rch

Inal

ca-

138.

il

fes,

N S e e

Vol.12 No.6 J. of Comput. Sci. & Technol. : -~ Nov, 1997

Counting and Topological Order

Chen Yangjun* (¥ %)
Technical Institute of Changsha, Changsha 410073
Received September 6, 1996; revised January 12, 1997,

Abstract

The counting method is a simple and efficient method for processing linear
recursive datalog queries. Its time cotnplexity is bounded by O{n -), where n
and e denote the numbers of nodes and edges, respectively, in the graph repre-
senting the input relations. In this paper, the concepts of heritage appearance
Function and heritage selection function are introduced, and an evaluation
algorithm based on the computation of such functions in topological order is de-
veloped. This new algorithm requires only linear time in the case of non-cyclic
data.

Keywords: Recursive query, counting, topological order, heritage function.

1 Introduction

The evaluation of recursive queries expressed as sets of Horn Clauses over a
database has been studied in the last several years. An important matter of research
in such systems is the efficient evaluation of recursive queries (queries against a
recursive program). Various strategies for processing recursive queries have been
proposed(1 8l In this paper, we confine ourselves to the counting method[*17] for .
linear recursion and try to improve its performance in the case of non-cyclic data.
This method seeks to perform a compile-time transformation of the database, based
on the query form, into an equivalent form which enables a bottom-up computation
to focus on relevint tuples. As with the magic set method4], the transformed
programs consist of two rule sets: counting rules and modified rules. Thus, the
computation can be done in a two-phase approach. In the first phase, we produce a
counting set by evaluating the counting rules. In the second phase, we produce all
answers by evaluating modified rules with the counting set being used to restrict the
computation. According to the graphic analysis performed in [15,16], the worst-case
time complexity of this method is O(n-e), better than magic sets. Here, we introduce
two new concepts: heritage appearance function and heritage selection function,
and transform many algebraic operations into simple computations of such functions
(i.e., some Boolean operations) in topological order. In this way, high efficiency can
be obtained not only due to the simplicity of Boolean operations, but also due to

"%Current address: Dept. of Computer Science, Technical University_CHemnitz—Z{vickau, 09107
Chemnitz, Germany

498 J. of Comput. Sci. & Technol. Vol.i2

the elimination of much redundancy by using binary sequence (string of 1’s and (’s)
property.

The paper is organized as follows. In the next section, we introduce the concepts
of linear recursive queries and query graph and describe the counting method in a
graphical formalism. In Section 3, we define the heritage appearance function and
heritage selection function, and present an evaluation algorithm which reduces the
costs of both the first and second phases of the counting method to O(e). In Sections
4 and 5, we prove the correctness of the refined algorithm and compare the time
complexity of the refined algorithm with other well-known strategies. Section 6 is a
short conclusion.

2 Basic Concepts

In this section, we define some concepts and terminologies which are necessary
for introducing our efficient method. '

2.1 Some Terminologies from Graph Algorithm Theory

In this paper, we use the term graph to refer to the directed graph, since we
don’t discuss the undirected one at all.. We assume that a graph G is specified as
follows: for each node v; in the graph, there is a set of successors adj(v;) = { v;
| (v, v;} is an edge of G}. Without loss of generality, we assume that G has no
self-loops, i.e., for all nodes v;, v; ¢ adj(v;). For an edge (v;, v;), node v; is called
the source or tail and node v; is called the destination or head of the edge. We
denote the transitive closure of a graph G by G*. The successors of v; in G* are the
descendents of v; in G. The strongly connected component (or strong component)
of node v; is defined as V; = {w;} U {v;] (v, v;) € G* and (v;, v;) € G*}. The
component V; is not trivial if V; # {v;}. As will be seen; our algorithm is based on
depth-first traversal of graphs, so we review now some relevant definitions. Depth-
first traversal induces a spanning tree on a graph based on the order in which nodes
are visited. If we assume that the main routine in depth-first traversal is visit(v;)
for a node ¢, then there is an edge (v;, v;) in the spanning tree, if there is a call to
visit(v;) during the execution of the call visit(v;). An edge (v;, v;) in the graph G is
called a tree edge, if it belongs to the spanning tree. An edge (v;, v;) in the graph
G but not in the spanning tree is called a forward edge, a back edge, or a cross
edge, if in the spanning tree, v; is a descendant of v;, v; is an ancestor of v;, or vy is
not related to v; with an ancestor-descendant relationship, respectively. For every
strong component, its node 7 on which visit(r) is first called is the root of the strong
component.

2.2 Query Graph and Counting

We assume that the reader is familiar with the deductive database terminology.
In our representation, we will use the concept of query graphs and will associate a

No.6 Counting and Topological Order 499

directed graph to a query with respect to a program of the form:

1) rp(my) - flat(zy)
(2) Tp(m?y) . up(.’c,z), Tp(z,w), down(w:y)'

A query graph basically consists of three parts: up-part (UP), flat-part (FP), and
down-part (DP). The UP is that relation part which is reachable from the constants
in the query. The FP is that part which can be reached using the non-recursive rule,
and the DP can be reached using the recursive rule. For example, if the up, flat,
and down predicates in the above program are defined as:

up = { (alaa2)3 (0'11‘13), (alaa‘i): (31’35): (921(13):
(a2, a4), (a2, a5), (a3, a4), (as,05), (as,05)}

flat = { (a5,b5)}

down = { (bs,ba), (ba,b3), (b3, b2), (b2, 1) }

then the query graph representing the g s
query 7 — rp(ey,y) will be as shown in by
Fig.1, where the edges going up rep- by
resent tuples in UP, the broken edges by
represent tuples in FP, and the edges by
going down represent tuples in DP. Fig.1. Graph representing input relations.

We assume only linear rules that can be reduced to a form like the above example
and will use the notation Gy, = {Ny, By), Gy = (Ny, Ey) and Ggq = (Ng, Eg) to
represent the subgraphs induced from UP, FP, and DP, respectively. In Fig.1, node
a; € N, represents the constant in the query rp(ai,y) and we call such a node the
source node. Given a subgraph G (i.e., G can be G, Gy, or (#4) and a subset X
of @, we denote by adjG{(X) (adj~'G(X)) the set of all nodes v; such that the edge
(vz,vj) ((vj,v;)} is in G and v; is in X. In other words, adjG(X) is the set of all
nodes that are adjacent to some node in X, whereas adj~'G(X) is the set of all
nodes having at least one adjacent node in X. It is easy to see that these two sets
of nodes can be computed usmg the rules stated above, which can be also expressed
as relation-algebra expressions.’

As an example, consider the above query graph. Say,

; X = {a4,a5}.
Then
adjG,(X) = {as},
adj—lG’u(X) = {a'la ag,as, Q4},
and

adjGy(X) = {bs}.

Since we are going to refer frequently to the counting method, we feel that it will
be convenient, to describe it in a graphical formalism!®l, Fig.2 represents the basic
idea of the counting method (essentially, it corresponds to the implementation of
the supplementary counting method[4].) It works as follows. Let U;(¢ > 0) contain

600 J. of Comput. Sci. & Technol. ~Vol12

all nodes v in G, that have distance 1 from the source node s. In the first phase,
the method computes U;. (Notice that, in general, such sets are not disjoint and are
called the counting set. This process corresponds to the evaluation of the counting
rules.) Suppose that U, contains the nodes with the greatest distance (thus g) from
s. In the second phase, we start computing the set Dy of all nodes in G that are
adjacent to some nodes of U, in G, Then we compute Dy_; as the set of all nodes
in G4 that are adjacent to some node of Ug—1 in Gy and that are adjacent to some
node of Dy in G4. We continue until we compute Dy, which contains all the answers
(answer node$) of the query. (This process corresponds to the evaluation of the
modified rules.) If the graph G,, is cyclic, this version of the counting method is not
safe.

Up:={s};i:=0;
while U; # @ do
begin

Ui+1 = adJGu(Uz), 1i=14 1;
end
D;_y = adjG¢ (Ui 1);
for j ;=1 -1 downto 1 do

DJ'_l == a-def(qu) U aded(Dj);
Answer = Dy,

Fig.2. Counting method.

From the description of the algorithm, we can see that in the case of acyclic
data the first loop can be performed O(|N,|) times and every iteration has a cost
of O(|E,|). Therefore, the total cost of the first phase is O([N,| - |B,]). Similarly,
the second phase has a total cost of O{|Ny| - |E4|). Hence, the cost of the counting
method for acyclic queries is O(n - €), where n and e denote the numbers of nodes
and edges, respectively, in the graph representing the input relations. -

The purpose of this paper is to reduce the time complexity of both first and
second phases using a new method based on the notions of heritage appearance
function and heritage selection function. In the following, we discuss these two
functions and the corresponding computation methods in Section 3.

3 Optimal Algorithm for Non-Cyclic Data

In this section, we describe our efficient algorithm for non-cyclic data. Similar
to the counting method, our algorithm works in a two-phase manner. In the first
phase, we compute the appearance function sequence for each node of G, in O(e)
time. Then, in the second phase, we extract the answers in terms of such appearance
function sequence in some way. As will be seen later, the time requirement of the
second phase is also bounded by O(e).

No.B Counting and Topological Order 501

3.1 The First Phase of the Algorithm

Here we describe the first phase of the counting method. First, we present the
concept of appearance function which was introduced in {1] to describe the possible
distances of a node v in G, from a source node s. :

Definition 1. The appearance function A, (i) of a node v with respect to a
source node 8 is a binary-valued function.

"For any integer ¢ > O:

(i) = 1, if there exists a path from s to v of length 4,
it otherwise.

Then the sequence A, = Ay 5(0), Ays(1), Avs(2), ... corresponds to the different .
appearances of v with-different distances from s. For example, for the query graph
shown in Fig.1, we have

Agyay= 01111, Ag, o= 01110, A, q,= 01100, Aaz,al— 01000, A, q,= 10000.

An observation shows that in the case of non-cyclic data, if the helght of Gy
is h (wé define the height of an acyclic graph to be the number of the nodes on
the longest path in the graph), then the length of each A, is bounded by h and
h < |Ny|. Thus, the number of 1’s appearing in all appearance function sequences
with respect to Gy (denoted as Ny_p;) is bounded by h - |N,|. If we can find a
method to generate each “1” only once, the time complexity of the first phase will
be reduced to O(h +|Ny|). In fact, we can find an algorithm which can generate all

~ such sequences in linear time.

In order to generate each “1* only once, we introduce another concept, so called
heritage appearance function for the nodes of Gy, which can be defined as follows.

Definition 2. The heritage appearance function HAY, (i) of a node v' with
respect to a node v (and a source node s) is a binary-valued }'unctz'on.

) 1, if Aps(f—1)=1and (v,v') € E.
u .] U,8 H uy
HAy (@) = { 0, otherwise.

Then HAY, ., = HAY (1), H A ;(2), ... can be easily computed by shifting A, s
right 1 bit and ﬁlhng the emptled posxtxon with 0. Further, we will use HA, , to
denote the sequence

HAD UHAY U U HAY,

where v1, vy, ..., v; are the direct precedents of v in G, and U is used to denote OR,

operation on the corresponding positions of two binary sequences respectively.
This definition hints an efficient computation method, in which all appearance

function sequences can be generated in linear time. First, we have the following

_proposition.

Proposition 1. Let s be the source node of a G,,. Then, for all nodes v of G,
execept &, we hove

502 © 1. of Comput. Sci. & Technol, Vol.12

Av,s = HAv,s = HA3,13UHAE?S Je- .UHA:}’:’I'S’

where vy, Vg, ..., vj are the direct precedents of v in Gy.

Proof. Tt follows directly from the definitions of Ay and HAy,.

Based on the above proposition, we propose an algorithm which works in a two-
step manner and can generate all appearance function sequences for the nodes of
G, in linear time. In the first step, we produce a directed graph corresponding to
G.. In the second step, we first find a topological order (for () with the property
that all precedents of a node n; are before n; in the order. Then we compute the
appearance function sequence for each node in such an order as follows. At the
beginning, the appearance function sequence of the source node A, ; is initialized
to “100 ... 0", Then, the second node in the topological order can be obtained by
shifting A, s right 1 bit, filling the emptied position with 0. The ith node can be
computed using the equation given in Proposition 1. Since the appearance function
sequences of all direct precedents of a node have already been generated before the
node is encountered, we can evaluate the appearance function sequence for each
node of Gy, in a topological order without difficulty. More importantly, in this way,
each A, can be generated by only performing d, shifting operations and d, logical
OR operations, where d, represents the indegree of v. That is, to compute the
appearance function sequence for a node v, we need only to shift each v; (2 = 1,
.+., dy) right 1 bit and then to add them together, where v; (i=1,..., dy) are the
direct precedents of v. This process can be summarized as follows. (In the following
algorithm, the operation Shi ftRight(A,) shifts A, right 1 bit, filling the emptied
position with 0.)

procedure first-phase
begin
(1) generate Gy;
(2) find a topological order for Gy;

let { 01, ¥z, ..., Un } be the corresponding topological order
and v, = s be the source node;

Auyoi= “10... 07

for i =2 ton do
let v, ..., € {v1,v2,...,vi-1} bé the direct precedents of v;
for j=1toldo

HAu, = ShiftRight(4y, o);
gy

A'ui,s = HAz:];s u...u HAU'.'S;
end

" Obviously, the time complexity of the above algorithm is O(|Ey]). On the one
hand, G, can be generated in O(|B,|) time and the topological order for it can also
be found in O(|E,|) (see [19)). On the other hand, the cost of generating an A,
is bounded by O(d,) and then the total cost of generating all appearance function
Sequences 18 3 ,efur,va} o) = O(|Ey|). In practice, the entire time spent in
doing the shifting operations and the OR operations for a node can be taken to
be O(1). Therefore, the total cost of generating all appearance function sequences
should be O(|Ny}). :

T e
R

3

G S =R

No.6 Counting and Topological Order 503

3.2 The Second Phase of the Algérithm :

In terms of the appearance function sequences, the answers can be extracted by
determining the distances for the nodes of G4 (the graph induced from the down-
part DP). First, we define the heritage selection functions. Then we discuss how
such functions can be used to find the correct answers in linear time,

In {1], a concept, selection function, is introduced to provide a termination
condition for the counting method in the case of cyclic data. Based on this notion,
we propose a new concept, heritage selection function, for each node e € Gy
to select those nodes which belong to the answer set and are reachable from e.
In this way, any repeated access to an edge in Gy can be replaced by a simple
Boolean computation. In what follows, we first give the definition of the selection
function, Then we define the notion of the heritage selection function and derive a
refined algorithm based on the computation of the function for each node of Gy in
a topological order, i

In terms of the definition of the appearance functions, we know that if v € N,
w € Ny, s is the source node, and (v,e) € Ey, then w is in the answer set iff

Ay s(3) = Ape(i) =1 for some i (1)

Since the flat relation is many-to-many in general, we define the following func-
tion to represent the union of all the appearance functions of those nodes v € IV,
such that (v,e) € Ej.

Definition 3. The selection function S.(4) of a node e in G4 is o binary-valued
function. For any integer ¢ > O:

S (4) = { 1, if Ays(B)=1 for some v € Ny and (v,e) € Iy,
e(z) = .
0, otherwise.

Then the sequence S, = Se(0), 5e(1), Se(2),... indicates the distances from e
with the property that if a node in Gy possesses one of such distances from e, it
should be in the answer set. This property is called the selection property. For
example, if we have (u,e), (v,e) € Ef and A, , = 01010, A, = 00101, where s
represents the source node in Gy, then S, = Ay, U A, ¢ = 01111, which indicates
that the nodes (in Gy) with the distance one, two, three or four from e are answer
nodes.

From the definition of the selection function, one can rewrite condition (1) as
follows: A node w € Ny is in the answer set iff for some e € Ny N Ny, :

Se(t) = Apel(i) =1 for some £ (2)

Now consider a sequence Ses obtained by shifting S, left one bit and filling the
emptied position with 0. Such a sequence has an important meaning that if there
exists a node v such that (e,v) € Ey4, then S, indicates the distances of some nodes
from v which belong to the answer set if they are in Gy. This property, together.
with the fact that the answer node can be checked dynamically in terms of selection

504 J. of Comput, Sci. & Technol. Vol.12

function sequences, provides a possibility to optimize the evaluation of the second
phase,

Definition 4. The heritage selection function () of a node €' (in Gy) with
respect Lo @ node e is a binary-valued function. For any infeger ¢ > 0, if e has no
precedents in Gy, then

e _) 1 i Se(i+1)=1,
He’ (0= { 0, olherwise.

In other cases,

HE (i) = 1, i S.(i+1)=10r H2(i+1) = 1 for some e; such that (e1,e) € Ny,
“\ 71 0, otherwise.

Then the sequence Hg = HE(0), HS (1), H5(2), ... indicates the distances from
e’, which have the selection property.

We will use H, to denote the sequence HP UHEU...UHS, where ey, €35 ...,
e; are the direct precedents of e in G,. Intuitively, H, can be used to propagate
control information to extract answer subsets correctly,

Definition 5. The generalized selection Junction GH,(7) is ‘a binary-valued
Junction. For any integer i > 0:

GH, () = L, if Se(d) =1 or HA(3) = 1 for some ey such that (e1,€) € Ny,
e\t = 0, otherwise.

In terms of the above definitions, we have the following proposition.
Proposition 2. If (e,€) is an edge in E; and GH.(k) = 1 for some k > 1, then
we have

GHy(k—1) =1

Proof. It follows directly from the definitions of Se(k) and GH(k).

From the above discussion, we know that GH, indicates the distances of all
those nodes from e, which)belong to the answer set if they are in G;. For each
e € Ny Ng, we can produce its S, by evaluating the (modified) non-recursive
rule with the corresponding appearance function sequences being propagated (see
Definition 3). Obviously, this can be done in linear time (see {1] for a more detailed
description). Similar to the treatment of the first phase, we then generate a graph
corresponding to Gy and compute all generalized selection function sequences in
a topological order, thereby generating the answers dynamically in terms of the
generalized selection function sequences computed so far. In the following algorithm,
the operation ShifiLeft(GH,) returns a binary sequence obtained by shifting GH,
left 1 bit and filling the emptied position with 0. '

procedure second-phase . .
begin

No.6 Counting and Topological Order 505

(1) generate S, for each e € Ny N Ng;
(2) generate Gg;
(3) find a topological order for Gy;

let { e1, eg, ..., &, } be the corresponding topological order
fori=1tondo
let e;,,...,¢e; € {e1,ea,...,€;i_1} be the direct precedents of ¢;

for j =1%ol do
o; = ShiftLeft(GHe‘.j };
GHe, = S, UH,U...UH
* if GH,,(0) = 1 then
insert e; into the answer set;
end

Note the statement marked with . By executing this statement, each node is
checked whether it belongs to the answer set in terms of its generalized selection
funetion sequence. That is, if the Oth position of the generalized selection function
sequence of a node e is “1”, then e should be in the answer set (and then e is called
an answer node). It is because in this case either (s, e} is in Ej, where s is the source
‘node, or there is a path of length 2i-+-1,7 > 0, from the source node s to e such that
the first 1 edges are in E,,, the (i+1)th edge is in Fy, and the last ¢ edges are in By,
(see Proposition 4 given in the next section.)

Ezample 1. Continue with our running program. Suppose that the facts in the
database can be represented as a graph shown in Fig.3.

down

Fig.3. Graph representing input relations.
Given the query 7—7rp(a1,y), the algorithm first-phase first generates Gy, which
corresponds to the up part of the graph shown in Fig.3. Then the topological order
for it can be found in linear time:

a1ﬁ&2—>""—}arlul —* Qn.

In this order, the algorithm will produce the following appearance function se-
quences:

Aggrey = 10 ... 00",
Aagyay = ShiftRight(Aq, ;) = “010... 00",
Aag,ay = ShiftRight(Aa, e;) U ShiftRight{Aaye,) = “0110...00%,

Aapay = ShiftRight(Au, e,) U ShiftRight(Aay e,) U+ - U ShiftRight(Aa, | e) = “011 .., 17,

For this example, the algorithm second - phase will produce only one selection
function sequence:

506 J. of Comput. Seci. & Technol. Vol.12

Sy, =011 ... 17,

The selection function sequence for each Sp; (7 =1, ..., n— 1) can be taken to
be “00 ... 0”. Then, second-phase will genmate a glaph Wthh corresponds to the
down, palt of the graph shown in Fig.3. The topological order for it is:

bp —> bpg —> -+ —> by — by,

In this order, the generalized selection function sequences will be generated and
in terms of them the answer set will be produced dynamically:

GH: ’ Answer set:
GHp, = S, = “011... 1"
GHy, _= Sy, _, UShiftLeft(GH,) {ba—1}
="1... 1" :
GHy, 5 S, , UShiftLeft{(GH,, ,)U ShiftLeft(GHy,)
= “11...10" {bp—t,bn2}

GHy, = Sy, UShiftLeft(GHy,)U. ..U ShiftLeft(GH;)
= “11.,.10” {bn—lybn—%‘--xbl}'

4 Correctuness of the Refined Algorithm

In this section, we prove the correctness of our algorithm in the case of non-cyclic
data. To this end, we first show that the first phase of our algorithm will generate
all appearance functlon sequences conectly Then we prove that the second phase
can produce all answer nodes,

Proposition 3. In the case of non-cyelic data, the algorithm first-phase will
generate all appearance function sequences for the nodes of G,,.

Proof. We prove the proposition by induction over the generated appearance
function sequences on the number of the nodes of G,,.

Basis: If Gy contains only one node (the source node), its appearance function
sequence is “10...0” and thus is correct,

Induction step: Suppose that the proposition holds for all graphs contain-
ing k nodes-(k < n — 1) and that G, contains n nodes, Let v; — vy —
++ — v, be a topological order for G,,. Then the subgraph of G, generated
by: {v1,v2,...,vn—1} contains = — 1 nodes. By the induction hypothesis, the ap-
pearance function sequence for each v; € {vy,v9,...,v,_1} can be correctly gen-
erated. Let vyqy,..., z(;) be the direct precedents of v, in &,. Then Ap s =
ShiftRight(Ay,) s) U ... U ShiftRight(A,, - s), which is exactly evaluated by the
algorithm first-phase. Smce each Ay;) . (7 = 1, ..., I} is correctly evaluated, Ay, s
is correctly evaluated. This completes the ploof

In order to prove the second phase of our algorithm, we first give the following
proposition.

Proposition 4. If e € Ny belongs to the answer set, then there exists a path of
length 2i+1, 7 > 0, from the source node s to e such that the first i edges are in E,,

No.6 Counting and Topological Order 507

the (i + 1)th edge is in Fy, and the last i edges are in Fy (such o path is called an
answer path.)

Proof. See the appendix of [16].

Based on this proposition, we can immediately prove the correctness of the al-
gorithm second-phase. '

Proposition 5. In the case of non-cyclic data, the algorithm second-phase will
produce all answer nodes.

Proof. First, we claim that the algorithm second-phase can correctly produce
all generalized selection function sequences for the nodes of G4. This can be proved
in a similar way as Proposition 3 is manifested. Then, we clarify that for each e in
the “answer set” produced by second-phase there exists an answer path. Consider
the statement marked with % in second-phase, by which we insert a node into the
answer set if the Oth position of its generalized selection function sequence is “17.
We distinguish between two cases in which the Oth position of e's GH is “1”. The
first case is that there is an edge (s,€e) in Ky, where s is the source node, then e is
in the answer set and the length of the associated path is 20 + 1 = 1. The second
case is that among the direct precedents of e there is at least one node ey, the 1st
position of its GH is “1”. If S (1} = 1, then there is an answer path of length
2.1 + 1 = 3. Otherwise, consider the direct precedents of e;. Similarly, among
these nodes there must exist at least another node eg, the 2nd position of its GH
s “1". If Se,(2) = 1, then there is such an answer path of length 2.2 + 1 = 5.
Otherwise, we further consider its direct precedents. In this way, we can always find
a sequence ey, ey, ..., e; connecting e; and e with S, (%) = 1. Thus, there is a path
(of length 2i + 1, 7 > 0), which connects the source node and e. Therefore, in terms
of Proposition 4, we know that the answer set is correctly evaluated.

5 Comparison with Other Strategies

In the analysis below, we consider only the following abstract linear recursive

program:

S('L,y) "T('Bay)
s(x, y)-ple, 2), s(z, W),q(w,y)

Assume that-the graph representing the relation for “r” contains n, nodes and
e, edges, the graph for “p” contains n, nodes and e, edges, and the graph for “¢”
contains n, nodes and e, edges.
, As stated above, in the case of non-cyclic data, the.first phase and second phase
of the refined algorithm require O(n, -+ ¢,) time and O(n, + ¢,) time, respectively.
Therefore, it is a linear time algorithm. In contrast, the counting method requires
O(ny, - ep) time in the first phase and O(n) - €5} time in the second phase. The
magic-set method is another bottom-up algorithm which works also in two phases.
The first phase of it consists of determining all nodes in N,, (N, is then called the
magic set). In the second phase, the method computes all possible pairs of nodes
(2,4) satisfying the following conditions:

508 J. of Comput. Sci. & Technol. Vol.12

(1) <isin Ny, 7 is in Ny,

(2) there is another pair (¢, 5') which is in Ej or is produced in previous
steps, and

(3) (i,¢) € B, and (4, 7) € B

Therefore, if we use the semi- graph for"p" an answer tuple {7, /) in A

naive approach, the cost of the
first phase of the magic-set method’
is O(e,). The cost of the sec- ‘ geaph for “q”
ond phase is }(; e a indegree(i) X
outdegree(j) = Ofep - eq), where A
denotes the set of answer tuples.
The graph shown in Fig.4 helps to
clarifly this result,

From this graph, we see that crossing an answer tuple, say (4,7), each edge
incident to j will be visited indegree(i) times by the magic set method. Since the
number of answer tuples is bounded by (7, n,), the cost of the magic set method is
O(e,-e,)1516], Tn recent years, there has been considerable effort directed toward the
extension of the counting method for dealing with cyclic relations, such as the level-
cycle merging method proposed in [13, 14], the synchronized counting method! and
the method proposed by Haddad and Naughton['?, All those methods try to reduce
the time complexity to O(n - e) in the case of cyclic data, But no progress has been
made in the direction of decreasing the time complexity of the counting method
itself. In addition, a lot of experiments have been donel® and show that QSQR, a
well-known top-down strategy[lsl, has the same time complexity as the magic set
method. At an abstract level, the expansion phase of QSQR. can be viewed as two
processes: a constant propagation process and a variable instantiation process, The
former corresponds to the traversal of the graph for “p”. The latter corresponds to
the traversal of the graphs for “r” and “¢”. Therefore, the analysis for the magic
set method applies to QSQR.

Fig.4. Hlustration for time complexity analysis.

6 Conclusion

In this paper, two new concepts, heritage appearance function and heritage
selection function, have been introduced and an efficient algorithm for evaluating
recursive queries has been developed. Based on the computation of such functions
in topological order, this algorithm reduces the cost of the counting method signifi-
cantly and can be used to treat non-cyclic relations. The algorithm is efficient not
only due to the simplicity of Boolean operations, but also due to the elimination of
much redundancy by using binary sequence property. In the case of non-cyclic data,
the algorithm requires only O(n 4+ e) time, where n and e denote the numbers of
nodés and edges, respectively, in the graph representing the input relations.

No.6 Counting and Topological Order : 508

References

[1] Aly H, Ozsoyoglu Z M. Synchronized counting method. In Proe. the 5th Int’l Conf. on Data
Engineering, Los Angeles, 1989.

{2] Balbin G 8, Port K Ramamohanarao, Meenakshi K., Efficient bottom-up computation of queries
on stratified databases. J. Logic Programming, November 1991, pp.295-344.

[3] Bancilhon ¥, Maier D), Sagiv Y, Ullman J D. Magic sets and other strange ways to implement
: logic programs, In Proc. 5th ACM Symp. Principles of Database Systems, Cambridge, MA,
March 1986, pp.1-15.

{4} Beeri C, Ramakrishnan R. On the power of magic. International Journal of Logie Programming,
1991, 10: 255-299.

[5] Ceri 8, Gottlob G, Tanca L. Logic Programming and Databases. Springer-Verlag, Berlin, 1990,

[6] Chen Y, Haerder T. Improving RQA/FQI recursive query algorithm. In Proc. ISMM — First
Int’l Conf. on Information and Knowledge Management, Baltimore, Maryland, USA, ACM,
Nov. 1992,

[7] Chen Y. A bottom-up query evaluation method for stratified databases. In Proc. 9ik Int’l Conf.
on Data Engineering, Vienna, Austria: IEEE, April 1993, pp.568-575.

[8] Chen Y, Haerder T'. On the optimal top-down evaluation of recursive queries. In Proe, §th Int'l
Conf. en Database and Bzpert Systems Applications, Greece, Athens: Springer-Verlag, Sept.
1994, pp.47-66. -

[9] Chen Y, Haerder T. An optimal graph traversal algorithm for evaluating linear binary-chain
programs, In Proc. CIKM’94 — The 3rd Int’l Conf. on Information and Knowledge Manage-
ment, Gaithersburg, Maryland: ACM, Nov. 1994, pp.34-41.

[10] Chen Y. Magic sets and stratified databases. International Journal of Intelligent Systems, 1997,
12: 203-231.

[11] Chen Y. Magic sets revisited, Journal of C’omputer Seience and Technology, 1997, 12(4): 346-
365.

[12] Haddad R W, Naughton J F. Counting methad for cyclic relations. In Proc. the Tth ACM
SIGMOD-SIGACT Symp. on Principles of Database Systems, 1986, pp.16-23.

{13] Han J, Henschen L J. The level-cycle merging method, In Proc. the 1st Int’l Conf. on Deductive
and Object-Oriented Databases, Kyoto, 1989,

f14] Wu C, Henschen I J. Answering linear recursive queries in cyclic databases. In Proc. the 1988
Int’l Conf. on Fifth Generation Computer Systems, Tokyo, 1988.

[158] Marchetti-Spaccamela A, Pelaggi A, Sacca D. Worst case complexity analysis of methods for
logic query implementation. In Proc. ACM-PODS, 1987,

[18] Marchetti-Spaccamela A, Pelaggi A, Sacca D. Comparison of methods for logic-query imple-
mentation. J. Logic Programming, 1991, 10: 333-360.

[17] Sacca D, Zaniclo C. Magic counting method. In Proc. ACM-SIGMOD, May 1987.

[18] Vieille L. From QSQ to QoSat}: Global optimization of recursive queries. In Proc. 2nd Int’l
Conf. on Ezpert Database System, Kerschberg I (ed.), Charleston, 1988."

[19] Knuth D E. The Art of Computer Programming. Addison-Wesley Series in Computer Sc1ence
and Information Processing, 1968, pp.257-265.

For the biography of Chen Yangjun please refer to p.365 No.4, Vol.12 of this Journal.

