On the Stack Encoding and Twig Joins

Abstract The twig join, which is used to find all occurrences of atwig patternin an XML database, is a core oper-
ation for XML query processing. A great many strategies for handling this problem have been proposed and can be
roughly classified into two groups. The first group decomposes a twig pattern (asmall tree) into a set of binary re-
laionships between pairs of nodes, such as parent-child and ancestor-descendant relations; and transforms a tree
matching problem into a series of simple relation look-ups. The second group decomposes atwig pattern into a set
of paths. Among all this kind of methods, the approach based on the so-called stack encoding is very interesting,
which can represent in linear space a potentially exponentia (in the number of query nodes) number of matching
paths. However, the available processes for generating such compressed paths suffer substantial redundancy and
can be greatly improved. In this paper, we analyze this method and show that the time complexities of path gener-
ation in itstwo main procedures; PathSack and TwigStack can be reduced from O(mz@ to O(mM), wheremand n

are the sizes of the query tree and document tree, respectively.

Key Words: XML databases, Trees, Paths, XML pattern matching, Twigjoin

1. Introduction

In XML [13, 14], datais represented as a tree; associ-
ated with each node of the treeisan element type from
afinite alphabet 2. The children of anode are ordered
from left to right, and represent the content (i.e., list of
subelements) of that element.

To abstract from existing query languages for XML
(e.g. XPath [13], XQuery [14], XML-QL [5], and
Quilt [3, 4]), we express queries as tree patterns where
nodes are typesfrom 2., 0 {*} (* isawildcard, match-
ing any node type) and string values, and edges are
parent-child or ancestor-descendant relationships. As
an example, consider the query tree shown in Fig. 1,
which asks for any node of type b that is a child of
some node of type a. In addition, the b-node isthe par-
ent of some c-node and some e-node, as well as an an-
cestor of some d-node. The query corresponds to the
following XPath expression:

a[b[c and //d]]/b[c and e//d].
b/a\ b
c/ \d c/ \e
ﬂ
Inthisfigure, there are two kinds of edges: child edges
(c-edges) for parent-child relationships, and descen-
dant edges (d-edges) for ancestor-descendant relation-

ships. A c-edges from node v to node u is denoted by
V - uinthetext, and represented by asingle arc; uis

Fig. 1. A query tree

called ac-child of v. A d-edge isdenoted v=> uin the
text, and represented by a double arc; u is called a d-
child of v.

Finding all occurrences of atwig pattern in a database
is a core operation in XML query processing, both in
relational implementation of XML databases, and in
native XML databases.

Recently this problem has received much attention in
database research community and different strategies
have been proposed [1, 2, 6, 7, 8, 9, 10, 11, 12, 15].
Most of them (for example, [1, 6, 7, 8, 9, 10, 15]) typi-
cally decompose a twig pattern into a set of binary re-
lationshi ps between pairs of nodes, such as parent-child
and ancestor-descendant relations; and the sizes of in-
termediate relations tend to be very large, even when
the input and final result sizes are much more manage-
able. Another kind of strategies bases on path decom-
position, such as those discussed in [2, 11, 12]. In[11,
12], dl the possible paths of an XML document are ex-
plicitly stored and indexed using B+-trees as well as
trie structures. In [2], a document is also decomposed,
but dynamically depending on the given queries. This
method is of special interest since the decomposed
paths are not simply stored but compressed by using
the so-called stack encoding. Although the idea of
compressing intermediate resultsis very attractive, the
process suggested in [2] for producing compact pathsis
not so efficient and can be substantially improved.

In this paper, we analyze the method described in [2]

and show its redundancy. In addition, two new algo-
rithms are presented, which improve the two main pro-

cedures of this method: PathSack and TwigSack, by
one order of magnitude.

The remainder of the paper is organized asfollows. In
Section 2, we analyze the first procedure PathSack
proposed in [2], and present a new algorithm to im-
prove itstime complexity. In Section 3, we analyze the
second procedure TwigStack discussed in [2], and
show away to reduce the time for path generation. In
Section 4, we extend the method discussed in Section
3 to genera cases. Finaly, a short conclusion is set
forth in Section 5.

2. Refined pathstack

In this section, we discuss the first procedure Path-
Sack given in [2], which is used to evaluate a sort of
simple queries that can be represented as a single path
containing only d-edges. First, we describe the Path-
Sack algorithmin 2.1. Then, we discuss how thisalgo-
rithm can be improved in 2.2.

2.1 Description of PathSack

Let T be adocument tree. We associate each node v in

T with a quadruple (Docld, LeftPos, RightPos, Level-

Num), denoted as a(v), where Docld is the document

identifier; LeftPos and RightPos are generated by

counting word numbers from the beginning of the doc-
ument until the start and end of the element, respective-
ly; and LevelNum is the nesting depth of the element
in the document. (See Fig. 2(a) for illustration.) By us-
ing such adata structure, the structural relationship be-
tween the nodes in an XML database can be

determined easily [2]:

(i) ancestor-descendant: a node v, associated with (d,,
1, r1, Ing) isan ancestor of another node v, with (ds,
|2, ro, Inz) iff d]_: d2, |1< |2, and r{>ro.

(if)parent-child: a node v, associated with (dy, I4, rq,
Iny) isthe parent of another node v, with (d, |5, ry,
Inz) iff d]_: d2, |1< |2, r1>ro, and Inl = |n2 + 1.

(iii)from left to right: anode v, associated with (dy, |4,
ry, Iny) isto the left of another node v, with (d, I,,
ro, Inz) iff d]_: d2, rg< |2.

Assumethatq=0; = 0 .. = On1= 0nbeapath

query. We associate each ¢ (1 <1 < m) with a data

stream L(q;), which contains the quadruples of the da-

tabase nodes that match q; as illustrated in Fig. 2(b).

Such alist can be established by using an efficient ac-

cess mechanism, such as an index structure. In addi-

tion, the quadruplesin alist are sorted by their (Docld,

L eftPos) values.

The main idea of PathSack is to compress the match-

ing paths using aset of stacks. Each of themis attached

toag; (1<i<m), denoted as §q;), with the following

properties:

(i) Eachentry in §q;) isapair: (a, apointer to an entry
in Yparent(q;)), where a [L(qj) isaquadruple for
some node V.

(i) Theentriesin) (from bottom to top) are guaran-

teed to lie on aroot-to-leaf path in adocument tree.

(iii)The set of stacks contain a compact encoding of
partial and total answers to the query path.
To see how it works, let’s have alook at the following
example.
Example 1. In Fig. 2(a), we show a simple document T
and asimple query @.
T: q:
A vi(1,1,11,1) Aaq

1 — {vy, V3, V5}
B \Jz (1,2,10,2) B (42

i
42 — {vp, v4}
A V3 (1,39 73) A J;|3 é|3 — {v1, v3, vg}
B \J4 (1,4,8,4) C (IL JL — {vg
A V5 (1,5,7,5)
C Vg (1,6,6,6)
@ (®)

Fig. 2. A simple data setting
Obviously, T has four subpaths that match g, as shown

in Fig. 3(a). By using the stack encoding, they can be
stored in away as shown in Fig. 3(b).

Vi V5
A vg| ™|y, V3
Ve vi| ™ |v, \41

Sa») Say)

A B A C
V3 Vg — V5— Vg

Vi—V4 —V5— Vg
Vi— Vo =V5_ Vg
Vi Vo Va__ Vg Sag) Saa)

@ (b)
Fig. 3. lllustration for stack encoding

First, we notice that the answer [V, Vg, Vs, Vg] is encod-
ed since Vg points to Vs, Vg to V4, and vy, to v3. Also, the
answer [Vq, Vy, Vs, V| isencoded since v isbelow v on
the stack §q). For the samereason, [vy, Vi, Vs, V] iSan
answer since v, is below v, on the stack §(q,) and has a
pointer to v4. Finally, since v is below vg on the stack
S(g3) and has a pointer to vy, [Vq, Vp, V3, Vg] IS also an
answer. However, [Vv3, Vo, Vg, Vg] IS NOt an answer since
vz isabove v, on §0y), to which v, points. O

In the following, we will first describe PathSack given
in [2] and anayze its time complexity. Then, we de-
scribe a new agorithm in the next subsection, which
improves PathSack by one order of magnitude.
In PathSack, the following operations are used.

next(L(q)): return the next element in L(g;). Initially,
the pointer isto the position before thefirst element in

L(c)-
advance(L(q;)): move to the next element in L(q;);
LeftPos(a): return the LeftPost of a;
RightPos(a): return the RightPost of a.
Algorithm PathSack(q)
1. while- end(q) do
2. {Amin — getMinSource(q);
3. for each gjinqdo

4. while (= empty(S(q;) O (RightPos(top(S(q;))) < Left-
Pos(L(Amin)) do pop(S(q));

5. moveSreamToSack(L(Oyin)» S(Omin), PoINter to top(S(par-
ent(Cmin))));

6. if (Olyin is aleaf node) then

7. { showSol utions(S(qin), 1); POP(S(Armin)):}

8. }

Function end(q)
if for any leaf node q’, L(Q') is empty
then return true
elsereturn false;

Function getMinSource(q)
return g in g such that LeftPos(next(L(g;))) isminimal.

Procedure moveSreamToSack(L, S p)
1. push(S next(L), p);
2. advance(L);

The algorithm PathSack repeatedly construct stack
encodings of partia and total answers by iterating
through the streams associated with the nodes in g,
which are in the order of sorted L eftPos values. So the
nodesin T are checked in the order of non-decreasing
LeftPosvalues. Thisisdone by executing line 2, which
invokes the procedure getMinSources(q) to identify
the stream containing the next node to be processed.
By executing lines 3 -5, some partial answers are re-
moved from the corresponding stacks, which cannot
be extended to total answers in terms of the ancestor-
descendant relationships of nodes. Line 6 arguments
the partial answers encoded in the stacks with new
stream nodes. Whenever a node ¢, iS pushed onto
the stack §q,,,) and that node is the leaf of the path
guery, the stack must have an encoding of some total
answers if any. In this case, the agorithm showSolu-
tions will be invoked to output these answers. Each of
them is represented as an n-tuple that isin sorted leaf-
to-root of the query path [2].

Procedur e showSolutions(a, b)

1. index[a] ~ b;

2. if (a=1) then

3. output(Yqp).index[n], ..., S(qy).index[1])

4. ese

5. {for i = 1to §q,).index[4&].pointer-to-parent do
6. showSolution(a - 1, i);}

The above algorithm expands the paths from the corre-
sponding stack encodings. Assume that the nodes in
the query path is numbered from top to bottom. We
maintain aglobal array index[1..n], in which ith entry
isapointer to the position in §q;) that we are interest-
ed infor the current solution, where the bottom of §q;)
is position 1.

The time complexity of PathSack can be estimated as
follows. Let n; be the size ngf L(g;). Then, the main

while-loop will beiterated " n; times since the termi-

nation condition of this whiili-}ll oop iswhen al the ele-
mentsin L(q,, are exhausted. In each iteration, the top

elements of mstacks are checked. L et &y be the number
of elements removed from §q) in the (i, j)-th iteration.
Then, the worst-case cost is bounded by

m N m

Oy ¥ ¥ (1+80)
i=1j=1k=1

m N m m N m

=0(Y ¥ X 1+0(Y ¥ ¥ &)

i=1j=1k=1 i=1j=1k=1

m
=O('y mmhy) + O(mii) = O(m*A).
i=1
m N m
Here we should remark that " %" > &, cannot be
i=lj=1k=1
larger than mA4Y since at most mAY elements may be
pushed on to the stacks.

2.2 Removing redundancy from PathSack

An observation shows that each time when getMin-
Source(q) is carried out, a database node is visited and
all the database nodes are accessed in the order of non-
decreasing LeftPos values. So we can rearrange the
computation as bel ow.

Definition 1 (matching subtrees) A matching subtree T’
of T w.rt aquery path g (containing only d-edges) is a
tree, in which each node matching the predicate at a
node in g and there is an edge from node a to node b iff
there existsapath pfromato bin T and any other node
on p does not match any node predicatein g. O

Example 2. Consider the document tree T shownin Fig.
4(a). With respect to the query path g showninFig. 2(a),
it has a matching subtree as shown in Fig. 4(b).

T T: T:
A \|/l A \|/1 A Vi '{qlr q3}
B v, B v, B vy -{ag}
PN NG
Dv|3 A vg Cvy AVs cv,-{qg A vs -{qy, q3}
CV4 B \)6 B \J6 B \J6-{q2}
A \l)v A ‘|J7 A \Jv-{ql,%}
C Vg C vg c ‘|’8-{Q4}

@ (b) (©
Fig. 4. lllustration for matching subtrees

The main idea of our agorithm is to explore T' top-
down in the depth-first searching manner. To enable the
operations that are conducted by PathSack each time
when anodein qischosen, we change the data structure
asfollows.

Instead of alist attached with each g in g, we associate
vinT with alist of nodesfrom g, denoted asL(v), such
that v satisfies the predicate of each node in thelist. See
Fig. 4(c) for illustration.

Based on such a data structure, the following ago-
rithm can be easily implemented.

Algorithm RefindPathSack
1.stack ~ root of T';
2.while = empty(stack) do
3.{ Vv — pop(stack);

4. for eachq;ingdo

5. while (= empty(S(q;) O (RightPos(top((q))) < Left-
Pos(a(v)) do pop(S(a));

6. for eachq;inL(v) do

7. { push(S(q;), a(v));

8. establish pointer to top(S(parent(q)));

9. if g isaleaf node

10. then {call showSolutions(Yq;), 1); pop(S(}));

12. }

13. push al the children of v onto stack;

14}

Example 3. When we apply our method to find all the
paths in T, which match g, we will first generate the
matching subtree T' of T and associate each vin T with
alist as shown in Fig. 4(c). Then, we run RefindPath-
Sack over T' and g. During this process, T' will be
searched top-down as shown below.

step 1:v; is visited; and a(vq) will be pushed onto
Sq,) and Sq3), respectively, as shown in Fig.
5(a).

step 2:v, is visited; and a(vp) will be pushed onto
Sq,). Meanwhile, a pointer to the top of the
stack of g,'s parent will be established as shown
in Fig. 5(b).

step 3:v, is visited;, and a(v,) will be pushed onto
Sq,). Also, a pointer to the top of the stack of
g4's parent will be established as shown in Fig.
5(c).

step 4:v5 is visited. Since RightPos(top(S(q,))) = 4 <
LeftPos(a(vs)) = 6, v, is popped out from Say).
After that, a(vs)) ispushed onto §(q;) and S(q3),
respectively, as shown in Fig.5(d).

step 5:vg is visited. a(vg) will be pushed onto Sq,),
and a pointer as shown in Fig. 5(e) will be cre-
ated.

step 6:v, isvisited. and a(v7) will be pushed onto ;)
and §(q3), respectively. In addition, a pointer to
its parent is generated as shown in Fig. 5(f).

step 7:vg is visited. a(vg) will be pushed onto §q,)
and a pointer is established as shown in Fig.
5(9). O

During the execution of RefindPathSack, eachvin T’

is accessed only once. Moreover, each time when av

isvisited, thetop elements of mstacks are checked and

a most mnodes are pushed onto the stacks. Let §;; de-

note the number of elements removed from §¢q;) inthe
i-th iteration. Therefore, the total cost is bounded by

n m
O(Y Y (1+3))
i=1j=1
n m n m
=0(y Y1+ >3
i=1j=1 i=1j=1
= O(mA).

I 1 I Y R I R B
Sd) Saz) Sap) S Say) Saz Sa) Sap
@ (b)

(2 Y 4 P I O [RN A 5
Sd)) S0z Sa» S Sas) Sz Sa» Sa)
(© (d)

V7 s V7
N Vet—m= Vi \\ Ver—m= |V,
I 1 B O [N B
Sd) Saz) Sap) S Sa) Sd3 Sa» S
(e)
V7N V7
/VS \\ \/ Vg
ey 1] NV

Sas) Sad g Sa)
(9

Fig. 5. Sample trace of RefindPathSack

3. Refined twigstack

From the previous section, we can see that the elimina-
tion of PathSack'sredundancy isrelatively straightfor-
ward. But it is more challenging to remove redundancy
from TwigStack [2], which is used to handle more com-
plicated cases that the query is a non-trivial tree, but
containing only d-edges. Asin Section 2, we will first
describe TwigSatck and analyze its time complexity in
3.1. Then, in 3.2, we give a new agorithm, which sub-
stantially improves TwigStack.

3.1 Description of TwigStack

Algorithm TwigSack operatesin two phases. Inthefirst
phase, all paths matching individual query root-to-leaf
paths are produced. In the second phase, these match-
ing paths are merge-joined to create the answers to the
query twig pattern.

In order to generate all the matching paths, TwigStack
uses the same data structures as PathSack, but work in
aquite different way.

Algorithm TwigSack(q)
(*phase 1*)
1. while -~ end(q) do

2{ gt — getNext(q);
3. if (gyet is not the root) then

4, cleanSack(S(parent(dac)), LeftPos(next(L(Gacr));

5. if (gatistheroot of) O~ empty(S(parent(tacr)))

6. then

7. { cleanSack((Gyy), LeftPos(next(L(dag));

8. moveStreamToStack(L(Aact), S(Aact), POINter to
top(S(0act))):

9. if (0atisaleaf node) then

10. { showSol utions(S(Qact), 1); POP(S(dacy)):}

11. }

12. else advance(L(dae));

13}

(*phase 2*)

14. mergeAllPathSolutions();

Function getNext(q)

1. if (qisaleaf node) then return g;
2. letqy, ..., g bethe children of g;
3. fori=1tokdo

4. {n - getNext(q);

5. if (n; # q;) then return n;;}
6. Nmin — min{LeftPos(ny), ..., LeftPos(ny)};

7. Npax — max{LeftPos(n,), ..., LeftPos(ny)};

8. while (RightPost(next(L(q)) < LeftPost(next(L(Nygy)) do

9 advance(L(Q));

10. if (LeftPost(next(L(q)) < LeftPost(next(L(ny,n)) then return g;
11. elsereturn ngp;

Procedure cleanSack(S, actL)

1. while (= empty(S O (RightPos(top(S) < actL) do

2. pop(S);

The above agorithm is a more complicated process
than PathSack. First, getNext is quite different from

getMinSource, by which a g; from q is chosen iff the
following two conditions are satisfied:

() Let G s woos qikbethechildren of g;. Let v bethe next

nodein L(qg;) to be processed. Then, v has adescen-
dant usuchthat a(u) in L(qij) for each g, (1=j=k).

(ii) Each u recursively satisfies the first property.

In this way, each solution to each individual query
root-to-leaf path is guaranteed to be merge-joinable
with at least one solution to each of other root-to-leaf
paths. Therefore, the dominate cost of thefirst phaseis
the execution time of getNext.

Let n; be the size of L(g;). Then, the main while-loop
m
in TwigStack will be iterated " n; times since the ter-

mination condition of this wﬁﬂéloop iswhen al the
elements in all L(qjeyf)’s are exhausted. In each itera-
tion, the procedure getNext will be invoked and all the
nodesin the query treewill be accessed. L et Aj; bethe
number of elementsin L(q,) checked when node gy is
visited during the (i, j)-th execution of getNext. Then,
the worst-case cost is bounded by

oY 3 3 (1+N;0)
i=1j=1k=1
AOIDIDI R DI NP IRNTY
i=1j=1k=1 i=1lj=1k=1
=o(y mh,) + O(mA) = O(mPA).
i=1
3.2 Removing redundancy from TwigStack
Now we begin to discuss how the redundancy of Twig-
Sack can be removed. Aswith TwigSack, we will asso-

ciate each node ¢ in g with a data stream L(g;) the
following conditions:

(i) For each v O L(q;), v matches the predicate at .
(if)Let Gi, s - G, be the children of g;. v has a descen-

dant v matching a, forjO{1, .., Kk}.
(iii)Each of the nodes V' recursively satisfies (ii).

Obviously, these three conditions correspond to the two
properties given in the previous subsection, for any
node going onto a stack. There is not anything new.

However, not like getNext in TwigSack, which chooses
nodesfrom qto handle and in fact each timefinds anext
vinT to be put in some stack (by multiple executions),
we generate al L(q;)’s in one scan, which enables us to

avoid a great number of repeated accesses to query
nodes.

For this purpose, we maintaintwomxn (m=|qgl, n =

[T"]) matrices.

1. Thenodesin both g and T' are numbered in pos-
torder, and the nodes are then referred to by their
postorder numbers.

2. Inthefirst matrix, each entry ¢;; (i 0 {1, ..., m},j O
{1, .., n}) hasvalue O or 1. If ¢; = 1, it indicates
that i O L(j) and for each child of i, j has a descen-
dant satisfying the predicate at it. Otherwise, ¢;; =
0. Thismatrix is denoted by c(q, T').

3. Inthe second matrix, each entry dij io{a,.. m},

j O {1, .., n}) is defined as follows. If j has a
descendant j’ such that ¢j;; = 1, then d;; = 1; other-

wise d;; = 0. This matrix is denoted by d(qg, T').
The following algorithm can be used to generate the
values for these two matrices.

Initially, ¢ = 0 and d;j = O for &l i and j. During the
execution of the algorithm, the values of ¢;;'s will be
changed according to conditions (i) and (ii) described
above; and dij’s will be changed to record whether a

nodej in T' has a descendant j’ that matches a certain
nodei ing.

Algorithm matrixGeneration(T", q)

Input: tree T (with nodes 1, ..., n) and tree g (with nodes 1, ..., m)
Output: c(qg, T') with values created.

begin

1. foru:=1, .., mdo{

2. forv:=1,..,ndo

3 {if v satisfies the predicate at u then
4 let uy, ..., U, bethe children of u;
5. ifd,,0..0d,, =1thenc, « L
6 }
7. letvy, vy, ..., vy bethenodessuchthat ¢, =1(1<p<h);
p
8. let{wy, ..., w;} beaset such that each nodeinit is an ancestor
of somev, (1< p<h). Set dLJWI =1foreachw, (1<I<r).
9.}
end

To see how the above algorithm works, we should first
notice that both T' and q are both postorder-numbered.
Therefore, the algorithm proceeds in a bottom-up way
(seeline 1 and 2). For any node u in g and any node v
in T', if v satisfies the predicate at u, we will check
each child u; of u to see whether there exists a descen-
dant of v that matches u; (see line 5). If it is the case,
Cyy Will be set to 1.

Inline 7 and 8, we change d;;'s according to the newly
changed ¢jj's.

Example 3. As an example, consider the trees shown
in Fig. 6. The nodes in them are postorder numbered.

q T a v, 6
a da» \,/
q/ \q AL c Vg5
edz1 b H 3 3 evsz] b\V43
e qu?2 e Vg2

Fig. 6. Labeled trees and postorder numbering

When we apply the algorithm to these two trees, ¢(q,
T) and d(qg, T) will be created and changed in the way
asillustrated in Fig. 7, in which each step corresponds
to an execution of the outmost for-loop.

In step 1, we show the values in c(g, T) and d(g, T)
after node 1 in q is checked against every node in T.
Sincenode 1in g matchesnode1,2and 4in T, Cq4, Cqp,
and cy4 are all set to 1. Meanwhile, for al those nodes

that are an ancestor of 1, 2, or 4in T, the corresponding
entries in d(q, T) will be changed. So we have al dy4,
dqp, dy3, d14, and dyg et to 1 (seeline 7 and 8).

In step 2, the algorithm generates the matrix entries for
node 2 in g, which is done in the same way as for node
linag.

In step 3, node 3 in q will be checked against every
node in T, but matches only node 3 and 5in T. Since it
is an internal node, its children will be further checked.
For node 3 in T, it is done by checking d,3, which is
equal to 1. So node 3 in T matches node 3 in g. For
node5in T, since dss5isO, it does not match node 3in .
In step 4, since node 6 in T matches node 4 in g and
both d;g and dsg are equal to 1, cig is set to 1 (digiS

then set to 1 by executing line 7 and 8). O
step 1:
(g, T): d(a, T):
123456 123456
1fr1 10100 i1f111101
2|10 00 00O0 2|0 00 00O
3]0 00000 3l[0 00000
4000000 40 0 0 0 00
step 2
(g, T): d(a, T):
123456 123456
1frt 10100 1fri111101
2110100 2/111101
3]/000000O0 3]0 00000
40 00000 410 00000
step 3
(g, T): d(a, T):
23456 123456
1ft1 10100 ifrt11101
2110100 2/111101
3]/001 000 3]0 01101
40 00000 410 00000
step 4
c(q, T): d(g, T):
123456 123456
1frt 10100 1fri111101
2110100 21111101
3]/001000 3]0 01101
40 00001 41000001

Fig. 7. Sample trace
Proposition 1. Algorithm matrixGeneration(T, g) com-
putes the valuesin ¢(q, T) and d(q, T) correctly.
Proof. The proposition can be proved by induction on
the sum of the heights of T and g. O
Proposition 2. Algorithm matrixGeneration(T, Q)
requires O(nlm) time and space, where n = [T| and m =
|al-
Proof. During the whole process, against each node u in
g, al the nodes v in T is checked and for each v all its
children will be examined. Therefore, this part of time

is bounded by
O(y > d,)=0(3 n)=0(n),

where d, represents the outdegree of nodevin T.

In addition, after each u in q is checked, for al those
nodes in T, which are an ancestor of some node that

matches u, the corresponding matrix entries in d(q, T)
will be established. But this operation needs only O(n)
time if we proceeds as follows. Each time when we
search T bottom-up from a node v that matches u to
find al its ancestors, we mark each node encountered
and stop whenever we meet such a mark (made by a
previous searching). So at most O(n) nodes will be
checked and the total time of this part of operationsis
bounded by O(n(m).

Obviously, to maintain ¢(g, T) and d(g, T), we n%d
O(nlm) space.

In terms of the matrix c(q, T), itisan easy task to creaIe
L(q;) for each g; in q asillustrated in Fig. 8(a).

q:

4..21{6 a di {v}
{412 1 e 3 b {3} {Vo, V3, vg} A2 € \b 3 {v4}
e {4,1,2
2 € Qg {vy v3 v}

@ (b)
Fig. 8. lllustration for L(g;)’s

Fig. 8(b) is the same as Fig. 8(a). But in this figure we
use node namesin L(q;) instead of their postorder num-
bers.

Concerning L(q;), we should pay attention to the fol-
lowing:

(1) Thenodes (represented by their quadruple) in L(q;)
are sorted by their (Docld, LeftPos) values (not ac-
cording to their postorder numbers).

(2) EachnodeinL(q;) satisfiesthe condition (i) and (ii)
givenin 3.1.

Using such a data structure, the algorithm TwigSack
can be substantially improved. As with RefinedPath-
Sack, we use a stack to control the searching of g in the
depth-first fashion. Each entry in the stack is a pair (q;,
V), whereq; Dgandv; 0T,

Finally, we noticethat getNext() is not used sinceall the
values to be produced by executing getNext() are pre-
calculated and incorporated into L(q;)’s.

Algorithm RefinedTwigSack(q)

(*phase 1*)

1.Repeat the following until all L(g;) become empty;
2.{let LeftPos(q};) be the least such that = empty(L(q;));
push(stack, (c;, next(L(q;))); advance(L(q;));

4. while- empty(stack) do

5. {(u, V) — pop(stack);

6. if (uisnot theroot) then

7

8

w

cleanSack(S(parent(u)), LeftPos(v));
if (uistheroot of q) - empty(S(parent(u)))

9. then

10. {cleanSack(Su), LeftPos(V));

11 push(S(u), v, pointer to top(S(parent(u)));
12. if (uisaleaf node) then

13. {'showSolutions(Su), 1); pop(Su));}

14. }

15. else advance(L(u));

16. letqy, ..., g bethe children of u;

17. forj=Itoldo

18. {while next(L(qj) is not adescendant of v do adavance(L(q;);
19. push(stack, (g, next(L(¢)));}

20. }}

(* phase 2)

21. mergeAllPathSolutions();

Example 4. Continue with Example 3.

By using our method, we will first generate L(q;) for

each g; as shown in Fig. 8(b). Then, we will search the

twig pattern g as follows.

step 1: At the very beginning, the node g, has the least
LeftPos value and L(q;) is not empty. Push (q;,
vy) into stack.

step 2: In the following while-loop, the whole query
tree will be traversed.
When we meet g,, whichis aleaf node, we have
a configuration as shown in Fig. 9, which con-
tains the first matching path: v, - v4. By using
showSolution(), we can store it in atuple.

IRigin)

Say) Sz Sa) Sw)
Fig. 9. The first matching path

step 3: When we meet g3, which isan internal node, the
stacks will be changed as shown in Fig. 10.

LR

Sa) Saz) Sa) Say
Fig. 10. llustartion for stack changes

step 4: When we meet another leaf node g4, we will get
the second matching path: vs - v, — v4, stored
in stacks as shown in Fig. 11.

S0y Sz Sa) Sw)
Fig. 11. The second matching path

step 5: Now stack (used to control the searching of) is
empty. We will try to find another node (in q)
with the least LeftPos value and a non-empty
list. Itisqp. InL(gy), we have two elements | eft:
{v3, vs}. Push (g, v3) into stack.

step 6: In the while-loop, g, is accessed and the stack
configuration is changed as shown in Fig. 12,
from which we can take the third matching path:

V3 — Vj.

V3
Vg Vg Vo \Z1

Sa) Sz Sa) S
Fig. 12. The third matching path

step 7: Sincethelistsassociated with all the other nodes
are empty now, stack becomes empty once
again. Asinstep 5, we will try to find anode (in
g) with the least L eftPos value and a non-empty
list. It is g, once again. For it, we have L(q,) =
{vs}. Proceeding as above, the stacks will be
changed as shown in Fig. 13. From this, the
fourth matching path: vs — v, can be obtained.

]
VDY
Vg Vy] Vi
Sds) Sdg) Sd) Sa)
Fig. 13. The fourth matching path

The above agorithm works almost in the same way as
TwigSack. The only differenceisthat in TwigSack, get-
Next is executed multiple times while in RefinedTwig-
Sack, getNext is replaced with matrixGeneration,
which is performed only once.

The time complexity of RefinedTwigSack is easy to an-
ayze. In thewhole process, each nodevinal(q;) isac-

cessed only once. So the total cost is bounded by

O(Z L(qi)) = O(m@-
i=1
4. General cases
The method discussed in Section 3 can be easily ex-
tended to handle general casesthat aquery tree contains
both c-edges and d-edges. For this purpose, we define a
third matrix p(q, T) asfollows.

An entry p; = 1 indicates that there exists some
child k of j, which ‘matches’ i, i.e., ¢ = 1; other-
Wise, p” =0.

Accordingly, the algorithm matrixGeneration should

be dlightly changed so that the manipulation of p(q, T)
isinvolved.

Algorithm generalMatrixGeneration(T, q)

Input: tree T (with nodes 1, ..., n) and tree q (with
nodesy, ..., m)

Output: c(q, T) with values created.

begin

1 foru:=1,.. mdo{

2. forv:=1, ..ndo

3. {if vsatisfiesthe predicate at u then

4, let uy, ..., uy be the c-children of u;

5. letuy, ..., ug’ be the d-children of u;

5. if e ey, = 1 and dy, 0. O dyy = 1

6. then c,, < 1,

7. }

8. letvy, vy, ..., vy, be the nodes such that Cuy, =1 1<
p<h);

9. let{wy, ..., w;} beaset such that each nodeinitis
an ancestor of somev, (1< p=<h). Set d,,, =1for
eachw (L<I<r).

10. let {t4, ..., tg} be aset such that each nodeinitisa
parent of some Vv, (1< p<h). Set dy, = 1 for each t,
1<l<ys).

11}

end

Since each node u in g may have both c¢- and d-chil-
dren, each time when checking it against anodevin T
we need to check the corresponding entriesin both d(q,
T) and p(q, T) (seeline 5). In addition, besides the com-
putation of new vaue for some entries in d(g, T) in
each step, we need also to compute new values for the
corresponding entriesin p(q, T) (seeline 10).

Example 4. Consider T and g shown in Fig. 14. Espe-
ciadly, qis agenera query tree, containing both c- and
-edges.

Avy 6 q: AQg; 5
sz{ \6 3q2{ \q 4
DV3/1 >V4 1Q3/C 29D
CV5 2

@ (b)
Fig. 14. A query tree containing c- and d-edges

Applying the above agorithm to T and g shown in Fig.
14, we will generate three matrices as shown in Fig. 15.

c(a, T): d(g, T): p(a, T):

123456 123456 123456
1f/0 100007 1f0 1110 1 170 01000
2/100000[2100101 2lo0oo0100
3looo0100| 3looo0o101 3loooo0o01
40 01110 4/001111 4000001
5000001 5lo0000 5000000

Fig. 15. Three matrices

Special attention should be paidto cg,. Itissetto 1 since
we haved,, = 1 and p,4 = 1 beforethe calculation of this
entry is performed.

The modification to RefinedTwigSack is quite trivial:
just one line needs to be changed as below.

18. {while next(L(q}) is not a descendant of v if g; isa
d-child or next(L(q;) is not achild of vif gjisac-
child do

adavance(L(qj);

In this way, the c-edges can be correctly handled.

Finally, from the above discussion, we can also see that
for any query tree containing both c- and d-edges, the
time complexity remains O(mA).

5. Conclusion

In this paper, a new method is discussed, which sub-
stantially improves the method proposed in [2] for do-
ing twig joins that are identified as the core operation
for query evaluation in XML databases. Concretely, our
method improves the algorithm PathSack and Twig-

Sack presented in [2] from O(mP /) to O(mA), wherem
and n are the sizes of the query tree and document tree,
respectively.

References

[1] S Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Pa-
tel, D. Srivastava, and Y. Wu, Structureal Joins:
Aprimitive for efficient XML query pattern
matching, in Proc. of IEEE Int. Conf. on Data En-
gineering, 2002.

[2] N.Bruno, N. Koudas, and D. Srivastava, Holistic
Twig Hoins. Optimal XML Pattern Matching, in
Proc. SGMOD Int. Conf. on Management of Da-
ta, Madison, Wisconsin, June 2002.

[3] D. D. Chamberlin, J.Clark, D. Florescu and M.
Stefanescu. "XQuery1l.0: An XML Query Lan-
guage,” http://www.w3.org/TR/query-datamodel/.

[4 D. D. Chamberlin, J. Robie and D. Florescu.
“Quilt: An XML Query Language for Heteroge-
neous Data Sources,” WWebDB 2000.

[5] A. Deutch, M. Fernandex, D. Florescu, A. Levy,
D.Suciu. "A Query Language for XML,"
WWW'99.

[6] D. Forescu and D. Kossman, Storing and Query-
ing XML data using an RDMBS, |IEEE Data En-
gineering Bulletin, 22(3):27-34, 1999.

[7]1 J. McHugh, J. Widom, Query optimization for
XML, in Proc. of VLDB, 1999.

[8] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He,
D.J. Dewitt, and J.F. Naughton, Relational data-
bases for querying XML documents: Limitations
and opportunities, in Proc. of VLDB, 1999.

[9] U. of Washington, The Tukwila System, available
from http://data.cs.washington.edu/integartion/
tukwilal.

[10] U. of Wisconsin, The Niagara System, available
from http://www.cs.wisc.edu/niagaral.

[11] H. Wang, S. Park, W. Fan, and PS. Yu, ViST: A
Dynamic Index Method for Querying XML Data
by Tree Structures, SGMOD Int. Conf. on Man-
agement of Data, San Diego, CA., June 2003.

[12] H. Wang and X. Meng, On the Sequencing of Tree
Structures for XML Indexing, in Proc. Conf. Data
Engineering, Tokyo, Japan, April, 2005, pp. 372-
385.

[13] World Wide Web Consortium. XML Path Lan-
guage (XPath), W3C Recommendation, Version
1.0, November 1999. See http://mww.w3.org/TR/
Xpath.

[14] World Wide Web Consortium. XQuery 1.0: An
XML Query Language, W3C Recommendation,
Version 1.0, Dec. 2001. See http://www.w3.org/
TR/Xquery.

[15] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G
L ohman, on Supporting containment queriesin re-
lational database management systems, in Proc. of
ACM S\ GMOD, 2001.

	On the Stack Encoding and Twig Joins

