�)

BWT transformation [9] O(n) 0 O(
∑l

i=1
�r

i
�)

Hash-based [30] 0 0 ∑i

i=1
�r

i
� + n)

Bit-parallel [5] 0 O(
∑l

i=1
�r

i
�) O(n)

Aho-Corasick′ s [1] 0 O(
∑l

i=1
�r

i
�) O(n)

Commentz-Water′ s [16] 0 O(
∑l

i=1
�r

i
�) O(n)

Chrochemore′ s [17] 0 O(
∑l

i=1
�r

i
�) O((n/m)log m)*

Wu-Manber′ s [63] 0 O(
∑l

i=1
�r

i
�) O(n)

Ours O(n) O(
∑l

i=1
�r

i
�) O(|A|)

(a) (b)

Fig. 1   A trie and a pattern matching machine

SN Computer Science (2023) 4:260 	 Page 5 of 18  260

SN Computer Science

such that each r ∈ output(v) is a string in R and also a suffix
of P(v). For example, for v3 shown in Fig. 1a, we have output
(v3 ) = { r4 }. It is because r4 = �� ∈ R is a suffix of P(v3 ) = ���.

Besides, for a node v, we will use l(v) to represent its
character.

In terms of Aho and Corasick [1], f(v) = u if and only if
there exists a maximum suffix of the string spelt out along
P(v), which is equal to the string spelt out along P(u).

Thus, by f(v), similar to Knuth-Morris-Pratt′ s, we give
the node to be entered at a mismatch of P(v), as illustrated
by the dashed arrows in Fig. 1b. For example, f(v4 ) = v9
is represented by the dashed arrow from v4 to v9 . We have
this connection since �� , which is represented by P(v9 ), is a
maximum suffix of P(v4 ) = ���� within R.

Formally, we have

We will also simply use f(v) to represent a link from v to f(v).

BWT and String Searching

Now, we describe the BWT transformation in some detail.
We will use s to denote a string that we would like to trans-
form. Again, assume that s terminates with $ , which does not
appear elsewhere in s and is alphabetically prior to all other
characters. In the case of DNA sequences, we have $ < � < �
< � < � . As an example, consider s = �������$.

First, we will rotate s consecutively to create eight differ-
ent strings, stacked vertically to form a matrix as illustrated
in Fig. 2a.

Next, we sort the rows of the matrix alphabetically,
and get another matrix, as demonstrated in Fig. 2b, which
is called the Burrow-Wheeler Matrix [9] and denoted as
BWM(s). Especially, the last column L of BWM(s), read
from top to bottom, is called the BWT transformation (or the

(1)A = T ∪ {f (v)|v ∈ T ⧵ {v0}}.

BWT-array) and denoted as BWT(s). So for s = �������$ ,
we have BWT(s) = ������$� (see Fig. 2c). The first column
in BWM(s) is referred to as F.

Special attention should be paid to Fig. 2b, c. In both
of them, for ease of explanation, the position of a character
in s is represented by its subscript. (That is, we rewrite s
as ��������������$ .) For example, �� represents the second
appearance of � in s; and �� the first appearance of � in s. In
the same way, we can check all the other appearances of
different characters.

Additionally, when ranking an elements e in both F and
L in such a way that if e is the ith appearance of a certain
character it will be assigned i, the same element will get
the same number in the two columns. For instance, in F the
rank of �� , denoted as rkF(�� ), is 1 (showing that �� is the
first appearance of � in F). Its rank in L, rkL(�� ) is also 1. We
can check all the other elements and find that this property,
called the rank correspondence, holds for all the elements.
That is, for any element e in s, we always have

According to this property, a string searching can be very
efficiently conducted, as described below.

Firstly, notice that we can store F as |�| + 1 intervals,
such as F$ = F[1... 1], Fa = F[2... 4], Fc = F[5... 7], Fg =
F[8... 8], and Ft = � for the above example (see Fig. 2c). We
can also represent a segment within an Fe (with e ∈ � ) as a
pair of the form <e , [ � , �]>, where � ≤ � are two ranks of e.
Thus, we have Fa = F[2... 4] = <� , [1, 3]>, Fc = F[5... 7] =
<� , [1, 3]>, and Fg = F[8... 8] = <� , [1, 1]>.

Secondly, we will use L
�
 to represent a range in L corre-

sponding to a pair � = <e , [ � , �]>. For example, in Fig. 2c,
L
<�,[1,3]> = L[2... 4], L

<�,[1,2]> = L[5... 6]. L
<�,[2,3]> = L[3...

4], and so on.
In addition, for L

�
 = L[a... b], we use L1

�
 to refer to a, and

L2
�
 to b.
Finally, we implement a procedure search(z, � ) to search

L
�
 to find the first and the last rank of z (denoted as �′ and

�
′ , respectively) within L

�
 , and return <z , [ �′ , �′]> as the

result:

To locate r in s, we work on the characters in r in the reverse
order (referred to as a backward search). That is, we will
search r̄ (reverse of r) against BWT(s). It is because figuring
out L

�
 in terms of � corresponds to a step of scanning in s,

but in the reverse direction.
To see how it works, we consider r = ��� and trace how r

is identified in s = ������� $ step by step by using BWT(s).

(2)rkF(e) = rkL(e)

(3)search(z,𝜋) =

⎧
⎪⎨⎪⎩

< z, [𝛼�, 𝛽�] >, if z ∈ L
𝜋
;

𝜙, otherwise.

(a) (b) (c)

Fig. 2   Illustration for construction of BWT arrays

	 SN Computer Science (2023) 4:260 260   Page 6 of 18

SN Computer Science

–	 Step. 1 ( checking the last character in r ): Check r[3] =
� in r, and then figure out Fa = F[2... 4] = <� , [1, 3]>.
(See Fig. 3a for illustration.)

–	 Step 2 ( checking the second character from last ): Check
r[2] = � . Call search(� , <� , [1, 3]>). By its execution,
L
<a,[1,3]> = L[2... 4] will be searched to find a range

bounded by the first and last rank of � . Concretely, we
will find rkL(�� ) = 1 and rkL(��) = 2. So, search(� , <� , [1,
3]>) returns <� , [1, 2]>. It is F[5... 6]. (See Fig. 3b.)

–	 Step 3 ( check the first character ): Check r[1] = � . Call
search(� , <� , [1, 2]>). Since L

<�,[1,2]> = L[5... 6],
search(� , <� , [1, 2]>) will return <a , [2, 2]>. It is F[2...
2]. At this step, we have exhausted all the characters in
r and F[2... 2] contains only one element, showing that
one occurrence of r in s is found. It is represented by ��
in s. See Fig. 3c.

Assume that the segment (in F) found at the last step con-
tains i entries. Then, there are i occurrences of r in s with
each indicated by an entry in that segment.

The above working process can be represented as a
sequence of three pairs:

<� , [1, 3]>, <� , [1, 2]>, <� , [2, 2]>.
In general, for r̄ = z1... zm , its search against BWT(s) can

always be represented as a sequence of pairs (with each rep-
resenting a segment in Fz for some z ∈ �):

<z1 , [ �1 , �1]>,..., <zm , [ �m , �m]>,
where <z1 , [ �1 , �1]> = Fz1

 , and <zi , [ �i , �i]> = search(zi ,
zi−1, [�i−1 . �i−1]) for 1 < i ≤ m. We call such a sequence as
a search sequence. Thus, the time used for this process is
bounded by O(

∑m

i=1
�i ), where �i is the time for an execution

of search(zi , zi−1, [�i−1 , �i−1]). However, this time complex-
ity can be reduced to O(m) by using the so-called rankAll
method, but with high space requirements [9]. Concretely,
O(n |�|log n)-bits space is required to store all the rankAll
arrays. Another way to reduce time for searching L is to
store L as a Wavelet tree [22], by which the usage of space
can be decremented to O(nlog |�|)-bits, but with the search-
ing time increased to O(log |�| ). We modify the Wavelet
tree method and integrate it into our strategy to reach an

average searching time less than O(log |�| ), but keep the
space requirement O(nlog |�|)-bits not increased. This time
complexity even beats the quantum string matching algo-
rithm [43].

From the above discussion, we can observe a very impor-
tant property of the BWT transformation, by which we
check, at each step, a subset of characters (represented by a
subsegment of F) from a target string s while by any on-line
strategy only one character from s is checked at one step. In
this sense, s is somehow folded by the BWT transformation.

Finally, we point out that BWT(s) (or BWT(s̄ )) can be
constructed in O(|s|) time via its relationship to the suffix
array of s, as described below.

Let s = x0x1...xn−1 , ended with $ (i.e., xi ∈ � for i = 0,...,
n − 2, and xn−1 = $ ). Let s[i] = xi (i = 0, 1,..., n − 1) be the
ith character of s, s[i...j] = xi... xj a substring and s[i...n − 1]
a suffix of s. Suffix array H of s is a permutation of the inte-
gers 0,..., n − 1 such that H[i] is the start position of the ith
smallest suffix, as illustrated in Fig. 4, in which we show all
the suffixes of ������� $ (Fig. 4a), sorted suffixes (Fig. 4b),
and the corresponding array H (Fig. 4c), which contains the
positions of all the sorted suffixes′ first character in s.

The relationship between H and the BWT array L can be
determined by the following formulas [9]:

Since a suffix array can be generated in O(n) time (cf. for
instance [24, 34, 51]), L can then also be created in lin-
ear time. However, most algorithms for constructing a suf-
fix array require at least O(nlog n) bits of working space,
which is prohibitively high and amounts to 12 GB for the
human genome. Recently, Hon et al. [24] proposed a space-
economical algorithm that uses n bits of working space and
requires only < 1 GB memory at peak time for constructing
L of the human genome. This algorithm is further improved

(4)

⎧
⎪⎨⎪⎩

L[i] = $, if H[i] = 0;

L[i] = s[H[i] − 1], otherwise.

(a) (b) (c)

Fig. 3   Illustration of backward search

(a) (b) (c)

Fig. 4   Suffixes, sorted suffixes, and suffix array

SN Computer Science (2023) 4:260 	 Page 7 of 18  260

SN Computer Science

by Nong [51], whose approach needs only O(|�| log n)-bits
space. Either of the methods can be used for our purpose.

Algorithm Description

In this section, we present our main algorithm. First, we
show a breadth-first search of trie(R ) against BWT(s̄ ) in
"Searching Tries Over Pattern Strings". Then, in "Search-
ing PMMs Over Pattern Strings", we discuss how the failure
function in an PMM can be employed to speed up the work-
ing process. "Correctness and Time Complexity" is devoted
to the correctness proof and the time complexity analysis.

Searching Tries Over Pattern Strings

It is easy to see that exploring a path in a trie T over R corre-
sponds to scanning a pattern r ∈ R . If we explore, at the same
time, the L array (= BWT(s̄)), we will find all the occur-
rences of r (without $ involved) in s. Obviously, by a depth-
first search of T, this can be done very efficiently. However,
to be able to utilize the failure function to reduce the number
of subranges (within L) to be searched at each step, we need
to explore T in the breadth-first manner. For this purpose, we
use a queue Q to control the searching process.

In Q, each entry is a pair <v , [a, b]> with v being a node
in T and a ≤ b, used to indicate a subsegment within Fl(v) . For
example, when searching the trie shown in Fig. 1a against the
L array shown in Fig. 2c, we may have an entry like <v1 , [1,
3]> in Q to represent a subsegment Fa[1... 3] (the first to the
third entry in Fa ) since l(v1 ) = ‘ � ’. In addition, for technical
convenience, we use F

�
 to represent the whole F. Then, F

�
[a...

b] represents the segment from the ath to the bth entry in F.

Algorithm 1: trieSearch(T , LF)
Input : T - trie over a set of patterns; LF - arrays

L and F over a target
Output: R - all occurrences of patterns in target

1 v ← root(T); R ← φ;
2 enqueue(Q, <v, [1, |s|]>);
3 while Q is not empty do
4 (v, a, b) ← dequeue(Q);
5 if output(v) �= φ then
6 R ← R ∪ {<output(v), l(v), a, b>}
7 let v1, ..., vk be the children of v;
8 denote Fl(v)[a .. b] by π;
9 for i = 1 to k do

10 let x = l(vi);
11 if search(x, π) �= φ then
12 let search(x, π) = <x, [α, β]>;
13 enqueue(Q, <vi, [α, β]>);

14 return R;

In addition, each time we encounter a node v with
output(v) ≠ � , we will create a quadruple <output(v), l(v),
a, b> to record the occurrences of all those pattern strings
represented by output(v) in s. Thus, the result of this pro-
cess is a set R containing all such quadruples.

In the algorithm, we first enqueue <root(T), [1, |s|]>
into queue Q (append at the end of Q) (see lines 1 - 2).
Then, we go into the main while-loop (lines 3 - 13), in
which we will first dequeue the first element from Q (taken
out from the front of Q), stored as a pair <v , [a, b]> (line
4). Then, we will check whether output(v) is empty. If it is
not the case, a quadruple <output(v), l(v), a, b > will be
added to the result R (see line 5). (In practice, we can store
compressed suffix arrays [44, 62] and use their relationship
with BWT to calculate positions of pattern occurrences in
s.) For each child vi of v, we will determine a segment in
L by executing search(x, � ), where x = l(vi ) and � = l(v),
<[a... b])> (= Fl(v)[a.. b]). Assume that search(l(vi) , � ) =
<l(vi) , [ �i , �i]>. We will then enqueue each <vi , [ � , �]>
into Q. (see lines 12–13.)

The following example helps for illustration.

Example 2  Consider all pattern strings given in Example
1 again. The trie T over these short strings are shown in
Fig. 1a. In order to find all the occurrences of them in s =
�������$ , we will run trieSearch() on T and the LF shown
in Fig. 2c. (By LF, we mean the L and F arrays together.)

In the execution of trieSearch(), the following steps will
be carried out.

–	 Step 1: Enqueue <v0 , [1, 8]> into Q, as illustrated in
Fig. 5a.

–	 Step 2: Dequeue the first element <v0 , [1, 8]> from Q.
Figure out the two children of v0 : v1 and v11 . First, for v1 ,
we have l(v1 ) = � . By executing search(� , F

�
[1.. 8]), we

get <� , [1, 3]> and then enqueue <v1 , 1, 3> into Q. For
v11 , we have l(v11 ) = � and get <� , [1, 3]> by execut-

(a)

(d)

(g) (h)

(e)

(b) (c)

(f)

(i)

Fig. 5   Illustration for Step 1–9

	 SN Computer Science (2023) 4:260 260   Page 8 of 18

SN Computer Science

ing search(� , F
�
[1.. 8]). So, <v11 , [1, 3]> will also be

enqueued into Q. See Fig. 5b for illustration.
–	 Step 3: Dequeue the first element <v1 , [1, 3]> from Q.

v1 also has two children: v2 and v9 . For v2 , we have l(v2 )
= � . By executing search(�,Fa[1.. 3]), we get <� , [1,
2]>. For v9 , we have l(v9) = � and get <� , [1, 1]> by
executing search(� , Fa[1.. 3]). Similarly, we will con-
secutively enqueue <v2 , [1, 2]> and <v9 , [1, 1]> into
Q. See Fig. 5c.

The remaining steps 4, 5, 6, 7, 8, 9 will be done in the same
way as above and Q will be accordingly changed as shown
in Fig. 5d–i, respectively. Here, special attention should be
paid to Step 5 when <v9 , [1, 1]> is dequeued from Q. Since
output(v9) = r2 , we will store <r2 , � , [1, 1]> in R as part of
the result (see line 5 in trieSearch()), which shows that r2
appears at g1-position in s = ��������������$.

Searching PMMs Over Pattern Strings

In the algorithm discussed in the previous section, the
failure function f is totally ignored. Indeed, due to the
difference between the scanning of s and the search-
ing of BWT(s̄) , the failure function f cannot be used in a
way as Aho-Corasick ′ s does. It is because when search-
ing BWT(s̄) along a path in T, what we will produce is
a search sequence: a sequence of pairs; and for any two
such sequences (along two different paths in T), which
spell out a same sequence of characters, they may have
different sequences of intervals. For instance, along the
path v2 → v3 shown in Fig. 6, we will create a sequence of
pairs: <� , [1, 2]>, <� , [2, 2]> while along the path v11
→ v12 the sequence generated is <� , [1, 3]>, <� , [2, 2]>.
Although they have the same sequence of characters: ca,
their sequences of intervals are different: one is [1, 2][2,
2] and the other is [1, 3][2, 2].

In addition, since a pair sequence cannot be created in a
reverse order (by searching a PMM bottom-up), it is com-
pletely impossible for us to use the skip-table utilized in
the Boyler-Moore ′ s algorithm [8] (by which substrings of
s need to be scanned backwards), or the DAWG structure
(directed acyclic word graph) in the Crochemore ′ s algo-
rithm [17] (by which a DAWG also needs to be searched
bottom-up.) However, the failure function can be really
employed to reduce the number of subranges of L to be
searched during an execution of search().

To this end, we will associate each node v in T with an
extra item - the corresponding interval [ �v , �v ], referred to
as I(v), which is found for l(v) by running search(). That
is, along an edge w → v in T, we will have search(l(v),
l(w) , <[�w , �w]>) = <l(v) , [ �v , �v]>. (See Fig. 6 for

illustration.) With the help of such intervals, the failure
function f can be utilized as follows.

Lemma 1  Let u, v be two nodes in A such that f(v) = u. Then,
I(v) ⊆ I(u).

Proof  According to the definition of f(v) = u, P(u) is a suffix
of P(v). Without loss of generality, assume that P(v) = z1...
zi zi+1... zi+j and P(u) = zi+1... zi+j with i, j ≥ 0. Then, by the
execution of trieSearch(T, LF), along P(v) and P(u), two
sequences of pairs will be generated:

along P(v): �1,..., �i , �i+1,..., �i+j,
along P(u): �′

1
,..., �′

j
,

where �1 = <z1 , Fz1
> , �′

1
 = <zi+1 , Fzi+1

> , �l+1 = search(zl ,
�l ) for l = 1,..., i + j - 1, and ��

k+1
 = search(zk , �′

k
 ) for k =

1,..., j′ -1.
Let Il be the interval in pair �l (l = 1,..., i + j). Let I′

k
 be

the interval in pair �′
k
 (k = i + 1,..., i + j). We must have Ik ⊆

I�
k−i

 (k = i + 1,..., i + j). Thus, I(v) = Ii+j ⊆ I′
j
 = I(u). 	� ◻

This lemma enables us to design an efficient procedure
to replace search() for creating I(v)′ s, as described below.

Let w → v be an edge in T. Assume that f(v) = u. Let l(u)
= z. Since we explore T in the breadth-first manner, u must
be visited before v. Therefore, its interval I(u) = [ �u , �u ]
must have been created when we meet v. Then, in terms of
Lemma 1 (which shows I(v) ⊆ I(u)), a simple inference can
be made:

If I(u) ⊆ I(w), we must have I(v) = I(u).
It is because in this case, when we search I(w) to find the

first and last appearance of v, we will definitely first meet �u
(from top) and �u (from bottom).

As an example, consider the search process of A shown
in Fig. 6 against the LF of s̄ shown in Fig. 2c, where s =
�������$ . By the breadth-first search of T, v12 will be visited
before v3 and f(v3 ) = v12 . As shown in Fig. 6, we have v2 → v3
and I(v12) = [2, 2] ⊂ I(v2) = [1, 3]. Then, we definitely have
I(v3) = I(v12) = [2, 2].

Fig. 6   Illustration for searching PMM

SN Computer Science (2023) 4:260 	 Page 9 of 18  260

SN Computer Science

Therefore, we will change search() to combine the
above inference mechanism into the process, and refer to
the changed procedure as searchI(v, w, f(v), LF) to indicate
its difference from search(). But its output is the same as
search().

According to the above discussion, we give the follow-
ing algorithm, which works almost in the same way as trie-
Search(). The only difference consists in the use of searchI (
). That is, we will still explore T breadth-first. However, each
time we encounter a node v, we will call searchI(v, w, f(v),
LF) (instead of search()) to determine the interval for v,
where w represents the parent of v.

Algorithm 2: pmmSearch(A, LF)
Input : T - trie over a set of patterns; LF - arrays

l and F over a target
Output: R - all occurrences of patterns in target

1 v ← root(T); R ← φ;
2 enqueue(Q, <v, [1, |s|]>);
3 while Q is not empty do
4 v ← dequeue(Q);
5 if output(v) �= φ then
6 R ← R ∪ {<output(v), l(v), I(v)>}
7 let v1, ..., vk be the children of v;
8 for i = 1 to k do
9 <x, [α, β]> ← searchI(vi, v, f(vi), LF);

10 if [α, β] �= φ then
11 enqueue(Q, <vi, [α, β]>);

12 return R;

Correctness and Time Complexity

In this section, we prove the correctness of pmmSearch (T,
LF) and analyze its time complexity.

First, we have the following lemma.

Lemma 2  Let u, v be two nodes in A such that f(v) = u. Let
w be the parent of v in T. The interval returned by searchI(v,
w, f(v), LF) is correct.

Proof  This lemma can be directly derived from Lemma 1. 	
� ◻

Proposition 1  Let A be a PMM constructed over a collec-
tions of pattern strings: r1,..., rm , and LF a BWT-mapping
established for a reversed target string s̄ . Let R be the result
of pmmSearch (T  , LF). Then, for each rj , if it occurs in s,
there is a quadruple <output (v) , l(v), [� , �]> ∈ R such that
rj ∈ output (v) , l (v) is equal to the last character of rj , and
Fl(v) [�] , Fl(v) [� + 1],..., Fl(v) [�] show all the occurrences of
rj in s.

Proof  We prove the proposition by induction on the height
h of A , which is defined to be the number of edges on the
longest downward path from the root to a leaf node.

Basic step. When h = 1. The proposition trivially holds.
Induction hypothesis. Suppose that when the height of

A is l, the proposition holds. We consider the case that the
height of A is l + 1. Let A′ be a PMM obtained by removing
all the leaf nodes in A . Then, the height of A′ is at most l.
According to the induction hypothesis, the interval gener-
ated by applying pmmSearch() to A′ must be correct. Now,
we consider a leaf node v in A′ . Let v1,..., vk be the children
of v in A . Then, in terms of Lemma 2, I(vi) produced by
executing searchI(vi , v, f (vi) , LF) for i = 1,..., k must also
be correct. Considering that all the nodes in A are visited
in the breadth-first manner, the claim in the proposition is
correct. 	� ◻

Concerning the time complexity, we check the main
while-loop, in which each node v in T is accessed only
once. Therefore, the running time of pmmSearch(T, LF) is
bounded by O(

∑
v∈T �v ), where �v represents the cost for an

execution of searchI() to find I(v).
By using the rankAll technique [9], �v can be reduced to

O(1), but the space overhead will be greatly increased. In the
next section, our focus will be on how to further reduce this
cost by integrating the Wavelet tree searching [22] into our
algorithm to achieve this purpose.

Integrating Wavelet Tree Searching
into PMM Searching

As mentioned in the previous section, the cost of searching
L can be reduced to O(1) by using the rankAll technique
[9], but with O(n|�|log n) extra space being required. It is
prohibitively high when target strings are very long, and � is
large, such as protein sequences and English documents. To
mitigate the problem to some extent, we store L as a Wavelet
tree [22] and integrate a modified Wavelet tree search into
our algorithm. In general, the space requirement of a Wave-
let tree is bounded by O(nlog |�| ), but with a higher search-
ing time O(log |�| ). However, in our implementation, the
average searching time can be decreased to less than O(log
|�| ) while the space requirement remains not incremented.

In the following, we first give a detailed description of the
Wavelet tree in "Wavelet Trees". Then, in "Modified Wave-
let Trees", we slightly change the Wavelet tree searching
method. Finally, in "Integration of Wavelet Tree Search into
PMM Breadth-First Search", we discuss the integration of
the Wavelet tree search into our strategy.

	 SN Computer Science (2023) 4:260 260   Page 10 of 18

SN Computer Science

Wavelet Trees

The key idea behind the Wavelet tree is to store L = BWT(s̄ )
as a balanced binary tree TL of height |�| , as illustrated in
Fig. 7, where we show how BWT(s̄ ) = ������$� is recur-
sively decomposed and stored in a binary tree structure.

Its purpose is to reduce the space for storing rankAll
arrays [9], but more time is needed to figure out the rank
z[i] for z ∈ � , i.e., the number of z′ s appearances up to L[i].
Such a number needs to be computed to evaluate search ()
or searchI ().

Formally, a Wavelet tree can be constructed as follows.

1.	 In a Wavelet tree, each node u represents a (sub)string L
and contains a Boolean string B representing a partition
of L.

2.	 Let L = a1a2...ak . Let � be the set of all characters
appearing in L. We divide � evenly into two subsets �l
and �r . Then, a Boolean array B is constructed as fol-
lows.

–	 For each i ∈ {1, ..., k}, if L[i] ∈ �l , then B[i] = 0;
–	 otherwise, B[i] = 1.

3.	 The left child ul of u represents a substring Ll of L made
up of all those characters of L ∈ �l , which appear (not
necessarily contiguously) in the same order as in L. Fur-
ther, �l will be divided into subsets �ll and �lr ; and in
terms of �ll and �lr , we partition Ll and construct the
corresponding Boolean string Bl as above. That is, for
each i ∈ {1,...|Ll| } , if Ll[i] ∈ �ll , then Bl[i] = 0; other-
wise, Bl[i] = 1.

4.	 In the same way, we will construct the right child ur of
u and the substring Lr of L made up of all those char-
acters of L ∈ �r . Similar to �l , �r will also be further
divided into two parts: �rl and �rr and the corresponding
Boolean string Br will be created.

5.	 We repeat steps (2) and (3) until a substring is met,
which contains only the same characters.

In terms of the above discussion, we can construct a tree as
shown in Fig. 7, in which the strings in nodes are not actu-
ally stored, but shown here for ease of understanding.

The tree is called a Wavelet tree due to its analogy with
the wavelet transform for signals, which recursively decom-
poses a signal into low-frequency and high-frequency com-
ponents [48].

In the tree shown in Fig. 7, the root u0 represents L0 =
������ $ � . We first divide the set of all the different char-
acters appearing in L0 : �0 = {$, �, �, �} evenly into two
parts: �0

l
 = {$, �} and �0

r
 = {�, �} . Then, the corresponding

Boolean string is set to be B0 = 01110100, representing a
partition of L0 , by which for any character z ∈ �0

l
 the cor-

responding bit in B0 is set to 0 and z will be sent to the left
child while for any character z′ ∈ �0

r
 the corresponding bit in

B0 is set to 1 and z′ will be sent to the right child
Now, let us have a close look at the left child u1 of the root

u0 . It represents the substring L1 = aca $ g , made up of all the
characters ∈ �0

l
 = {$, �} and rendered in the same order as in

the original string L0 . If we further divide all its characters
in �0

l
 into �1

l
 = { $ } and �1

r
 = { � }, we will get its Boolean

string B1 = 0010. In the same way, we can check all the other
nodes in the tree shown in Fig. 7.

Using the Wavelet tree built over L = BWT(s̄) , z[i] can be
evaluated by exploring a root-to-leaf path as below.

Initially, the current node u is set to be the root u0 .

1.	 At node u, count the number x of 0s or 1s in the range
B[1.. i], depending on whether z ∈ �l , or �r . If u is a leaf
node, it contains only the same characters and x is set to
be i. which is returned as the result.

2.	 If z ∈ �l , go to the left child ul . B ← Bl , i ← x. � ← �l . u
← ul . Go to (1).

3.	 If z ∈ �r , go to the right child ur . B ← Br , i ← x. � ← �r .
u ← ur . Go to (1).

For instance, to evaluate �[6] over ������ $ � , the path u0 →
u1 → u4 in Fig. 7 will be searched. First, in the root u0 , we
will count the number of 0 s in Bu0

[1.. 6] = ������ since
a ∈ �0

l
 = { $ , a } . It is x = 2. Then, we go to the left child

u1 of u0 , in which we count 1s in Bu1
[1.. x] = Bu1

[1.. 2] = ��
since a ∈ �1

r
 = {a}. This time, we get x = 2 again. Next,

we go to the right child u4 of u1 , and get x = 2. Since it is
a leaf node, we get the answer �[6] = 2.

Modified Wavelet Trees

Since any Wavelet tree is balanced and each level cor-
responds to an even splitting of a certain (sub)set of char-
acters, the length of any path in it is bounded by O(log
|�| ). Besides, the counting of 0s or 1s in a Boolean string
(stored in any node) can be done in O(1) time by using the Fig. 7   A wavelet tree

SN Computer Science (2023) 4:260 	 Page 11 of 18  260

SN Computer Science

so-called RRR​ data structure discussed in [54], or the suc-
cinct data structure in [29]. Therefore, the cost of calculat-
ing z[i] is bounded by O(log |�| ). The space requirement
of both RRR​ and the succinct data structure is bounded by
O(n). Thus, the size of a Wavelet tree is bounded by O(n
⋅log |�|).

However, we can also store a Boolean string B as an
integer array A with A[i] being the number of 0s in B[1..
i]. Then, the counting of 0s or 1s can also be done in O(1)
time as illustrated in Fig. 8.

We pay attention to array A in u0 . To know the number
of 0s up to position 5 in B in u0 , simply access A[5] = 2.
we get �[5] = 2. If you want to know the number of 1s up
to position 5, simply compute 5 - A[5] = 3. Therefore, we
have �[5] = 3.

But the array A is much simpler than RRR​ [54] or the
succinct data structure [29].

The drawback of this method is that we need log n bits
to store an integer in A. For this reason, we replace A with
a compact array UA , in which only part of A is stored. For
example, we can divide A into a set of buckets of the same
size and for each bucket only a value will be stored in the
compact array. Obviously, doing so, more searching effort
is required to find missing values. In practice, the size of
a bucket (referred to as a compact factor � ) can be set to
different values. For instance, we can set � = 4, indicating
that for each four contiguous elements in A only one value
will be stored. That is, we will not store all the values in
A in u0 , but only store A[4] and A[8] in the corresponding
compact array (as illustrated by the values marked grey
in Fig. 9).

Obviously, each A[j] can be easily derived from UA by
using one of the following formulas:

where i = ⌊ j/� ⌋ and is the number of � ′ s appearances
within B[i ⋅ � + 1.. j] which have to be searched, or

(5)A[j] = UA[i] + �

(6)A[j] = UA[i
�] − �

�

where i′ = ⌈ j/� ⌉ and �′ is the number of �′ s appearances
within B[j + 1.. i′ ⋅ � ]. Also, �′ has to be obtained by search-
ing part of B.

Therefore, we need two procedures: toRight(B, j, � )
and toLeft(B, j, � ) to find � and �′ , respectively. In terms
of whether j − i ⋅ � ≤ i′ ⋅ � − j, we will call toRight(B, j, � )
or toLeft(B, j, � ) so that fewer entries in B will be scanned
to find A[j].

In terms of [9], the BWT arrays are normally well clus-
tered and proved to be a good data compression approach for
data transmission. Thus, array B should be even better clus-
tered since it contains only two different values: � and � , and
so does array A. Thus, we can attach two extra values with
each UA[i]. They are the numbers of consecutive values same
as UA[i] just before and after UA[i], respectively, mainly used
to improve the performance of toRight() and toLeft(). Note
that we need only log � bits to represent such a number.

Integration of Wavelet Tree Search into PMM
Breadth‑First Search

As an important step to integrate the Wavelet tree searching
into our algorithm, we designed a procedure to do a multi-
ple-value searching over a Wavelet tree (for L = BWT(s̄)),
instead of a single-value searching as discussed in "Wavelet
Trees".

We first consider a set X = { x1(i1),..., xl(il )} as a query to
find out the number of x′

j
 s appearances prior to L[ij ] (includ-

ing L[ij ]) for each j ∈ {1,...., l } . We need to evaluate such a
query when we try to determine <l(v1) , [ �v1 , �v1]>, ..., <l

(vr ), [ �vr , �vr]> for all the children v1 , ..., vr of a certain node
v. Assume that the pair associated with v is � = <l(v), [ �v ,
�v]>. Then, for each vj , we need to find two values:

xj[L1� − 1], and
xj[L2�],
where xj = l(vj).
If xj[L1� - 1] = xj[L2� ], L

�
 contains no l(vj ). Otherwise, [ �j ,

�j ] = [xj[L1� - 1] + 1, xj[L2�]].
As an example, consider � = <� , [1, 3]> (representing

a segment of F shown in Fig. 2c). We have L
�
 = L[2.. 4],

L1
�
 = 1, and L2

�
 = 4. To find the first and the last appearance

Fig. 8   A modified wavelet tree
Fig. 9   Illustration for U

A

	 SN Computer Science (2023) 4:260 260   Page 12 of 18

SN Computer Science

of � in L[2.. 4], we only need to find �[L1
�
 - 1] = � [2 - 1] = �

[1] = 0 and �[L2
�
 ] = �[4] = 2. So the corresponding range is

[ � [2 − 1] + 1, �[4]]= [1, 2].
Let TL be the Wavelet tree over L = BWT(s̄ ). To evaluate

query X = { x1(i1),..., xl(il)}, we give an algorithm below, in
which the following notations are used:

–	 Q: a queue to control the search of TL in the breadth-first
manner;

–	 (v, X): a pair, where v ∈ TL , and X is query;
–	 �

v
l
 : the first half of the set of characters appearing in Lv;

–	 �
v
r
 : the second half of the set of characters appearing in

Lv;
–	 Bv : the Boolean array stored in v;
–	 vl : left child of v;
–	 vr : right child of v.

The result R of the algorithm is also of the form { x1(j1 ), ...,
xl(jl)} , but showing that for each xf (f ∈ { 1, ..., l } ) the num-
ber of its appearances up to L[if  ] is jf .

Algorithm 3: waveletSearch(TL, X)
Input : TL - a Wavelet tree over L
Output: R - for each x(i) ∈ X, number of x′s

appearances up to L[i]
1 enqueue(Q, (root(TL), X)); R ← φ;
2 while Q is not empty do
3 (v, X′) ← dequeue(Q);
4 if v is leaf then
5 R ← R ∪ X′; break;

6 let X′ = {x1(i1), ..., xl(il)};
7 Yl ← φ; Yr ← φ;
8 for j = 1 to l do
9 if xj ∈ Σv

l then
10 find number k of 0′s before Bv[ij] in Bv;
11 Yl ← Yl ∪ {xj(k)};
12 else
13 find number k of 1′s before Bv[ij] in Bv;
14 Yr ← Yr ∪ {xj(k)};

15 enqueue(Q, (vl, Yi)); enqueue(Q, (vr, Yr));

16 return R;

The above algorithm is in essence a breadth-first search-
ing of TL . In queue Q, each element is a pair of the form
(v, X). At the very beginning, Q contains only one element
(root(TL ), { x1(j1 ), ..., xl(jl)}).

Each time we dequeue an element (v, X) out of Q, we
will calculate, for each xj(ij ) ∈ X, the number k of 0 ′ s up

to Bv[ij ] if xj ∈ �v
l
 , or the number k of 1 ′ s up to Bv[ij ] if xj

∈ �v
r
 . In the former case, we append xj(ij ) to Yl (see lines

9–11). In the latter case, xj(ij ) is added to Yr (see lines
13–14).

After all subqueries ( xj(ij) ′ s) in X are evaluated, both
( vl , Yl ) and ( vr , Yr ) will be enqueued into Q (see line 15).

Example 3  Consider the trie T shown in Fig. 1a again. The
pair for the root v0 is � = <� , [1, 8]>. Then, L

�
 = L[1..

8], L1
�
 = 1, and L2

�
 = 8. For its two children v1 and v11 , we

will construct a query X = { l(v1)(L1� - 1), l(v1)(L2� ), l(v11)
(L1

�
 - 1), l(v11)(L2�)} = { �(0), �(8), �(0), �(8)} . By executing

waveletSearch(TL , X) ( TL is shown in Fig. 8), the following
steps will be carried out.

–	 Step 1: Enqueue <u0 , X> into Q.
–	 Step 2: Dequeue the first element from Q. We have
	  u = u0 , and X′ = { �(0), �(8), �(0), �(8)}.
	  �0 = { $ , � , � , � } ; �0

l
 = { $ , � } ; �0

r
 = { � , � };

	  Y0

l
 = { � (0), �(4)} ; Y0

r
 = { � (0), �(4)};

	  Q = {(u1 , Y0

l
 ), ( u2 , Y0

r
)}.

–	 Step 3: Dequeue the first element from Q. We have
	  u = u1 , and X′ = { �(0), �(4)}.
	  �1 = { $ , � };
	  �

1

l
 = { $ } ; �1

r
 = { � };

	  Y1

l
 = � ; Y1

r
 = { �(0), �(3)};

	  Q = {(u2 , Y0
r
 ) ( v4 , Y1

r
) }.

–	 Step 4: Dequeue the first element from Q. We have
	  u = u2 , and X′ = { �(0), �(4)}.
	  �2 = { � , � }; �2

l
 = { � };

	  �
2
r
 = { � };

	  Y2

l
 = { � (0), �(3)} ; Y2

r
 = �;

	  Q = {(v4 , Y1
r
), ( v5 , Y2

l
)}.

–	 Step 5: Dequeue the first element from Q. We have
	  u = u3 , and X′ = { �(0), �(3)} .
	  u3 is a leaf node. X′ is added to R.
–	 Step 6: Dequeue the first element from Q. We have
	  u = u5 , and X′ = { �(0), �(3)} .
	  u5 is a leaf node. X′ is added to R.

The final result is R = { �[0], �[3]),�[0], �[3]}.
By using the algorithm waveletSearch(), our basic

algorithm can be changed as shown in Algorithm 4.

SN Computer Science (2023) 4:260 	 Page 13 of 18  260

SN Computer Science

Algorithm 4: mPmmSearch(T , LF)
Input : T - trie over a set of patterns; LF - arrays

L and F over a target
Output: R - all occurrences of patterns in target

1 v ← root(T); R ← φ;
2 enqueue(Q, <v, 1, |s|>);
3 while Q is not empty do
4 (v, a, b) ← dequeue(Q);
5 if output(v) �= φ then
6 R ← R ∪ {<output(v), l(v), a, b>}
7 let v1, ..., vk be the children of v;
8 denote Fl(v)[a .. b] by π; Denote l(vi) by xi (1 ≤

i ≤ k);
9 X ← {x1(L1

π - 1), x1(L2
π), ..., xk(L1

π - 1),
xk(L2

π)};
10 R′ ← waveletSearch(TL, X);
11 for j = 0 to k - 1 do
12 if R′[2j + 1] �= R′[2j + 2] then
13 enqueue(Q, <vi, R′[2j + 1] + 1, R′[2j

+ 2]>);

14 return R;

This algorithm is almost the same as Algorithm 2. The
only difference consists in the searching of TL . For each
encountered node v in trie T, we will first create a query X =
{ x1(L1� − 1), x1(L2� ), ..., x1(Lk� − 1), xk(L2�)} (see lines 7 - 9),
where v1 , ..., vk are the children of v, x1 = l(v1), ..., xk = l(vk
), and � is a segment of F associated with v. Then, we call
wavwletSearch(TL , X) to find <xj , [ �j , �j]> for each j ∈ {
1,..., k}.

For simplicity, the inference based on failure functions
is not included in the above algorithm. But it is an easy
task to extend the algorithm with the inference mechanism
involved.

Proposition 2  Let <output(v), l(v), a, b> be a tuple in R
returned by mPmmSearch(A , LF). Then, for any r ∈ output
(v), l(v) is equal to the last character of r, and Fl(v)[a], Fl(v)[a
+ 1], ..., Fl(v)[b] show all the occurrences of r in s.

Proof  Comparing lines 7–13 of mPmmSearch(A , LF)()
and line 7–11 of mmSearch(A , LF)(), we can see that by
mPmmSearch(A , LF)() the multi-value search of Wavelet
trees is used to speed up computation. But the results of both
of them are the same. Therefore, the proposition holds. 	
� ◻

According to the analysis of "Wavelet Trees", the cost of
searching a Wavelet tree is bounded by O(log |�| ). Thus, the
cost of the multi-value searching of a Wavelet tree should be
bounded by O(1

d
log |�| ), where d is the smallest outdegree

of an internal node in T. Therefore, the time complexity is
bounded by O(1

d
 nlog |�|).

Experiments

In our experiments, we have tested altogether seven
strategies:

–	 suffix trees (ST for short, [61]),
–	 BWT transformation (BWT for short, [9]),
–	 hash-based (hash for short, [30]),
–	 Aho-Corasick′ s algorithm (AC for short, [1]),
–	 Wu-Manber′ s algorithm (WM for short, [16]),
–	 Crochemore′ s algorithm (Cr for short, [17]), and
–	 mPmmSearch ( mPS for short), discussed in this paper.

Among them, the codes for the suffix tree based and hash
based methods are taken from the gsuffix package [3] while
all the others, except ours, are taken from github (https://​
github.​com). All of them are able to find all occurrences of
every pattern in a target, written in C++, compiled by GNU
make utility with optimization of level 2. In addition, all of
our experiments are performed on a 64-bit Ubuntu operat-
ing system, run on a single core of a 2.40GHz Intel Xeon
E5-2630 processor with 32GB RAM.

The test results are categorized in two groups: one is on a
set of synthetic data and another is on a set of real data. For
both of them, four genome and one protein sequences were
downloaded from ensemble.org (ftp://​ftp.​ensem​bl.​org/​pub/​
relea​se93/) and SMS (https://​www.​bioin​forma​tics.​org/​sms2/​
random_​prote​in.​html), respectively. The size of the alpha-
bet for the protein sequences is 20, much larger than that
of DNA sequences. The patterns which were tested against
different genome and protein sequences were generated by
using the wgsim tool which is part of the SAMtools package
[40]. In Table 3, we show all the tested sequences, as well
as the time spent for constructing their BWT-arrays.

Tests on Synthetic Data Sets

All the synthetic data are created by simulating reads or
protein sequences from the five sequences shown in Table 3,

Table 3   Genome and protein sequences, as well as time for construct-
ing their BWT-arrays

*The first four are genome sequences while the last one is a protein
sequence

Reference sequences* Num. characters Time (s)

Rat chr 1 (Rnor_6.0)) 290,094,217 27.06
C. merolae (ASM9120v1) 16,728,967 1.64
Zebra fish (GRCz10) 1,464,443,456 181.35
Rat (Rnor_6.0) 2,909,701,677 317.28
protein 144,000,000 15.67

https://github.com
https://github.com
ftp://ftp.ensembl.org/pub/release93/
ftp://ftp.ensembl.org/pub/release93/
https://www.bioinformatics.org/sms2/random_protein.html
https://www.bioinformatics.org/sms2/random_protein.html

	 SN Computer Science (2023) 4:260 260   Page 14 of 18

SN Computer Science

with varying lengths and amounts. It is done by using the
wgsim program included in the SAMtools package [40] with
default model for single read simulation.

Over such data, the impact of five factors on the searching
time are tested: number l of patterns, length m of patterns,
size n of target sequences, compact factors f1 of rankAlls
(see "Wavelet Trees") and compression factors f2 of suffix
arrays [44], which are used to find locations of matching
reads (in a target sequence) in terms of their relationship
with BWT-arrays.

Tests with Varying Amount of Reads

In this experiment, we vary the amount l of reads with l = 5,
10, 15,..., 50 millions while the reads are 50 bps or 100 bps
in length extracted randomly from Rat chr1 and C. merolae
genomes. For this test, the compact factors f1 of rankAlls is
set to be 32 for Rat chr1 to do some compression, but for C.
merolae, f1 is set to be 1, no compression at all. However,
for both of them, the compression factor f2 of suffix arrays
are set to 16.

In Fig. 10a, b, we report the test results of searching the
Rat chr1 for matching reads of 100 and 50 bps, respectively.
From these two figures, it can be clearly seen that the hash
based method has the worst performance while ours works
best. For long reads (of length 100 bps), the suffix-based is
worse than the BWT, but for short reads (of length 50 bps),
they are comparable. Both the Crochemore′ s and the Wu-
Manber′ s are worse than the BWT. But the Crochemore′ s is
better than the Wu-Manber′ s. The poor performance of the
hash-based is due to its false positive verification process.
To see this, in Table 4, we show the time of this process for
reads of 100 bps. The poor performance of both the BWT

and the suffix-based is due to the huge amount of reads and
each time only one read is checked. In the opposite, for our
method, the combination of PMMs and BWT arrays ena-
bles us to avoid repeated checking for similar reads. In these
two figures, the time for constructing PMMs over reads is
included. To see the impact of the construction of PMMs, we
show the times for constructing them over different amounts
of reads (of length 100 bps), demonstrated in Table 5.

The difference between the BWT and ours is due to
the different number of BWT-array accesses as shown in
Table 6. By the access of a BWT-array, we will scan a seg-
ment in the array to find the first and last appearance of a
certain character from a read (by BWT) or a set of characters
from more than one read (by ours).

Figure 11a, b show respectively the results for reads of
length 50 bps and 100 bps over the C. merolae genome.
Again, our method outperforms all the other six methods.

Tests with Varying Length of Reads

In this experiment, we test the impact of the read length on
performance. For this, we fix all the other four factors but
vary length m of simulated reads with m = 35, 50, 75, 100,
125,..., 200. The results in Fig. 12a shows the difference
among seven methods, in which each tested set has 20 mil-
lion reads simulated from the Rat chr1 genome with f1 = 32

0 10 20 30 40 50

0

2,000

4,000

6,000

no. of reads (million)

ti
m
e(
s
)

ST BWT
hash AC
WM Cr
mPS

(a)

0 10 20 30 40 50

0

500

1,000

1,500

2,000

no. of reads (million)
ti
m
e(
s
)

ST BWT
hash AC
WM Cr
mPS

(b)

Fig. 10   Test results on varying amount of reads - Rat Chr1

Table 4   Time for false positive checking by hash method

No. of reads 30 M 35 M 40 M 40 M 50 M

Verification time 900 s 1550 s 2900 s 3195 s 4210 s

Table 5   Time for PMM construction over reads of 100 bps

No. of reads 30 M 35 M 40 M 40 M 50 M

Time for PMM con 91 s 123 s 152 s 195 s 210 s

Table 6   Number of BWT-array accesses

No. reads 30 M 3 M 40 M 40 M 50 M

BWT 67954K 76532K 83321K 90732K 98165K
mPS 19105K 22177K 25261K 28227K 31204K

0 10 20 30 40 50

0

500

1,000

1,500

2,000

2,500

no. of reads (million)

ti
m
e(
s
)

ST BWT
hash AC
WM Cr
mPS

(a)

0 10 20 30 40 50

0

1,000

2,000

no. of reads (million)

ti
m
e(
s
)

ST BWT
hash AC
WM Cr
mPS

(b)

Fig. 11   Test results on varying amount of reads - C. merolae

SN Computer Science (2023) 4:260 	 Page 15 of 18  260

SN Computer Science

and f2 = 16. In Fig. 12b, the results show the the case that
each set has 50 million reads. Figure 13a, b show the results
of the same data settings but on C. merolae genome with f1
= 1 and f2 = 16.

Again, in this test, the hash based performs worst while
the suffix tree and the BWT method are comparable, and both
the Crochemore′ s and Wu-Manber′ are worse than them. Our
algorithm uniformly outperforms the others when searching
on short reads (shorter than 100 bps). It is because shorter

reads tend to have multiple occurrences in genomes, which
makes the trie used in ours more beneficial. However, for long
reads, the suffix tree beats the BWT since on one hand long
reads have fewer repeats in a genome, and on the other hand,
higher possibility that variations occurred in long reads may
result in earlier termination of a searching process. In practice,
short reads are more often than long reads.

Tests with Varying Lengths of Target Sequences

To examine the impacts of varying sizes of targets, we have
made four tests with each testing a certain set of patterns
against different target sequences shown in Table 3. To
be consistent with foregoing experiments, factors except
sizes of targets remain the same as for the previous tests.
In Fig. 15a, b, we show the searching time on each target
sequence for 20 million and 50 million patterns of 50 charac-
ters, respectively. Figure 14a, b also demonstrate the results
of 20 million and 50 million patterns but with each being of
100 bps. These figures show that, in general, as the size of
a target sequence increases the time of pattern aligning for
all the tested algorithms become longer. We also notice that
the larger the size of a target sequence, the bigger the gaps
between our method and the other algorithms. The hash-
based is always much slower than the others. For the suffix
tree, however, we only show the matching time for the two
short genomes and the unique protein sequence. It is because
the testing computer cannot meet its huge memory require-
ment for indexing the Zebra fish and Rat genomes (which
is the main reason why people use the BWT, instead of the
suffix tree, in practice.) Details for the patterns of 50 charac-
ters in Fig. 15a, b show that our methods is at least 5 times
faster than the BWT and the suffix tree, which happened
on the genomes. For the protein sequence, our algorithm
is even more than 10 times faster than the others since the
multi-character checking by our method is more effective
for larger alphabets.

50 100 150 200

500

1,000

1,500

2,000

read length

ti
m
e(
s
)

ST BWT
hash AC
WM Cr
mPS

(a)

50 100 150 200
0

2,000

4,000

6,000

8,000

read length
ti
m
e(
s
)

ST BWT
hash AC
WM Cr
mPS

(b)

Fig. 12   Test results on varying length of reads - Rat Chr1

50 100 150 200
0

200

400

600

800

1,000

1,200

read length

ti
m
e(
s
)

ST BWT
hash AC
WM Cr
mPS

(a)

50 100 150 200
0

1,000

2,000

3,000

read length

ti
m
e(
s
)

ST BWT
hash AC
WM Cr
mPS

(b)

Fig. 13   Test results on varying length of reads - C. merolae

Rat-C C.merolae Z. Fish Rat Protein

0

2,000

4,000

ti
m
e(
s)

ST BWT hash AC WM Cr mPS

(a)

Rat-C C.merolae Z. Fish Rat Protein

0

2,000

4,000

6,000

ti
m
e(
s)

ST BWT hash AC WM Cr mPS

(b)

Fig. 14   Test results

	 SN Computer Science (2023) 4:260 260   Page 16 of 18

SN Computer Science

Now, let us have a look at Fig. 14a, b. Although our
methods do not perform as good as for the 50 bp reads due
to the increment of length of reads, they still gain at least
22% improvement on speed and nearly 50% acceleration in
the best case, compared with the BWT.

Tests on Real Data Sets

For the performance assessment on real data, we obtain
RNA-sequence data from the project conducted in an RNA
laboratory at University of Manitoba (lab website: http://​
home.​cc.​umani​toba.​ca/​~xiej/, retrieved: 2016). This project
includes over 500 million single reads produced by Illumina
from a rat sample. Length of these reads is between 36 bps
and 100 bps after trimming using Trimmomatic [7].

The reads in the project are divided into 9 samples with
different amount ranging between 20 millions and 75 mil-
lions (see Table 7). Two tests have been conducted. In the
first test, we mapped the 9 samples back to rat genome of
ENSEMBL release 79 [18]. We were not able to test the suf-
fix tree due to its huge index size. The hash-based method
was ignored as well since its running time was too high in
comparison with the BWT. In order to balance between
searching speed and memory usage of the BWT index, we
set f1 = 128, f2 = 16 and repeated the experiment 20 times.
Figure 16a shows the average time consumed for each algo-
rithm on the 9 samples.

Since the source of RNA-sequence data is the transcripts,
the expressed part of the genome, we did a second test, in

which we mapped the nine samples again directly to the
Rat transcriptome. This is the assembly of all transcripts in
the Rat genome. This time more reads, which failed to be
aligned in the first test, are able to be exactly matched. This
result is showed in Fig. 16b.

From Fig. 16a, b, we can see that the test results for real
data set are consistent with the simulated data. Our algo-
rithm is faster than the BWT, the Aho-Corasick′ s and the
Crochemore′ s on all nine samples. Counting all the data sets
together, ours is more than 45% faster compared with these
methods. Although the performance would be dropped by
taking PMMs′ construction time into consideration, we are
still able to save 40% time using our method.

Rat-C C.merolae Z. Fish Rat Protein

0

2,000

4,000
ti
m
e(
s)

ST BWT hash AC WM Cr mPS

(a)

Rat-C C.merolae Z. Fish Rat Protein

0

2,000

4,000

6,000

8,000

ti
m
e(
s)

ST BWT hash AC WM Cr mPS

(b)

Fig. 15   Test results

Table 7   Sizes of samples Sample ID s1 s2 s3 s4 s5 s6 s7 s8 s9

No. of reads (million) 31.3 72.1 69.6 45.7 79.4 56.4 63.6 20.3 34.6

s1 s3 s5 s7 s9

400

600

800

1,000

1,200

1,400

BWT AC
Cr mPS

(a)
s1 s3 s5 s7 s9

500

1,000

1,500

2,000

BWT AC
Cr mPS

(b)

Fig. 16   Test on real data

http://home.cc.umanitoba.ca/~xiej/
http://home.cc.umanitoba.ca/~xiej/

SN Computer Science (2023) 4:260 	 Page 17 of 18  260

SN Computer Science

Conclusion

In this paper, an efficient algorithm for solving the set match-
ing problem has been discussed, by which we are required
to locate and identify all substrings of a long string s which
match some short strings from a set R = { r1,..., rm }. The
main idea is to construct a pattern matching machine A over
R and transform the reverse s̄ of s to a BWT-array as index,
BWT(s̄ ), and search A against it. During the process, the fail-
ure function of A is used to reduce the subranges of BWT(s̄ )
to be searched at each step. In addition, we change a single-
character checking against BWT(s̄ ) to a multiple-character
checking, by which multiple searches of BWT(s̄ ) are reduced
to a single scanning of it. In this way, high efficiency can
be achieved. Extensive experiments have been conducted,
which shows that our method works better than the existing
method for this problem.

As a future work, we will use the BWT to solve some
other important problems, such as the string matching with
wild-card symbols. A wild-card matches any characters, and
we may have wild-cards in patterns, in targets, or in both of
them.

Funding  This study was funded by Natural Sciences and Engineering
Research Council of Canada (DDG-2019-04100).

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

References

	 1.	 Aho AV, Corasick MJ. Efficient string matching: an aid to biblio-
graphic search. Commun ACM. 1975;23(1):333–40.

	 2.	 Aldwairi M. Hardware efficient pattern matching algorithms and
architectures for fast intrusion detection. Ph.D dissertation, Gradu-
ate Faculty of North Carolina State University, USA. 2006.

	 3.	 Al-Khamaiseh K, ALShagarin S. A survey of string matching
algorithms. Int J Eng Res Appl. 2014;4(7(Version 2)):144–56.

	 4.	 Baeza-Yates RA, Régnier M. Fast algorithms for two-dimensional
and multiple pattern matching. In: Proceedings of SWAT ’90 the
second Scandinavian workshop on algorithm theory. Springer,
Bergen; 1990. pp. 332–47.

	 5.	 Baeza-Yates RA, Gonnet GH. A new approach to text searching.
Commun ACM. 1992;35(10):74–82.

	 6.	 Bauer S, Schulz MH, Robinson PN. gsuffix. 2014. http://​gsuff​ix.​
Sourc​eforge.​net/.

	 7.	 Bolger AM, Lohse M, Usadel B. Trimmomatic: bolger: a flex-
ible trimmer for Illumina Sequence Data. Bioinformatics.
2014;30(15):2114–20.

	 8.	 Boyer RS, Moore JS. A fast string searching algorithm. Commun
ACM. 1977;20(10):762–72.

	 9.	 Burrows M, Wheeler DJ. A block-sorting lossless data compres-
sion algorithm. Syst Res Center. 1994.

	10.	 Chang WL, Lampe J. Theoretical and empirical comparisons
of approximate string matching algorithms. In: Apostolico A,
Crocchemore M, Galil Z, Manber U (eds) Combinatorial pattern
matching, lecture notes in computer science. Springer, Berlin;
1992. pp. 175–84.

	11.	 Chen Y, Wu Y. On the massive string matching problem. In: Pro-
ceedings of ICNC-FSKD, IEEE. China, August: Changsha. 2016.
p. 350–355.

	12.	 Chen Y, Wu Y. Mismatching trees and BWT arrays: a new
way for string matching with k-mismatches. In: Proceedings of
ICDE’17, IEEE, San Diego, USA. 2017. pp. 399–410.

	13.	 Chen Y, Wu Y. On the String matching with k mismatches.
Theor Comput Sci. 2018;726:5–29.

	14.	 Chen Y, Wu Y. Searching BWT against pattern matching
machine to find multiple string matches. In: Proceedings of 9th
international conference on cyber-enabled distributed comput-
ing and knowledge discovery, IEEE. 2017. pp. 167–76.

	15.	 Chen Y, Nguyen HH. On the string matching with k differences
in DNA databases. PVLDB. 2021;14(6):903–15.

	16.	 Commentz-Walter B. A string matching algorithm fast on the
average. In: Proceedings of 6th colloquium on automata, lan-
guages and programming. 1979; pp. 118–32.

	17.	 Crochemore M, et al. Fast practical multi-pattern matching. Inf
Process Lett. 1999;71:107–33.

	18.	 Cunningham F, et al. Nucleic Acids Res. 2015;43(Database
issue):D662–9.

	19.	 Dandass YS, Burgess SC, Lawrence M, Bridges SM. Accelerat-
ing string set matching in FPGA hardware for bioinformatics
research. BMC Bioinform. 2008;9:197.

	20.	 Galil Z. On improving the worst case running time of the
Boyer-Moore string searching algorithm. Commun ACM.
1977;22(9):505–8.

	21.	 Galil Z, Giancarlo R. Improved string matching with k mis-
matches. ACM SIGACT News. 1986;17(4):52b–54.

	22.	 Grossi R, Gupta A, Vitter J. High-order entropy-compressed
text indexes. In: Proceedings of 14th SODA, 2003, pp. 841–50.

	23.	 Harrison MC. Implementation of the substring test by hashing.
Commun ACM. 1971;14(12):777–9.

	24.	 Hon W, et al. A space and time efficient algorithm for construct-
ing compressed suffix arrays. Algorithmica. 2007;48:23–36.

	25.	 https://​www.​scien​cedir​ect.​com/​topics/​compu​ter-​scien​ce/​netwo​
rk-​intru​sion-​detec​tion-​system.

	26.	 https://​cisom​ag.​com/​what-​does-a-​digit​al-​foren​sics-​inves​tigat​
or-​do-​in-​an-​inves​tigat​ion/.

	27.	 Huang N, Hung H, Lai S, et al. A GPU-based multiple-pattern
matching algorithm for network intrusion detection systems.
In: The 22nd international conference on advanced information
networking and applications, 2008.

	28.	 Jacob N, Brodley C. Offloading IDS computation to the GPU.
In: The 22nd annual computer security applications conference,
2006.

	29.	 Jacobson G. Space-efficient static trees and graphs. In: 30th IEEE
symposium on foundations of computer science; 1989.

	30.	 Karp RL, Rabin MO. Efficient randomized pattern-matching algo-
rithms. IBM J Res Dev. 2010;11(5):473–83. https://​doi.​org/​10.​
1093/​bib/​bbq015.

	31.	 Kim JY, Yaylor JS. Fast multiple keyword searching. In: Proceed-
ings of third annual symposium on combinatorial pattern match-
ing. Springer; 1992. pp. 41–51.

	32.	 Knuth DE. The art of computer programming, vol. 3. Massachu-
setts: Addison-Wesley Publish Com; 1975.

http://gsuffix.Sourceforge.net/
http://gsuffix.Sourceforge.net/
https://www.sciencedirect.com/topics/computer-science/network-intrusion-detection-system
https://www.sciencedirect.com/topics/computer-science/network-intrusion-detection-system
https://cisomag.com/what-does-a-digital-forensics-investigator-do-in-an-investigation/
https://cisomag.com/what-does-a-digital-forensics-investigator-do-in-an-investigation/
https://doi.org/10.1093/bib/bbq015
https://doi.org/10.1093/bib/bbq015

	 SN Computer Science (2023) 4:260 260   Page 18 of 18

SN Computer Science

	33.	 Knuth DE, Morris JH, Pratt VR. Fast pattern matching in strings.
SIAM J Comput. 1977;6(2):323–50.

	34.	 Ko P, Aluru S. Space efficient linear time construction of suffix
arrays. J Discrete Algor. 2005;3:143–56.

	35.	 Kim JY, Yaylor JS. Introduction to the Burrows-Wheeler trans-
form. 2014. http://​www.​youtu​be.​com/​watch?v=​4n7NP​k5lwbI.

	36.	 Landau GM, Vishikin U. Efficient string matching with k mis-
matches. Theor Comput Sci. 1988;37(1):63–78.

	37.	 Landau GM, Vishikin U. Fast string matching with k differences.
J Comput Syst Sci. 1988;37(1):63–78.

	38.	 Li H, Homer N. A survey of sequence alignment algorithms for
next-generation sequencing. Brief Bioinform. 2010;11(5):473–83.
https://​doi.​org/​10.​1093/​bib/​bbq015.

	39.	 Li H, et al. Mapping short DNA sequencing reads and calling vari-
ants using mapping quality scores. Genome Res. 2008;18:1851–8.

	40.	 Li H, wgsim: a small tool for simulating sequence reads from a
reference genome. 1994. https://​github.​com/​lh3/​wgsim/.

	41.	 Li H, Durbin R. Fast and accurate short read alignment with Bur-
rows-Wheeler transform. Bioinformatics. 2009;25(14):1754–60.

	42.	 Li H, Durbin R. Fast and accurate long-read alignment with Bur-
rows-Wheeler transform. Bioinformatics. 2010;26(5):589–95.

	43.	 Lin T-S, Lu C-Y, Kuo S-Y. Quantum switching and quantum string
matching. In: 10th IEEE international conference on nanotechnol-
ogy. 2010. https://​doi.​org/​10.​1109/​NANO.​2010.​56978​66.

	44.	 Manber U, Myers EW. Suffix arrays: a new method for on-line
string searches. In: Proceedings of the 1st annual ACM-SIAM
symposium on discrete algorithms. SIAM, Philadelphia; 1990.
pp. 319–27.

	45.	 Manber U, Baeza-Yates RA. An algorithm for string matching
with a sequence of don’t cares. Inf Process Lett. 1991:133–36.

	46.	 Marziale L, Richard III G, Roussev V. Massive threading: using
GPUs to increase the performance of digit forensics tools. Science
Direct; 2007.

	47.	 McCreight EM. A space economical suffix tree construction algo-
rithm. J ACM. 1987;31(2):249–60.

	48.	 Meyer Y. Wavelets and operators. Cambridge University Press,
Cambridge. ISBN 0-521-42000-8. 1992.

	49.	 Michailidis P. On-line string matching algorithms: survey and
experimental results. Int J Comput Math. 2001;76:411–4.

	50.	 Ni J, Lin C, Chen Z, Ungsunan P. A fast multi-pattern matching
algorithm for deep packet inspection on a network processor. In:
Proceedings of international conference on parallel processing
(ICPP2007) IEEE; 2007.

	51.	 Nong G, Zhang S, Chan WH. Two efficient algorithms for
linear time suffix array construction. IEEE Trans Comput.
2011;60(10):1471–84.

	52.	 Petri M, Culpepper JS. Efficient indexing algorithms for approxi-
mate pattern matching in text. In: ADCS’12. Dunedin, NZ: Otago.
2012.

	53.	 Ktistakis R, Fournier-Viger P, Puglisi3 SJ, Raman R. Succinct
BWT-based sequence prediction, DEXA2019, Otago, Bratislava,
Slovakia, 2019. pp. 91–101.

	54.	 Raman R, Raman V, Satti SR. Succinct indexable dictionaries
with applications to encoding k-ary trees, prefix sums and multi-
sets. ACM Trans Algor. 2007;3(4).

	55.	 Salmela L, Tarhio J, Kytöjoki J. Multi-pattern string matching
with q-grams. ACM J Exp Algor 11. 2006.

	56.	 Scarpazza D, Villa O, Petrini F. Peak-performance DFA-based
string matching on the cell processor. In: Third IEEE/ACM inter-
national workshop on system management techniques: processes,
and services, within IEEE/ACM Intl. parallel and distributed pro-
cessing symposium; 2007.

	57.	 Scarpazza D, Villa O, Petrini F. Accelerating real-time string
searching with multicore processors. IEEE Computer Society,
2008.

	58.	 Salsona M, Lecroqa T, Leonarda M, Mouchard L. A four-stage
algorithm for updating a Burrows-Wheeler transform. Theor Com-
put Sci. 2019;410(43):4350–9.

	59.	 Schatz M. Cloudburst: highly sensitive read mapping with mapre-
duce. Bioinformatics. 2009;25:1363–9.

	60.	 Smith R, Goyal N, Ormont J. et al. Evaluating GPUs for network
packet signature matching. In: International symposium on per-
formance analysis of systems and software, 2009.

	61.	 Ukkonen E. Algorithms for approximate string matching. Inf Con-
trol. 1985;64:100–18.

	62.	 Weiner P. Linear pattern matching algorithm. In: Proceedings of
14th IEEE symposium on switching and automata theory, 1973,
pp. 1–11.

	63.	 Wu S, Manber U. A fast algorithm for multi-pattern searching,
Technical Report TR-94-17. Department of Computer Science:
Chung-Cheng University; 1994.

	64.	 Zha X, Sahni S. Fast in-place file carving for digital forensics,
e-Forensics. LNICST: Springer; 2010.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

http://www.youtube.com/watch?v=4n7NPk5lwbI
https://doi.org/10.1093/bib/bbq015
https://github.com/lh3/wgsim/
https://doi.org/10.1109/NANO.2010.5697866

	On the Multiple Pattern String Matching in DNA Databases
	Abstract
	Introduction
	Notations
	Related Work
	Basic Techniques: PMM and BWT
	Pattern Matching Machine
	BWT and String Searching

	Algorithm Description
	Searching Tries Over Pattern Strings
	Searching PMMs Over Pattern Strings
	Correctness and Time Complexity

	Integrating Wavelet Tree Searching into PMM Searching
	Wavelet Trees
	Modified Wavelet Trees
	Integration of Wavelet Tree Search into PMM Breadth-First Search

	Experiments
	Tests on Synthetic Data Sets
	Tests with Varying Amount of Reads
	Tests with Varying Length of Reads

	Tests with Varying Lengths of Target Sequences
	Tests on Real Data Sets

	Conclusion
	References

