
Minimization of XML Tree Pattern Queries in the Presence of
Integrity Constraints

Paper: jc10-5-2586: 2006/5/19

Minimization of XML Tree Pattern Queries in the Presence of
Integrity Constraints

Yangjun Chen�, and Dunren Che��

�Department of Applied Computer Science, University of Winnipeg

515 Portage Avenue, Winnipeg, Manitoba R3B 2E9, Canada

E-mail: ychen2@uwinnipeg.ca
��Department of Computer Science, Southern Illinois University

Carbondale, IL 62901, USA

E-mail: dche@cs.siu.edu

[Received October 28, 2005; accepted March 17, 2006]

In this paper, we provide a polynomial-time tree pat-
tern query minimization algorithm whose efficiency
stems from two key observations: (i) Inherent redun-
dant “components” usually exist inside the rudimen-
tary query provided by the user. (ii) Irredundant
nodes may become redundant when constraints such
as co-occurrence and required child/descendant are
given. We show the result that the algorithm obtained
by first augmenting the input tree pattern using the
constraints, and then applying minimization, always
finds the unique minimal equivalent to the original
query. We complement our analytical results with an
experimental study that shows the effectiveness of our
tree pattern minimization techniques.

Keywords: XML documents, tree pattern queries, Xpath
expressions, query evaluation, integrity constraints

1. Introduction

1.1. Processing of XML Query
XML (eXtensible Markup Language) has emerged as a

standard for information exchange between Web applica-
tions. It offers a convenient syntax for representing data
from heterogeneous sources. Various optimization strate-
gies for XML queries are proposed, but most of them
were following the same routine by transforming a query
into a logical level plan, and then explore the (exponen-
tial) space of possible plans looking for the one with least
estimated cost [1]. Path traversals (i.e., navigating sub-
element and reference links) always play a central role in
query processing and a number of factors associated with
XML data complicate the problem as well.

1.2. XML Constraints Under DTD
Constraints in XML are a particular type of contain-

ment constraints, which are important for semantic sim-
plification of XML query evaluation. They are useful for
query optimization, update anomaly prevention, and for

information preservation in data integration [2]. XML
constraints are traditionally part of the schema specifica-
tion - DTDs (Document Type Definitions), which offer the
so-called ID and IDREF attributes to identify and refer-
ence an element within an XML document. Just like any
database, tree databases naturally come with application
dependent constraints. For tree databases, constraints that
require entries/elements to have child/descendant or sub-
elements of specified types, as well as constraints that re-
quire type co-occurrences, are very natural [3]. For exam-
ple, consider the query “find the title and author of books
that have a publisher”. If the constraint “every book has
a publisher” is known to hold, then this query can be sim-
plified to “find the title and author of books”. Query min-
imization under constraints is traditionally achieved using
semantic query optimization techniques. Existing tech-
niques for semantic query optimization usually base on
the notion of rewriting that transforms a query into an
equivalent one [4]. Unfortunately, given a set of XML
constraints, there are exponentially many ways in which
a query can be rewritten. Therefore, an intuitive approach
of cloning semantic query optimization is inappropriate
for tree pattern minimization. Thus, we explore a differ-
ent way in the paper to efficiently minimize tree pattern
queries in the presence of XML constraints.

1.3. Related Work

To query tree databases such as XML style directories,
tree pattern queries form a natural basis. Rudimentary
query entered by the user can be considerably improved
by reducing the pattern size. Doing so is closely re-
lated to conjunctive query minimization: a problem that is
in general NP-complete for classical relational database.
Much research has been conducted on the minimization
of relational conjunctive queries. In [3], Amer-Yahia et
al. point out that tree pattern query is essentially a spe-
cial kind of conjunctive queries on a tree-structured do-
main. In [5], Florescu et al. showed that containment of
conjunctive queries with regular path expressions, over
semi-structured data, is decidable; for some special cases,
they showed the problem is NP-Complete [7]. Techniques

Vol.10 No.5, 2006 Journal of Advanced Computational Intelligence 1
and Intelligent Informatics

Chen, Y., and Che, D.

like predicate elimination and join minimization are used.
However, such kind of optimization is based on alge-
braic rewritings, which often generate exponential search
spaces and results in problems that cannot be solved in
polynomial time.

Minimization of Xpath queries under tree structure
database is studied in [20]. In that paper, Flesca et al. ad-
dress the problem of minimizing XPath queries for a lim-
ited fragments of XPath, containing only the child, the de-
scendent, the branch and the wildcard operators. In their
work, they proved the global minimality property: a min-
imum tree pattern equivalent to a given tree pattern p can
be found among the sub-patterns of p, and thus can be
obtained by pruning “redundant” branches from p. Based
on such an observation, they designed an algorithm for
tree pattern minimization which works, in general case,
in time exponential w.r.t. the size of the input tree pattern.
They also characterized the complexity of the minimiza-
tion problem, showing that given a tree pattern p in an
XPath fragment and a positive integer k, the problems of
testing if minimize�p�� k is NP-complete.

Discovering XML semantic constraints plays an impor-
tant role in tree pattern query minimization and has re-
cently received increasing attention by the research com-
munity. In particular, Lee et al. [21] showed a variety
of semantic constraints hidden implicitly or explicitly in
the DTD of XML database, and proposed two algorithms
on discovering and rewriting the semantic constraints in
relational database notation. Yu et al. studied the prob-
lem of constraint-based XML query rewriting for the pur-
pose of data integration in [22]. Two novel algorithms,
basic query rewrite and query resolution, have been de-
signed to implement the semantic constraints. More con-
cretely, the basic query rewriting algorithm reformulates
input queries in terms of the source DTD based on con-
tainment mapping (no constraint considered). The query
resolution algorithm generates additional rewritings by in-
corporating XML semantic constraints.

Query minimization in the presence of XML con-
straints has also been studied by several authors. Cal-
vanese et al. studied the problem of conjunctive query
containment in the presence of a special class of inclu-
sion dependencies in [6], and established some decidabil-
ity/indecidability results. In addition, Wood [8–12] stud-
ied a special class of XPath queries that he called sim-
ple XPath queries [13]. A simple Xpath query is a tree
pattern query without descendant child (nodes), but with
the added flexibility that allows a special label “-”, which
stands for any type of nodes. Wood showed that, in the
absence of constrains, the minimal query that equivalent
to a simple XPath query can be found in polynomial time.
Miklau and Suciu [14] showed that the problem of min-
imizing tree pattern queries that contain both child and
descendant nodes as well as nodes labeled “-” is a co-NP
complete problem.

Finally, Amer-Yahia et al. studied the minimization
issue of general tree pattern queries in [3], in which
constraint dependent minimization was addressed. They
considered two types of constraints derived from XML

schema or DTD, namely, required child/descendant and
the co-occurrence of sibling sub-elements. The algorithm
proposed by them needs O�n6� time for this kind of tree
pattern minimization.

In this paper, we present a method to minimize queries
with child, descendant, subtype and co-occurrence con-
straints based on the algorithm described in our another
paper appearing in this issue. The time complexity of this
method is bounded by O�n3�.

1.4. Contributions and Overview
In this work, we address the following problem and fo-

cus on designing efficient algorithms to solve it.
Problem: Given a tree query Q and a set of constraints

C, find another one Q� that is equivalent to Q under C and
is of the smallest size.

Concretely, the following contributions are delivered.

� We develop an efficient algorithm, called Coverage,
based on the concept of containment mappings, to
obtain the minimal equivalent query. The algorithm
takes worst-case time O�n2�, where n refers to the
size of the input query. This algorithm is given in
[23].

� When constraints are specified on required children,
required descendants and required co-occurrence, as
well as subtypes, we first augment a query with re-
dundant nodes and edges according to the given con-
straints, and then apply the minimization algorithm
Coverage to it. This strategy always produces the
minimal equivalent query to the input. The time
complexity of the algorithm is bounded by O�n3�.

� To investigate the effectiveness and correctness of
the proposed techniques, we implemented our algo-
rithms using a simulated tree structure in Java, and
then performed a series of tests, which demonstrates
both the practicality as well as the suitability of our
methods.

The remainder of this paper is organized as follows. In
Section 2, we discuss a method to minimize a TPQ in the
presence of integrity constrains, based on the algorithm
given in [23]. In Section 3, we show the implementation
details and experiment results. Section 4 is a short con-
clusion.

2. Tree Reduction in the Presence of Con-
straints

2.1. Constraints
Suppose we are given a query Q and a set of constraints

C. Naturally we will have a question whether there is an
equivalent query of the least size? We will show in this
section that when only required child, descendant and co-
occurrence, as well as subtype constraints are considered,
via our minimization scheme, we can always achieve a
unique minimal equivalent query Q�.

2 Journal of Advanced Computational Intelligence Vol.10 No.5, 2006
and Intelligent Informatics

Minimization of XML Tree Pattern Queries in the Presence of
Integrity Constraints

2.2. Augmentation
In our study, the following constraints are considered

for the minimization of tree pattern queries.

(i) Co-occurrance: Types A and B always occur together
as children of another type, denoted by A � B.

(ii) Subtype: Every document node of type A is also of
type B, denoted by A � B. For example, in a doc-
ument, there may exist some nodes labeled with the
type “technician” while some other nodes with the
type “employee”. Obviously, we have “technician”
� “employee”.

(iii) Required child: Every document node of type A has
a child of type B, denoted by A� B.

(vi) Required descendant: Every document node of type
A has a descendant of type B, denoted by A� B.

Among these constraints, the required child, required
descendants and subtype constraints are used for both
augmentation and reduction. The co-occurrence con-
straints are used only for reduction purpose.

To minimize a tree pattern query, not only explicit, but
also implicit constraints should be applied. For an im-
plied constraint, we mean a constraint derived from some
existing constraints. For instance, from A� B and B�C,
A � C can be derived. For this purpose, we organize all
subtype constraints into a DAG (directed acyclic graph)
Gs, and all required child and required descendant con-
straints into another DAG Gc-d . Gs and Gc-d are defined
as follows:

Gs ��Vs�Es �, where each v �Vs represents a type,
and each e � �v1�v2� � Es represents a subtype con-
straint v2 � v1;

Gc-d ��Vc-d �Ec-d �, where each v �Vc-d represents
a type, and each e � �v1�v2� � Ec-d represents a re-
quired child constraint (indicated as a single arrow)
or a required descendant constraint (indicated as a
double arrow).

In the following, we consider only the case that both
Gc-d and Gs are forests, i.e., every node of some type has
only the same type parent, and each type has at most one
parent supertype. We will show that for such a kind of
subtype constraints (with the presence of required child
and descendant, as well as co-occurence constraints), an
O�n3� time algorithm can be devised for minimizing tree
pattern queries. (In the case that a type has more than one
parent supertype, we will use Amer’s method to merge
Gs and Gc-d together to generate a general DAG for all
the subtype, required child, and required descendant con-
straints [3]. The augmentation can then be done in the
same way as Amer’s, which will produce a new tree pat-
tern query of size O�n2�. But we will use Algorithm
query-minimization() to do minimization. Therefore, the
whole cost is bounded by O�n4� in that case.)

When both Gc-d and Gs are forests, we use the follow-
ing algorithm to do the augmentation, which generate a

new tree pattern query whose size is still O�n�. In the al-
gorithm, for each type t, we use h�t� to represent another
type that is an ancestor of t and does not have a parent. In
addition, a node with more than one children is called a
branching node.

Algorithm augmentation�Q�
input: Q – a tree pattern query
output: Q� – an augmented version of Q
begin
1. for each type t � Q�Ec-d , replace t with h�t�;
2. for any type p � Q, if there exists another type a such

that a � p, remove p and all its descendants from Q;
3. let Q� be the query after step (2); call repeating-leaf-

removing�Q��;
4. let Q�� be the query after step (3); for each descendant

edge e � �v1�v2� � Q��, replace it with a path p in Ec-d ,
which starts from v1 and ends at v2; denote the new
tree by Q���;

5. for each type t � Q��� do �
6. find all those nodes u1� � � � �uk in Q���, which are asso-

ciated with t;
7. call path-reduction��u1� � � � �uk�, Q����;
8. for each ui (1� i� k� do �if it removed, reinsert it into

the query tree;�
�

end

In the above algorithm, we first replace each type in
Q�Ec-d with its “delegate”, which is the root of the sub-
type tree containing it (see line 1). The goal of this step is
to assimilate super- and subtypes. For instance, if we have
the subtype constraints subtype C1 � �b� b��c� c�� and
the required child constraints C2 � �b � d�d � g�g �
c��e � m�m � s�, the tree pattern query shown Fig.1(a)
will be changed as shown in Fig.1(b), and C2 will be
changed to C�

2 � �b � d�d � g�g � c�e � m�m � s�.
Such a change can be reversed in the final minimized
query by setting back the original types.

In a next step, we remove any type β � Q, if there ex-
ists another type α such that α � β holds (see line 2).
For instance, if a co-ocurrance constraint C3 � �q � p� is
present, the query tree will be further transformed into
a tree as shown in Fig.1(c). However, such a reduc-
tion is just to facilitate the detection of coverage and any
node removed due to the co-occurrence constraints will
be reinserted into the final minimized query (see section
2.3). In the third step, we remove the leaf nodes re-
peatedly according to Gc-d (see line 3), by calling Algo-
rithm repeating-leaf-removing(), by which any leaf node
v will be removed if there exists a constraint λ �u�� λ �v�
and �u�v� is a child edge, or there exists a constraint
λ �u�� λ �v� and �u�v� is a descendant edge. This process
is repeated until the query cannot be changed any more.
For instance, by removing the leaf nodes repeatedly, the
query tree shown in Fig.1(c) will be reduced to the tree
shown in Fig.1(d).

The following is a formal description of the algorithm.

Algorithm repeating-leaf-removing�Q�
begin

Vol.10 No.5, 2006 Journal of Advanced Computational Intelligence 3
and Intelligent Informatics

Chen, Y., and Che, D.

Fig. 1. Illustration for the execution of Algorithm augmentation().

(a) (b) (c)

Fig. 2. Illustration for the execution of Algorithm.

repeat until Q cannot be changed
let v be a leaf node in Q; let u be its parent;
if �u�v� is a child edge and λ �u�� λ �v� is in the
constraint set, remove v;
if �u�v� is a descendant edge and λ �u�� λ �v� is in
the constraint set, remove v;
let Q� be the query tree obtained by executing the
above operations;
Q :� Q�;

end

In the fourth step, the query will be augmented by re-
placing each descendant edge in Q with the corresponding
path in Ec-d (see lines 5-7 in Algorithm augmentation()),
which makes some paths that are originally different be-
come identical. For instance, after this step, the query
tree shown in Fig.1(d) will be augmented as shown in
Fig.2(a).

We notice that in the query tree shown in Fig.1(b), the
two paths: are different. After the path expansion, they
become identical as illustrated by the dashed lines shown
in Fig.2(a). Then, the nodes on such paths can be removed
to reduce to the paths as shown in Fig.2(b). Such a strat-
egy will not damage the subsequent detection of subtree
coverage using query-minimization(), nor does it change
the semantics of the original query. By running query-
minimization() against the query tree shown in Fig.2(b),
we will finally get a query tree as shown in Fig.2(c).

The algorithm path-reduction() is described as follows.

Algorithm path-reduction�U�Q��
input: U�Q� (*U is a set of nodes in Q�.*)

output: a new query, which is obtained by removing some
nodes in Q�

begin
1. let U � �u1� � � � �uk�;
2. search all those paths starting from ui �1� i� k�

bottom-up, in parallel, and at each step, do the follow-
ing:

3. let a1� � � � �ak be the nodes encountered;
4. if they are identical then �

remove all of them except the branching nodes
from the respective path;�

5. else�divide a1� � � � �ak into several groups G1� � � � �Gj
6. such that each of them has only identical nodes;
7. for each l�1� l � j� do
8. �for each a �Gl , consider u �U , which is on

the same path as a;
9. remove all the nodes between a and u

(including u) on the corresponding path;
10. remove all the branching nodes from Gl ;
11. if Gl contains only one node a then
12. �let v be the first branching node beyond a on

the corresponding path;
13. remove all the nodes between v and a on

the corresponding path;�
14. else �if Gl is not empty then path-reduction

�Gl�Q
��;��

�
end

The goal of the above algorithm is to remove the nodes
on the identical path segments. It works in a recursive

4 Journal of Advanced Computational Intelligence Vol.10 No.5, 2006
and Intelligent Informatics

Minimization of XML Tree Pattern Queries in the Presence of
Integrity Constraints

Fig. 4. Illustration for path reduction.

Fig. 3. Illustration for path reduction.

way. Let u1� � � � �uk be the nodes associated with the same
type t � Q. The algorithm will search the paths starting
from all those nodes bottom-up in parallel. At each step,
it will be checked whether all the nodes encountered along
different paths are associated with the same type. If it the
case, any of them will be removed from the corresponding
path if it is not a branching node (See line 4). We illustrate
this process in Fig.3, in which we show only two paths:
p1 and p2 for a simple explanation.

On p1, node vi is a branching node while node ui on p2
is not. If we are searching only along these two paths, ui
will be removed while vi remains. Such a strategy of re-
moving nodes works based on the following observations.

1. The subtree rooted at ui can not cover the subtree
rooted at vi since u�

is outdegree is exactly one while
v�

is outdegree is larger than one.

2. If the subtree rooted at vi covers the subtree rooted at
ui, we must have the subtree rooted at v0 covers the
subtree rooted at u0. Even thought ui is removed, the
algorithm query-minimization() can eventually find
this coverage.

During the searching of paths, if we meet a set of nodes
whose types are not identical (called a dividing set), we
will organize those nodes into a set of groups such that
in each group, all the nodes have the same type (see line
5). For illustration, see the tree pattern query shown in
Fig.4(a). In this query, we have four paths starting from
a node (bottom up) with the same type m: P1, P2, P3,
and P4. The first dividing set met during the path search-
ing is �P1.e�P2.e�P3.x�P4.x�, where Pi.α represents a node
on path Pi with type α . It will then be divided into two

groups: G1 � �P1.e, P2.e�, and G2 � �P3.x�P4.x�.
For each node a in a group Gl , we will remove all the

nodes between a and u � U (including u), which is on
the same path as a, for the reason that it is enough to
keep only one different node on a path segment to dif-
ferentiate it from any path in the other groups (see lines
8-9). After this step, the query tree is reduced to the tree
shown in Fig.4(b). Afterwards, any branching node will
be removed from Gl since such a node will not take part
in the path reduction any more (see line 10). Since no
node in G1 or G2 is a branching node, no node is re-
moved from each of them. Since each of them contains
more than one nodes. We will have two recursive calls:
path-reduction�G1�Q1� and path-reduction�G2�Q1� (see
line 14). During the execution of path-reduction�G1�Q1�,
we will consecutively remove P1.c and P2.c, P1.g and P2.g,
as well as P1.d, getting a query tree shown in Fig.4(c). We
notice that P2.d is not eliminated because it is a branching
node (see line 4). If a group contains only one node, the
node must be different from any node on any other path
(being considered). Thus, it can be used to differentiate
the corresponding path from the others. For this reason,
we will remove any node between it and the first branch-
ing node beyond it (see lines 11-13). For instance, during
the execution of path-reduction�G2�Q1�, we will meet the
second dividing set: �P3.y, P4.z�. It will be divided into
two groups: G3 � �P3.y�, and G4 � �P3.z�. In this case,
we will remove P3.x along P3, and remove P4.z along P4
(see line 9). Furthermore, we will also remove P3.h and
P4. f . The resulting query tree is shown in Fig.4(d). Fi-
nally, all the starting nodes of P1, P2, P3, and P4 will be
reinserted to differentiate this set of paths from others.
Therefore, we have the final query tree as shown in Fig.5.

Now we estimate the time complexity of the augmen-
tation process. First, we see that O�	Q�	� �O�	Q	� since
corresponding to each descendant edge, at most one new
node is added. Thus, the time for running Algorithm aug-
mentation() is bounded by O�n3�. It is because the size
of the new query, created by replacing each descendant
edge with a path in Gc-d , is on the order of O�n2� and
for each different type appearing in Q, it will be searched
twice: one for finding all the nodes associated with that
type, and one for path searching to remove useless nodes.
So the total time is O�n3� time.

Vol.10 No.5, 2006 Journal of Advanced Computational Intelligence 5
and Intelligent Informatics

Chen, Y., and Che, D.

Fig. 5. Illustration for path reduction.

Fig. 6. A minimized query.

2.3. Minimization
In the minimization phase, we will run Algorithm

query-minimization() against the query obtained in the
augmentation phase.

Since the size of the query generated in the augmen-
tation phase is equal to or smaller than the size of the
original query, the time spent in the minimization phase
is trivially bounded by O�n2�.

Finally, any newly added nodes will be eliminated in
the garbage phase and any node eliminated due to the co-
occurrence constraints as well as path reduction can be
reinserted. For instance, the query tree shown in Fig.2(c)
can be rewritten as shown in Fig.6.

The garbage phase needs only O�n� time.

3. Implementation and Experiment Results

We implemented the algorithms presented in this pa-
per and experimentally compared their performance for
minimization tree pattern queries. The experiments study
in detail is presented by separating internal and external
comparison.

� Internal Comparison: Compare the performance
of Algorithm query-minimization() under variable
query size and different number of constraints.

� External Comparison: Compare the performance of
the proposed algorithms with Amer’s ACIM and
CDM, the algorithms designed for tree pattern mini-
mization in [3].

3.1. Internal Comparison
As we discussed in both sections 3 and 4, the time spent

on running query-minimization() depends on the input

Table 1. Average running time for query-minimization().

query size, the number of redundant nodes in the query
and the number of constraints that might generate addi-
tional redundancy in the query. We report the total time
on executing query-minimization() with a growing num-
ber of query size start from 10 and the growing number
of constraints start from 0. The program runs under Win-
dows XP Pro. system with JDK 1.5.0 Java compiler and
the CPU is an Intel Pentium 4 processor of 1.4GHZ with
768MB RAM. In the experiment we find out that the run-
ning time of query-minimization() for queries with query
size smaller than 40 can always be finished within 1 mil-
lisecond. By each execution, the input and constraint sets
are the same. The result is then divided by 500 to reach
an average run time for each algorithm execution, which
is shown in Table 1.

The graph of Fig.7(a) and (b) shows the variation of
running time of query-minimization() when query size
and constraints are both growing.

From the result shown in Fig.7(a), we can see that when
the size of a query is small (less than 20) the growing
number of constraints does not affect the overall perfor-
mance of query-minimization(). This is because most
of the constraints specified in the constraints set are ir-
relevant to the minimization. However, as the query size
increases, the number of irrelevant constraints drops and
more constraints have been adopted by the minimization.
The more constraints we adopted, the more time we spend
on constructing the augmented tree and removing tempo-
rary nodes in garbage collection phase. As we can see
in section 4, when the query size is large, more time
is needed on both the tree pattern augmentation and the
tree minimization. Fig.1 also confirms the above analy-
sis, which shows that when the query size and constraints
increase the time spent on minimization increases much
faster than the increase of the query size.

3.2. Comparison with Related Work

The algorithms discussed in [3] by Amer et al. are the
most similar work as what we presented in this paper.
Naturally it becomes the best candidate to be compared
with. ACIM and CDM are two algorithms they proposed
for the purpose of tree pattern minimization. CDM is the
improvement of ACIM under the presence of constraints.
In general, CDM has a better performance than ACIM.
However, without guarantee of reaching the minimal so-
lution. According to their the analysis, the runtime for

6 Journal of Advanced Computational Intelligence Vol.10 No.5, 2006
and Intelligent Informatics

Minimization of XML Tree Pattern Queries in the Presence of
Integrity Constraints

(a)

(b)

Fig. 7. Performance vs. size and constraints.

both of the algorithms takes O�n4� time in the absence of
constraints, and O�n6� in the presence of constraints. The
experiment results showed that the time used by CDM
is significantly smaller than ACIM with a growing query
size and a fixed number of 40 constraints. But the ex-
periments also showed that CDM, on average, removes
only half of the redundant nodes that ACIM can in most
of the cases. In our experiment, we perform a similar test
as they did and record the total execution time for query-
minimization(). In addition, the different testing environ-
ment has been taken into account. Since the experiments
carried out by Amer et al. is on a machine with a 300-
500MHZ CPU and the RAM range from 64-128MB, 7
times slower than the machine we used, we test a data,
which is 7 times larger than theirs, for each experiment,
Table 2 shows the overall performance of the three algo-
rithms.

Figure 8 shows that query-minimization() uniformly
outperforms ACIM when query size is smaller than 50,
and the advantage increases with increasing query size.
We do notice that as the query size increases, the time
used by query-minimization() increases with a factor of

Table 2. Time comparinson among ACIM, CDM and
query-minimizations().

Fig. 8. Comparing ACIM, CMD and our algorithms.

10, showing a linear behavior. This seems conflict with its
O�n3� time complexity. However, it is just an estimation
in the worst-case, which happens very rarely, and does not
reflect the overall performance of all the discussed algo-
rithms. In fact, in our experiments, linear and quadratic
time performance for all the three algorithms are very
common. query-minimization() is also better than CDM
when the query size is smaller than 40. But it has been
caught up by CDM with the increasing of query sizes. Our
explanation for this is that the data size used for testing
query-minimization() is 7 times larger than that for test-
ing CDM. When the data size is beyond a certain thresh-
old, its impact on the computation shadows the difference
between the two testing environments. On the other hand,
since our algorithm is guaranteed of reaching the minimal
state, which is not always the case for CDM, our algo-
rithm is considered to be a better solution to the problem.

4. Conclusion

In this paper, we have presented an efficient algorithm
for tree pattern query minimization in XML database sys-
tems. By adopting our algorithm, query discussed in the
context of XML can be considerably improved by reduc-
ing the pattern size. We showed that for the tree pat-
tern queries, the problem of reducing pattern size can be
solved in polynomial time. More specifically, in the pres-
ence of constraints, the problem can be solved in O�n3�
time. We also show that the query achieved via our al-

Vol.10 No.5, 2006 Journal of Advanced Computational Intelligence 7
and Intelligent Informatics

Chen, Y., and Che, D.

gorithm is the minimal equivalent to the given input tree
pattern. In addition to providing the efficient algorithms
for minimization with or without constraints, we also es-
tablished their practicality by experiment studies.

Acknowledgements
We thank those graduate students at SIUC who contributed to this
work by doing the reported experiments.

References:
[1] J. McHugh, and J. Widom, “Query Optimization for XML,” Pro-

ceedings of the 25th VLDB Conference, Edinburgh, Scotland,
1999.

[2] W. Fan, and J. Simeon, “Integrity Constraints for XML,” Proceed-
ings of ACM PODS Conference, pp. 23-34, 2000.

[3] S. Amer-Yahia et al., “Minimization of Tree Pattern Queries,” Pro-
ceedings of the ACM SIGMOD International Conference on Man-
agement of Data, pp. 497-508, 2001.

[4] S. Chakravathy, J. Grant, and J. Minker, “Foundations of Semantic
Query Optimization for Deductive Databases,” Foundations of DD
and LP, 1988.

[5] D. Florescu, A. Levy, and D. Suciu, “Query Containment for Con-
junctive Queries with Regular Expressions,” Proceedings of the
17th ACM Symp., Principles of Database Systems, pp. 139-148,
1998.

[6] D. Calvanese, G. DeGiacomo, and M. Lenzerini, “Decidability of
Query Containment under Constraints,” Proceedings of 17th ACM
Symp., Principles of Database Systems, pp. 149-158, 1998.

[7] M.R. Garey, and D.S. Johnson, “Computers and Intractability: A
Guide to the Theory of NP-Completeness,” W.H. Freeman & Co.,
NY, 1979.

[8] P.T. Wood, “Optimizing Web Queries Using Document Type Def-
initions,” Proceedings of 2nd ACM CIKM International Workshop
on We Information and Data Management, pp. 28-32, 1999.

[9] P.T. Wood, “On the Equivalence of XML Patterns,” Proceedings
of 1st International Conference on Computational Logic, Lecture
Notes in Artificial Intelligence 1861, pp. 1152-1166, Springer-
Verlag, NY, 2000.

[10] P.T. Wood, “Rewriting XQL Queries on XML Repositories,” Pro-
ceedings of 17th British National Conf. on Databases, Lecture
Notes in Computer Science 1832, pp. 209-226, Springer-Verlag,
NY, 2000.

[11] P. T. Wood, “Minimizing Simple XPath Expressions,” WebDB
2001.

[12] P.T. Wood, “Containment for XPath Fragments under DTD Con-
straints,” Proceedings of 9th International Conference of Database
Theory, pp. 300-314, 2003.

[13] World Wide Web Consortium. XML Path Language (XPath), W#C
Recommendation, Version 1.0, November 1999. See
http://www.w3.org/TR/xpath.

[14] G. Miklau, and D. Suciu, “Containment and Equivalence for an
XPath Fragment,” Proceedings of 21st ACM Symp., Principles of
Database Systems, 2002.

[15] D. Chamberlin, J. Clark, D. Florescu, and M. Stefanescu,
“XQuery1.0: An XML Query Language,”
http:// www.w3.org/TR/query-datamodel/.

[16] A. Deutch, M. Fernandex, D. Florescu, A. Levy, and D.Suciu, “A
Query Language for XML,” WWW’99.

[17] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava,
and Y. Wu, “Structural Joins: A Primitive for Efficient XML Query
Pattern Matching,” Proceedings of the 18th International Confer-
ence on Data Engineering, 2002.

[18] D. Che, and K. Aberer, “Query Processing and Optimization
in XML Structured-Document Databases,” In preparation for the
VLDB Journal.

[19] Y.R.S. Yalamanchili, “Empirical Study of XML Query Optimiza-
tion,” SIUC thesis collection, Spring 2005.

[20] S. Flesca, F. Furfaro, and E. Masciari, “On the Minimization of
Xpath Queries,” Proceedings of the 29th VLDB Conference, Berlin,
Germany, 2003

[21] D. Lee, and W.W. Chu, “Constraints-preserving Transformation
from XML Document Type Definition to Relational Schema,” Pro-
ceedings of the 19th International Conference on Conceptual Mod-
eling, pp. 323-338, 2000.

[22] C. Yu, and L. Popa, “Constraint-Based XML Query Rewriting for
Data Integration,” Proceedings of the ACM SIGMOD International
Conference, Paris, France, 2004.

[23] Y. Chen, and D. Che, “Efficient Processing of XML Tree Pattern
Queries,” Journal of Advanced Computational Intelligence and In-
telligent Informatics, Vol.10, No.5, pp. -, 2006.

Name:
Yangjun Chen

Affiliation:
Associate Professor, Dept. Applied Computer
Science, University of Winnipeg

Address:
515 Portage Ave. Winnipeg, Manitoba R3B 2E9, Canada
Brief Biographical History:
1982 Received B.S. degree in information system engineering from the
Technical Institute of Changsha, China
1990 Received Diploma degree in computer science from the University
of Kaiserslautern, Germany
1995 Received Ph.D. degree in computer science from the University of
Kaiserslautern, Germany
1995-1997 Worked as a post-doctor at the Technical University of
Chemnitz-Zwickau, Germany
1997-2000 Worked as a senior engineer at the German National Research
Center of Information Technology (GMD), Germany
2000 Worked as a post-doctor at the University of Alberta, Canada
2000-present Professor in the Department of Applied Computer Science,
the University of Winnipeg, Canada
Main Works:
� “On the Signature Tree Construction and Analysis,” to appear in IEEE
Transaction on Knowledge and Data Engineering.
� “Graph Traversal and Linear Binary-chain Programs,” IEEE Transaction
on Knowledge and Data Engineering, Vol.15, No.3, pp. 573-596,
May/June, 2003.
� “Magic Sets and Stratified Databases,” Int. Journal of Intelligent
Systems, John Wiley & Sons, Ltd., Vol.12, No.3, pp. 203-231, March,
1997.

Name:
Dunren Che

Affiliation:
Assistant Professor, Department of Computer
Science, Southern Illinois University Carbondale

Address:
Faner Hall 2125. SIU-Campus Carbondale, IL 62901, USA
Brief Biographical History:
1994 Received Ph.D. in Computer Science from the Beijing University of
Aeronautics and Astronautics, Beijing, China
1994-2001 Gained postdoctoral research experience from various research
Institutes, including, the Tsinghua University in China, the German
National Research Center for Information Technology in Germany, and the
Johns Hopkins University in the USA 2002-present Assistant Professor of
Computer Science in the Southern Illinois University at Carbondale, USA
Main Works:
� “Query Optimization in XML Structured-Document Databases,” The
VLDB Journal, Vol.15, 2006.
� “Efficiently Processing XML Queries with Support for Negated
Containments,” International Journal of Computer & Information Science,
Vol.6, No.2, pp. 109-120, June, 2005.

8 Journal of Advanced Computational Intelligence Vol.10 No.5, 2006
and Intelligent Informatics

