
1

Graph Indexing for Efficient Evaluation of Label-Constrained Reachability Queries

Yangjun Chen
Dept. Applied Computer Science, University of Winnipeg, Canada, yc9579@gmail.com
Gagandeep Singh
Dept. Applied Computer Science, University of Winnipeg, Canada, gagandeep.singh5133@gmail.com

Given a directed edge labeled graph G, to check whether vertex v is reachable from vertex u under a label set S is to know if
there is a path from u to v whose edge labels across the path are a subset of S. Such a query is referred to as a label-
constrained reachability (LCR) query. In this paper, we present a new approach to store a compressed transitive closure of G
in the form of intervals over spanning trees (forests). The basic idea is to associate each vertex v with two sequences of some
other vertices: one is used to check reachability from v to any other vertex, by using intervals, while the other is used to
check reachability to v from any other vertex. We will show that such sequences are in general much shorter than the number
of vertices in G. Extensive experiments have been conducted, which demonstrates that our method is much better than all the
previous methods for this problem in all the important aspects, including index construction times, index sizes and query
times.

CCS Concepts: • Analysis of Algorithms and Problem Complexities → Non-numerical Algorithms and Problems;
Design; Analysis

KEYWORDS
labeled directed graphs; Label constraint reachability; Tree labeling; Recursive graph decomposition; Spanning trees

1 INTRODUCTION
Graph reachability has received much attention in recent years in the graph database research community. One
of the important research problems is the so-called Label-Constrained Reachability (LCR for short) over graphs.
Given two vertices u and v in an edge labeled directed graph G and a label constraint set S, an LCR query asks if
there is a path from u to v such that all edge labels on the path are a subset of S. As an example, consider a social
network, where each vertex v represents a person and two persons are linked by an edge if they are related in
some way, over which we may ask, for instance, whether u is a remote relative of v. Then, we will check
whether u is reachable from v through a path with each edge on it labeled only with those relationships like
parent-of, brother-of, sister-of, uncle-of, and so on. As a second example, we consider an application in
forensics and assume that a detective may want to investigate an individual who is related to a known criminal
through some relationships, such as money laundry, human trafficking, and so on. Then, the reachability is
checked under a set of labels, representing different criminal activities. For the third example, let us have a look
at a metabolic network which is also an edge labeled graph with each vertex representing a compound. Two
compounds are connected by an edge if one can be transformed into another through a certain chemical reaction
controlled by a certain enzyme. Here, a basic question is whether two compounds can be active through a
pathway under a set of enzymes. Other practical applications like semantic web, security networks, citation, and
tracing the transmission of infectious diseases all need to take edge labels into account. In fact, LCR queries also
appear as an important fragment of the language of regular path queries [4, 5, 7, 31], which are essentially
reachability queries constrained by regular expressions. Indeed, formulated in terms of regular path queries, LCR
is equivalent to the problem of determining whether or not there is a path in G from u to v such that the
concatenation of edge labels along the path forms a string in the language denoted by a regular expression (a1

 …  an)*, where ai is taken from a certain alphabet (i = 1, …, n),  is disjunction and ∗ is the Kleene star.

XX:2 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
2

2

LCR and, more generally, regular path queries are supported in practical graph query languages such as
SPARQL 1.1 (http://www.w3.org/TR/sparql11-query/), PGQL (pgql-lang.org), and openCypher (http://www.
opencypher.org).

According to the research on the large SPARQL query logs [40], LCR queries are a vast majority of path
related queries in the practical workload.

The research on efficient solutions for LCR queries was initiated in the work of Jin et al. [13] with several
recent follow-up studies [3, 16, 20, 22, 32]. However, they need either too much time to build up indexes, such
as the methods reported in [22, 32], or too much time to answer a query, such as [20], not scaling well to larger
graphs which are common in contemporary applications. [3] and [16] mainly target the computation of shortest
paths.

In this paper, we address this issue, and present a new indexing method to solve the problem. Generally, we
recognize a kind of graph decomposition and edge classification, by which, with respect to a spanning tree
(forest) T of G, all the edges in G are divided into four disjoint groups: tree edges, forward edges, cross edges
and back edges [10] and handled in different ways to avoid constructing transitive closures (TC) or partial TCs
[13], both of which require a great amount of generation time and a very large storage space.

Concretely, our method works as follows:
 G will be decomposed into a series of k spanning trees (forests) T0, ..., Tk-1 (for some k  n). Then, a series of

tree-like subgraphs T0, ..., Tk-1 will be created. If G is a directed acyclic graph (DAG for short), each Ti (i =
1, …, k - 1) is constructed by adding to Ti, the forward edges with respect to Ti. If G contains cycles, both the
corresponding forward and back edges will be added to Ti to form Ti.

 Accordingly, each vertex v will be associated with two (uniquely determined) sequences: X = x0, …, xr and Y =
y0, …, yr with 0  r  k - 1, x0 = y0 = v, and xj, yj  Tj (0  j  r). For 0 < i  r, xi is the dominant vertex of xi-1,
used to check reachability from xi-1 to any other vertex through cross edges while yi is the transferring vertex
of yi-1, used to check reachability to yi-1 from any other vertex through cross edges. So, X is called a from-
sequence while Y is called a to-sequence.

 To check whether v is reachable from another vertex u, also associated with a from-sequence W = w0, …, ws
and a to-sequence Z = z0, …, zs with 0  s  k - 1, we will find whether there exists an j (0  j  min{r, s})
such that u = w0 ↝ … ↝ wj-1 ↝ wj, yj ↝ yj-1 ↝ … ↝ y0 = v, and yj is reachable from wj through a path in Tj.
Here, wi ↝ wi+1 (yi+1 ↝ yi) for 0  i  j - 1 represents that wi+1 is reachable from wi (yi is reachable from yi+1)
in Ti.

 In this way, a query q (to check whether u ↝ v under S) will be decomposed into a series of subqueries q0, …,
ql (0  l  j), defined as below:

- For i = 0, q0 is to check whether w0 ↝ y0 under S in T0. If it is the case, return true. Otherwise, continue to
check q1.
- For i > 0, qi is evaluated in three steps:
a) Check whether wi ↝ wi+1 under S in Ti. If it is not the case, return false. Otherwise, go to (b).
b) Check whether yi+1 ↝ yi under S in Ti. If it is not the case, return false. Otherwise, go to (c).
c) Check whether wi ↝ yi under S in Ti. If it is the case, return true. Otherwise, continue to check qi+1 if i < j
- 1, or return false if i = j.

In addition, we also associate each vertex v with an extra pair of integers (sv, tv), working as a filter, which are
in fact two topological numbers, described in [29]. If v is reachable from another node u, associated with (su, tu),
we must have sv ≤ su and tv ≤ tu. Thus, sv ≰ su or tv ≰ tv indicates a negation, and then neither the scanning of the
to- and from-sequences nor the checking of labels is needed to negatively answer a label constraint reachability
query from u to v.

In this way, a query can be evaluated very efficiently since the reachability within each Ti (i = 1, …, k - 1)
can be checked very quickly by using the index structure built for Ti  . We will discuss this index structure in
great detail.

 • XX:3

3

In summary, the index construction time for DAGS can be reduced to O(||(1
0  

 i
k
i im  + ihi)) while the

index space to O( 



1
0

|||(|
k
i iiT  +  ihi)), where mi is |Ti | plus the number of all the corresponding cross

edges with respect to Ti, i and hi are respectively the number of all forward edges and the maximum number of
forward edges attached to a path in Ti, and  is the set containing all the edge labels of G. (We say, a forward
edge s  t is attached to a path p if both s and t appear on p.) The query time is bounded by

O( 




1

0
2 |)|(

k

i ii hh). For cyclic graphs, the index construction time and the index space are bounded by

O(||(
1
0

 
 ii
k
i i bm  + ihi)) and O( 




1
0

|||(|
k
i iii bT  + ihi)) , respectively, where bi is the maximum

number of all those back edges s  t such that their end vertices t are on a same path in Ti. The query time is

bounded by O( 




1

0
2 |)|(

k

i iii hhb).

In general, k  n. However, in our experiments, for all the tested real data graphs, k ≪ n.
The organization of the rest of this paper is as follows. We summarize the notations and symbols used

throughout this paper in Section 2. In Section 3, we review the related work. In Section 4, we define some
important concepts related to graphs, edge labeled graphs, as well as LCR queries to provide a discussion
background. Section 5 is devoted to the description of our method for DAGs while Section 6 is for graphs
containing cycles. In Section 7, we discuss all the important techniques used by the processes described in
Section 5 and 6. In Section 8, we report the experiment results. Finally, a short conclusion is set forth in
Section 9.

2 NOTATIONS
Throughout the paper, a lot of symbols and notations are used, which are summarized in the following table for
reference.

Table 1. Symbols and notations
G a directed graph
LCR(u, v, S, G) a query to check whether v is reachable from u under label set S in G

u ↝ v representing that vertex v is reachable from vertex u through a path in G
T a spanning tree T plus all the forward edges
Tc a skeleton tree, formed by removing some vertices from T
Gc a summary graph, formed by removing some edges from T and adding some new edges
T a spanning tree plus all the forward edges and back edges
l(e) label associated with an edge e
L(p) path label: all labels cross p
pv a tree path (a path in T) from the root to vertex v
puv a segment from u to v on a tree path p
A(p) a multi-set representing all the labels on p
T[v] the subtree rooted at v in T
[, , ] a triplet associated with each vertex v, where  is v’s preorder number;  - 1 is equal to

the largest preorder number among all the vertices in T[v]; and  is a set containing the
multi-labels of all the root-to-v paths in T which can be represented very efficiently.

 a quadruple of the form [s, t, A(pst), x], representing a forward edge from vertex s to
vertex t, attached to a tree path pst and labeled with x

Vc−start all the start vertices of cross edges

XX:4 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
4

4

Vc−end all the end vertices of cross edges
Vf−start all the start vertices of forward edges
Vf−end all the end vertices of forward edges
Vfs all those start vertices s of forward edges s → t, where t  Vc−start or t is an ancestor of

some vertex in Vc−start with respect to T.
Vfe all those end vertices t of forward edges s → t, where s ∈ Vc−end or s is a descendant of

some vertex in Vc−end with respect to T.
VLCA all those vertices with each being a lowest common ancestor (LCA for short) of more

than one vertex in Vc−start ∪ Vfs, which are not related by the ancestor/descendant
relationship in T

v dominant vertex of v, used to check reachabilty from v to some other vertices in Gc.
v transferring vertex of v, used to check reachabilty to v from some other vertices in Gc.
Ef-c set of forward edges to be inserted into Gc

v combined sequence of dominant and transferring vertices, associated with v
v label sequence, associated with v
Vb−start all the start vertices of back edges
Vb−end all the end vertices of back edges
Vbs all those start vertices u of back edges u → v, where v ∈ Vc−start or v is an ancestor of

some vertex in Vc−start with respect to T.
Vbe all those end vertices v of back edges u → v, where u ∈ Vc−end or u is a descendant of

some vertex in Vc−end with respect to T.
T a spanning tree T plus all the forward edges and all back edges
Gc a summary graph, formed by removing some edges from T and adding some new edges
Eb-c set of back edges to be inserted into Gc

3 RELATED WORK
In the past several decades, much research on the evaluation of reachability queries has been made and many
algorithms have been proposed. Roughly speaking, all of them can be divided into two categories: reachability
without label constraints and reachability with label constraints. By the former, we will check whether two
vertices are connected through a path in a directed graph [1, 4 - 6, 11 - 14, 23, 26, 27, 43 - 47]. By the latter, we
will not only check whether a vertex is reachable from another vertex in a directed graph, but also through a
certain path whose labels fall into a given set of labels [13, 16, 20, 22, 32].

- reachability without label constraints
Let G(V, E) be a directed graph. The reflexive, transitive closure of G is a digraph G* = (V, E*), where v → u ∈
E* iff there is a path from v to u in G. Obviously, if a transitive closure is physically stored, the checking of the
ancestor-descendant relationship can be done in a constant time. However, the materialization of a whole
transitive closure is very space-consuming. Therefore, it is desired to find a way to compress transitive closures,
but without sacrificing too much query time.

Chain decomposition methods In [11], Jagadish suggested a method to decompose a DAG into vertex-
disjoint chains. On a chain, if vertex v appears above vertex u, there is a path from v to u in G. Then, each vertex
v is assigned an index (i, j), where i is a chain number, on which v appears, and j indicates v’s position on the
chain. These indexes can be used to check reachability efficiently with O(n) space overhead and O(1) query
time, where  is the number of chains. However, to find a set of chains for a graph, Jagadish’s algorithm
requires O(n3) time (see page 566 in [11]). In addition, the number  of the produced chains is normally much
larger than the minimal number of chains. In the worst case,  is O(n).

The method discussed in [5] greatly improves Jagadish’s method. It needs only O(n2 +  1.5n) time to
decompose a DAG into a minimum set of vertex-disjoint chains, where  represents G’s width, defined to be the
size of a largest vertex subset U of G such that for any pair of vertices u, v  U there does not exist a path from u

 • XX:5

5

to v or from v to u. Its space overhead is O(n) and its query time is bounded by a constant. In [4, 6], the
concept of the so-called general spanning tree is introduced, in which each edge corresponds to a path in G.
Based on this data structure, the real space requirement becomes smaller than O( n), but the query time
increases to log.

Interval based methods In [1], Agrawal et al. proposed a method based on interval labeling. This method
first figures out a spanning tree T and assigns to each vertex v in T an interval (a, b), where b is v’s postorder
number (which reflects v’s relative position in a postorder traversal of T); and a is the smallest postorder number
among v and v’s descendants with respect to T (i.e., all the vertices in T[v], the subtree rooted at v). Another
vertex u labeled (a, b) is a descendant of v (with respect to T) iff a  b < b. This idea originates from Schubert
et al. [58]. In a next step, each vertex v in G will be assigned a sequence s(v) of intervals such that another vertex
u in G with interval (x, y) is a descendant of v (with respect to G) iff there exists an interval (a, b) in s(v) such
that a  y < b. The time and space complexities are bounded by O(m) and O(n), respectively, where m = |E|
and  is the number of the leaf vertices in T. The querying time is bounded by O(log). In the worst case,  =
O(n).

The method discussed in [21] can be considered as a variant of the interval based method, and called Dual-I,
specifically designed for sparse graphs G(V, E). As with Agrawal et al.’s, it first finds a spanning tree T, and
then assigns to each vertex v a dual label: [av, bv) and (xv, yv, zv). In addition, a t  t matrix N (called a TLC
matrix) is maintained, where t is the number of non-tree edges (edges not appearing in T). Another vertex u with
[au, bu) and (xu, yu, zu) is reachable from v iff au  [av, bv), or N(xv, zu) – N(yv, zu) > 0. The size of all labels is
bounded by O(n + t2) and can be produced in O(n + m + t3) time. The query time is O(1). As a variant of Dual-I,
one can also store N as a tree (called a TLC search tree), which can reduce the space overhead from a practical
viewpoint, but increases the query time to logt. This scheme is referred to as Dual-II.

2-hop labeling The method proposed by Cohen et al. [8] labels a graph based on the so-called 2-hop covers.
It is also designed for sparse graphs. A hop is a pair (h, v), where h is a path in G and v is one of the endpoints of
h. A 2-hop cover is a collection of hops H such that if there are some paths from v to u, there must exist (h1, v) 
H and (h2, u)  H and one of the paths between v and u is the concatenation h1h2. Using this method to label a
graph, the worst space overhead is still in the order of O(n2). The main theoretical barrier of this method is that
finding a 2-hop cover of minimum size is an NP-hard problem. So, a heuristic method is suggested in [8], by
which each vertex v is assigned two labels, Cin(v) and Cout(v), where Cin(v) contains a set of vertices that can
reach v, and Cout(v) contains a set of vertices reachable from v. Then, a vertex u is reachable from vertex v if
Cin(u)  Cout(v)   (empty set). Using this method, the overall label size is increased to O(n m logn). In
addition, a reachability query takes O(m) time because the average size of each label is above O(m). The
time for generating labels is O(n4). The 2-hop labeling is improved by the so-called 3-hop labeling [61] and
path-hop labeling [9]. The path-hop labeling is slightly better than the 3-hop labeling with its indexing time and
index size bounded by O(nm) and O(n), respectively. Its query time is in the order of O(log2).

Path-tree decomposition Recently, Jin et al. [14] discussed a new method, by which a DAG G is
decomposed into a set of vertex-disjoint paths. Then, a weighted directed graph Gw (called path-graph in [15]) is
constructed, in which each vertex represents a path and there is an edge (i, j) if on path i there is a vertex
connected to a vertex on path j. The weight associated with (i, j) is the number of such connections. Then, find a
maximum spanning tree Tw (called path-tree) of Gw and label the vertices in Tw with intervals as done in the
method proposed by Agrawal et al. The space complexity of this method is O(n). The query time and the
labeling time are bounded by O(log2) and O(m), respectively (see the analysis of [14]). As mentioned above,
 is bounded by O(n) in the worst case. Thus, theoretically, both the space requirement and the query time of
this method are worse than Agrawal’s [1].

GRAIL The method proposed by Yildirim et al. [23] is a light-weight indexing structure. It traverses G for
several times to create an interval sequence for each vertex, used as a filter as follows. Let Lu = 1

uL , …, k
uL and

Lv = 1
vL , …, k

vL be the interval sequences of u and v, respectively. If there exists i (i  {1, …, k}) such that i
uL 

XX:6 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
6

6

i
vL , u is definitely not a descendant of v. But if for all i  {1, …, k} i

uL  i
vL , it cannot be determined whether u

is a descendant of v, or vice versa. In this case, the whole G will be searched in the depth-first manner, but with
the label sequences used to prune the search space. The labeling time of this method is bounded by O(k(n + m).
If k is chosen as a constant, the index size is proportional to O(n) and can be established very fast. But in the
worst case, the query time is O(m) as if no index is established. The method discussed in [29] is similar to
GRAIL, but each vertex v is associated with a single pair of integers (x, y). If v is reachable from another vertex u,
associated with (x, y), we must have x ≤ x and y ≤ y. Thus, x ≰ x or y ≰ y indicates a negative answer, and
then no traversal of G is needed to further check the reachability from u to v.

SCARAB In [27], a different method is discussed, in which a deducted TC over a subset V* of vertices,
called a backbone and denoted as TC(V*), is created. Then, for any pair (u, v), if u can reach v but through at
least  + 1 intermediate vertices (where  is a pre-determined constant), i.e., their distance is greater than , there
must exist two vertices u* and v* in V* such that u can reach u*, v* can reach v within  steps, and u* can reach
v* in TC(V*). To find TC(V*), an approximative algorithm is proposed in [27], which is based on the set-cover
algorithm [59] and needs ())()((vEvN

Vv



  time, where N(v) and E(v) denote the vertices and the edges,

respectively, in v’s forward -neighbourhood. In the worst case, its size is (nd), where d is the maximum out-
degree of a vertex in G. This running time is slightly improved by using the so-called one-side condition, by
which V* is defined to be a subset covering any pair (u, v) with distance(u, v) =  , where distance(u, v) is the
length of a shortest path from u to v. The index size is obviously bounded by O(n + m + |V*|2). The query time is
bounded by O(d   /2  + d2log|V*|). This method is further improved by Jin et al. [31]. Two new strategies are
proposed. One is called hierarchical-labeling (HL) and the other is called distribution-labeling (DL). They are
in fact two variants of backbones. By the HL, a vertex hierarchy is defined as V0 = V  V1  V2  ···  Vh, with
corresponding edge sets E0, E1, E2, ···, Eh, such that Gi = (Vi, Ei) is the (one-side) reachability backbone of Gi−1 =
(Vi−1, Ei−1), where 0 < i ≤ h. Its theoretical labeling time is slightly better than SCARAB since Gi is constructed
from Gi-1 and for the whole working process some time can be saved. However, the backbone is used in the
same way as SCARAB. So it has almost the same index size and query time as SCARAB. By the DL, each single
vertex makes up a layer, but with very high labeling time (nl(n + m)L), where L is the maximal labeling size.
Also, its index size and query time are comparable to SCARAB [27].

Independent-permutation The method discussed in [43, 47] is a hash-based approach. The main idea is to
associate each vertex v with two sets out(v) and in(v). out(v) is the entire set of vertices that u can reach
including u itself while in(v) is the entire set of vertices in which every vertex can reach u including u itself. To
check u ↝ v, it will be checked if u can reach all the vertices that v can reach and all vertices that can reach u can
also reach v, respectively denoted as out(v)  out(u) and in(v)  in(u). However, the set-containment checking
out(v)  out(u) is done by checking out(v)  out(u), instead. To speed up the operation, the so-called Bloom-
filtering [47] is used, by which the hash functions are utilized to reduce the space requirements. The main
disadvantage of this method is the possible false positives due to the use of hash functions. In many cases, the
search of G is needed to answer a query.

PWAH The method discussed in [26] works in two phases. In the first phase, a deducted transitive closure of
G will be created using a method described in [41], and then for each vertex a bit vector is used to represent all
those vertices reachable from it. In the second phase, each of such vectors will be compressed using the so-
called PWAH-8 encoding. In this way, the size of TC can be effectively reduced at cost of more query time since
to check reachability the relevant compressed bit vector has to be partially decompressed.

- reachability with label constraints
LCR queries are mainly discussed in [13, 16, 20, 22, 32]. Although many strategies are available for evaluating
reachability queries without edge labels, such as those described above, as well as those via regular paths [51,
52], none of them can be easily modified or extended for LCR queries.

Jin et al. The first algorithm for this purpose was proposed in [13], by which the whole transitive closure of a

 • XX:7

7

graph G is divided into a spanning tree (forest) T and a partial transitive closure NT, defined according to a kind
of path classification:
Ps – contains all the paths whose start edge is a tree edge (an edge in T).
Pe – contains all the paths whose end edge is a tree edge.
Pn –contains all the paths whose start and end edges are both non-tree edges.

Accordingly, three sets of path labels between two vertices u and v can be defined. (A path label is all the
edge labels across a certain path.)
Ms(u, v) = {L(puv) | puv  Ps},
Me(u, v) = {L(puv) | puv  Pe},
NT(u, v) = {L(puv) | puv  Pn} - Ms(u, v) - Me(u, v),

where puv stands for a path from u to v, and L(puv) for the path label of puv.
Then, NT is defined to be all NT(u, v)’s for (u, v)  V  V.
Denote by succ(v) all the successors of v in T and pred(v) all the predecessors of v in T. All the path labels

between u and v can be represented as
M(u, v) = NT(u, v)  ({T(u, u)|u  succ(u)} ʘ {NT(u, v)} ʘ {T(v, v)| v pred(v)})

where T(u, u) represents a path label from u to u in T, and ʘ operator joins two sets of sets, such as {s1, s2} ʘ
{s1', s2'} = {s1  s1', s1  s2', s2  s1', s2  s1'}.

To mitigate the computational complexity of NTs to some extent, Jin et al. have also used two additional
techniques. By the first one, NT(u, v) is reduced based on a simple fact that if a path label L from u to v is a
superset of another path label L  also from u to v, then L can be removed from NT(u, v) without affecting the
correctness of LCR queries since if L  some label constraint S we must also have L   S. Thus, NT(u, v)

contains only non-comparable elements in the power set of  and its size is bounded by 







/2|Σ|

Σ ||
. This bound can

be easily observed and in Combinatorics is often referred to as the Sperner’s theorem [2]. In the worst case, this
pruning process requires O(n32|  |) time [13]. The second technique is based on a different observation that
different spanning trees (forests) will lead to different NTs. To find a best spanning tree (forest) to minimize the
size of an NT, a weight w(e) for each edge e is introduced, defined to be proportional to the number of path
labels which can be removed from the NT if e appears in T. With w(e)’s, any algorithm for finding a maximum
spanning tree can be used for this purpose.

However, the cost for finding w(e)’s is prohibitively high. For this reason, Jin et al. proposed a sampling
method to compute a single-source transitive closure for each sampling vertex, which enables them to develop a

heuristics to find w(e)’s. The time required for this process is bounded by O(m 







/2|Σ|

Σ ||
) with O(n2









/2|Σ|

Σ ||
)

space required for storing indexes, where  is the number of sampling seeds (vertices) for each of which a
single-source transitive closure is created [13]. The query time is bounded by O(log +  


1
0 |) ,(|k

i ii vuNT), where
k is the maximum number of pairs (ui, vi) such that ui is reachable from u (under a label constraint set S) and v is
reachable from vi (under S) through a tree path in T [13].

Zou et al. The method described above has been improved by Zou et al. [22, 32]. In their algorithm, an
interesting concept of distance was introduced, by which the distance of two vertices u, v is defined to be the
minimum number of distinct edge labels among all the paths from u to v. Based on this concept, they designed a
Dijkstra-like algorithm to generate single-source transitive closures, by which redundant path labels, which
would be created by Jin et al. [13] can be avoided. The reason for this is as follows. Let p1, p2 be two paths both
going from u to v. Assume that L(p2)  L(p1). Then, the distance of p1 must be larger than p2 and the Dijkstra's
algorithm will ignore p1 and only explore the shorter path p2.

XX:8 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
8

8

Another improvement of [32] consists in the isolation of SCCs. For each SCC containing vertices v1, …, vk
for some k, a bipartite graph is created, which contains two sets of vertices V1 = { 1

1v , ..., 1
kv }, V2 = { 2

1v , ..., 2
kv },

and there is an edge 1
iv  2

jv for each pair vi, vj in the SCC, associated with the path labels of all the paths from
vi to vj. In this way, many redundant path labels can be removed.

For very large graphs, Zou et al. [32] also proposed a graph partitioning strategy, by which G is divided into
several components and for each of them an index as described above will be constructed. Hence, for evaluating
an LCR query, the use of indexes and graph searching have to be hybridized in some way.

Although much redundant work is removed by Zou et al. [32], the theoretical computational complexities of
their methods remain the same as the algorithm of Jin et al. [13]. This can be easily seen by considering a graph
with each edge differently labeled. In such a graph, no path label is redundant.

Valstar et al. Recently, Valstar et al. has proposed a method [20], which is slightly different from Jin’s. By
this method, a set of vertices, referred to as landmarks, is first randomly selected, and for each of them a single-
source transitive closure is constructed. Then, two more data structures are added:
 For each non-landmark vertex v, a set of pairs (v, L) with v being a landmark will be built, where L is a set of

path labels from v to v.
 For each landmark vertex u, a set of pair (H, L) will be established, where H contains a subset of landmarks

each reachable from u through a path labeled with L.
According to [20], the index construction time and size are respectively bounded by O( (n(logn + 2|  |) +

m)2| |), and O(n2| |), where  is the number of the chosen landmarks. However, in the worst case, the query
time is bounded by O(m) since for a false query almost the whole graph needs to be searched if the landmarks in
the index cannot be used.

Hassan et al. The method discussed in [16] is to find a shortest path p from a vertex v to another vertex u
such that all edge labels on p are a subset of S, which is a more general problem than LCR. The main idea behind
it is to run the Dijkstra’s algorithm against an index structure described below.
 By the index, graph G is partitioned into | | portions such that each of them contains only the edges of the

same label.
 A vertex u in a portion P is called a bridge if it has at least one outgoing edge with a label different from P.

Then, between each u and a bridge vertex v (within P) a short cut edge e is produced. The weight of e is
defined to be the sum of all the edge weights on a shortest path from u to v (within P).

To check whether v is reachable from u under S, the subgraph composed of all the shortcuts in all those
portions with labels appearing in S will be traversed using the Dijkstra’s algorithm.

The indexing time and the index size are bounded by O(||n3) and O(m + ||nd), respectively, where n is the
largest number of vertices in a portion and d is the largest vertex out-degree in G. According to [16], its query
time is bounded by O(|S|m  + |S|n  logn ), where m  is the number of edges in a largest portion. (The method
proposed in [39] is another algorithm for finding a shortest path under S. But according to the experiments
reported in [16], this method’s query time is up to four orders-of-magnitude worse than the algorithm discussed
in [16]).

Regular path queries (RPQ) This kind of queries is essentially reachability queries, but constrained by
regular expressions [51], and therefore is also more general than LCR. In fact, LCR is just a subset of RPQ,
equivalent to the problem of determining whether or not there is a path in G from u to v such that the edge labels
along the path make up a string  (a1  …  an)*, where each ai (i = 1, …, n) is a label taken from a given set
of symbols. To the best of our knowledge, current state-of-the-art systems (such as SPARQL engines) rely on
variations of BFS with no index being used [55], or use indexes which cannot be effectively applied for LCR
queries since they handle different query types (see [56, 57]). Besides, the current techniques on regular path

 • XX:9

9

query evaluation on RDF database systems is impractical on graphs with more than a few thousand edges [38].
However, modern applications require to process queries on a graph which is multiple orders of magnitude
larger.

In addition to the above methods, there are some approximate approaches discussed in the literature, such as
the algorithm proposed by Bonchi et al. [3] to computes approximately shortest paths between two vertices, and
the method described by Dumbrava et al. in [42] to give approximate answers to LCR queries, as well as the
strategy discussed in [52] for approximate regular-simple-path reachability. None of these methods can be
modified to an efficient approach to produce exact answers to LCR.

In our approach, however, we avoid constructing large TCs or partial TCs by decomposing a graph into a
series of subgraphs to keep and transfer reachability information through common edges among them. More
importantly, this enables us to build a very concise index structure by which each vertex v is associated with two
sequences used to check reachability from v, as well as to v, respectively. The length of each sequence is much
shorter than n, therefore requiring much less space for storing indexes than all the existing methods. On the other
hand, unlike Valstar’s [20] and Hassan’s [16], by which only part of vertices is indexed and G needs to be
searched when the index cannot be used, our method indexes all vertices and no search of G is needed in any
case.

4 BASIC DEFINITION
In this section, we give all the basic definitions that are required for the subsequent discussion. First, we restate
the edge labeled directed graph, which was first described in [13].
Definition 4.1 (Edge labeled, directed graphs [13]) An edge labeled, directed graph is a quadruple G = <V, E, ,
l>, where V is a finite set of vertices,  is a set of labels, E  V  V is a finite set of edges, and l: E   is a
labeling function that assigns each edge e  E a label in , denoted as l(e).

As an example, consider Fig. 1, in which we show a typical edge labeled directed graph (where solid and
dashed edges are with respect to the edge classification to be discussed later in this section.) As in [13], we will
use integers to represent vertices and letters for edge labels. In addition, in the following discussion, we will
simply refer to an edge labeled directed graph as a graph since we will not touch any other kind of graphs.

Figure 1. A running example

bc

d
d

be

e
b d

a

b
1

2 3 4

5 6 7 8 9

10 11 12

13 14 15

b c

ca cd b
b

d

f

d

e
f

G:

Given two vertices u and v in a graph G, a path p from u to v is represented as a sequence p = (u1, e1; u2, e2; ...;
uk) for some k, where u1 = u, uk = v, and for each i ∈ {1, ..., k − 1} ei = ui→ ui+1. In the case that k = 1, we have u
= v and consider e0 = u → u as a virtual edge labeled with an empty symbol.

Based on the edge labels, the label of a path can be defined as follows.
Definition 4.2 (Path labels) Let G = <V, E, , l> be a graph. Let p = (u1, e1; u2, e2; …; uk) be a path from u to
v. Then, the label of p is a set of labels L(p) = {l(e1)}  {l(e2)}  ...  {l(ek−1)}.

For example, in Fig. 1, for path p = 1 b 2 a 5 e 10 d 13, we have L(p) = {a, b, d, e}.

XX:10 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
10

10

Definition 4.3 (Problem definition [14]) Given two vertices u and v in G and a label set S. Vertex v is reachable
from vertex u under S if there is a path p from u to v and L(p) ⊆ S.

The query defined above is denoted as LCR(u, v, S, G), or LCR(u, v, S) if G is clear from the context. For
example, with respect to G shown in Fig. 1, LCR(1, 13, {b, c, d, e}) asks if vertex 13 is reachable from vertex 1
under label constraint {b, c, d, e}. Since there is a path p from 1 to 13 such that L(p) = {b, c, d}  {b, c, d, e},
the query evaluates to true. However, LCR(1, 13, {a, c}) evaluates to false since although vertex 13 is reachable
from vertex 1, we cannot find any path satisfying the corresponding label constraint. In fact, infinitely many
paths connecting 1 and 13 can be recognized due to the cycle: 5 e 10 d 13  f 5. However, none of
them have a path label in {a, c}.
Definition 4.4 (Edge classification [10]) By a spanning tree (forest) T of G, we mean a subgraph of G, which is
a tree (forest) and covers all the vertices of G. With respect to T, all the edges in G can be classified into four
groups:
 Tree Edge (Etree): edges appearing in T.
 Cross Edge (Ecross): any edge u → v such that u and v are not on the same tree path in T.
 Forward Edge (Eforwad): any edge u → v not appearing in T, but there is a tree path from u to v in T.
 Back Edge (Eback): any edge u → v not appearing in T, but there is a tree path from v to u in T.

For example, by exploring G in Fig. 1 in the depth-first manner, we can find a spanning tree T as shown by
the solid edges. With respect to T, we have Ecross = {6 d 13, 14 e 6, 15 e 5, 9 b 7, 9 d 15},

Eforward = {3 d 11, 7  f 14, 4 d 12}, and Eback = {13  f 5, 15 b 1}. All such cross, forward,
and back edges together are referred to as non-tree edges, and represented as dashed edges in Fig. 1. Finally, we
point out that in a DAG we definitely have no back edges since a back edge implies a cycle.

In addition, we may not be able to find a spanning tree, instead, a spanning forest T. In this case, we can
always construct a spanning tree by creating a virtual root and connecting it to the root of every tree in T with an
edge labeled with an empty symbol. Therefore, we will not distinguish spanning trees and spanning forests and
always assume that there is a virtual root if what is found is a spanning forest.

5 LCR QUERIES OVER DAGs
In this section, we present our algorithm to evaluate LCR queries over DAGs, by which a DAG will be
recursively decomposed and accordingly a query will be transformed into a series of subqueries with each being
able to be evaluated efficiently.

We first sketch the overall idea of graph decomposition in Section 5.1. Then, we discuss how to evaluate
reachabilty queries over the decomposed two parts in Section 5.2 and Section 5.3, respectively. In Section 5.4,
we discuss how the recursive graph decomposition can be carried out. The analysis of time and space
complexities and a proof of correctness are presented in Section 5.5.

5.1 Overall Idea
Let T be a spanning tree of G. Denote T  Eforward by T. By the first decomposition of G, we will establish T
from G and form a summary graph Gc containing the reachability information through the cross edges, and
transform the query LCR(u, v, S, G) to a subquery that checks reachability over T (referred to as a T-checking)
followed by another subquery checking reachability over Gc (referred to as a Gc-checking). Specifically, we will
first check whether v is reachable from u under S in T. If it is the case, return true. Otherwise, we will continue
to check whether v is reachable from u under S in Gc. When doing this, Gc itself will be further decomposed,
leading to an elegant recursive strategy. As an example, consider the DAG shown in Fig. 2(a), which is obtained
by eliminating all the back edges from the graph shown in Fig. 1. It can be decomposed into a spanning tree T

 • XX:11

11

shown by the solid edges in Fig. 2(a) plus the relevant forward edges (3 d 11, 7  f 14, 4 d 12), and
a Gc shown in Fig. 2(b). Here, we notice that Gc is not a proper subgraph of G, but with some edges changed to
transfer information of reachability. However, we will use the word ‘decomposition’ to refer to the
transformation of G into T and Gc without causing confusion.

Assume that we want to know whether vertex 10 is reachable from vertex 4 under {b, d, e}. First, we will
check whether 10 is reachable from 4 under {b, d, e} in T. Since it is not the case, we need to check Gc. For this,
we will find vertex 9 and vertex 5 in Gc, and check their reachability. It is because

if vertex 4 reaches any vertex in G through a path going through some cross edges, it must go through vertex
9; and if any vertex in G reaches vertex 10 through a path going through some cross edges, it must go
through vertex 5.

Figure 2. A spanning tree and the corresponding Gc

(a)
c

T:
c

bc

d
d

be

e
d

a

b
1

2 3 4

5 6 7 8 9

10 11 12

13 14 15

b c

ca cd b
b

d

d

e
f

Gc:
c

(b)
c

db

dcb

bcba

1

5 6 3 9

13 7

14 15

b cb

ed cd

e

e

f
b

d

Thus, the following 3-step checking will be carried out:
i) 4 ↝ 9 under {b, d, e} in T?
ii) 9 ↝ 5 under {b, d, e} in Gc?
iii)5 ↝ 10 under {b, d, e} in T?

Each of the above checks returns true. So we know that vertex 10 is reachable from vertex 4 under {b, d, e}.
The motivation to decompose a graph in such a way is that the transitive closure of T can be very effectively

compressed while the corresponding queries can be very efficiently evaluated.
In the following, we will first discuss the T-checking, and then how Gc can be constructed, as well as how the

Gc-checking can be recursively conducted. For simplicity, here we will not discuss how to select spanning trees
to increase the number of forward edges (and then decrease the number of cross edges), which will eventually
lead to fewer recursive graph decompositions. We shift this part of discussion to Section 7.1.

5.2 T-checking
For doing a T-checking efficiently, a kind of tree labeling needs to be designed.

5.2.1 Tree labeling. Let p be a path in T. We will use A(p) to represent a multi-set of the form { 1
1
ja , …, kj

ka },

or simply 1
1
ja … kj

ka with each ji > 0 (i = 1, …, k), containing all the edge labels on p, where each ai (1 ≤ i ≤ k) is
a label appearing on p and ji is the number of edges on p, which are labeled with ai. For example, for p = 1  3
 7  11  14 in Fig. 1, we have A(p) = b2c2.

First, for computing the labels over a subpath, we need the following concept.
Definition 5.1 (Difference of multi-sets) Let B and C be two multi-sets. The difference between B and C,

denoted as B - C, is also a multi-set of the form 1
1
ja … kj

ka with each ji > 0 such that for each i  {1, …, k} ai

B, but ai C; or there exist integers x, y such that x
ia  B, y

ia  C, and x - y = ji.

XX:12 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
12

12

Let p be a subpath of p. Denote by p\p the remaining part of p after p is cut off from it. We can use A(p) -
A(p) to represent the remaining multi-set of p after p is discarded. For instance, for a subpath p (of p) = 1  3
 7, we have A(p) = bc. Then, A(p) - A(p) = b2c2 - bc = b(2-1)c(2-1) = bc, which is all the edge labels over p =
p\p = 7  11  14.

Obviously, if A(p) = 1
1
ja … kj

ka with each ji > 0, we must have L(p) = {a1, …, ak}. Different from L(p), A(p)
is referred to as a multi-label of p. Without causing confusion, we will interchangeably use A(p)  S or L(p)  S
to represent the containment of all the labels on p in S.

Now, consider LCR(u, v, S, G). By the T-checking, we will evaluate LCR(u, v, S, T). For this purpose, we
will associate each vertex v in T with a triplet: [, , β], where  is v’s preorder number, which is created when
searching T in preorder; β - 1 is equal to the largest preorder number among all the vertices in T[v], and  is a set
containing the multi-labels of all the root-to-v paths in T. For example, with respect to the spanning tree shown
by the solid arrows in Fig. 2(a), vertex 6 is labeled with [5, {bc}, 6], and vertex 12 is labeled with [14, {cb2, cd},
15] (see Fig. 3). In the same way, we can check all the other triples in Fig. 3. In addition, we call [ , β] an
interval of v.

Figure 3. Tree encoding for the vertices in T shown in Fig. 2(a)

1: [0, -, 15]
2: [1, {b}, 6]
3: [6, {b}, 11]
4: [11, {c}, 15]
5: [2, {ba}, 5]
6: [5, {bc}, 6]
7: [7, {bc}, 11]
8: [12, {ca}, 13]

9: [13, {cb},15]
10: [3, {bae}, 5]
11: [8, {bc2, bd},11]
12: [14, {cb2, cd}, 15]
13: [4, {baed}, 5]
14: [9, {b2d, bcf, b2c2}, 10]
15: [10, {bcd}, 11]

Let u, v be two vertices on a tree path in T and u is above v (i.e., u is an ancestor of v with respect to T). We
will use pu to stand for the tree path from the root to u and puv for the tree path from u to v. Obviously, A(puv) =
A(pv) - A(pu). If there exists a forward edge e = s → t attached to puv, we say, pst (also, any of its subpaths) is
covered by e. Replacing pst with e, we will get another path, whose multi-label can be obtained by replacing the
multi-label of pst by the label on e.

Using  uv to represent all those multi-labels with each representing a path label from u to v, we have the
following lemma.
Lemma 5.1 Let u and v be two vertices in T associated with [u, u, βu] and [v, v, βv], respectively, and S be a
label set. Vertex v is reachable from vertex u under S if the following two conditions are satisfied.
1. [u, βu] ⊇ [v, βv], and
2. there exists a multi-label S in uv such that S  S.
Proof. If [u, βu] ⊇ [v, βv], there must be a path from u to v in T. So, v is reachable from u in T. If S  S, there
must be a path p from u to v such that A(p) = S  S, where p is either the tree path from u to v, or a path formed
by replacing some edges on the tree path from u to v with the corresponding covering forward edges.

For example, to check whether 14 is reachable from 3 in T (i.e., T plus all the forward edges shown in Fig.
2(a)) under {d, b, e}, we will first check whether [3, β3] = [6, 11] ⊇ [14, β14] = [9, 10]. Since it is the case, we
will further check whether there is a multi-label in 3,14 = {bd, cf, bc2}, which is a subset of {d, b, c}. Since it is
also true, the answer to the query is yes.

However, the reverse of Lemma 5.1 is not always true. That is, Lemma 5.1 is only a sufficient condition, not
necessary for reachability, since we may have reachability through cross edges. Therefore, in the case that a T-
checking returns false, the corresponding Gc-checking should be conducted. For instance, even though [4, β4] =
[11, 15] ⊉ [14, β14] = [9, 10], 14 is reachable from 4, but through some cross edges in Gc.

According to Lemma 5.1, we give the following algorithm to do a T-checking.

 • XX:13

13

ALGORITHM 1 T-checking(u, v, S, T)
begin
1. if u = v then return true;
2. if [v, βv] ⊈ [u, βu] then return false;
3. check all multi-labels from u to v by using uv;
end

However, in the above algorithm, line 3 should be further specified on how to compute uv, as well as how to
check multi-labels in uv. In the following, we will present two methods to do this task.

5.2.2 T-search based method. By the first method, we view T itself as a storage of all ’s. To evaluate LCR(u,
v, S, T), we will explore T to find a path p, which is made up of some edges on puv and some forward edges
attached to puv, such that A(p) ⊆ S.

Specifically, this can be done as follows.
1. Search T starting from u in the depth-first manner.
2. For each encountered edge u l v (a tree edge or a forward edge), we will check whether [v, v] ⊇ [v,

v]. If it is not the case, the containment of l in S will not be checked and the subgraph rooted at v will not be
further explored. Otherwise, we distinguish between two cases:
i) l  S. In this case, if v = v, return true; otherwise, continue to explore the subgraph rooted at v in T.
ii) l  S. We will check another edge going out from u, which has not yet been visited. If such an edge does

not exist, backtrack to explore the edges leaving the vertex from which u was discovered.
3. This process continues until we find a path satisfying the condition, or all the edges going out of u have been

visited. In the former case, return true. In the latter case, return false.
This is a very simple process, but needs to search part of T (concretely, a tree path from u to v in T and some

forward edges attached to it.) For very large graphs, it can be time-consuming. To mitigate this problem to some
extent, we organize all the forward edges into a graph, called a compatible graph, and replace the search of T
with the search of such a graph, which will be discussed in the next subsection in great detail.

5.2.3 Compatible graph based method. Let v be a vertex in T. Let ei = si x ti (i = 1, …, l for some l) be all
the forward edges attached to pv. We will use a compact data structure (accompanied with a simple procedure to
do replacements of subpaths by forward edges) to represent v in [v, v, βv]:

<A(pv); 1, ..., l; v>,
where each i (i ∈ {1, ..., l}) is a quadruple of the form [si, ti, A(

ii tsp), x] corresponding to a forward edge ei and

v is a multi-label (appearing on pv) such that each label in it is not covered by any forward edge attached to pv,
and therefore cannot be ‘replaced away’ by using forward edges. That is, v must appear on any path from the
root to v in T.

For example, in the spanning tree T shown in Fig. 2(a), we have p12 = 1 c 4 b 9 b 12, A(p12) =
b2c, and then 12 = <b2c; [4, 12, b2, d]; {c}>. Here, we note that 12 = {c} contains a label not appearing on the
segment from 4 to 12 in T, which is covered by the unique forward edge 4 d 12 attached to p12.

Using this data structure, any path label in T can be dynamically produced.
To show how this works, we need to define another two concepts.

Definition 5.2 (Replacement) Let v be a vertex in T, and s x t be a forward edge attached to pv. A
replacement of pst with  = [s, t, A(pst), x] on pv, denoted as pv  , is a multi-set, equal to (A(pv) - A(pst))  {x}.

For example, for p12 and  = [4, 12, b2, d] shown above, we have p12   = cd. This is A(p) for another path p
from vertex 1 to 12.

XX:14 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
14

14

Definition 5.3 (Compatibility of ’s) Let 1 = [s, t, A(pst), x1], and 2 = [s', t', A(ps't'), x2] be two quadruples in a v.
We say, 1 and 2 are compatible if pst and ps't' are not edge-overlapped.

For illustration, consider the tree path shown in Fig. 4(a) and the four attached forward edges e1, e2, e3, and e4.
Denote by i the quadruple built for ei (i = 1, ..., 4). Then, 1 and 3 are compatible while 1 and 2 not. So, for a
set of compatible quadruples 1, ...,  j corresponding to j forward edges attached to pv, pv  1  …   j must be
equal to A(p) for some p in T.

e2

a

b
c

a

b

c

d

c

p

Figure 4. Illustration for compatible graphs

a

u

g

h

w

z

y

v

e3

e4

1 2

f

3

b
4

f
d

e1
c v1

c
v2
c

v3 v4

(a)
c

(b)
c

Assume that for a given query LCR(u, v, S, T) we have [u, βu] ⊇ [v, βv], but L(puv) ⊈ S. In this case, we will
first check uv = v - u. If uv contains any label  S, return false since such a label definitely appears on any
path from u to v and thus the query cannot be satisfied. To see this, consider LCR(1, 12, {d, f}, T) with T being a
tree shown by the solid edges in Fig. 2(a) plus all the forward edges. Obviously, we have [1, 1] = [0, 15] ⊇
[12, 12] = [14, 15]. But L(p1,12) = {b, c}  S = {d, f}. We will then check 1,12 = 12 - 1 = {c} -  = {c}. Since
c  S = {d, f}, return false. It is because 1 c 4 is not covered by any forward edge attached to p1,12 and
therefore cannot be replaced, which implies that a path label (from 1 to 12) coverable by S can never be found.
In the opposite, however, for the path shown in Fig. 4(a),  v =  ⊆ any set S, and hence the corresponding
replacements should be always searched (since a replacement may lead to a satisfying answer.)

Let  u = <A(pu);  1, …,  k;  u> and  v = <A(pv);  1  , …,  l  ;  v>. The general working process begins to
calculate Auv = A(pv) - A(pu) first. If Auv  S, then we will check whether uv = v - u  S. If it is not the case,
return false. Otherwise, we will try to find a set of compatible quadruples: 1iτ , …, fiτ (0 ≤ f ≤ l) attached to puv

such that puv  1iτ  …  fiτ ⊆ S. This process can be expedited by organizing all i’s in v into a graph, called a
compatible graph, as defined below.

First, we use .s, .t, .A, .x to refer to the 4 elements in , respectively.
Definition 5.4 (Compatible graphs) A compatible graph Cv for v = <A(pv); 1, ...,  l; v> is a graph, in which
each vertex represents a i in v. There is an edge i → j if (1) i and j are compatible, (2) i.s is an ancestor of
j.s, (3) between i and j is there no other , which is compatible to both.

According to this definition, for any edge  →  in a compatible graph, we definitely have no path of length
at least two (edges) from  to . Otherwise, condition (3) is violated.

As an example, see the path (segment) puv shown in Fig. 4(a) and all the attached forward edges, for which
we will construct a compatible graph as shown in Fig. 4(b). In this graph, each i corresponds to a forward edge
ei in Fig. 4(a). In terms of the above description, we can design an algorithm to explore Cv to find a set: 1, ..., j
(for some j) along a path such that puv  1  ...  j ⊆ S. For instance, to evaluate LCR(u, v, {a, c, d}, T), where T
is shown in Fig. 4(a), we need to explore a path from v1 to v4 in Fig. 4(b) to find 1 and 4 such that

puv  1  4 = a2c2b2  [u, h, ab, d]  [z, v, bc, a] = a2cd ⊆ S = {a, c, d}.

 • XX:15

15

In Section 7.2, we will discuss in great detail how to explore Cv efficiently to find a replacement. Also, how
to create a general compatible graph, denoted CT, for all forward edges in T, instead of separated Cv’s.

5.3 Gc-checking
In this subsection, we discuss the Gc-checking, which will be invoked if the corresponding T-checking fails. As
will be seen later, it is much more complicated than the T-checking, but can be done very efficiently. First, we
show how Gc is constructed. Then, how a Gc-checking is made to complete the evaluation of an LCR query.

5.3.1 Subgraph Gc. It is a difficult task to construct Gc efficiently since we have to figure out what edges
should be added to Gc to transfer reachability. For this purpose, a subtle classification of vertices in T needs to
be carefully conducted:
 Vc−start - all the start vertices of cross edges.
 Vc−end - all the end vertices of cross edges.
 Vf−start - all the start vertices of forward edges.
 Vf−end - all the end vertices of forward edges.
 Vfs - all those start vertices s of forward edges s → t, where either t  Vc−start or t is an ancestor of some vertex

in Vc−start with respect to T. (See the left part of Fig. 5(a) for illustration.)
 Vfe - all those end vertices t of forward edges s → t , where either s ∈ Vc−end or s is a descendant of some vertex

in Vc−end with respect to T. (See the left part of Fig. 5(b) for illustration.)
 VLCA - all those vertices with each being a lowest common ancestor (LCA for short) of more than one vertex in
Vc−start  Vfs, which are not related by the ancestor/descendant relationship in T.
In the above classification of vertices, the first four classes are quite straightforward. To see what is Vfs, let us

have a look at Fig. 5(a) (left part), in which we can see a forward edges s → t (labeled with x) with t being an
ancestor of a vertex v  Vc−start. Then, s is a vertex belonging to Vfs.

s

t

s

v
a

x

Figure 5. Illustration for Vfs and Vfe

(a)
c

(b)
c

a cross edge going
out of v

t
v

xat is removed

b
c ya cross edge coming

into u
s is removed

u
c

u
c

t

by

s

Similarly, to see what is Vfe, let us see Fig. 5(b) (left part). Here, we can find another forward edge s → t
(labeled with y) with s being a descendant of a vertex u  Vc−end. Then, t is a vertex belonging to Vfe.

The reason for recognizing these vertices is that both kinds of forward edges need to be kept in Gc to check
reachability through cross edges, but with edge labels somehow changed (to be discussed below.)

Finally, the understanding of VLCA is also straightforward. As an example, let us have a close look at Fig. 2(a)
again, for which we have

Vc−start = {6, 14, 15, 9},
Vc−end = {5, 13, 6, 7, 15},
Vf−start = {3, 7, 4},

XX:16 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
16

16

Vf−end = {11, 12, 14},
Vfs = {3, 7},
Vfe = {14}, and
VLCA = {1, 7}.
Especially, we notice that vertex 1 is the LCA of {6, 3, 9} ⊂ Vc−start  Vfswhile vertex 7 is the LCA of {14, 15}

⊂ Vc−start. We need to recognize this sort of vertices since they can be used as ‘connecting’ points to transfer
information on reachability through cross edges.

By using a linear time algorithm for finding all LCAs, we can recognize all these subsets in O(m) time. We
will discuss this algorithm in great detail in Section 7.3.

Now, we begin to discuss the construction of Gc. First, let us denote Vc = VLCA ∪ Vc−start  Vc−end  Vfs  Vfe.
We define a tree (forest) structure Tc (as part of Gc), called a skeleton tree of G (with respect to T), which
contains all the vertices in Vc for the following reasons:

Vc−start and Vc−end are included to keep information on reachability through cross edges;
Vfs and Vfe are included to keep information on reachability through forward edges; and
VLCA is included as ‘connecting’ points between T and Gc.
In Tc, there is an edge from u to v if and only if there is a path p from u to v in T and p contains no other

vertices in these subsets except u and v themselves. In Fig. 6, we show a Tc built for the graph shown in Fig. 2(a).
So, an edge u → v in Tc may correspond to a path in T, labeled with L(puv). (See edge 51 ba in Fig. 6 for
illustration.)

Figure 6. A skeleton tree13

bc b cbba

cb

c

Tc:

To construct Gc (see Fig. 2(b) for illustration), we still need another two concepts to recognize all those
forward edges which have to be kept in Gc. In addition, they also play an important roll for transferring
reachability from T to Gc.

Let v be a vertex in T. We denote by D(v) all those vertices in T[v], which also appear in VLCA  Vc−start  Vfs.
We consider a vertex v   D(v), which has no ancestors in D(v). Then, any other vertex in D(v) must be a
descendant of v. Otherwise, assume that u  D(v) is not a descendant of v. Then, the LCA of v and u should be
an ancestor of v and this is also in D(v). It is a contradiction. This observation motivates the following concept.
Definition 5.5 (Dominant vertex) Let v be a vertex in T. Let V = VLCA Vc−start  Vfs. A vertex u  V is called a
dominant vertex of v, denoted as v, if one of the following two conditions is satisfied:

- u is a vertex closest to v in T[v] among all vertices in V if v  V, or
- u is v itself if v  V.

If such a vertex does not exist, v is set to be the special symbol .
Definition 5.6 (Transferring vertex) Let v be a vertex in T. Let V = Vc−end  Vfe. A vertex u  V is called a
transferring vertex of v, denoted as v, if one of the following two conditions is satisfied:

- u is the lowest ancestor of v in T among all vertices in V if v  V, or
- u is v itself if v  V.

If such a vertex does not exist, v is set to be .
As an example, consider the graph shown in Fig. 2(a) again, in which 11 is vertex 14 since 14 is a vertex

closest to 11 in T[11] among all the vertices in VLCA  Vc−start  Vfs. In addition, 11 = 7 since 7 is the lowest

d

1

5 6 3 9

7

14 15

ed

 • XX:17

17

ancestor of 11 in T among all vertices in Vc−end  Vfe. In a similar way, we find that 7 = 7 = 7. The motivation
of dominant vertices is that v dominates all those vertices in Vc−start  Vfs, which appear in T[v]. That is, such
vertices must also appear in T[v]. Thus, if any vertex is reachable from v through a cross edge, it must be
through v. In the opposite, if v is reachable from a certain vertex through a cross edge, it must be through v.
So, it is referred to as a transferring vertex.

In general, any forward edge s x t in T satisfying one of the following two conditions will be kept or
replaced with a new edge while all the other forward edges will be simply removed.
i) t ∈ Vc-start or is an ancestor of some vertex in Vc-start, or
ii) t ∈ Vfe.

If (i) is satisfied, we distinguish between two cases: if t ∈ Vc, s x t will be simply kept; if t  Vc, s
x t will be replaced with a new edge s → t, labeled with xL(ptt′), where t is the dominant vertex of t. For

instance, for forward edge 3 d 11 in T shown in Fig. 2(a) a new forward edge 3 db 14 will be generated
as shown in Fig. 2(b).

If (ii) is satisfied, we also distinguish between two cases: if s ∈ Vc, s x t is kept; if s  Vc, s x t will
be replaced with s  → t, labeled with L(ps′s)x, where s  is the transferring vertex of s. In Fig. 2(b), the new
forward edge 7  f 14 is the same as the original one in T shown in Fig. 2(a) since vertex 7 itself is in Vc−end
= {5, 13, 6, 7, 15}.

The forward edge 4 d 12 will be simply eliminated since 12 is neither a vertex in Vc-start, nor an ancestor
of some vertices in Vc-start, and also 12  Vfe = {14}, i.e., either of the above two conditions is not met.

Denote by Ef−c the set of all such new forward edges. Gc is constructed as
Gc = Tc  Ecross  Ef−c. (1)

So, the graph given in Fig. 2(b) is the Gc with respect to G and T shown in Fig. 2(a), whose size is
significantly reduced.

5.3.2 Gc-checking by using ‘connecting’ vertices. Having specified the construction of Gc, we are now ready
to discuss how a Gc-checking can be carried out.

The following lemma is critical to this task.
Lemma 5.2 Assume that vertex u is not an ancestor of vertex v in T, but v is reachable from u via some cross
edges in G. Then, any way v is reached from u must be through u and v.
Proof. According to Definition 5.5, u is closest to u in T[u] among all vertices in V  = VLCA  Vc−start  Vfs.
According to Definition 5.6, v is the lowest ancestor of v in T among all vertices in V   = Vc−end  Vfe. It
indicates that any path from u to v through some cross edges must go through u and v.

According to the above discussion, we give the following algorithm to do the Gc-checking.
ALGORITHM 2 Gc-checking(u, v, S, Gc)
begin
1. if T-checking(u, u , S, T) then
2. {if T-checking(v, v, S, T) then
3. {if LCR(u, v S, Gc) then return true;}}
4 return false;
end

The above algorithm is a three-step computation. In step (1), we first check whether u is reachable from u
under S in T. If not successful, return false. Otherwise, we go to step (2), in which we will check whether v is
reachable from v under S in T. Again, depending on whether it fails or not, return false or go to step (3). In
step (3), we will check whether v is reachable from u under S in Gc.

XX:18 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
18

18

Now, to evaluate LCR(u, v, S, G), we need to associate each v  G with a tuple <x, y, z>:
- x = [, , ], a triplet created by labeling the vertices in T (see Section 5.2);
- y = v; and
- z = v.
In <x, y, z>, x is used for T-checking while y and z are for Gc-checking.

The following proposition is easy to prove.
Proposition 5.1 Let u and v be two vertices in G, labeled ([u, u, u], yu, zu) and ([v, v, v], yv, zv), respectively.
Vertex v is reachable from u under a label set S if one of the following conditions holds:
(i) [u, u]  [v, v] and there exists a multi-label S in uv such that S  S, or
(ii) v is reachable from zv under S in T, zv is reachable from yu under S in Gc, and yu is reachable from u under S in

T.
Proof. The proposition can be derived from the following two facts:
(1) According to Lemma 5.1, v is reachable from u under S in T if (i) holds.
(2) According to Lemma 5.2, v is reachable from u under S in Gc if (ii) holds.

By using the T-checking and Gc-checking, the general process to evaluate LCR(u, v, S, G) can be easily
described as below, in which we use G = T ⊕ Gc to represent the decomposition of G described above.
ALGORITHM 3 LCR(u, v, S, G)
begin
1. let G = T ⊕ Gc;
2. if T-checking(u, v, S, T) then return true
3. else return Gc-checking(u, v, S, Gc);
end

In the above algorithm, we first make a T-checking to see whether v is reachable from u under S in T (see line
2). If it is the case, the task is done. Otherwise, we have to make a Gc-checking. Especially, in the third step the
Gc-checking has a recursive call to algorithm 2 which in turn calls algorithm 3 again, so we have mutual
recursion here. This implies a recursive graph decomposition to divide G into a series of spanning trees.

5.4 Recursive DAG decomposition
From the above discussion, we can see that Gc itself can be further decomposed, leading to a recursive
decomposition of G. The only difference is that in Gc an edge may correspond to a path in T and therefore
labeled with the corresponding path label. So, the reachability checking over Gc can be done in the same way as
described in Section 5.2 and Section 5.3.

Let G0 be a DAG. We will use T0, 0
crossE , 0

forwardE to represent one of its spanning trees, the corresponding set
of cross edges and forward edges, respectively. Then, we have

T0= T0  0
forwardE

0
cG = 0

cT  0
crossE  0

cfE 

(2)

where 0
cT is the skeleton tree for G0, and 0

cfE  the corresponding set of new forward edges. Denote Gi+1 = i
cG

for i ≥ 0. The recursive decomposition of G0 can be represented by the following equations.

Ti = Ti  i
forwardE

Gi+1 = i
cT  i

crossE  i
cfE 

(3)

 • XX:19

19

where i
cT is the skeleton tree for Gi for i = 0, 1,, k for some k. Note that each Ti (i  {0, …, k - 1}) is a tree-

like graph.
The following example helps for illustration.

Example 5.1 Denote by G0 the graph shown in Fig. 2. Denote by T0 the spanning tree represented by the solid
edges in the graph. With respect to T0 (in Fig. 2), both 0

crossE and 0
forwardE are shown by the dashed edges in the

same figure. 0
cT is shown in Fig. 6. Then, G1 = 0

cT  0
crossE  0

cfE  is a graph as shown in Fig. 2(b).

A spanning tree T1 of G1 is shown by the solid edges in Fig. 7(a). With respect to T1, we have 1
startcV  = {5,

9}, 1
endcV  = {7, 13, 15}, 1

startfV  = {1, 3, 7}, 1
endfV  = {5, 6, 14}, 1

fsV = {1}, 1
feV = {14}, and 1

LCAV = {1}.

(c)
c

1

9

7

15

5

13

14

T2:
c

f

bc bc

b

d

e

eded

d

ba

d
bf

bc

cb

ba

1

(b)
c

13 5

7 9

14 15

bc

ed e

ed

G2:
c

d

1

7

14

13

b2c

bc

ed

bc

e2d2

f

(d)
c

G3:
c

Figure 7. Recursive DAG decomposition

ed

bdb

f

bc

cb

bc

ba

1

6 5

3 9

13

7

14 15

b

e

c

d

e

d

d

(a)
c

T1:
c

cb

Thus, 1
cT is constructed as shown by the solid edges in Fig. 7(b). Adding 1

crossE = {9 b 7, 9 d 15, 5

ed 13} and 1
cfE  = {1 ba 5, 7  f 14} to 1

cT , we get G2 = 1
cT ∪ 1

crossE ∪ 1
cfE  . Note that forward edge

1 bc 6 is simply removed since 6 is neither in 1
startcV  nor an ancestor of any vertex in 1

startcV  , and also 6 
1
feV = {14}, showing that it will not be involved in reachability through cross edges and thus deleted from G2.

(See the conditions for keeping forward edges given in Subsection 5.3.1.) For the same reason, 3 db 14 is
also removed.

One of the spanning trees of G2 is shown by the solid edges in Fig. 7(c), denoted T2. With respect to T2, we
have 2

startcV  = {14}, 2
endcV  = {13}, 2

startfV  = {1, 7, 9}, 2
endfV  = {5, 7, 14, 15}, 2

fsV = {1, 7}, 2
feV =  , and

2
LCAV = {1}. Then, we are able to construct 2

cT . Recognizing 2
crossE and 2

cfE  as described above, we can build

G3 as shown in Fig. 7(d). (Note that forward edge 9 d 15 and 1 ba 5 in Fig. 7(c) are removed for the
same reason as 1 bc 6 was taken away from G2.)

Assume that the spanning tree found for G3 is a tree shown by the solid arrows in Fig. 7(d), with respect to
which we have no cross edges. Then, when constructing 3

cT , all the forward edges can be simply ignored and the
graph will not be further decomposed any more.

From the above discussion, each vertex v in Gi (0  i  k - 1) will be associated with a triplet [i
vα , i

vγ , i
vβ] and

a pair of ‘connecting’ vertices (vi , vi). Therefore, as a whole data structure, each vertex v in G will be
associated with two sequences:

 v = [0αv , 0γv , 0βv], …, [1α k
v , 1γ k

v , 1-βkv], and
 v = (�0

→, �0
←), …, (��−1

→ , ��−1
←),

where 
iv (i  0) stands for its dominant in Ti while 

iv for its transferring vertex in Ti.

XX:20 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
20

20

To evaluate a query LCR(u, v, S, G), we will repeatedly perform the following steps until we find that v is
reachable from u under S, or the relevant data structure is used up.

Initially, i = 0.
1. Use [i

uα i
uγ , i

uβ] and [i
vα , i

vγ , i
vβ] to check whether v is reachable from u under S in Ti. If it is the case,

return true. Otherwise, go to (2).
2. x := u. Use [i

uα , i
uγ , i

uβ] and [i
xα , i

xγ , i
xβ] to check whether x is reachable from u under S in Ti. If it is not

the case, return false. Otherwise, go to (3).
3. y := vi. Use [i

yα , i
yγ , i

yβ] and [i
vα , i

vγ , i
vβ] to check whether v is reachable from y under S in Ti. If it is not

the case, return false. Otherwise, go to (4).
4. Use [i

xα , i
xγ , i

xβ] and [i
yα , i

yγ , i
yβ] to check whether y is reachable from x under S in Ti+1. If it is the case,

return true. Otherwise, u := x, v := y, i := i + 1. If i < k go to (1); otherwise, return false.

Example 5.2 Along with the graph decomposition shown in Example 5.1, two sequences for every vertex will
be created as shown in Table 2 and Table 3, respectively. In Table 2, for ease of understanding, we show path
labels in a naive way, which should, however, be stored by using the compatible graph based method or the T-
search based method discussed in Section 5.2 for efficiency.

In the second column of Table 2, we show the labels for the vertices in T0 (i.e., the spanning tree T0 of G0 = G
shown in Fig. 2(a), plus the forward edges with respect to T0). Each node in T0 is associated with a dominant and
a transferring vertex, which are shown in the second column in Table 3. These vertices are used to check
reachability in G1 = 0

cG , which is shown in Fig. 2(b). For G1, we will generate T1. It is T1, plus the relevant
forward edges shown in Fig. 7(a). The labels of the vertices in T1 are shown in the third column of Table 2.
Their dominant and transferring vertices are shown in the third column of Table 3. In the same way, we can
generate the remaining parts of Table 2 and Table 3. The corresponding summary graphs and spanning trees are
shown in Fig. 7(b), (c), and (d), respectively.

Table 2: v-sequences
v T0 T1 T2 T3

1 [0, -, 15] [0, -, 9] [0, -, 7] [0, -, 4]
2 [1, {b}, 6]
3 [6, {b}, 11] [1, {b}, 8]
4 [11, {c}, 15]
5 [2, {bd}, 5] [7, {bc2d, ba}, 8] [5, {c2b2d, bc2d, ba}, 7]
6 [5, {be}, 6] [4, {b2c2e, bc, b2d2e, bcef}, 6]
7 [7, {bc}, 11] [2, {bc}, 8] [2, {cb, b2c},7] [1, {cb, b2c}, 4]
8 [12, {ca}, 13]
9 [12, {cb}, 15] [8, {cb}, 9] [1, {cb}, 7]
10 [3, {bae}, 5]
11 [8,{bc2, bd}, 11]
12 [14,{cb2, cd},15]
13 [4,{baed},5] [5,{b2c2de,bcd, b2d2e,bcdef},6] [6,{c2b2d2e, bc2d2e, bade},7] [3,{b3c2de, b2cfde, b2ce2d2, b2c2de,

bcfed, bce2d2}, 4]
14 [9,{b2d,bcf,b2c2},10] [3,{b2c2, b2d, bcf}, 6] [3,{c2b3, c2b2, cb2f, bcf}, 4] [2, {c2b3, c2b2, cb2f, cbf}, 4]
15 [10,{bcd}, 15] [6, {bcd}, 8] [4, {b2cd, bcd}, 7]

Table 3: v-sequences
v T0 T1 T2
1 <1, > <1, > <1, >
2 <6, >
3 <3, > <5, >
4 <9, >

 • XX:21

21

5 <, 5> <, 15> <, >
6 <6, 6> <, 7>
7 <7, 7> <5, 7> <7, >
8 <, >
9 <9, > <9, > <7, >
10 <, 5>
11 <14, 7>
12 <, >
13 <, 13> <, 13> <, 13>
14 <14, 7> <, 4> <14, >
15 <15, 7> <5, 15> <, >

Now, we trace the evaluation of a query LCR(4, 13, S, G), where G is the graph shown in Fig. 2(a) and S = {b,
d, e}, to demonstrate how the data structures are utilized.
Step 1: Evaluate LCR(4, 13, S, T0) by using [0

4α , 0
4γ , 0

4β] = [11, {c}, 15] and [0
13α , 0

13γ , 0
13β] = [4, {bd2e}, 5] (see

4 and 13 in Table 2). It returns false.
Step 2: Find 4 = 9 and 13 = 13 with respect to T0. (See 4 and 13 in Table 3.) So, we will first evaluate

LCR(4, 4, S, T0) = LCR(4, 9, S, T0) by using [0
4α , 0

4γ , 0
4β] = [11, {c}, 15] and [0

9α , 0
9γ , 0

9β] = [12, cb,

15]. It returns true. Then, we evaluate LCR(4, 13, S, T1) = LCR(9, 13, S, T1) by using [1
9α , 1

9γ , 1
9β] =

[8, {cb}, 9] and [1
13α , 1

13γ , 1
13β] = [5, {b2c2de,bcd, b2d2e,bcdef}, 6]. It returns false. (9 and 13 are not on a

same tree path in T1.)
Step 3: Find 9 = 9 and 13 = 13 with respect to T1. Since 9 = 9 and 13 = 13, we need only to evaluate

LCR(9 , 13 , S, T2) = LCR(9, 13, S, T2) by using [2
9α , 2

9γ , 2
9β] = [1, {cb}, 7] and [2

13α , 2
13γ , 2

13β] =
[6,{c2b2d2e, bc2d2e, bade},7]. It also returns false. (9 and 13 are on a same tree path in T2; but any path
label on a path from 9 to 13 contains c  S or a  S.)

Step 4: Find 9 = 7 and 13 = 13 with respect to T2. We will first evaluate LCR(9, 9, S, T2) = LCR(9, 7, S, T2)
by using [2

9α , 2
9γ , 2

9β] = [1, cb, 7] and [2
7α , 2

7γ , 2
7β] = [2, {cb, b2c}, 7]. It returns true. Then, we continue

to check LCR(13, 13, S, T3) = LCR(13, 13, S, T3). It trivially evaluates to true. Next, we check LCR(9,
13, S, T3) = LCR(7, 13, S, T3) by using [3

7α , 3
7γ , 3

7β] = [1, {cb, cb2}, 4] and [3
13α , 3

13γ , 3
13β] = [3,{b3c2de,

b2cfde, b2ce2d2, b2c2de, bcfed, bce2d2}, 4]. It returns true. So, the query LCR(9, 13, S, G) evaluates to true.
(7 and 13 are on a same tree path in T3 and there is a path from 7 to 13 with the path label = {e, d}  S.)

From the above discussion, we can see that the to- and from-sequences of v mentioned in Section 1 consists
in v’s while v’s are mainly used to facilitate the T-checking.

Formally, the from-sequence of v is a sequence calculated when evaluating a query, as shown below:
v, 

0v , (
0v 

1) , …, (…((
0v 

1))) … 
l) for some l  k - 1.

The to-sequence of v is similar:
v, 

0v , (
0v


1) , …, (…(((

0v

1))) … 

l) .
Notice that these two kinds of sequences are implicitly associated with each vertex in G and accessed when

executing a query LCR(u, v, S, G).

5.5 Time complexity and correctness
From the above discussion, the computational complexities of our method can be easily observed. Denote by mi,
i and hi the numbers of edges in Gi, the number of forward edges with respect to Ti, and the maximum number
of forward edges attached to a path in Ti, respectively. Then, we have

XX:22 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
22

22

- time for index construction: t1 = O(||(1
0  

 i
k
i im  + ihi)),

- space for storing index: t2 = O( 



1
0

|||(|
k
i iiT  + ihi)),

- time for evaluating a query: t3 = O( 




1

0
2 |)|(

k

i ii hh).

To analyze t1, we should note that the index construction for Ti mainly consists of two parts. The first part is
to search Gi to find Ti, as well as the corresponding forward and cross edges. Its cost is bounded by O(mi). The
second part is the cost for constructing the compatible graphs Cv’s for every vertex v in Gi. We can organize all
of them into a global graph Ci, in which each vertex is a quadruple (see Section 5.2.3) and therefore its
construction requires O(||) time. In addition, the number of edges in Ci is bounded by O(ihi) since each vertex
in Ci has at most O(hi) parents. Thus, the time for constructing the index for Ti (i.e., Ci and the intervals of the
vertices in Ti) is bounded by O(|mi| + i||+ ihi) and t1 is O(||(1

0  
 i
k
i im  + ihi)).

Accordingly, the index size generated for Gi is bounded by O(|Ti| +  i| |+  ihi) since besides the global

compatible graph, |Ti| intervals need to be stored. So, t2 is O( 



1
0

|||(|
k
i iiT  + ihi)). Next we have t3 since

for each Ci we only explore part of it, corresponding to the forward edges attached to a certain path in Ti. That
means, we will only access at most hi vertices and hi2 edges in Ci. So, its cost for evaluating a subquery against Ti
is bounded by O(hi2 + hi||) and t3 is O( 




1

0
2 |)|(

k

i ii hh).

However, in general, the number of edges in a Ci is considerably smaller than O( ihi). It is because in a
compatible graph for each edge  →   we have no path containing two or more edges connecting  and   .
According to Mehlhorn (see [60], pp. 9 - 11), the expected outdegree of a vertex in a random graph with such a
property is bounded by O(ih). Thus, the expected number of edges in a compatible graph is i ih , not ihi.
Finally, we notice that the recursive depth k will greatly impact the computational complexities, but we shift the
discussion on this to Section 7.1.

To prove the correctness of the algorithm, we first introduce a new concept.
Definition 5.7 (Index) Let G be an edge labeled graph <V, E, , l>. Denote by indG an index over G, including
all  v’s and  v’s for the vertices v in G, as well as compatible graphs Ci (i = 1, …, k), built as described in
Section 5.2 - 5.4. Define indG(v) to be a set of pairs (u, L) such that u can be found through indG as a vertex
reachable from v, and L is a set of labels which can be formed by using the replacement operations over all the
tree paths each connecting a vertex in the from-sequence of v to the corresponding vertex in the to-sequence of u.

We say that indG(v) is complete over G if, for any path labeled L from v to u, we have (u, L)  indG(v) for
some L  L. We say that indG(v) is sound over G if, for any (w, L)  indG(v), there is a path labeled L from v to
w. In the following, we prove that our index is both complete and sound.
Lemma 5.3 Let T be a spanning tree of G and T be a graph obtained by adding to T all the forward edges with
respect to T. Denote by indT an index over T. Then, indT(v) is complete and sound over T for any v  T.
Proof. Completeness. Let p be a path from v to u in T. Then, p is a tree path or a path obtained by replacing
some segments of the tree path pu with the corresponding covering forward edges. We consider [u, u, u] and
[v, v, v]. They are part of indT. Then, by applying the replacement operations to pvu, using some  i’s in u =
<A(pu); 1, ..., l; u> (for some l) and A(pvu) = A(pu) - A(pv) (which is in v = <A(pv); 1, ..., h; v> for some h),
we can generate indT(v), which contains (u, L(p)). So, indT(v) is complete.
Soundness. Assume that (u, L)  indT(v). That means, by applying some i’s in u= <A(pu); 1, ..., i; u> to A(pvu)
= A(pu) - A(pv), we can get L. This shows that L must be a path label over a path from v to u in T since both u
and v are created in terms of the labels over all the paths from v to u in T.

 • XX:23

23

Proposition 5.2 Let G be an edge labeled DAG. Then, indG(v) is complete and sound for any v  G.
Proof. Completeness. We prove the completeness of indG(v) by induction on k, the depth of recursive
decompositions of G. (Here, by the depth of recursive decomposition of G, we mean when we will stop the
recursive decomposition.)
Basic step: When k = 0, G itself is a tree-like graph T0, which is a spanning tree plus all the forward edges with
respect to T. According to Lemma 5.3, indG(v) is complete for each v  T0. When k = 1, G is decomposed into
T0 and T1 and any v is associated with two labels: [1αv , 1γv , 1βv], [2α v , 2γ v , 2β v]; and a pair <v, v>. Assume
that there exists a path p from v to u in G. If p does not go through any cross edge with respect to T0, the
completeness of indG(v) holds according to Lemma 5.3. If p contains some cross edges, then, according to
Lemma 5.2, there exist two paths in T0: p1 goes from v to v, p2 from u to u, and a path in T1: p3 goes from v
to u such that p is the concatenation of p1, p2, and p3. Obviously, L(p1)  L(p2)  L(p3) = L(p). Applying
Lemma 5.3 respectively to these three subpaths, we can see that the completeness of indG(v) holds.
Induction step: Assume that when k = l  0 indG(v) is complete for each v  G. That is, for any path p from v to
another vertex u, we have (u, L)  indG(v) with L  L(p)). That means, there exists j  l such that
- v ↝ x1 ↝ … ↝ xj,
- xj↝ zj in Tj, where Tj is the spanning tree of Gj plus the forward edges with respect to Tj,
- zj↝ … ↝ z1 ↝ u, and
- all the labels on the relevant paths make up a subset of L(p)), where x1, …, xj are the first j vertices in the

from-sequence associated with v; and z1, …, zj are the first j vertices in the to-sequence associated with u.
Now, we consider the case of k = l + 1. We need to distinguish between two cases:

1. p contains only the edges in T0.
2. p contains some edges not in T0.
In case (1), according to Lemma 5.3, the completeness of indG(v) holds.
In case (2), we consider v and u , and notice that p must go through both these two vertices. Then, we

denote by p1 the subpath from v to v, p2 the subpath from v to u, and p3 the subpath from u to u. Notice
that p2 appears in G = 0

cG , for which the recursive depth is l. (It is because for G the recursive depth is l + 1 and
the recursive depth for G  is then one less than that for G.) According to the induction hypothesis, indG (w) is
complete for each w  G  . Thus, indG  (v) is complete. Then, there exists L   L(p2) such that (u , L ) 
indG(v). From this, we can see that (u, L(p1)  L(p2)  L)  indG(v) and (L(p1)  L(p2)  L)  L(p) = (L(p1)
 L(p2)  L(p3)). This shows the completeness in case (2).
Soundness. The proof of the soundness can also be done by induction as above.

6 LCR QUERIES OVER CYCLIC GRAPHS
Let G be a cyclic graph, i.e., a graph containing cycles. Let T be a spanning tree (forest) of it. As with DAGs, we
will decompose G into two components T and Gc, where T = T  Eback = T  Eforward  Eback (= G\Ecross), and
Gc is a subgraph to be defined below. Accordingly, we will transform an LCR query to a T-checking and a Gc-
checking.

6.1T-checking
Now, for doing T-checking LCR(u, v, S, T), we need some new concepts. The first of them is the so-called back
edge chains.
Definition 6.1 (Back edge chain) A sequence of back edges s1  1x t1, …, sl  lx tl (l > 0) with ti+1 being an
ancestor of ti for i  {1, …, l - 1} is called a back edge chain (b-chain for short) if ti= si+1 or ti is an ancestor of
si+1.

XX:24 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
24

24

See Fig. 8(a) for illustration, in which a b-chain starting from s and containing two back edges: s  t and s
 t is demonstrated. In Fig. 8(b), we illustrate another b-chain also containing two back edges s t and s  t,
but s and s are not on a same path.

Definition 6.2 (b-chain path) Let B = s1  1x t1, …, sl  lx tl be a b-chain. A b-chain path with respect to
B is a set of subpaths connected by all the back edges si  ix ti (i = 1, …, l) in B, each subpath is from ti+1 to si
(i = 1, …, l - 1) in T.

t
t

u

Figure 8. Illustration for b-chains

v

T :

s

s

(a)
c

t
t

u
v

T :

s
s (b)

c

For example, in Fig. 8(b), we can see a b-chain path, which is made up of back edge s t, path from t to s' in
T, and back edge s  t.

Then, to see whether v is reachable from u under S through back edges, we will check whether there exists a
b-chain path P starting from a back edge s x t and ending at another back edge s  'x t such that
(i) s  T[u],
(ii) there is a path p from u to s in T with L(p)  S,
(iii) there is a path p from t to v in T with L(p)  S, and
(iv) all the labels on P fall in S.

To describe a process to evaluate LCR(u, v, S, T), we recognize a set of vertices {v1, …, vl} (for some l  0)
in T, called a transit set with respect to u with the following conditions being satisfied:
1) Each vi (i = 1, …, l) is an ancestor of u in T.
2) For each vi, there exists a back edge s x t with t = vi, x  S, and there is also a path p in T from u to s such

that L(p)  S.
Obviously, should be there a path p' from a vi ({v1, …, vl}) to v in T such that L(p') ⊆ S, then LCR(u, v, S, T)

returns true. Otherwise, we will continue to figure out a transit set Vj with respect to each vj  {v1, …, vl}. Then,
for each v'  V1  …  Vl, we will check whether there exists a path p'' from a v' to v in T such that L(p'') ⊆ S.
We repeat this process until we find a b-chain path with all its labels in S, or end up with an empty transit set. In
the former case, LCR(u, v, S, T) returns true while in the latter case LCR(u, v, S, T) returns false.

In terms of the above discussion, we give the following recursive algorithm to evaluate LCR(u, v, S, T).
ALGORITHM 4 b-path(u, v, S, A) (*Initially, u = {u}, A = T.*)
begin
1. let u = {v1, …, vl}; let v'  u be the ancestor of all the other vi’s in u;
2. if there exists i such that T-checking(vi, v, S, A\Eback) = true then return true;
3. else { for each vj  u do { figure out the transit set Vj with respect to vj;}
4. u := V1  …  Vl;}
5. if u   then return b-path(u, v, S, A\{back edges in A[v']}) else return false;
end

In the above algorithm, u represents a transit set. Initially, u is set to be {u} and A to T. First, in line 2, we
will check whether there exists vi  u = {v1, …, vl} such that T-checking(vi, v, S, A\Eback) evaluates to true. If it is
the case, the algorithm returns true. Otherwise, we will find a transit set with respect to each vj  u (see line 3)
and make a recursive call (see line 5), where special attention should be paid to the new values for u and A. u is
set to be V1  …  Vl while A is reduced to A\{back edges in T [v]} to avoid repeated access of back edges.

 • XX:25

25

In Fig. 9(a), we illustrate the first execution of b-path(u, v, S, A) for the case of v ↝ u, by which u = {u} and
A = T. Then, LCR(u, v, S, T\Eback) (in line 2) definitely returns false. Hence, line 3 will be executed, generating
a new transit set {v1, …, vj} (see the back edges in Fig. 9(a).) Fig. 9(b) is the illustration of the first recursive call
(i.e., the second execution: b-path({v1, …, vj}, v, S, T  \{back edge in T  [u]}) invoked in line 5, by which the
back edges in T[u] (marked gray) are removed to avoid visiting them once again.

By using the above algorithm, T-checking(u, v, S, T) can be described as below.

ALGORITHM 5 T-checking(u, v, S, T)
begin
1. u := {u}; A := T ;
2. return b-path(u, v, S, A);
end

Example 6.1 Consider LCR(15, 13, {a, b, d, e}, G), where G is the graph shown in Fig. 1. Then, in the
execution of b-path(), we will first make a T-checking by calling T-checking(15, 13, {a, b, d, e}, T), where T =
T\Eback (see line 2). Since [15, 15] = [10, 11] ⊉ [13, 13] = [4, 5], this T-checking will definitely return false
and thus line 3 will be executed, where u = {15}, by which along the back edge 15 b 1 we will find the
transit set V = {1}. In line 4, u will be set to be V = {1}. Then, by the recursive call b-path({1}, 13, {a, b, d, e},
T\{back edges in T[15]}) in line 5, T-checking(1, 13, {a, b, d, e}, T) will be invoked (see line 2), which returns
true.

(a)

Figure 9. Illustration for the execution of b-path() and sets Vbs and Vbe

…
u

v1

vj

u
v1

vj
v1

vi

… … (b)

s

t

t'
x

dominant of t
cross edge

t is removeda t'
xa

s

(c)

s

t

Transferring
vertex of s

s'

cross edge

s is removed

y

b

t

s'

by
(d)

v

The main cost of a recursive execution of Algorithm b-path() consists in the execution of T-checking(vi, v, S,
T) (in line 2) for each vi in u = {v1, …, vk}. To estimate its value, two facts should be remarked:
a) Each vi in u (except the initial value u) is the end vertex of a back edge and all vi’s must be on the tree path

from the root to u.
b) The transit set used by any other recursive call of Algorithm b-path() must have the same property as u

described in (a).
Denote by b the number of all those back edges s  t with t appearing on the tree path from the root to u in

T  . Then, the running time of b-path() is bounded by O(bh| |), where h is the maximum number of all those
forward edges attached to a tree path in T (see Section 5.5).

Concerning the correctness of Algorithm T-checking(u, v, S, T), we have the following lemma.
Lemma 6.1 The answer returned by T-checking(u, v, S, T) is correct.
Proof. If there is a path P from a vertex u in u to v under S, we distinguish between two cases. In case (1), P is
not through any back edges and the algorithm gives the correct answer. In case (2), P is through some back
edges. Without loss of generality, assume that P uses k > 0 back edges. Then, after one iteration of the algorithm,
we obtain a transit set u' which contains at least one vertex such that there is a path under S from it to v, using at
most k - 1 back edges. Moreover, every vertex in u' is reachable from u with a path under S in T  . Thus, by a

XX:26 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
26

26

simple induction on the number of back edges, we can prove that the algorithm definitely returns the correct
answer in case (2).

If there is no path from any vertex in u to v under S, then for each u in u its transit set u' is , or any vertex in
u' can not reach v under S. Again, by an induction, but on the height of G, we are able to prove that the
algorithm will return false in this case.

6.2 GC-checking
To construct Gc  , we are required to recognize four more subsets of vertices, besides the subsets discussed in
Subsection 5.3.1:
 Vb−start - all the start vertices of back edges.
 Vb−end - all the end vertices of back edges.
 Vbs - all those start vertices s of back edges s → t, where t ∈ Vc−start or t is an ancestor of some vertex in Vc−start

with respect to T. (See the left part of Fig. 9(c) for illustration.)
 Vbe - all those end vertices t of back edges s → t, where s ∈ Vc−end or s is a descendant of some vertex in Vc−end

with respect to T. (See the right part of Fig. 9(d) for illustration.)
Furthermore, VLCA, as well as V (set of dominant vertices in Definition 5.5) and V (set of transferring vertices
in Definition 5.6) needs to be redefined as follows:
 VLCA - all those vertices with each being a lowest common ancestor of more than one vertex in Vc−start Vfs 
Vbs, which are not related by the ancestor/descendant relationship in T.

 V = VLCA Vc−start  Vfs  Vbs.
 V = Vc−end  Vfe Vbe.

Using these notations, we can define v and v in the same way as for DAGs.
Again, as for forward edges, any back edge s x t in T satisfying one of the following two conditions will

be kept or replaced with a new edge while all the other back edges will be simply removed.
i) s ∈ Vbs, or
ii) s ∈ Vc-end, or is a descendant of some vertex in Vc-end.

If (i) is satisfied, we distinguish between two cases: if t  Vc  Vbs Vbe, s x t will be kept; if s  Vc 

Vbs  Vbe, s x t will be replaced with a new edge s → t, labeled with xL(ptt′), where t is the dominant vertex
of t (see Fig. 9(c) for illustration.)

If (ii) is satisfied, we also distinguish between two cases: if s  Vc ∪ Vbs ∪Vbe, s x t will be kept;

otherwise, s x t will be replaced with s → t, labeled with xL(ps′s), where s  is the transferring vertex of s
(see Fig. 9(d) for illustration.)

Denote by Eb−c the set of all such new edges. Gc is constructed as
Gc= Tc  Ecross  Ef−c  Eb−c. (4)

In terms of the above discussion, we give the following algorithm for doing Gc -checking (Algorithm 6), in
which we first make two T-checkings: T-checking(u, u, S, T) and T-checking(v, v, S, T). If both of them
return true, we will call LCR(u , v , S, Gc ), in which Gc  -checking() will be recursively invoked (see
Algorithm 7). Here, Algorithm 7 works like Algorithm 3. The only difference consists in that G is decomposed
into T = T  Eforward  Eback and Gc, i.e., G = T ⊕ Gc. Recall that for DAGs G = T ⊕ Gc.

ALGORITHM 6 Gc-checking(u, v, S, Gc)
begin
1. if T-checking(u, u, S, T) then
2. {if T-checking(v, v, S, T) then
3. {if LCR(u, v, S, Gc) then return true;}}
4 return false;

 • XX:27

27

end

ALGORITHM 7 LCR(u, v, S, G)
begin
4. let G = T ⊕ Gc;
5. if T -checking(u, v, S, T) then return true
6. else return Gc-checking(u, v, S, Gc);
end

From the running time of T  -checking, the time complexity of Gc  -checking can be easily estimated. It is

O( 




1

0
2 |)|(

k

i iii hhb), where bi is the maximum number of all those back edges s  t with t appearing on a

same tree path in Ti.
In addition, more effort is needed for the index construction to handle back edges, for which we need to

maintain an extra tree structure for Gi, called a be-tree and denoted Di. In Di, each vertex s is for a set of back
edges each with the same starting vertex s, and we have an edge from s to s' if s is an ancestor of s' in Ti and
there is no back edges emanating from any vertex on the tree path from s to s' (except for s to s' themselves). Its
main purpose is to quickly figure out all the back edges s  t with s appearing in a certain subtree of Ti.
Obviously, the size of Di is smaller than |Ti|. Therefore, the index construction time and the index space are the
same as for DAGs.

Also, based on Lemma 6.1, the following proposition can be established.
Proposition 6.1 Let G be a cyclic graph. Denote by indG an index over G, including all v’s and v’s for the
vertices in G, all compatible graphs Ci, and all be-trees Di (i = 1, …, k). Then, indG is complete and sound over G.
Proof [sketch]. The proposition is similar to Proposition 5.2. Hence, we just sketch its proof here. To show the
completeness, however, we should explain that for any path p from v to another vertex u, we have (u, L) 
indG(v) with L  L(p)). That means, there exists j such that
- v ↝ x1 ↝ … ↝ xj,
- xj↝ zj in Tj, where Tj is the spanning tree Tj of Gj plus the forward and back edges with respect to Tj,
- zj↝ … ↝ z1 ↝ u, and
- all the labels on the relevant paths make up a subset of L(p), where x1, …, xj are the first j vertices in the
from-sequence associated with v; and z1, …, zj are the first j vertices in the to-sequence associated with u.
According to Lemma 6.1, the Tj-checking of xj ↝ zj in Tj will return the correct answer. So, by induction on

j, we can prove this proposition as for Proposition 5.2.

7 TECHNIQUE DETAILS
In the previous sections, the main process of our method is described. In this section, we will discuss three
important techniques aforementioned to speed up the process: i) how to find a better spanning tree in Section 7.1;
ii) how to explore a compatible tree efficiently in Section 7.2; finally, iii) how to make the vertex classification
in linear time in Section 7.3.

7.1 Finding Spanning Trees
For a given DAG G(V, E) , we can find different spanning trees by exploring G in different ways. Especially, for
different spanning trees, the size of Gc can be different. Clearly, what we want is to find such a spanning tree
that the number of edges in Gc is minimized. But, how to find such a spanning tree?

Let (G) be a family including all the spanning trees of G. For a spanning tree T  (G), denote by Tr (v) the
number of the cross edges with respect to T, which come into v. We define

XX:28 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
28

28

R(T) = 
Vv

T vr)(.

Intuitively, the smaller R(T) is, the smaller the size of Gc. So our optimization problem is to find a T such that
R(T) is minimum. Unfortunately, there are exponentially many spanning trees for a given DAG. So it is unlikely
to find an optimal one in polynomial time. In fact, it is NP-complete.

In the following discussion, we will first prove the NP-completeness of the problem. Then, we will present a
top-down algorithm to find a spanning tree of G with fewer cross edges than the traditional depth-first search
(DFS for short).

7.1.1 NP-completeness
First, we notice that

R(T) = m – n + 1 - 
Vv

T vf)(,

where fT(v) is the number of the forward edges coming into v with respect to T. Thus, minimizing R(T) is
equivalent to maximizing

F(T) = 
Vv

T vf)(.

Therefore, to show the NP-completeness of minimizing R(T), we can show the NP-completeness of
maximizing F(T).

To maximize F(T), we need to maximize the number of the attached forward edges of each path in T.
Now we consider a much easier problem to find a T such that it has a path with the maximal number of

attached forward edges, and show that even this problem is NP-complete. For this purpose, we define the
following decision problem:
Input: A DAG G and a positive integer k  n.
Question: Is there a spanning tree T such that it contains a path p of length k with the number of the attached

forward edges of p equal to (k – 1)(k – 2)/2.
We call this problem a maximum p-attachment problem.

Proposition 7.1 The maximum p-attachment is NP-complete.
Proof. It is easy to see that the problem is in NP: An algorithm can generate all spanning trees T of G and check
each T to see whether it has a maximum p-attachment.

The completeness for NP is shown by a reduction from the basic NP-complete problem SATISFIABILITY
[10]. Let an instance of SATISFIABILITY be given by a collection of clauses C = {c1, …, ck}. Each ci is of the
form xi1  xi2  …,

iik
x , where xij is a literal. We form a DAG in two steps:

1. Generate an undirected graph G  , whose vertices are pairs of integers [i, j], for 1  i  k and 1  j  ki. A
vertex [i, j] is connected to another vertex [k, l] if both of the following hold:
- i  k, and
- xij  xkl.

2. Explore G in the depth-first manner to change it to a DAG G as follows:
- If an edge (u, v) in G is explored from u to v, create an edge u v in G.
- In G, reverse the direction of any back edge. (Then, the resulting G must be a DAG.)
Obviously, the DAG can be constructed in polynomial time.
Now we claim that there is a satisfying truth assignment for C if and only if there is spanning tree containing

a path p of length k such that the number of the attached edges of p is equal to (k – 1)(k – 2)/2. It is because if C
is satisfiable, there must be a clique of size k. Exploring the clique in the depth-first fashion and then reverse any
back edge, we will get a path of length k with the number of the attached edges equal to (k – 1)(k – 2)/2.

Next, assume that T is a spanning tree of G   , which contains a path p of length k with the number of the
attached forward edges equal to (k – 1)(k – 2)/2. Assigning a value to the variable in each literal x corresponding

 • XX:29

29

to a vertex on p such that x is true while a value to the variable in any other literal y such that y is false, we get a
satisfying truth assignment for C for the following reason. First, each vertex corresponds to a literal in a different
clause. Second, for each pair of literals represented by two vertices on the path, they are not negation of each
other. This completes the proof.

7.1.2 A top-down algorithm. In this subsection, we give our top-down algorithm to explore G, which is able
to find a spanning tree with more forward edges than the traditional depth-first search. The main idea behind the
algorithm is to recognize a kind of “triangles” as illustrated in Fig. 10(a) during a search.

c
… …

a

b

Figure 10. Illustration for “triangles” encountered during a DFS

… …

a

b c

(a) (b)

In Fig. 10(a), assume that vertex c is the current vertex along a path from a to c, and b is one of c’s children,
but has been visited before (along the edge from a to b, as illustrated in the figure.) We can remove the tree edge
a b and make c b a tree edge. Then, a b becomes a forward edge as demonstrated in Fig. 10(b). We call
this process a triangle transformation. In order to do such a transformation efficiently, we arrange a Boolean
array B such that B[i] = 1 indicates that vertex i is on the current path during the depth-first search. Otherwise,
B[i] = 0. For simplicity, we assume that G is a rooted graph. Then, by the current path, we mean the path from
the root to the currently encountered vertex. Let v1  v2  …  vk be such a path. Assume that we are going to
access one of vk’s children. At this moment, in B, all B[vj]’s for j = 1, …, k must be set to 1 while all the other
entries must be 0.

In addition, three extra data structures are used:
s – a stack to control the depth-first search;
c-list(v) – a list of all those children of v in G, which have not yet been visited.
ChT(v) – a list containing all the children of v in T.

ALGORITHM 7 DFS-f(G)
begin
1. Each entry of B is set 0;
2. for each v, store its children in c-list(v) ;
3. push(root, s); mark root ; B[root] := 1;
4. while (s  ) do {
5. v := top(s);
6. while c-list(v)   do {
7. let u be the first vertex in c-list(v), chosen according to a heuristic if any;
8. if u is marked then {
9. let u be the parent of u in T;
10. if B[u] = 1 then { remove u from ChT(u); add u to ChT(v); }
11. remove u from c-list(v); }
12. else {add u to ChT(v); push(u, s); mark u; B[u] := 1; v := u; }}
13. w := pop(s); B[w] := 0; }
end

In the above algorithm, the stack s is used to keep the current path. Then, for each vertex w in s we have B[w]
= 1. Let v be the vertex at the top of s (i.e., top(s) = v; see line 5.) We will check the first element u in c-list(v)

XX:30 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
30

30

(note that initially c-list(v) contains all the children of v; see line 2.) Two cases need to be distinguished: u is
marked (showing that v has been visited before), or not marked. If u is marked, we will check whether its parent
u (in the spanning tree T created up to now) is on the current path by checking B[u] (see lines 9 – 10.) If it is
the case, a transformation will be conducted (see line 10.) Otherwise, u is simply removed from c-list(v) (see
line 11.) If u is not marked, it will be added to T as one of v’s children (see line 12.) Then, u is pushed into s and
marked (see line 12.) In a next step, one of u’s children will be visited (see the assignment statement: v := u in
line 12). We repeat this process until we meet a vertex v with c-list(v) =  . In this case, the top element of s is
popped out and the corresponding entry in B is set to 0 (see line 13.)
Example 7.1 Consider the graph shown in Fig. 11(a). If we use the traditional depth-first search to explore the
graph, we may create a spanning tree as shown by the solid arrows.

But if we use DFS-f to explore G, the triangle with three corners 3, 11 and 7 (see Fig. 11(a)) will be
recognized and transformed, leading to the spanning tree shown by the solid edges in Fig. 2(a), which has two
more forward edges than the spanning tree shown in Fig. 11(a).

Figure 11. A spanning tree and a dense graph

T:
c

b
c

d

bee d

a

b
1

2 3 4

5 6 7 8 9

10

11

12

13

14 15

b c

ca cd b
b

d

d

e
f

d

(a)

1

36

2

5 4

(b)

1

2

3

4

5

6

(c)

Concerning the correctness of the algorithm, we have the following proposition.
Proposition 7.2 Let T and T  be two spanning trees generated by a traditional depth-first search and a DFS-f
search of DAG G, respectively. Then, F(T) ≤ F(T).
Proof. Let a,b,c be a triangle met during the depth-first search. That is, a  b is a tree edge, c  b is a cross
edge, and there is a tree path from a to c. By the DFS-f(), this triangle will be transformed such that a  b
becomes a forward edge, and c b a tree edge. More importantly, any forward edge from a or an ancestor of a
to b or a descendant of b in T[b] is still a forward edge with respect to T . This shows that F(T) ≤ F(T).

The time for doing a transformation is bounded by a constant. Thus, the time complexity of DFS-f() is still in
O(n + m).

7.1.3 About recursive depth k. Now we are in position to discuss the recursive depth, i.e., the value of k.
Intuitively, the sparser a graph is, the smaller the value of k. However, for a very dense graph, the value of k can
be very small. To see this, let us consider a very dense graph shown in Fig. 11(b), for which we can find a
spanning tree shown as solid edges in Fig. 11(c). It is in fact a single path. The corresponding Gc is . Thus, for
this graph k is equal to 1.

In Fig. 12, we illustrate the execution of DFS-f() when applied to this graph.
In Fig. 12(a), we show the first triangle encountered during the execution of DFS-f(). By the triangle

transformation, it will be changed to a graph as shown in Fig. 12(b). In Fig. 12(c), we show the second triangle
encountered. Then, it will be changed to a graph as shown in Fig. 12(d). The third triangle encountered is shown
in Fig. 12(e). It will be changed to a graph as shown in Fig. 12(f). Continuing in this way, we will finally get the
spanning tree shown in Fig. 11(c).

 • XX:31

31

Figure 12. Illustration of the execution of DFS-f()

(a)

1

3

4

5

6

(c)

1

6 5

1

6

5 4

1

6

5

1

4

5

6

1

4

5

6

3

(b) (d) (e) (f)

triangle triangle triangle

On the other hand, however, there exist some DAGs G, whose Gc is G itself. As an example, consider the
graph shown in Fig. 13(a). One of the spanning trees T of this graph is shown by the solid edges in Fig. 13(b).
With respect to T, we have Vc-start = {4}, Vc-end = {3, 5}, VLAC = {1, 2}, and Vf-start = Vf-end = Vfs = Vfe= . Then, we
can see that Vc-start  Vc-end  VLAC  Vfs  Vfe = {1, 2, 3, 4, 5}, same as the vertex set of the original graph.
Thus, its Gc must be identical to the original graph.

Figure 13. Illustration of a unreducible graph
(a)

1

2 4

3 5

a b

dc e f

(b)

1

4

3 5

2

a b

c d e f

(c)

1

3

4

5

2

a b

c d e f

(d)

1

4

3 5

2

a b

c d

be

bf
(e)

2 4

3 5

dc e f

Fig. 13(c) shows another spanning tree of the graph. Its Gc is also identical to G itself.
We have two ways to handle this situation. In the first way, we simply establish an index for Gc by using an

existing method if Gc is small. In the second way, we slightly extend the strategy described in the previous
sections. Assume that T is a forest. Let r1, r2, …, rl (from left to right) be the roots of the subtrees in T. For each
cross edge v a u with both v and u appearing in T[r1], we will add a forward edge e to T as follows. Denote
by p the tree path from r1 to v. e will be labeled with L(p)a if no forward edge is attached to p, as illustrated in
Fig. 13(d), where corresponding to the two cross edges shown in Fig. 13(b), two forward edges labeled
respectively with ‘be’ and ‘bf’ are added to the tree shown in Fig. 13(b). Should be there some forwards edges
attached to p, e will be labeled with Cv.a, where Cv is the compatible graph associated with v and Cs.a represents
a set of path labels with each made up of a plus one of the path labels obtained by exploring Cv as described in
Section 5.2. Then, we are able to remove r1 and the edges incident to r1 from Gc without loss of reachability
information. It is because using DFS-f(G) we definitely have no cross edge from a vertex in T[r1] to a vertex in
any other T[ri] for i > 1 and the reachability from r1 to any other vertex can be checked within T[r1]. In Fig.
13(e), we give the Gc of the graph shown in Fig. 13(a).

In this way, we always have | 1i
cG |  | i

cG | - 1 (i = 0, …, k - 2), where | i
cG | stands for the number of vertices in

i
cG . Thus, we have k  n. In our experiments, for all the tested real data graphs G, we have k ≪ n.

7.2 Searching Compatible Graphs
In this subsection, we discuss compatible graphs. First, how to explore a compatible graph Cv associated with a
v is described. Then, how to organize all Cv’s into a single global graph to save space.

7.2.1 Searching compatible graphs. To find a set: 1, ..., j (for some j) along a path such that puv  1  …  j
⊆ S, we need to search a Cv. For simplicity, however, we consider only a simple case that in Auv we have only a
single label ai such that a  S. But it can be easily extended to general cases of 1

1
ia , …, ki

ka with each al  S and il
 1 (1  l  k). The algorithm to be given is in fact a depth-first search with a technique like finishing timestamps
[10] being used to avoid repeated access of vertices. In the algorithm, the following notations will be used.

XX:32 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
32

32

• o(, a) - an operator, which returns an integer l if .A contains al.
• f[] - a maximum number i such that ai can be replaced by using some quadruples along a certain path in Cv[]

(subtree rooted at  in Cv). So, when we encounter a vertex  once again, f[] can be simply used, which
enables us to avoid searching Cv[] for a second time. (See Fig. 14 for illustration, in which we show that if a
vertex  is met once again along a different path, we will utilize f[] to avoid a repeated visit of Cv[]. As will
be seen in the following algorithm, f[] is created in a way like finishing timestamps during a depth-first
search of a directed graph (see [10], p. 540).

P2

f[]
k1

P1

Figure 14. Illustration for compatible graphs



f[1] f[k]

When  is met once again along a
different path, f[] will be used to
avoid repeated search.

… …

The whole working process consists of two procedures, named CompExpl() and R(), respectively. In
Algorithm CompExpl(aj, Cv, u, S), each vertex is initially considered as not marked (see line 1). Lines 2 - 5
check each vertex in Cv in turn and, when an unmarked vertex  is found, visit it by calling R( , a, j, S) to
explore part of Cv[].

ALGORITHM 8 CompExpl(aj, Cv, u, S)
begin
1. Initially, each vertex in Cv is considered as unmarked.
2. for each vertex  ∈ Cv do {
3. if  is not marked and .s is a descendant of u in T then
4. {if R(, a, j, S) = true then return true;} }
5. return false;
end

ALGORITHM 9 R(, a, j, S)
begin
1. mark ; z := j; temp := 0;
2. if .x ∈ S then temp := o(, a);
3. z := z - temp;
4. if z = 0 then return true;
5. for each  →  in Cv do { /*access every child  of */
6. if  is not marked then
7. { if R(, a, z, S) = true then return true;}
8. else {if f[] = z then return true; } }
9. if  is a leaf then f[] := temp
10. else f[] := temp + maxCv{f[]};
11. return false;
end

In each call R(, a, j, S),  is first marked in line 1. Here, variable z is used to represent az, which we want to
replace to satisfy the query. In line 2, we first check whether  .x ∈ S. If it is the case, the corresponding
replacement can be conducted. Assume that o(, a) = l. Then, al can be replaced and z will be decreased by l (see
line 3.) If z becomes zero, it shows that the whole aj can be replaced and the algorithm returns true (see line 4).

 • XX:33

33

Otherwise, we will recursively explore all the subgraphs each rooted at a child of  (see line 5). Lines 5 - 9
examine each vertex  adjacent to . If  is not marked (not yet visited), we will recursively visit  if .x ∈ S. If
 is marked, we will check whether f[] = z and return true if it is the case. In any case, Cv[ ] will not be
repeatedly searched. Finally, after every edge leaving  has been explored, lines 9 - 10 set value f[] for , and
returns false (see line 11) since in this case the checking of each subgraph Cv[] must returns false (see lines 7
and 8). Special attention should also be paid to how f[] is calculated for each  in lines 9 and 10. It is
determined in a bottom-up way, i.e., it is computed based on the values for its children while the values for leaf
vertices can always be directly calculated. As illustrated in Fig. 14, when a  is visited again along a different
path, f[] can be used (see line 8) and Cv[] will not be repeatedly searched.
Example 7.2 Consider LCR(u, v, S, T), where T is shown in Fig. 4(a), and S = {a, b, d, p}. T is composed of a
tree path puv and four forward edges e1, e2, e3 and e4. Obviously, we have [u, βu] ⊇ [v, βv], L(puv) = {a, b, c} 
S, and uv = v - u =  -  =  ⊂ S. In this case, we will check v = <A(pv); 1, 2, 3, 4; >. (Since u is the root,
A(pu) is trivially  and needn’t be checked.) Here, we have

- A(pv) = {a2, b2, c2}. (Since c  S, c2 should be replaced to satisfy the query.)
- 1 = [u, h, {a, b}, d], 2 = [g, w, {b, c}, p], 3 = [w, y, {a, b}, c], 4 = [z, v, {b, c}, a].
The compatible graph over them is shown in Fig. 4(b). When exploring the graph, the following steps of

computation will be carried out:
Step 1: 1 is visited by calling R(1, c, 2, S). z is initialized to 2. Since 1.x = d ∈ S, temp is set to be o(1, c) = 0

(it is because A(puh) = {a, b} does not contain c.) So z is not changed.
In the subsequent recursive calls, Cv will be continually explored.

Step 2: 3 is visited by calling R(3, c, 2, S). z is initialized to 2. Since 1.x = c  S, temp = 0 and z remains the
same as before. Since 3 is a leaf, f[3] is set to be the same as temp = 0.

Step 3: 4 is visited by calling R(4, c, 2, ). Since 4.x = a ∈ S. temp is set be o(4, c) = 1 and z is decreased to 1.
Since 4 is a leaf, f[4] is set to be the same as temp = 1.

Step 4: 2 is visited by calling R(2, c, 2, S). Since 2.x = p ∈ S and o(2, c) = 1, z is decreased from 2 to 1. Both
its children 3 and 4 are marked and will not be further accessed. But f[4] = 1 = z. So R(2, c, 2, S) returns
true.

From the above example, we can see that each vertex  in Cv is visited at most once. Each time  is met again,
its f[] will be used to avoid repeated access.

For the general cases, we need to change o(, a) to o(, B) with B being an array of the form: [a1, ..., ak]. Its
return value is also an array of the form: [j1, ..., jk], indicating that 1

1
ia , …, ki

ka can be replaced by .
In the following, we prove the correctness of Algorithm R().

Lemma 7.1 Let R(1, a, j1, S) → ... → R(k, a, jk, S) be a chain of recursive calls with j1 ≥ j2 ≥ ... ≥ jk during the
execution of CompExpl(aj, Cv, u, S). If R(k, a, jk, S) returns true, each recursive call on the chain returns true.
(Especially, if R(k, a, jk, S) does not invoke a further recursive call, then by the replacement puv  1  ...  k, 1ja
will be removed.)
Proof. Consider R(k-1, a, jk-1, S) and R(k, a, jk, S). If jk can be reduced to 0 by using k, R(k, a, jk, S) returns true
(see line 4). Then, from line 7, we can see that R(k-1, a, jk-1, S) returns true. So, recursively, each R(i, a, ji, S) (1
≤ i ≤ k) will return true.
Lemma 7.2 Let R(, a, l, S) be a call during the execution of CompExpl(aj, Cv, u, S). If R(, a, l, S) returns false,
then any recursive call R(, a, l, S), invoked during the execution of R(, a, l, S) with  being a vertex in Cv[]
and l ≤ l, will return false.
Proof. The lemma holds in terms of Lemma 7.1 and line 12 in Algorithm R().

XX:34 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
34

34

Proposition 7.3 Let T be a spanning tree (forest) of G. Let T = T  Eforward. Let u and v be two vertices in G.
Assume that aj is the only label in A(puv) such that a  S. Then, Algorithm CompExpl(aj, Cv, u, S) returns true if
aj can be removed by using the corresponding forward edges. Otherwise, not.
Proof. Let e1, ..., ek be a set of compatible forward edges attached to puv such that by using them to replace the
corresponding segments, aj can be removed. Then, the corresponding quadruples 1, ..., k must be on a path p in
Cv, and p can be searched in one of two ways:
1. Along p, we will have a chain of recursive calls R(1, a, j1, S) → ... → R(k, a, jk, S) with j1 = j, j1 ≥ j2 ≥ ... ≥ jk,

and R(k, a, jk, S) returns true. According to Lemma 7.1, R(1, a, j1, S) returns true.
2. Along a chain of recursive calls p1 = R(1, a, j1, S) → ... → R(l, a, jl, S) with j1 = j, j1 ≥ j2 ≥ ... ≥ jl such that

there exists another chain p2 starting from a recursive call R( l+l, a, jl+l, S) with its return value being false,
but f[l+l] = jl - o(l, a). So, R(l+l, a, jl+l, S) will return true (see line 8 in Algorithm R()) and then R(1, a, j1, S)
returns true. p is the concatenation of p1 and p2.

If aj cannot be replaced, any recursive call returns false. According to Lemma 7.2, R(1, a, j1, S) returns false.
Since each vertex in Cv is accessed at most once, the running time of the algorithm is bounded by O(h), where

h is the number of all forward edges attached to puv.

7.2.2 About general compatible graphs. For efficiency, we can create a general compatible graph for all
forward edges in T, instead of a compatible graph for each single vertex v (or say, for each v).
Definition 7.1 (General compatibility graph) A general compatible graph for a T is a graph, CT, in which there
is a vertex for each quadruple  representing a forward edge in T, and an edge  →   if (1)  i and  j are
compatible, (2) i.s is an ancestor of j.s, (3) between i and j is there no other , which is compatible to both.

Now, when looking for replacements to complete a T-checking LCR(u, v, S, T), we will explore CT,
controlled by using intervals so that only the relevant part is visited. More exactly, the following property will
be used: For any vertex (in CT) representing a forward edge s → t attached to puv, we must have [u, βu] ⊇ [s, βs]
and [t, βt] ⊇ [v, βv].

In addition, we can associate each vertex u in T with a set of pointers with each pointing to a vertex  in CT
such that u is an ancestor of .s in T and there is not any other forward edge attached to the tree path from u to
.s. Thus, such vertices can be used as the starting points to explore CT when looking for replacements to satisfy
reachability from vertex u to some other vertex v.

7.3 Classification of Vertices in T
We discuss now how to do the vertex classification with respect to a spanning tree T of G to construct Gc, but
only focus on how to figure out the vertices in VLCA, Vfs, and Vfe since the vertices in Vc−start and Vc−end, as well as
in Vf−start and Vf−end can be easily recognized according to their definitions.

First, we mark all vertices in Vc−start  Vc−end Vfe as follows.
 Search T in the depth-first manner. In the process, keep a variable x, which contains the highest c-end vertex

on the current path.
 For each encountered vertex v, we will do the following checking:

- if it belongs to Vc−start Vc−end, mark it.
- In addition, if it belongs to Vf−end, we will check the corresponding forward edge s v. If x is equal to s

or an ancestor of s, mark it since it must be a vertex in Vfe.
Next, we will search T bottom up and produce the skeleton tree Tc of T, containing only the vertices in Vc =

VLCA  Vc−start  Vc−end  Vfs  Vfe. Note that to recognize VLCA we can use the algorithm discussed in [41].
However, besides VLCA, we also need to recognize Vfs (Vc−start and Vfe are already marked as described above.)
For this reason, we design a new procedure for this task.

 • XX:35

35

Initially, Tc is set to . Then, during a bottom-up traversal of T, not only the vertices in Vc−start  Vfe (they are
all marked) will be inserted into Tc, but the vertices in VLCA  Vfs will also be recognized and inserted into Tc.

For each vertex u, which has already been inserted into Tc, it will be associate with a Boolean value: c(u) and
two links: l1(u) and l2(u), described below.
 c(u) is true if T[u] contains a vertex v  Vc−start. Otherwise, c(u) is false.

During a bottom-up traversal of T, c(u) can be computed as follows.
- If u  Vc−start, set a temporary Boolean variable  to be true; otherwise, false.
- Let u1, …, ul be the children of u. Set c(u)  c(u1)  …  c(ul)  .

 l1(u) is a link to a vertex inserted into Tc just before u, which is not a descendant of u in T.
 l2(u) is a link to its parent or one of its ancestors whichever first inserted into Tc.
l2(u) can be created as below, during the construction of Tc.
Let u be the vertex inserted just before u. If u is a child (descendant) of u, we will first create a link from u to
u, denoted as l2(u) = u. Then, we will go along the l1-chain starting from u: u → l1(u) → l1(l1(u)) → … →

)(
1
il (u) = u  for some i such that l1(u ), l1(l1(u )), …,)1(

1
il (u ) are all the children (descendants) of u, but

)(
1
il (u) not, where)(

1
il (u) is just l1 applied i times to u. That is, we will go along the chain until we meet a

vertex u   which is not a child (descendant) of u. For each encountered vertex v except u   , set l2(v)  u.
Finally, set l1(u)  u (i.e., change the l1-link of u to point to u.) We denote the whole process as

r ← linkTrav(u),
where r is the number of vertices  VLCA  Vc−start Vfs , encountered during the navigation along the l1-chain.
If r > 1, u will be inserted into Tc no matter whether it is marked or not. Otherwise, u will not be inserted into
Tc if it is not marked.
According to the above discussion, we design an efficient algorithm for recognizing all the vertices in Vc and

store them in Tc.
ALGORITHM 10 find-Tc(T)
begin
1. Tc  . Mark any vertex in T, which belongs to Vc−start ∪ Vc−end ∪ Vfe. Establish c(v) for all v.
2. Explore T bottom-up. Let u be the currently encountered vertex. Do the following operations:

a) If u is the first marked vertex encountered during the bottom-up searching, simply insert u in Tc. Otherwise, do (b).
b) Let u be the vertex inserted into Tc just before u is met. Do (i) or (ii), depending on whether u is a marked vertex or not.

i) If u is marked, then insert u into Tc.
- If u is not a child (descendant) of u, set l1(u)  u (i.e., set a l1-link from u to u).
- If u is a child (descendant) of u, then execute r linkTrav(u).

ii) If u is a non-marked vertex, then do the following.
- If u is not a child (descendant) of u, u is ignored.
- If u is a child (descendant) of u, r linkTrav(u). If r > 1, mark u and insert u into Tc. Otherwise, u is ignored.

c) If u is inserted in Tc, check all those forward edges: s1  u, …, sq  u , each with u being its end vertice in T and c(u) =
true. Mark s1, …, sq . (*It is because all these vertices must be in Vfs.*)

end

In the above algorithm, special attention should be paid to (2-b-ii) and (2-c). In (2-b-ii), we recognize all
those vertices  VLCAwhile in (2-c), we recognize all those vertices  Vfs.
Example 7.3 Consider T shown in Fig. 2(a) (i.e., the spanning tree shown by the solid edges plus the
corresponding forward edges.) By executing find-Tc(T), we will first mark vertices 13, 5, 6, 14, 15, and 9. They
are all  Vc−start Vc−end  Vfe. Thus, the first vertex inserted into Tc should be vertex 13 (see Fig. 15(a).) In a
next step, vertex 5 will be inserted into Tc and l2(13) = 5 will be generated (see Fig. 15(b).) In the third step, we

XX:36 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
36

36

will meet vertex 6. Since it is to the right of 6, a link l1(6) = 5 will be created (see Fig. 15(c).) When vertex 14 is
encountered next, it will be inserted into Tc as shown in Fig. 16(d). Following this, we will meet vertex 15 (see
Fig. 15(e).) The next encountered vertex is vertex 7 (see Fig. 15(f).) It is not marked, but the parent of vertex 15.
So, the l1-link chain starting from vertex 15 will be searched to find another child (vertex 14) of vertex 7 along
the chain. Here, a close attention should be paid to the replacement of l1(14) = 6 with l1(7) = 6, which enables us
to easily find the lowest common ancestor of 6 and some other vertices from VLCA Vc−start  Vfs if any. In the
last three steps, we will meet vertices 3, 9 and 1. Among them, 3 and 9 are marked and will be inserted into Tc as
shown in Fig. 15(g) and (h), respectively. When vertex 1 is met, we will find all the four children of it in Tc
along the l1-link chain starting from vertex 9. They are 5, 6, 3 and 9 with 5  Vc−end, 6, 9  Vc−start, and 3  Vfs.
Thus, r = 4 (see 2-b-ii) and vertex 1 will be added to Tc (see Fig. 15(i)).

6
6

14

6

5 1466 14

6

14 15

7

(a) (b) (c)

(f)

Figure 15. A sample trace

14

157

(g)

3

157

(h)

3 9

14 157

(i)

3 9

1

13 5

13

5

13

6

(d)

5

13

15

13

5

13

5

13

5

13

5

13

(e)

The Tc shown in Fig. 15(i) is the same as the tree shown in Fig. 6, from which Gc can be efficiently
constructed as illustrated in Fig. 2(b). The algorithm for doing this requires only O(m) time as analyzed below:
- The time for executing line (1) is obviously bounded by O(m).
- During the bottom-up search of T, each vertex in T is accessed at most two times: one access is done along the

whole postorder of vertices and another access is along a series of l1-links, by which for a vertex v out-
degree(v) edges will be visited. So, we have


Vv
out-degree(v) = m.

Concerning the correctness of this algorithm, we have the following proposition.

Proposition 7.4 Let G = (V, E) be a DAG. Let T be a spanning tree (or a spanning forest) of G. Algorithm find-
Tc(T) generates Tc of G with respect to T correctly.
Proof. To show the correctness of the algorithm, we should prove the following: (1) each vertex in Tc is a vertex
 Vc = VLCA  Vc−start  Vc−end  Vfs  Vfe; (2) any vertex not in Tc does not belong to Vc; (3) for each edge u
v in Tc there is a path from u to v in T, which does not contain any vertex in Tc (except the two end points).

First, we prove (1) by induction on the height h of Tc. The height of a vertex v in Tc is defined to be the
longest path from v to a leaf vertex in Tc.
Basis step. When h = 0, each leaf vertex in Tc is a vertex in Vc−start  Vc-end Vfe. So it is correct.
Induction step. Assume that every vertex appearing at height h = k in Tc is a vertex in Vc. We prove that every
vertex v at height k + 1 in Tc is also a vertex in Vc. If v is marked, it must be a vertex in Vc−start  Vc-endVfs  Vfe,
the proposition holds. Assume that v is not marked. According to the algorithm, v has at least two children 
VLCA  Vc−start  Vfs. Thus, v  VLCA.

In order to prove (2), we notice that (i) any vertex in Vc−start  Vc-end  Vfe is marked (see line 1); (ii) any
vertex in Vfs is marked before it is encountered (see line 2-c); and (iii) any unmarked vertex but inserted into Tc
must belong to VLCA (see line 2-b-ii). Finally, (3) can be seen from the fact that each l2-link corresponds to a path
in T and such a path cannot contain any vertex in Tc (except the two end points) since the vertices in T are
checked level by level bottom-up.

 • XX:37

37

8 Experiments
In order to show that our method does not only have a better theoretical computational complexity than the
existing methods for this problem, but is also greatly better than them in practice, we have done a lot of tests on
some real data and synthetic data.

In our experiments, we have altogether tested five different methods:
1) BFS-based [10] (BFS for short),
2) Landmark-based [20] (LandM for short),
3) Zou’s method [32] (Zou’s for short),
4) Hassan’s method [16] (Hassan’s for short), and
5) Compatible-graph-based discussed in this paper (CGB for short)

The LandM, Zou’s and Hassan’s methods are briefly described in Section 3. But special attention should be
paid to the Hassan’s since it was designed to find a shortest path p from a vertex v to another vertex u such that
all edge labels on p fall in S. This is more general than LCR and requires in general much more query time.

The code of the landmark-based method is downloaded from https//github.com/DeLaChance/LCR, and the
code of the Hassan’s method is from the authors [17]. All the other three methods are implemented by ourselves.
The Hassan’s code is written in Java, and all the others in C++, running on a Linux machine with 128GB of
memory and a 2.9GHz 64-core processor.

In the tests, both synthetic and real datasets are used, and queries are generated in a way controlled to avoid
trivial cases that the checked vertices v and u are not far away from each other. Our goal is twofold:

i) to study how well our method performs on real data concerning the indexing time, index space, and query
time.

ii) to examine the effects of different graph parameters on the performance, such as graph density, and the
distribution of outdegrees of vertices, as well as the number of labels.

For this purpose, we will divide the experiments into two groups. In the first group, we test all the methods
against real data. The second group is on synthetic data and further divided into three parts. In the first part, we
compare our method with the LandM and the Zou’s on two kinds of synthetic data (the uniform-data and Zipf-data
to be described below.) In the second part, we fix the number of vertices of the synthetic graphs while vary the
other parameters, such as the out-degree per vertex and label set size in order to study their effects. In the third
part, we study the scalability of our method by increasing graph sizes.

As will be seen later, our method uniformly outperforms all the other tested approaches due to its greatly
reduced index space and the short to- and from-sequences associated with each vertex.

8.1 Datasets
Table 4 provides an overview of the real datasets used in the experiments. These datasets are taken from various
sources. Some are edge-labeled, and some not. For those not edge-labeled, we assign labels to edges
synthetically, which is indicated in the column “Synthetic labels”.

Table 4: Real datasets with edge labels

Datasets |V| |E| || syn. label

robots 1.40k 2.90k 4 -
yeast 3.06k 13.3k 5 -
yago 5.00k 28.5k 66 -
advogato [35] 5.40k 51.0k 4 -
Youtube 15.0k 10.7M 5 -
BioGrid 64.0k 1.5M 7 -
yago2 16.4M 31.9M 97 -

Table 5: Real datasets without edge labels

Datasets |V| |E| || syn. label

epinions [35] 131k 840k 10 
webStanford [36] 251k 2.3M 10 
webGoogle [36] 875k 5.1M 10 
webBerkstan [36] 685k 7.0M 10 
socPokec [36] 1.6M 30M 10 
wikiLinks [35] 3.0M 102.0M 10 
citeseerX [35] 6.54M 150.1M 10 

All the graphs listed in Table 4 are with edge labels. Among them, except BioGrid [62], all the others robots
[63], yeast [64], yago and yago2 [65], advogato [66], and Youtube [36] are directed graphs. In addition, yago

XX:38 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
38

38

and yago2 are two RDF data collections. In BioGrid, each undirected edge is replaced by directed edges to
create a directed graph.

In Table 5, all the graphs are not edge labeled. For this reason, we will assign each edge in such graphs a
number out of {1, 2, …, 9}, working as its label. All these datasets are taken from either SNAP [36] or
KONECT [35] (http://konect.cc/), but come from a wide variety of application domains, including education
(robots), Biology (yeast), RDF graphs (yago), media (YouTube), social network (socPokec), web network
(webStanford, webGoogle, webBerkstan), Wikipedia (wikiLinks), and citation (citeseerX). Experimenting with
them, we can observe the general behaviors of different strategies.

All the synthetic datasets are created by using the gMark [67]. According to the probability distribution of
degrees of vertices, they can be categorized into two groups: data following uniform distribution (P(d) = 1/(b – a
+ 1) (d  [a, b]); and data following Zipfian distribution (P(d) = d-l) [18], where d represents the out-degree of
a vertex, and a, b,  and l are four constants with b > a. For the uniform distribution, we take a = 2 and b = 5.
For the Zipfian distribution we fix  to 1, but set l to different values (either 2.2, 2.4, 2.6, or 2.8) to change the
distribution of vertices’ outdegrees. We notice that the larger l is, the smaller the number of edges in a graph. To
study the scalability in these two kinds of graphs, we vary graph size from 100k to 400K vertices.

In Table 6, we show the main parameters used to determine the graph configuration [49].
Table 6: Parameters for synthetic graphs

Size (# of nodes) n
Edge labels  = {1, 2, …}
Node types not specified
Node type constraints not specified
Probability distribution of out-degree P(d), where d represents the outdegree of a vertex.

8.2 Query Generation
By using the gMark, different kinds of regular path queries [51] can be created, including LCRs. However, by
the gMark we are not able to control two important properties of queries:

1) To avoid trivial cases that v and u are only few steps away for a query LCR(u, v, S, G).
2) To determine whether LCR(u, v, S, G) returns true or false.

For this reason, we have designed our own procedure to create queries for each dataset G (Algorithm 7) such
that the ‘distance’ between u and v, denoted as dis(u, v), are properly controlled. Here, by ‘distance’ we mean
the number of vertices visited by the BFS from u to v.

ALGORITHM 7 queryGen(G, l)
Input: G – a graph; l – size of query set;
Output: Qt – set of true-queries; Qf – set of false-queries;
begin
1. Qt := ; Qf := ; l := l/100;
2. while |Qt| ≤ l or |Qt| ≤ l do {
3. choose a random vertex u from G, and generate a random number 10 ≤ r ≤ n;
4. for j = 1 to l do {
5. choose a random vertex v ( u) from G; generate randomly 10 subsets of : S1, …, S10;
6. for each Sk do {
7. run BFS to find whether u ↝ v under Sk;
8. if it is the case and dis(u, v) > r then
9. {if |Qt| < l then Qt := Qt  {LCR(u, v, Sk);}}
10. else {if |Qf| < l then Qf := Qf  {LCR(u, v, Sk);}}}}}
end

 • XX:39

39

The above algorithm is used to generate both true- and false-queries, which takes a graph G and an integer l
(to indicate the number of queries to be created) as inputs. To generate queries, we will randomly select l
vertices u. For each of them, we will randomly select l/100 vertices v different from u. Then, for each (u, v),
we will further create 10 subsets S of  and for each of them check whether u ↝ v under S. If it is the case, add a
query LCR(u, v, Sk, G) to Qt, which is used to accommodate positive queries; otherwise, add it to Qf, which is
used to accommodate negative queries. The cardinality of both Qt and Qf is bounded by l.

8.3 Tests on Real datasets
In the first experiment, we compare the performance of our method with the landM [20], the Zou’s [32], and the
Hassan’s on the real datasets described in Table 4 and 5. We mainly report their respective indexing times (IT)
and index sizes (IS), as well as their query times (QT). Indexing times and sizes are summarized in Table 7,
which clearly show that ours uniformly outperforms the others: the LandM, the Zou’s and Hassan’s. In the case
of Zou's, we want to emphasize that it is only possible for small graphs to establish the indexes within the time
limitation (4 hours). For all the graphs with the number of edges close to 1M or above, it times out or collapses
due to the system stack overflow. In addition, the indexing time of the Hassan’s is comparable to ours, but better
than all the other methods even though its index space is in general much larger than ours. However, the index
space of the Hassan’s is still much smaller than the LandM and Zou’s. The reason for this is that by the
Hassan’s, not all the shortest paths are created as an index, instead, graph G is partitioned into a set of
contracted paths with each edge in it having the same label, plus some bridge vertices and OtherHost Lists [16],
which can be used to speed up the navigation of G when evaluating a query. Such a data structure needs much
less space than a transitive closure or a partial transitive closure.

Table 7: Indexing Time and Size on Real datasets
Datasets CGB LandM Zou’s Hassan’s

IT(s) IS(M) IT(s) IS(M) IT(s) IS(M) IT(s) IS(M)
robots 0.8 0.1 0.1 5 7 1.457 6.02 3.2
yeast 2.1 0.5 0.41 6 14 3.0 13.08 11.23
yago 4.79 3.33 3.21 59 101 11.23 29.21 28.2
advogato 53 7.2 3 131 178 20.32 33.0 31.34
Youtube 1,699 92.2 2,831 300 713 245.15 727.11 693.1
BioGrid 142 12.8 50 1,302 3,007 1,011.1 203.35 73.2
yago2 1,749 1076.08 5,3857 28,152 F F F F
epinions 92 10.8 205 2,903 1,404 2,212 217.23 69.7
webStanford 510 28.6 935 7,806 1,710 6,766 640.37 231.28
webGoogle 701 153.6 5,887 33,931 5,056 22,130 979.02 502.15
webBerkstan 833 144.0 2,463 15,690 4,236 12,475 953.04 451.51
socPokec 1,612 512.3 9,762 75,698 F F 2,302.71 2,307.23
wikiLinks 11,906 1,159 24,736 93,414 F F 28,408.92 6,216.15
citeseerX 18,782 8,886 29,836 105,751 F F F F

Table 8 shows the breakdown of the indexing time of our method, which is mainly composed of two parts: the
time t1 for find spanning trees for G and the time t2 for constructing compatible graphs.

Table 8: Breakdown of indexing time of CGB
robots yeast yago Advo-

gato
You-
tube

Bio-
Grid

yago2 epinions Web-
Stanford

Web-
Google

web-
Berkstan

soc-
Pokec

Wiki-
Links

citeseerX

t1 (s) 0.537 1.42 3.21 30.01 676.56 63.7 1025.77 64.57 207.52 347.98 367.34 689.43 4,236.23 6,987.56
t2 (s) 0.263 0.68 1.58 22.99 1,022.4 28.3 723.23 27.43 302.48 353.02 465.66 922.57 7,669.77 11,794.44

In Table 9, we show the query times of our method, and all the other four approaches. First, we notice that the
query time for the true-queries is given in microseconds while the query time for the false-queries is given in
milliseconds. It is due to the huge difference between the query times of these two kinds of queries. From this,
we can see that for true-queries, ours, the LandM and the Zou’s are slightly better than the BFS and the Hassan’s.
However, for false-queries, there is a big gap between the BFS and the others. The reason for this is that a true-

XX:40 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
40

40

query can stop after hitting its target whereas by a false-query a large part of a graph has to be searched for the
BFS to find that the source cannot reach to the target. In fact, the same analysis applies to the LandM even
though it can be somehow better than the BFS in some cases. It is because by this method an index is
constructed only for a small fraction of vertices and for most false-queries they are useless. To be clearer,

consider graph wikiLinks with n = 3.0M. For it, the set of the chosen land marks will contain 1250 + n = 2980
vertices [20], which are only about 0.3% of all vertices. Then, for evaluating a query, the probability that the
index is utilized is (0.3 + 99.7  0.3)/100 = 30.21%. That is, for a false-query, the probability that the LandM
will search the whole wikiLinks is about 70%. So, for false-queries, the LandM is not much better than the BFS,
and even worse than the Hassan’s. However, ours is still better than the Hassan’s although its index structure
can be almost 5 times larger than ours. For small graphs, the Zou’s exhibits a great gain of the query time over
both the BFS and the LandM, which shows that fully indexing a graph is beneficial since in any case searching a
large part of a graph can be avoided. Unfortunately, both its indexing time and index size are too large and
cannot scale well on large graphs. In the opposite, by our method, the to-sequence and from-sequence of a vertex
are quite short and when the to-sequence of the source, or the from-sequence of the target is exhausted, returns
false. See Table 10 for some real tested lengths.

To show the reason why our index is much smaller than the others, in Table 10, we give the maximum
lengths k of the to- and from-sequences associated with the vertices in different graphs by our method. Clearly,
we can see that k ≪ n. In Table 11, we show the average number of checked intervals and performed
replacements by evaluating a query, from which we can observe the reason why our query time is much better
than the others.

Table 9: Query Time on Real datasets
Datasets True query (s) False query (ms)

CGB LandM Zou’s BFS Hassan’s CGB LandM Zou’s BFS Hassan’s
robots 0.13 20.12 8.90 17.77 3.19 0.01 0.06 0.02 0.70 0.12
yeast 0.31 45.81 23.23 56.78 6.73 0.09 0.11 0.06 3.23 0.13
yago 0.45 47.21 60.69 89.21 8.01 0.11 0.17 0.10 34.32 0.19
advogato 36.0 43.08 46.34 120.6 531.0 0.09 0.21 0.05 7.67 0.32
Youtube 8.50 21.10 25.80 3,220.6 2324.04 8.50 8.19 3.07 38,88 10.9
BioGrid 11.9 23.71 35.23 1,754.3 420.05 1.9 11.95 3.45 29.0 16.4
yago2 71.5 292.73 F 16547.7 F 22.31 121.64 F 269.8 F
epinions 20.8 52.10 65.77 106 989.8 1.1 1.58 1.02 2.31 1.7
webStanford 209.3 418.87 403.0 280 1,989.2 2.3 3.16 2.24 14.6 3.9
webGoogle 108.9 192.72 157.01 1,340 3,456.2 3.9 17.57 13.76 29.65 10.7
webBerkstan 116.4 139.52 146.78 995 3,743.0 7.4 20.78 13.66 27.6 30.0
socPokec 8.4 12.76 F 1,290 7,923.3 10.5 19.25 F 79.0 23.7
wikiLinks 31.4 49.06 F 3,120 12,432.2 11.4 25.42 F 101.9 45.9
citeseerX 46,7 67.98 F 5,769 F 13.02 209.16 F 363.56 F

Table 10: Maximum length of to- and from-sequences of vertices by CGB
robots yeast yago Advo-

gato
You-
tube

Bio-
Grid

yago2 epinions Web-
Stanford

Web-
Google

web-
Berkstan

soc-
Pokec

Wiki-
Links

citeseerX

Max. Len. 24 60 82 91 233 396 546 96 107 76 167 301 423 388

Table 11: Average length of sequences accessed and average number of replacements when evaluating a query by CGB
robots yeast yago Advo-

gato
You-
tube

Bio-
Grid

yago2 Epinions Web-
Stanford

web-
Google

web-
Berkstan

soc-
Pokec

Wiki-
Links

citeseerX

Ave. Num. interval 9 23 37 39 97 117 383 36 54 48 78 132 183 214
Ave. replacements 27 39 25 14 73 61 343 89 93 77 202 208 267 387

8.4 Tests on Synthetic datasets
In this section, we report the tests on synthetic datasets. As mentioned before, this test is divided into three parts,
which will be presented in Subsections 8.4.1, 8.4.2, and 8.4.3, respectively.

 • XX:41

41

8.4.1 Part I: synthetic graph performance. In Part I, we compare the performance of our method with the
LandM and the Zou’s on two groups of synthetic datasets created by using gMark [38]. For them, we choose n =
250,000 and |  | = 10. In the first group, the outdegree of vertices follows the uniform distribution, called
uniform-graphs. Concretely, we will create four graphs, each with P(d) = 1 for a different d  {2, 3, 4, 5}.
Accordingly, the density of graphs is gradually increased. In the second group, the outdegree of vertices follows
the Zipfian distribution (P(d) = d-l), called zipf-graphs. In this graph, also four graphs are created, each with 
= 1, and l = 2.2, 2.4, 2.6, 2.8, respectively. Our goal here is to understand the impact of graph density on
performance, for both different synthetic graph generation models. We expect that all the parameters for all the
tested methods will increase as the graphs become denser. It is because the number of possible paths to explore
and indexes between vertices, as well as the number of minimal label sets increase with density. Especially, for
our method, the number of decomposed spanning trees will also be incremented. Table 12 and 13 summarize the
results. From these, we can see that the index sizes of our method are much smaller than the LandM and Zou’s.
It is because the indexes produced by our method is highly compacted by using the multi-sets and the
compatible graphs to represent path labels, which leads to a very short indexing time since both the multi-sets
and the compatible graphs can be constructed very fast. Our query time is also much better than LandM and
Zou’s. It includes a series of interval checks and a searching of several compatible graphs, whose cost is linear in
the number of forward edges with respect to the found spanning trees.

In all cases, the Zou’s method needs much more time than the LandM to establish an index. Its index sizes are
also much larger than the LandM’s. The reason for this is simple: the Zou’s indexes are over all the vertices
while the LandM’s only over part of vertices. This difference leads to a big difference between their query times.
In many cases, especially for the zipf-graphs, the LandM’s query time can be ten times higher than the Zou’s.

8.4.2 PartII: impact of number of edges and label set size. We next test the performance of our method while
varying the number of edges and labels using synthetic datasets. Again, we will use uniform-graphs (UG) and
zipf-graphs (ZU) of n = 250,000 with || set to be different values: 8, 10, 12, 14, and 16. For uniform-graphs, d =
2, 3, 4, 5; and for Zipf-graphs,  = 1 and l = 2.2, 2.4, 2.6, 2.8. Here, what we want is to better understand the
impact of both the number of labels of a graph and the graph density on our method’s performance. We expect
that as graphs grow in either of these dimensions, indexing costs will increase since the sizes of both multi-sets
and compatible graphs will be enlarged. Especially, the number of recursive graph decompositions will also be
increased as the density of graphs grows or more labels are attached to edges, leading to larger sequences
associated with vertices as indexes.

Fig. 16 and 17 show the indexing time, the index size and the query time for the uniform-datasets and Zipf-
datasets. When d is large, we observe that both the indexing time and index size rapidly grow as | | increases.

Table 12: Test results on uniform-graphs. For all the methods, IT
is given in seconds, IS in Mbytes, and QT in milliseconds.
d CGB LandM Zou’s

IT IS QT IT IS QT IT IS QT
2 10.2 17.2 1.1 170.3 45.02 75.2 745.1 372.3 54.4
3 20.1 25.6 1.4 219.3 67.5 89.3 901.4 350.7 73.0
4 31.2 29.1 2.3 438.9 80.3 219.8 1401.2 432.2 100.0
5 45.7 42.3 2.6 912.7 292.1 252.5 1695.1 481.1 127.2

Table 13: Test results on zipf-graphs. For all the methods, IT is given
in seconds, IS in Mbytes, and QT in milliseconds.
l CGB LandM Zou’s

IT IS QT IT IS QT IT IS QT
2.8 17.03 6.9 0.12 13,3 107,5 90.7 1678.1 157.5 4.7
2.6 23.17 8.1 0.24 14,1 109.1 132.4 1710.7 166.3 7.4
2.4 26.2 11.0

5
0.47 14,7 112.3 200.2 1839.4 171.6 11.93

2.2 32.13 15 0.76 15.7 148.4 287.7 2120.7 183.8 15.02

XX:42 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
42

42

However, when d is small, the growth of the indexing time and index size is slow. This shows that the size of
multi-sets and compatibles increases exponentially in | | for large d, and remains small when d is small, no
matter what || is.

The growths of the indexing time and index size are larger for the uniform-graphs than for the Zipf-graphs.
This is because the uniform-graphs have a close to uniform out-degree distribution. In general, more paths
connecting any two vertices imply larger multi-sets and larger compatible graphs.

Although the query time for the Zipf-graphs is in general lower than for the uniform-graphs, for small l
values (then more vertices with larger out-degrees) their query time grows very fast as || increases.
8.4.3 Part III: impact of graph structures. Finally, we analyze the performance of our method on uniform-
and Zipf-graphs as we vary the number of vertices n  {1,000k, 1,500k, 2,000k, 2,500k, 3,000k, 3,500k, 4,000k}
while fix | | = 10. For the uniform-graphs, d = 5; and for the Zipf-graphs, l = 2.6 (recall that P(d) = d-l). Our
goal here is to understand the scalability of our method.

Figure 16. Indexing time, index size and average query times for uniform-graphs with n = 250,000, as a function
of label set size ||. The different curves indicate the vertex degree (either 2, 3, 4, or 5) of the datasets.

Fig. 18 shows the indexing time, index size and the average query time. We can observe that all the three
parameters for the uniform-graphs grow much faster than those for the Zipf-graphs. This can be explained by the
fact that in a graph with a more uniform out-degree distribution, the average number of paths between any two
vertices is higher than in a graph with more skewed out-degree distribution. If the number of paths increases
between any two vertices, so does the size of the corresponding compatible graph. Due to this effect, all the
three parameters for the uniform-graphs increase faster.

Figure 17. Indexing time, index size and average query times for Zipf-graphs with n = 250,000, as a function of
label set size ||. The different curves indicate the vertex degree (either 2, 3, 4, or 5) of the datasets.

 • XX:43

43

Figure 18. Indexing time, index size and average query times for uniform-graphs (UG) and Zipf-graphs (ZG), as
a function of the number of vertices.

9 CONCLUSION
In this paper, a new method to evaluate LCR queries is discussed. The main idea behind it is to decompose a

graph G into a series of spanning trees T0, ..., Tk−1. Then, construct a series of tree-like subgraphs T0  , ..., Tk−1 
with each Ti  being Ti plus the corresponding forward and back edges. With respect to each Ti  , we recognize
different kinds of vertices to evaluate queries and transfer reachability information efficiently. In this way, the
index construction time and the index space can be respectively reduced to O(||(1

0  
 i
k
i im  +  ihi)) and

O( 



1
0

|||(|
k
i iiT  + ihi)) for DAGS, where mi is |Ti| plus the number of all the corresponding cross edges

with respect to Ti,  i and hi are respectively the number of all forward edges and the maximum number of
forward edges attached to a path in Ti (i = 1, …, k - 1), and  is the set containing all the edge labels of G. The

query time is bounded by O( 




1

0
2 |)|(

k

i ii hh). For cyclic graphs, the index construction time and the index

space are bounded by O(||(
1
0

 
 ii
k
i i bm  +  ihi)) and O( 




1
0

|||(|
k
i iii bT  +  ihi)) , respectively,

where bi is the maximum number of all those back edges s  t such that their end vertices t are on a same path

in Ti. The query time is bounded by O( 




1

0
2 |)|(

k

i iii hhb). Extensive experiments have been conducted, which

show that our method is much better than all the existing methods in all the important aspects, including index
construction times, index sizes and query times.

ACKNOWLEDGEMENT
The authors are grateful to the anonymous referees for their valuable comments.

REFERENCES
[1] R. Agrawal, A. Borgida, and H. V. Jagadish, Efficient management of transitive relationships in large data and knowledge bases, in

Proc. of the 1989 ACM SIGMOD Int. Conf., New York, NY, USA, 1989, pp. 253–262.
[2] T. Anderson, Combinatorics of Finite Sets, Clarendon Press, Oxfond, 1987.
[3] F. Bonchi, A. Gionis, F. Gullo, and A. Ukkonen, Distance oracles in edge-labeled graphs, in Proc. 17th Inter-national Conference on

Extending Database Technology (EDBT), March 24-28, 2014, Athens, Greece, pp. 547–558.
[4] Y. Chen and Y. Chen, Core labeling: A new way to compress transitive closure, in Proc. of Int. Conf. on Signal Image Technology

and Internet Based Systems, IEEE, Bali, Indonesia, 2008, pp. 3–10.

XX:44 Efficient Evaluation of Label Constraint Reachability Queries

Pa
ge
44

44

[5] Y. Chen and Y. Chen, An efficient algorithm for answering graph reachability queries, in Proc. of the 24th Int. Conf. on Data
Engineering, IEEE, Cancun, Mexico, 2008, pp. 893–902.

[6] Y. Chen and Y. Chen, Decomposing DAGs into Spanning Trees: A New Way to Compress Transitive Closures, in Proc. of the 27th Int.
Conf. on Data Engineering, IEEE, Hannover, Germany, April 2011, pp. 1007-1018.

[7] J. Cheng, J.X. Yu, X. Lin, H. Wang, and P.S. Yu, Fast computation of reachability labeling for large graphs, in Proc. EDBT, Munich,
Germany, May 26-31, 2006.

[8] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, Reachability and distance queries via 2-hop labels, SIAM J. Comput, vol. 32, No. 5,
pp. 1338-1355, 2003.

[9] J. Cai, and C. K. Poon, Path-hop: Efficiently indexing large graphs for reachability queries, in Proc. of CIKM 2010, Toronto, Ontario,
Canada, October 26-30, 2010, pp. 119-128.

[10] T. H. Corman, C. E. Leierson, R. L. Rivest, and C. Stein, Introduction to Algorithms, McGraw Hill, 2002.
[11] H. V. Jagadish, A compression technique to materialize transitive closure, ACM Trans. Database Systems, volume 15, New York, NY,

USA, Dec. 1990, pp. 558–598.
[12] R. Jin, Y. Xiang, N. Ruan, and H. Wang, Efficiently answering reachability queries on very large directed graphs. In Proc. of the 2008

ACM SIGMOD Int. Conf. on Management of Data, New York, NY, USA, 2008, pp. 595–608.
[13] R. Jin, H. Hong, H. Wang, N. Ruan, and Y. Xiang, Computing label-constraint reachability in graph databases, in Proc. of the 2010

ACM SIGMOD Int. Conf. on Management of Data, New York, NY, USA, 2010, pp. 123–134.
[14] R. Jin, N. Ruan, Y. Xiang, and H. Wang, Path-Tree: An Efficient Reachability Indexing Scheme for Large Directed Graphs, ACM

Transaction on Database Systems, Vol. 36, No.1, 2011, pp. 1-52.
[15] R. Jin, X. Yang, R. Ning, and F. David, 3hopp: A high compression indexing scheme for reachability query, in Proc. of the 2009 ACM

SIGMOD Int. Conf. on Management of Data, New York, NY, USA, 2009. ACM, pp. 813–826.
[16] M. S. Hassan, W. G. Aref, and A. M. Aly, Graph Indexing for Shortest-Path, Finding over Dynamic Sub-Graphs, SIGMOD’16, June

26-July 01, 2016, San Francisco, CA, USA.
[17] I. Munro. Efficient determination of the transitive closure of directed graphs. Information Processing Letters, vol. 1 (2), pp. 56-58,

1971.
[18] M. E. J. Newman. Power laws, pareto distributions and zipfs law, Contemporary Physics, 2005.
[19] M. Thorup, “Compact Oracles for Reachability and Approximate Distances in Planar Digraphs,” JACM, 51, 6(Nov. 2004), 993-1024.
[20] L. Valstar, G. Fletcher, and Y. Yoshida, Landmark Indexing for Evaluation of Label-Constrained Reachability, SIGMOD’17, May 14-

19, 2017, Chicago, Illinois, USA.
[21] H. Wang, H. He, J. Yang, P. S. Yu, and J. X. Yu, Dual labeling: Answering graph reachability queries in constant time, in Proc. of the

22nd Int. Conf. on Data Engineering, Washington, DC, USA, 2006.
[22] K. Xu et al., Answering label-constraint reachability in large graphs, in Proc. of the 20th ACM Int. Conf. on Information and

Knowledge Management, ACM, NY, USA, 2011.
[23] H. Yildirim, V. Chaoji, and M.J. Zaki, GRAIL: Scalable Reachability Index for Large Graphs, in Proc. VLDB Endowment, 3(1), 2010,

pp. 276-284.
[24] Y. Zibin and J. Gil, "Efficient Subtyping Tests with PQ-Encoding," Proc. of the 2001 ACM SIGPLAN Conf. on Object-Oriented

Programming Systems, Languages and Application, Florida, October 14-18, 2001, pp. 96-107.
[25] H.S. Warren, “A Modification of Warshall’s Algorithm for the Transitive Closure of Binary Relations,” Commun. ACM 18, 4 (April

1975), 218 - 220.
[26] S. J. van Schaik and O. de Moor. A memory efficient reachability data structure through bit vector compression. In SIGMOD ’11,

pages 913–924, 2011.
[27] R. Jin, N. Ruan, S. Dey, and J. X. Yu, SCARAB: Scaling Reachability Computation on Large Graphs, SIGMOD’12, May 20–24, 2012,

Scottsdale, Arizona, USA.
[28] H. Wei, J. X. Yu, C. Lu, and R. Jin, Reachability Querying: An Independent Permutation Labeling Approach, in: 2014 Proc. of the

VLDB Endowment, Vol. 7, No. 12, 2014.
[29] R. R. Veloso1, L. Cerf, W. Meira Jr, M. J. Zaki, Reachability Queries in Very Large Graphs: A Fast Refined Online Search Approach,

Proc. 17th International Conference on Extending Database Technology (EDBT), March 24-28, 2014, Athens, Greece, pp. 511-522.
[30] K. Mehlhorn, Graph algorithms and NP-completeness, Springer-Verlag New York, Inc. New York, NY, USA, 1984.
[31] R. Jin, and G. Wang, Simple, Fast, and Scalable Reachability Oracle, in 2013 Proc. of the VLDB Endowment, Vol. 6, No. 14, 2013.
[32] L. Zou et al., Efficient processing of label-constraint reachability queries in large graphs, Inf. Syst., 40:47–66, Mar. 2014.
[33] A. Mendelzon and P. Wood, Finding regular simple paths in graph databases, SIAM Journal on Computing, 24(6): 1235-1258, 1995.
[34] Z. Abul-Basher, multiple-Query Optimization of Regular Path Queries, in Proc. ICDE’17, IEEE, San Diego, USA, pp. 1426-1430.
[35] J. J. Kunegis, KONECT - the koblenz network collection. In Proc. Int. Conf. on World Wide Web Companion, Koblenz, 2013, pp.

1343-1350.
[36] J. Leskovec and A. Krevl, SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, retrieved: June

2019.

 • XX:45

45

[37] F. M. Suchanek, G. Kasneci, and G. Weikum, Yago: A core of semantic knowledge, in Proc. of the 16th Int. Conf. on World Wide Web,
ACM, NY, USA, 2007, pp. 697-706.

[38] G. Bagan, A. Bonifati, R, Ciucanu, G. H.L. Fletcher, A. Lemay, and N. Advokaat, gMark: schema-driven generation of graphs and
queries, IEEE Transactions on Knowledge and Data Engineering, 2017, pp. 856 – 869.

[39] M. N. Rice and V. J. Tsotras, Graph indexing of road networks for shortest path queries with label restrictions, PVLDB, 4(2):69–80,
2010.

[40] A. Bonifati, W. Martens, and T. Timm, An Analytical Study of Large SPARQL Query Logs, PVLDB 11(2): 149-161, 2017.
[41] M. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, P. Sumazin, Lowest common ancestors in trees and directed acyclic graphs,

Journal of Algorithms, 57(2): 75–94, 2005.
[42] S. Dumbrava, A. Bonifati, A. Diaz, and R. Vuillemot, Approximate Evaluation of Label-Constrained Reachability Queries, SUM 2019:

250-265.
[43] H. Wei, J. X. Yu, C. Lu, and R. Jin, Reachability Querying: An Independent Permutation Labeling Approach, in: 2014 Proc. of the

VLDB Endowment, Vol. 7, No. 12, 2014.
[44] J., Zhou, S., Yu, J.X., Wei, H., Chen, Z., Tang, X.: DAG reduction: fast answering reachability queries. In: SIGMOD, pp. 375–390

(2017)
[45] Zhu, A.D., Lin, W., Wang, S., Xiao, X.: Reachability queries on large dynamic graphs: a total order approach. In: SIGMOD, pp. 1323–

1334 (2014).
[46] J. Zhou et al., Accelerating reachability query processing based on DAG reduction, April 2018, J. VLDB, V. 27, No. 2, pp. 271 – 296.
[47] J. Su, Q. Zhu, H. Wei, J. X. Yu, Reachability Querying: Can It Be Even Faster? IEEE Transaction on Knowledge and Data

Engineering, Vol. 29, No. 3, 2017, pp. 683 – 697.
[48] R. Angles, M. Arenas, P. Barcelo, A. Hogan, J. L. Reutter, and D. Vrgoc, Foundations of modern graph query languages, CoRR,

abs/1610.06264, 2016.
[49] P. Baeza, Querying graph databases. In PODS, 2013, pp. 175 - 188.
[50] C. Barrett, R. Jacob, and M. Marathe. Formal-language-constrained path problems, SIAM Journal on Computing, 30(3):809–837, 2000.
[51] P. T. Wood. Query languages for graph databases, ACM SIGMOD Record, 41(1):50–60, 2012.
[52] S. Wadhwa, A. Prasad, S. Ranu, A. Bagchi, S. Bedathur Efficiently Answering Regular Simple Path Queries on Large Labeled

Networks , in Proc. SIGMOD 2019.
[53] M. Chen, Y. Gu, Y. Bao, and G. Yu. Label and distance-constraint reachability queries in uncertain graphs. In DASFAA, pp. 188–202,

2014.
[54] A. Likhyani and S. Bedathur. Label constrained shortest path estimation. In CIKM, pages 1177–1180, 2013.
[55] N. Yakovets, P. Godfrey, and J. Gryz, Query planning for evaluating SPARQL property paths. In SIGMOD, pp. 1875–1889, 2016.
[56] G. H. L. Fletcher, J. Peters, and A. Poulovassilis, Efficient regular path query evaluation using path indexes. In EDBT, pp. 636–639,

2016.
[57] A. Gubichev et al., Sparqling kleene: fast property paths in RDF-3X. In GRADES, 2013.
[58] M.A. Schubert and J. Taugher, Determing type, part, colour, and time relationship, 16 (special issue on Knowledge

Representation):53-60, Oct. 1983.
[59] U. Feige, A threshold of ln(n) for approximating set cover. J. ACM, 45(4):634–652, 1998.
[60] K. Mehlhorn, Graph Algorithm and NP-Completeness, Vol. 2, Springer-Verlag, 1986.
[61] R. Jin, Y. Xiang, N. Ruan, and D. Fuhry, “3-HOP: A high-compression indexing scheme for reachability query,” in Proc. ACM

SIGMOD Int. Conf. Manage. data, 2009, pp. 813–826.
[62] Dataset: BioGrid, http://thebiogrid.org.
[63] Dataset: robots, http://tinyurl.com/gnexfoy.
[64] Dataset: yeast, http://vlado.fmf.uni-lj.si/pub/networks/data/.
[65] Datasets: yago and yago2, http://www.mpi-inf.mpg.de/yago-naga/yago.
[66] Dataset: advogato, http://networkrepository.com/soc-advogato.php.
[67] Dataset: gMark, https://github.com/graphMark/gmark.
[68] T. Neumann and G. Weikum, The RDF-3X Engine for Scalable Management of RDF Data, MPI–I–2009–5-003 March 2009.

https://en.wikipedia.org/wiki/Martin_Farach-Colton
https://en.wikipedia.org/wiki/Steven_Skiena
http://www.cs.sunysb.edu/~bender/pub/JALG05-daglca.pdf
https://ieeexplore.ieee.org/author/37086113100
https://ieeexplore.ieee.org/author/37631586300
https://ieeexplore.ieee.org/author/37085396793
https://ieeexplore.ieee.org/author/37278393300
http://thebiogrid.org
http://tinyurl.com/gnexfor
http://vlado.fmf.uni-lj.si/pub/networks/data/
http://networkrepository.com/soc-advogato.php
https://github.com/%20graphMark/gmark

	v, , (
	The to-sequence of v is similar:
	v, , (
	Notice that these two kinds of sequences are impli
	5.5Time complexity and correctness
	6LCR QUERIES OVER CYCLIC GRAPHS
	6.2GC(-checking
	7.2Searching Compatible Graphs

	1) BFS-based [10] (BFS for short),
	2) Landmark-based [20] (LandM for short),
	3) Zou’s method [32] (Zou’s for short),
	4) Hassan’s method [16] (Hassan’s for short), and
	5) Compatible-graph-based discussed in this paper
	1)To avoid trivial cases that v and u are only fe
	2)To determine whether LCR(u, v, S, G) returns tr

