

 254 Int. J. Information Technology, Communications and Convergence, Vol. 1, No. 3, 2011

 Copyright © 2011 Inderscience Enterprises Ltd.

Unordered tree matching and ordered tree matching:
the evaluation of tree pattern queries

Yangjun Chen* and Leping Zou
Department of Applied Computer Science,
University of Winnipeg,
Winnipeg, Manitoba, R3B 2E9, Canada
E-mail: ychen2@uwinnipeg.ca
E-mail: zlpghost@gmail.com
*Corresponding author

Abstract: In this paper, we study the twig pattern matching in XML document
databases. Two algorithms A1 and A2 are discussed according to two
different definitions of tree embedding. By the first definition, only the
ancestor-descendant relationship is considered. By the second one, we take not
only the ancestor-descendant relationship, but also the order of siblings into
account. Both A1 and A2 are based on a subtree reconstruction technique, by
which a tree structure is reconstructed according to a given set of data streams.
More importantly, by revealing an interesting property of tree encoding, we
show that the subtree reconstruction can be easily extended to a strategy (i.e.,
A1) for checking subtree matching according to the first definition with any
kind of path join or join-like operations being completely avoided. A2 needs
more time and space since it deals with a more difficult problem, but without
join operations involved, either. The computational complexities of both
algorithms are analysed, showing that they have a better performance than any
existing strategy for this problem.

Keywords: XML document; tree pattern queries; tree matching.

Reference to this paper should be made as follows: Chen, Y. and Zou, L.
(2011) ‘Unordered tree matching and ordered tree matching: the evaluation of
tree pattern queries’, Int. J. Information Technology, Communications and
Convergence, Vol. 1, No. 3, pp.254–279.

Biographical notes: Yangjun Chen received his BS in Information System
Engineering from the Technical Institute of Changsha, China, in 1982, and his
Diploma and PhD in Computer Science from the University of Kaiserslautern,
Germany, in 1990 and 1995, respectively. From 1995 to 1997, he worked as a
Post-Doctor at the Technical University of Chemnitz-Zwickau, Germany. After
that, he worked as a Senior Engineer at the German National Research Center
of Information Technology (GMD) for more than two years. Since 2000, he has
been a Professor in the Department of Applied Computer Science at the
University of Winnipeg, Canada. His research interests include deductive
databases, federated databases, document databases, constraint satisfaction
problem, graph theory and combinatorics. He has more than 150 publications in
these areas.

Leping Zou received his BS from the South-West JiaoTong University of
China, in 2003. He is a graduate student in the Department of Applied
Computer Science, University of Winnipeg, Canada.

 Unordered tree matching and ordered tree matching 255

This paper is a revised and expanded version of a paper entitled ‘Unordered
tree matching and strict unordered tree matching: the evaluation of tree pattern
queries’ presented at 2010 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery, (CyberC 2010), in
Huangshan, China, 10–12 October 2010.

1 Introduction

In XML (World Wide Web Consortium, 2007a, 2007b), data is represented as a tree;
associated with each node of the tree is an element name tag from a finite alphabet ∑.
The children of a node are ordered from left to right, and represent the content (i.e., list of
sub elements) of that element.

To abstract from existing query languages for XML [e.g., XPath (Florescu and
Kossman, 1999), XQuery (World Wide Web Consortiumm 2007b), XML-QL (Dutch
et al., 1999), and Quilt (Chamberlin et al., 2007; 2000)], we express queries as twig
patterns, where nodes are labeled with symbols from ∑ ∪ {*} (* is a wildcard, matching
any node name) and string values, and edges are parent-child or ancestor-descendant
relationships. As an example, consider the query tree shown in Figure 1(a).
Figure 1 A query tree

(a)

(b)

This query asks for any node of name b (node 3) that is a child of some node of name a
(node 1). In addition, the node of name b (node 3) is the parent of some nodes of name c
and e (node 6 and 7, respectively), and the node of name e itself is an ancestor of some
node of name d (node 8). The node of name b (node 2) should also be the ancestor of a
node of name f (node 5). The query corresponds to the XPath expression shown in
Figure 1(b). In this figure, there are two kinds of edges: child edges (/-edges for
short) for parent-child relationships, and descendant edges (//-edges for short) for
ancestor-descendant relationships. A /-edge from node v to node u is denoted by v → u in
the text, and represented by a single arc; u is called a /-child of v. A //-edge is denoted
v ⇒ u in the text, and represented by a double arc; u is called a //-child of v.

In any DAG (directed acyclic graph), a node u is said to be a descendant of a node v
if there exists a path (sequence of edges) from v to u. In the case of a twig pattern, this
path could consist of any sequence of /-edges and/or //-edges. We also use label(v) to
represent the symbol (∈ ∑ ∪ {*}) or the string associated with v. Based on these
concepts, the tree embedding can be defined as follows.

a[b[c and .//f]]/b[c and e//d

1 a

2 b 3 b

7 ec 6

8 d

4 c 5 f

Output node

 256 Y. Chen and L. Zou

Definition 1. An embedding of a twig pattern Q into an XML document T is a mapping f:
Q → T, from the nodes of Q to the nodes of T, which satisfies the following conditions:

1 preserve node label: for each u ∈ Q, label(u) = label(f(u)).

2 preserve parent-child/ancestor-descendant relationships: If u → v in Q, then f(v) is a
child of f(u) in T; if u ⇒ v in Q, then f(v) is a descendant of f(u) in T. �

If there exists a mapping from Q into T, we say, Q can be imbedded into T, or say, T
contains Q.

Almost all the existing strategies for evaluating twig join patterns are designed
according to this definition (Bruno et al., 2002; Chen et al., 2005; Chen et al., 2006b;
Dutch et al., 1999; Gottlob et al., 2005; Lu et al., 2005; Li and Moon, 2001; Wang et al.,
2003; Wang and Meng, 2005; Kaushik et al., 2002; Al-Khalifa et al., 2002; Chen, 2006a;
Chen, 2006b; Chen, 2007; Chen, 2008; Chen and Che, 2006a; Chen and Che, 2006b).

This definition allows, however, a path to match a tree as illustrated in Figure 2.

Figure 2 A tree matching a path

It is because by Definition 1 the sibling order is not taken into account. Therefore, we
may consider another definition as an option.

Definition 2. An embedding of a twig pattern q into an XML document T is a mapping f:
Q → T, from the nodes of Q to the nodes of T, which satisfies the following conditions:

1 same as (1) in Definition 1

2 same as (2) in Definition 1

3 preserve sibling order: For any two nodes v1 ∈ Q and v2 ∈ Q, if v1 is to the left of v2,
then f(v1) is to the left of f(v2) in T. �

This kind of tree mappings may occur in practice; especially, when the user uses axes
such as ‘preceding-sibling’ or ‘following’ to indicate the left-to-right order of nodes as
shown in the following example: //A[B]/following::C. In this expression, the axis
‘following’ specifies a condition that element A should appear to the left of element C.

In this paper, we present two algorithms A1 and A2 according to the above two
different definitions, respectively. For both A1 and A2, the path join (Aghili et al., 2006;
Bruno et al., 2002) or the join-like operations (such as the result enumeration used in
Chen et al., 2006b) are completely unnecessary.

Concretely, our methods have the following advantages:

• Both A1 and A2 are able to handle twig patterns containing /-edges, //-edges, *, and
branches.

b

a

c

a

b

c

 Q: T:

 Unordered tree matching and ordered tree matching 257

• A1 runs in O(|D|⋅|Q|) time and O(|D|⋅|Q|) space, where D is a largest data stream
associated with a node of Q.

• A1 generates neither matching paths nor hierarchical stacks (Chen et al., 2006b).
Therefore, the costly path joins (Aghili et al., 2006; Bruno et al., 2002), as well as
the result enumeration (Chen et al., 2006b), are avoided.

• A2 tackles a more difficult problem which has never been addressed before (to the
best of our knowledge). This algorithm works in O(|T’|⋅|Q|) time and O(|T’|⋅leafQ)
space, where T’ is a subtree of T containing only those nodes that satisfy the name
test of a node (or say, match a node) in Q, and leafQ is the number of the leaf nodes
of Q.

• Both the algorithms are able to output all those parts of a document, which contain
one or more parts of a query tree.

The remainder of the paper is organised as follows. In Section 2, we review the related
work. In Section 3, we restate the tree encoding (Zhang et al., 2001), which facilitates the
recognition of different relationships among the nodes of a tree. In Section 4 and 5, we
discuss our algorithms for twig pattern matching according to the above two different
definitions, respectively. Finally, the paper concludes in Section 6.

2 Related work

With the growing importance of XML in data exchange, the tree pattern queries over
XML documents have been extensively studied recently. Most existing techniques rely
on indexing or on the tree encoding to capture the structural relationships among
document elements.

XISS (Li and Moon, 2001) is a typical method based on indexing, by which single
elements/attributes are indexed as the basic unit of query and a complex path expression
is decomposed into a set of basic path expressions. Then, atom expressions (single
elements or attributes) are recognised by directly accessing the index structure. All other
kinds of expressions need join operations to stitch individual components together to get
the final results.

Paths are also used as the basic indexing unit as done by DataGuide (Goldman and
Widom, 1997) and fabric (Cooper et al., 2001). By DataGuide, a concise summary of
path structures for a semi-structured database is provided, but restricted to raw paths. No
complex path expressions or regular expression queries can be handled. Fabric works
better in the sense that the so-called refined paths are supported. Such queries may
contain branches, wild-cards and ancestor-descendant operators (//). However, any query
not in the set of refined paths has to resort to join operations. Another two strategies
based on the path indexing are APEX (Chung et al., 2002) and F+B (Kaushik et al.,
2002). APEX is an adaptive path index and uses data mining technique to summarise
paths that frequently appear in the query workload. It has to be updated as the query
workload changes. In stead of maintaining all paths starting from the root, it keeps every
path segment of length 2. Obviously, to get the final results, the join operations have to
be conducted. F+B (Kaushik et al., 2002) shares the flavour of fabric (Cooper et al.,
2001). It is based on the so-called forward and backward index [F&G index (Abiteboul

 258 Y. Chen and L. Zou

et al., 1999)], which covers all the branching paths. It works well for pre-defined query
types. In normal cases, however, such a set of F&B indexes tends to be large and
therefore the performance suffers. The method discussed in Wang et al. (2003) can be
considered as a quite different method, by which a document is stored as a sequence: (a1,
p1), …, (ai, pi), …, (an, pn), where each ai is an element or a word in the document, and pi
a path from the root to it. Using this method, the join operations are replaced by searching
a trie structure (wrongly called suffix tree in Wang et al., 2003). The drawback of this
method is that a relatively large index structure has to be created. Another problem of this
method is that a document tree that does not contain a query pattern may be designated as
one of the answers due to the ambiguity caused by identical sibling nodes. This problem
is removed by the so-called forward prefix checking discussed in Wang and Meng
(2005). Doing so, however, the theoretical time complexity is dramatically increased.

All the above methods need to decompose a twig pattern into a set of binary
relationships between pairs of nodes, such as parent-child and ancestor-descendant
relations, or into a set of paths. The sizes of intermediate relations tend to be very large,
even when the input and final result sizes are much more manageable. As an important
improvement, TwigStack was proposed by Bruno et al. (2002), which compress the
intermediate results by the stack encoding, which represents in linear space a potentially
exponential number of answers. However, TwigStack achieves optimality only for the
queries that contain only //-edges. In the case that a query contains both /-edges and //-
edges, some useless path matching have to be performed. In the worst case, TwigStack
needs O(|D||Q|) time for doing the merge joins as shown by Chen et al. (2006b, p.287).
This method is further improved by several researchers. In Chen et al. (2005), iTwigJoin
was discussed, which exploits different data partition strategies. In Lu et al. (2005),
TJFast accesses only leaf nodes by using extended Dewey IDs. By both methods,
however, the path joins can not be avoided. The method Twig2Stack proposed by Chen
et al. (2006b) works in a quite different way. It represents the twig results using the
so-called hierarchical stack encoding to avoid any possible useless path matchings. In
Chen et al. (2006b), it is claimed that Twig2Stack needs only O(|D|⋅|Q| +
|subTwigResults|) time for generating paths. But a careful analysis shows that the time
complexity for this task is actually bounded by O(|D|⋅|Q|2 + |subTwigResults|). It is
because each time a node is inserted into a stack associated with a node in Q, not only the
position of this node in a tree within that stack has to be determined, but a link from this
node to a node in some other stack has to be constructed, which requires to search all the
other stacks in the worst case. The number of these stacks is |Q| (see Figure 4 in Chen
et al., 2006b, to know the working process.)

A large amount of work has also been done on XPath evaluation in an XML
streaming environment, such as the method discussed in Chen et al. (2006a), Gou and
Chirkova (2007) and Ramanan (2007). The time complexity of the method proposed in
Chen et al. (2006a) is bounded by O(Th⋅Qd⋅|Q|⋅|T| + |Q|2⋅|T|), where Th is the height of T
and Qd is the largest outdegree of a node in Q. Both the methods discussed in Gou and
Chirkova (2007) and Ramanan (2007) require O(|Q|⋅|T|) time. But by Ramanan (2007),
extra value joins are needed. For all the XML streaming strategies, the whole document
tree is searched top-down, which makes it difficult to adapt them to an indexing
environment, where each node q of Q is associated with a data stream that matches q and
can be found by using an index structure. Normally, such a stream is much smaller than
T.

 Unordered tree matching and ordered tree matching 259

Finally, we point out that the bottom-up tree matching was first proposed in
Hoffmann and O’Donnell (1982). But it concerns a very strict tree matching, by which
the matching of an edge to a path is not allowed. Gottlob et al. (2005) identified an XPath
fragment called Core XPath, which can be evaluated in O(|T|⋅|Q|) time. Core XPath is
slightly more expressive than the twig pattern queries in that it includes axes other than
/-edges and //-edges. However, algorithms in Gottlob et al. (2005) cannot be modified to
use index structures since they require scanning XML documents in multiple passes. In
Miklau and Suciu (2004), an algorithm for tree homomorphism is discussed, which is
able to check whether a tree contains another and returns only a boolean answer. But our
algorithms show all the subtrees that match a given twig pattern query. The node
selecting queries considered in Koch (2003) are in fact a kind of extended containment
queries (whether a tree contains a certain node) and cannot be used for the general
purpose of twig joins. In Götz et al. (2007), a special kind of tree matching, called tree
homeomorphism, is considered which looks for a mapping that maps each edge in Q to a
path in T.

3 Tree encoding

In Zhang et al. (2001), an interesting tree encoding method was discussed, which can be
used to identify different relationships among the nodes of a tree. (In fact, this encoding
is the same as the concept of timestamps used in the depth-first search.)

Let T be a document tree. We associate each node v in T with a quadruple (DocId,
LeftPos, RightPos, LevelNum), denoted as α(v), where DocId is the document identifier;
LeftPos and RightPos are generated by counting word numbers from the beginning of the
document until the start and end of the element, respectively; and LevelNum is the
nesting depth of the element in the document (see Figure 3 for illustration). By using such
a data structure, the structural relationship between the nodes in an XML database can be
simply determined (Zhang et al., 2001):

1 ancestor-descendant: a node v1 associated with (d1, l1, r1, ln1) is an ancestor of
another node v2 with (d2, l2, r2, ln2) iff d1 = d2, l1 < l2, and r1 > r2.

2 parent-child: a node v1 associated with (d1, l1, r1, ln1) is the parent of another node v2
with (d2, l2, r2, ln2) iff d1 = d2, l1 < l2, r1 > r2, and ln2 = ln1 + 1.

3 from left to right: a node v1 associated with (d1, l1, r1, ln1) is to the left of another
node v2 with (d2, l2, r2, ln2) iff d1 = d2, r1 < l2.

Figure 3 Illustration for tree encoding

(1, 1, 11, 1)

(1, 10, 10, 2) B v8

A v1

(1, 7, 7, 4)(1, 6, 6, 4)

T:

(1, 5, 5, 4)

(1, 3, 3, 3)

B v2

v3 C B v4

D v7
v5 C

(1, 4, 8, 3)

(1, 2, 9, 2)

v6 C

 260 Y. Chen and L. Zou

In Figure 3, v2 is an ancestor of v6 and we have v2.LeftPos = 2 < v6.LeftPos = 6 and
v2.RightPos = 9 > v6.RightPos = 6. In the same way, we can verify all the other
relationships of the nodes in the tree. In addition, for each leaf node v, we set v.LeftPos =
v.RightPos for simplicity, which still work without downgrading the ability of this
mechanism.

In the rest of the paper, if for two quadruples a1 = (d1, l1, r1, ln1) and a2 = (d2, l2, r2,
ln2), we have d1 = d2, l1 < l2, and r1 > r2, we say that a2 is subsumed by α1. For
convenience, a quadruple is considered to be subsumed by itself. If no confusion is
caused, we will use v and a(v) interchangeably.

We can also assign LeftPos and RightPos values to the query nodes in Q for the same
purpose.

Finally we use T[v] to represent a subtree rooted at v in T.

4 Algorithm A1

In this section, we discuss our first algorithm according to Definition 1. The main idea of
this algorithm is the so-called subtree reconstruction, by which a tree structure is
established according to a given set of quadruples (called a data stream in Bruno et al.,
2002). Therefore, we will first discuss an algorithm for this task in Section 4.1. Then, in
Section 4.2, we give our algorithm to check twig patterns that contains /-edges, //-edges,
and branches. Next, in 4.3, we handle the general case with * being considered.

4.1 Tree reconstruction

As with TwigStack, each node q in a twig pattern (or say, a query tree) Q is associated
with a data stream L(q), which contains the positional representations (quadruples) of the
database nodes that match q (more exactly, satisfy the node name test at q). All the
quadruples in a data stream are sorted by their (DocID, LeftPos) values. For example, in
Figure 4, we show a query tree containing five nodes and four edges and each node is
associated with a list of matching nodes of the document tree shown in Figure 3, sorted
according to their (DocID, LeftPos) values. For simplicity, we use the node names in a
list, instead of the node’s quadruples.

Figure 4 Illustration for L(qi)’s

In addition, the data streams associated with different nodes in Q may be the same. We
will use q to represent the set of such query nodes and denote by L(q) the data stream
shared by them. Without loss of generality, assume that the query nodes in q are sorted by
their LeftPos values.

A q1

q2 B B q5

q3 C C q4

{v2, v4, v8}

{v3, v5, v6}

{v1}
Query nodes with the
same tag will be
associated with the
same data stream:

Q:

L(q2) = L(q5) = {v2, v4, v8}

 Unordered tree matching and ordered tree matching 261

In the following, we will also use L(Q) = {L(q1), ..., L(ql)} to represent all the data
streams with respect to Q, where each qi (i = 1, ..., l) is a set of sorted query nodes that
share the same data stream.

First, we discuss how to reconstruct a tree structure from the data streams, based on
the concept of matching subtrees, and defined below.

Let T be a tree and v be a node in T with parent node u. Denote by delete(T, v) the tree
obtained from T by removing node v. The children of v become //-children of u (see
Figure 5.)

Figure 5 The effect of removing v3 from T

Definition 3 (matching subtrees). A matching subtree T’ of T with respect to a query tree
Q is a tree obtained by a series of deleting operations to remove any node in T, which
does not match any non-wildcard node in Q. �

For example, the tree shown in Figure 6(a) is a matching subtree of the document tree
shown in Figure 3 with respect to the query tree shown in Figure 6(b).

Figure 6 A matching tree and a query tree

 (a) (b)

Given L(Q), what we want is to construct a matching subtree from them to facilitate the
checking of twig patterns.

The algorithm given below handles the case when the streams contain nodes from a
single XML document. When the streams contain nodes from multiple documents, the
algorithm is easily extended to test equality of DocId before manipulating the nodes in
the streams.

We will execute an iterative process to access the nodes in L(q1) ∪ … ∪ L(ql) one by
one:

1 Identify a data stream L(q) with the last node being of the maximal LeftPos value.
Choose the last node v of L(q). Remove v from L(q).

2 Let v’ be the node chosen just before v. We do the following.

• If v’ is not a child (descendant) of v, create a link from v to v’, called a
right-sibling link and denoted as right-sibling(v) = v’.

Q: A q1

q2 C q3 D

A v1

v2 C v5 C v6 C v7 D

T: B v1

v2 C B v3

D v6 v4 C v5 C

B v1

v2 C v4 C v5 C v6 D

delete(T, 3)

 262 Y. Chen and L. Zou

• If v’ is a child (descendant) of v, we will first create a link from v’ to v, called a
parent link and denoted as parent(v’) = v. Then, we will go along the
right-sibling chain starting from v’ until we meet a node v’’ which is not a child
(descendant) of v. For each encountered node u except v’’, set parent(u) ← v.
Set right-sibling(v) ← v’’. Remove right-sibling(u) for each child u of v.

Figure 7 is a pictorial illustration of this process.

Figure 7 Illustration for construction of matching subtrees

 (a) (b)

In Figure 7(a), we show the navigation along a right-sibling chain starting from v’ when
we find that v’ is a child (descendant) of v. This process stops whenever we meet v’’, a
node that is not a child (descendant) of v. Figure 7(b) shows that the right-sibling link of v
is set to v’’, which is previously pointed to by the right-sibling link of v’s right-most
child. In addition, all the right-sibling links of the child nodes of v are discarded since
they will no longer be used.

The following is the formal description of the algorithm, which needs only O(D⋅|Q|)
time. It improves the method mentioned in Chen et al. (2006b) for generating trees within
a hierarchical stack associated with a node in Q, which requires O(D⋅|Q|2) time (see the
brief description of the method given in Example 1 in Chen et al., 2006b). For the
purpose of comparison, we briefly analyse that method below.

Figure 8 Illustration for hierarchical stacks

(a) (b)

In Figure 8(b), we show the hierarchical stacks associated with the two nodes A and B of
Q with respect to T’ shown in Figure 8(a). In Chen et al. (2006b), the nodes in a data
stream associated with each node of Q are sorted by their (DocID, RightPos) values. So
a1 is visited last. When it is inserted into HS[A] (hierarchical stack of A), all those stacks
in HS[A], which are not a descendant of some other stack, will be checked to establish
ancestor-descendant links. In addition, to generate links to some other stacks in HS[B],
similar checks will also be performed. This needs O(|Q|) time in the worst case.

HS[B]

HS[A]

b1 b2

a1

a2 a3 a4 a5

T:
a1

b1 b2

a2 a3 a4 a5

Q:

A

B

v

… v’’

v’

v

… v’’

v’’ is not a child of v.

Link to the left sibling

 Unordered tree matching and ordered tree matching 263

We elaborate this process since it can be extended to an efficient algorithm for twig
pattern matching without involving the path join (Bruno et al., 2002) or the result
enumeration (Chen et al., 2006b) in an elegant way.

Algorithm matching-tree-construction(L(Q))
input: all data streams L(Q).
output: a matching subtree T’.
begin
1 repeat until each L(q) in L(Q) becomes empty
2 {identify q such that the last node v of L(q) is of the maximal LeftPos value; remove v from

L(q);
3 generate node v;
4 if v is not the first node created then
5 {let v’ be the node generated just before v;
6 if v’ is not a child (descendant) of v then (*Using the tree encoding, this checking

needs only a constant time.*)
7 {right-sibling(v) ← v’;} (*generate a right-sibling link.*)

8 else
9 {v’’ ← v’; w ← v’; (*v’’ and w are two temporary units.*)

10 while v’’ is a child (descendant) of v do
11 {parent(v’’) ← v; (*generate a parent link. Also, indicate whether v’’ is a /-child or

a //-child.*)
12 w ← v’’; v’’ ← right-sibling(v’’);
13 remove right-sibling(w);
14 }
15 right-sibling(v) ← v’’;
16 }
17 }
end

In the above algorithm, for each v chosen from a L(q), a node is created. At the same
time, if v is not the first node, a right-sibling link of v is established to the node v’, which
is created just before v, if v’ is not a child (descendant) of v (see line 7). Otherwise, we go
into a while-loop to travel along the right-sibling chain starting from v’ until we meet a
node v’’ which is not a child (descendant) of v. During the process, a parent link is
generated for each node encountered except v’’ (see lines 9–14). Finally, the right-sibling
link of v is set to be v’’ (see line 15).

Example 1. Consider the query tree and the associated data streams shown in Figure 4
once again. Applying the above algorithm to the data streams, we generate a series of
data structures as shown in Figure 9.

In step 1, v8 is checked since it has the maximal LeftPos; and a node for it is created [see
Figure 9(a)]. In Step 2, we meet v6. It is not a descendant of v8. So a right-link from v6 to
v8 is created [see Figure 9(b)]. In Step 3, we will generate a right-link from v5 to v6 [see
Figure 9(c)]. In a next step, we encounter v4. It is the parent of v5. Thus, a parent link

 264 Y. Chen and L. Zou

from v5 to v4 will be constructed. We will also navigate the right-link chain starting from
v5, finding another child node v6 of v4 and stopping at node v8, which is not a descendant
of v4. The resulting data structure is shown in Figure 9(d). The right-link from v6 of v8 is
replaced with the right-link from v4 of v8. The remaining computation steps are illustrated
in Figure 9(e), Figure 9(f), and Figure 9(g), respectively. �

Figure 9 Sample trace

 (a) (b) (c)

(d) (e)

(f) (g)

Proposition 1. Let T be a document tree. Let Q be a twig pattern. Let L(Q) = {L(q1), …,
L(ql)} be all the data streams with respect to Q and T, where each qi (1 ≤ i ≤ l) is a
subset of sorted query nodes of Q, which share the same data stream. Algorithm
matching-tree-construction(L(Q)) generates the matching subtree T’ of T with respect to
Q correctly.

Proof. Denote L = |L(q1)| + … + |L(ql)|. We prove the proposition by induction on L.

Basis. When L = 1, the proposition trivially holds.

Induction hypothesis. Assume that when L = k, the proposition holds.

Induction step. We consider the case when L = k + 1. Assume that all the quadruples in
L(q1) ∪ … ∪ L(ql) are {v1, …, vk, vk + 1} with LeftPos(v1) > LeftPos(v2) > … > LeftPos(vk)
> LeftPos(vk + 1). The algorithm will first generate a tree structure Tk for {v1, …, vk}. In
terms of the induction hypothesis, Tk is correctly created. It can be a tree or a forest. If it
is a forest, all the roots of the subtrees in Tk are connected through the right-sibling links.
When we meet vk + 1, we consider two cases:

1 vk + 1 is an ancestor of vk,

2 vk + 1 is to the left of vk.

B v8 B

v5

C

v4

B
v3

C

v2

v1

A

v6

C

B

v6

C
v8

B
v5

C

v4

B
v3

C

v2

v6

C
v8

B
v5

C

v4

B
v3

C

v6

C
v8

B
v5

C

v4

B

v6

C
v8

B
v5

C

v6

C T:
v8

B

 Unordered tree matching and ordered tree matching 265

In Case 1, the algorithm will generate an edge (vk + 1, vk), and then travels along the
right-sibling chain starting from vk until we meet a node v which is not a descendant of
vk + 1. For each node v’ encountered, except v, an edge (vk + 1, v’) will be generated.
Therefore, Tk + 1 is correctly constructed. In Case 2, the algorithm will generate a
right-sibling link from vk + 1 to vk. It is obviously correct since in this case vk + 1 cannot be
an ancestor of any other node. This completes the proof. �

The time complexity of this process is easy to analyse. First, we notice that each
quadruple in all the data streams is accessed only once. Secondly, for each node in T’, all
its child nodes will be visited along a right-sibling chain for a second time. So we get the
total time

(| | | | (| | | |) (| |) (| | | |),O D Q O D Q O D O D Q⋅ + = ⋅ + = ⋅

where di represents the outdegree of node vi in T’.
During the process, for each encountered quadruple, a node v will be generated.

Associated with this node have we at most two links (a right-sibling link and a parent
link). These two links, as well as v’s quadruple, will be kept until v’s parent is met. So at
any time point, the used extra space is bounded by min{|D|, leafT’} since for any two
nodes on the same path only one is associated with links. Here, leafT’ is the number of the
leaf nodes of T’.

4.2 Twig pattern matching without *

In fact, the algorithm discussed in Section 4.1 hints an efficient way for twig pattern
matching.

We first observe that during the reconstruction of a matching subtree T’, we can also
associate each node v in T’ with a query node stream QS(v). That is, each time we choose
a v with the largest LeftPos value from a data stream L(q), we will insert all the query
nodes in q into QS(v). For example, in the first step shown in Figure 9, the query node
stream for v8 can be determined as shown in Figure 10(a).

In this way, we can create a matching subtree as illustrated in Figure 10(b), in which
each node in T’ is associated with a sorted query node stream. If we check, before a q is
inserted into the corresponding QS(v), whether Q[q] (the subtree rooted at q) can be
imbedded into T’[v], we get in fact an algorithm for twig pattern matching. The challenge
is how to conduct such a checking efficiently.

Figure 10 Illustration for generating QS`s

 (a) (b)

{q2, q5} B v8

A v1 T:

B v2

v3 C B v4

C v6
v5 C

{q1}

{q2, q5}

{q3, q4} {q2, q5}

{q3, q4} {q3, q4}

v8

B {q2, q5}

 266 Y. Chen and L. Zou

For this purpose, we associate each q in Q with a variable, denoted χ(q). During the
process, χ(q) will be dynamically assigned a series of values a0, a1, …, am for some m in
sequence, where a0 = φ and ai’s (i = 1, …, m) are different nodes of T’. Initially, χ(q) is
set to a0 = φ. χ(q) will be changed from ai – 1 to ai = v (i = 1, …, m) when the following
conditions are satisfied.

1 v is the node currently encountered

2 q appears in QS(u) for some child node u of v

3 q is a //-child, or q is a /-child, and u is a /-child with label(u) = label(q).

Then, each time before we insert q into QS(v), we will do the following checking:

1 Let q1, …, qk be the child nodes of q.

2 If for each qi (i = 1, …, k), χ(qi) is equal to v and label(v) = label(q), insert q into
QS(v).

Since the matching subtree is constructed in a bottom-up way, the above checking
guarantees that for any q ∈ QS(v), T’[v] contains Q[q].

Let v1, …, vj be the children of v in T’. All the QS(vi)’s (i = 1, …, j) should also be
added into QS(v). This process can be elaborated as follows.

Let QS(vi) = {
1iq , …,

jiq } (i = 1, … j). Then, we have
1iq .LeftPos < … <

jiq .LeftPos. (Recall that all the query nodes inserted into QS(vi) come from a same q, in

which all the elements are sorted by their LeftPos values.) Each time we insert a q into
QS(vi), we can check whether it is subsumed by the query node q’ which has just been
inserted before. If it the case, q will not be inserted since the embedding of Q[q’] in T[vi]
implies the embedding of Q[q] in T[vi]. (Note that LeftPos(q’) < LeftPos(q). q cannot be
an ancestor of q’.)

Thus, QS(vi) contains only those query nodes which are not on the same path.
Therefore, we must also have

1iq .RightPos < … <
jiq .RightPos. So the query nodes in

QS(vi) are increasingly sorted by both LeftPos and RightPos values. Obviously, |QS(vi)| ≤
leafQ. We can store QS(vi) as a linked list. Let QS1 and QS2 be two sorted lists with |QS1|
≤ leafQ and |QS2| ≤ leafQ. The union of QS1 and QS2 (QS1 ∪ QS2) can be performed by
scanning both QS1 and QS2 from left to right and inserting the query node of QS2 into QS1
one by one. During this process, any query node in QS1, which is subsumed by some
query node in QS2 will be removed; and any query node in QS2, which is subsumed by
some query in QS1, will not be inserted into QS1. The result is stored in QS1. From this,
we can see that the resulting linked list is still sorted and its size is bounded by leafQ. We
denote this process as merge(QS1, QS2) and define merge(QS1, …, QSj-1, QSj) to be
merge(merge(QS1, …QSj – 1), QSj).

In the following, we present our first algorithm A1-1(L(Q)) for queries containing
only /-edges, //-edges, and branches. During the process, another algorithm subsumption-
check(v, q) may be invoked to check whether any q ∈ q can be inserted into QS(v), where
q is a subset of query nodes such that L(q) contains v.

The algorithm A1-1(L(Q)) is similar to Algorithm matching-tree-construction(), by
which a quadruple is removed in turn from the data stream and a node v for it is generated
and inserted into the matching subtree.

 Unordered tree matching and ordered tree matching 267

In addition, two data structures are used:

• Droot – a subset of document nodes v such that Q can be embedded in T[v]

• Doutput – a subset of document nodes v such that Q[qoutput] can be embedded in T[v],
where qoutput is the output node of Q.

In these two data structures, all nodes are decreasingly sorted by their LeftPos values.

Algorithm A1-1(L(Q))
input: all data streams L(Q).
output: a matching subtree T’ of T, Droot and Doutput.
begin
1 repeat until each L(q) in L(Q) becomes empty {
2 identify q such that the last node v of L(q) is of the maximal LeftPos value; remove v

from L(q); generate node v;
3 if v is the first node created then
4 {QS(v) ← subsumption-check(v, q);}
5 else
6 {let v’ be the quadruple chosen just before v, for which a node is constructed;
7 if v’ is not a child (descendant) of v then
8 {right-sibling(v) ← v’;
9 QS(v) ← subsumption-check(v, q); }
10 else
11 {v’’ ← v’; w ← v’; (*v’’ and w are two temporary units.*)
12 while v’’ is a child (descendant) of v do
13 {parent(v’’) ← v; (*generate a parent link. Also, indicate whether v’’

is a /-child or a //-child.*)
14 for each q in QS(v’’) do {
15 if ((q is a //-child) or
16 (q is a /-child and v’’ is a /-child and
17 label(q) = label(v’’)))
18 then χ(q) ← v;}
19 w ← v’’; v’’ ← right-sibling(v’’);
20 remove right-sibling(w);
21 }
22 right-sibling(v) ← v’’;
23 }
24 q ← subsumption-check(v, q);
25 let v1, …, vj be the child nodes of v;
26 q’ ← merge(QS(v1), …, QS(vj));
27 remove QS(v1), …, QS(vj);
28 QS(v) ← merge(q, q’);

 268 Y. Chen and L. Zou

29 }
30 }
end

Function subsumption-check(v, q) (*v satisfies the node name test at each q in q.*)
1 QS ← Φ;
2 for each q in q do {
3 let q1, …, qj be the child nodes of q.
4 if for each /-child qi χ(qi) = v and for each //-child qi χ(qi) is subsumed by v then
5 {QS ← QS ∪ {q};
6 if q is the root of Q then Droot ← Droot ∪ {v};
7 if q is the output node then Doutput ← Doutput ∪ {v};
8 }
9 }
10 return QS;
end

The output of A1-1() is Droot and Doutput. Based on them, we can generate another subtree
T’’ of T (like a matching subtree), which contains only those nodes v such that T[v]
contains Q[r] with label(v) = label(r) or contains Q[o] with label(v) = label(o), where r
and o represent the root and the output node of Q, respectively. We call a node v an
r-node if T[v] contains Q[r] with label(v) = label(r), or an o-node if T[v] contains Q[o]
with label(v) = label(o). Search T’’. Any node v, which is an o-node and also a child of
some r-node, should be an answer if o is not a /-child of r. Otherwise, an o-node has to be
a /-child of some r-node to be an answer.

Algorithm A1-1() does almost the same work as Algorithm matching-tree-
construction(). The main difference is lines 14–18 and lines 24–28. In lines 14 - 18, we
set χ values for some q’s. Each of them appears in a QS(v’), where v’ is a child node of v,
satisfying the conditions 1–3 given above. In lines 24–28, we use the merging operation
to construct QS(v).

In function subsumption-check(), we check whether any q in q can be inserted into
QS by examining the ancestor-descendant/parent-child relationships (see line 4). For each
q that can be inserted into QS, we will further check whether it is the root of Q or the
output node of Q, and insert it into Droot or Doutput, respectively (see lines 6–7).

Example 2. Applying Algorithm A1-1 to the data streams shown in Figure 4, we will find
that the document tree shown in Figure 3 contains the query tree shown in Figure 4. We
trace the computation process as shown in Figure 11.

In the first three steps, we will generate part of the matching subtree as shown in Figure
11(a). Associated with v8 is a query node stream: QS(v8) = {q5}. Although q2 also matches
v8, it cannot survive the subsumption check (see line 4 in subsumption-check()). So it
does not appear in QS(v8). In addition, we have QS(v5) = QS(v6) = {q3, q4}. It is because
both q3 and q4 are leaf nodes and can always satisfy the subsumption checking. In a next
step, we will meet the parent v4 (appearing in L({q2, q5}) of v5 and v6. So we are able to
get χ(q3) = v4 and χ(q4) = v4 [see Figure 11(b)]. In terms of these two values, we know

 Unordered tree matching and ordered tree matching 269

that q2 should be inserted into QS(v4). q5 is a leaf node and also inserted into QS(v4). In
addition, QS(v5) and QS(v6) should also be merged into it. In the fifth step, we meet v3.
QS(v3) = {q3, q4} [see Figure 11(c)]. In the sixth step, we meet v2 (in L({q2, q5})). It is the
parent of v3 and v4. According to QS(v3) = {q3, q4} and QS(v4) = {q2, q5}, as well as the
fact that both q5 and v4 are /-child nodes and label(q5) = label(v4) = B, we will set
χ(q3) = χ(q4) = χ(q2) = χ(q5) = v2 (see Figure 11(d)). Thus, we have QS(v2) = {q2, q5}.
Finally, in step 7, according to QS(v2) = {q2, q5} and QS(v8) = {q5}, we will set χ(q2) = v1
and χ(q5) = v1 [see Figure 11(e)], leading to the insertion of q1 into QS(v1). �

Figure 11 Sample trace

 (a) (b)

(c)

(d) (e)

In Example 2, we see that if we just want to record only those parts of T, which contain
the whole Q or the subtree rooted at the output node, a QS(v) can be removed once v’s
parent is encountered. However, if we maintain them, we are able to tell all the possible
containment, i.e., which parts of T contain which parts of Q.

In the following, we prove the correctness of this algorithm. First, we prove a simple
lemma.

Lemma 1. Let v1, v2, and v3 be three nodes in a tree with v3.LeftPos < v2.LeftPos <
v1.LeftPos. If v1 is a descendant of v3, then v2 must also be a descendant of v3.

Proof. We consider two cases:

1 v2 is to the left of v1

2 v2 is an ancestor of v1.

{q1}

B v8 B

v5

C

v4

B
v3

C

v2

v1

A

v6

C

χ{q3} = v2

χ{q4} = v2

χ{q2} = v1

B

v6

C
v8

B
v5

C

v4

B
v3

C

v2 {q2, q5}

{q5}

χ{q3} = v2

χ{q4} = v2

χ{q2} = v2

v6

C
v8

B
v5

C

v4

B
v3

C{q3, q4}

{q5}

{q2, q5} χ{q3} = v4

χ{q4} = v4

v6

C
v8

B
v5

C

v4

B
{q2, q5}

{q5}

χ{q3} = v4

χ{q4} = v4 v6

C
v8

B
v5

C

{q3, q4} {q3, q4} {q5}

 270 Y. Chen and L. Zou

In Case 1, we have v1.RightPos > v2.RightPos. So we have v3.RightPos > v1.RightPos >
v2.RightPos. This shows that v2 is a descendant of v3. In Case 2, v1, v2, and v3 are on the
same path. Since v2.LeftPos > v3.LeftPos, v2 must be a descendant of v3. �

We illustrate Lemma 1 by Figure 12, which is helpful for understanding the proof of
Proposition 2 given below.

Figure 12 Illustration for Lemma 1

Proposition 2. Let Q be a twig pattern containing only /-edges, //-edges and branches. Let
v be a node in the matching subtree T’, with respect to Q created by Algorithm A1-1. Let
q be a node in Q. Then, q appears in QS(v) if and only if T’[v] contains Q[q].

Proof. If-part. A query node q is inserted into QS(v) by executing function subsumption-
check(), which shows that for any q inserted into QS(v) we must have T’[v] containing
Q[q] for the following reason:

1 label(v) = label(q)

2 For each //-child q’ of q there exists a child v’ of v such that T[v’] contains Q[q’] (see
line 15 in A1-1())

3 For each /-child q’’ of q there exists a /-child v’’ of v such that T[v’’] contains Q[q’’]
and label(v’’) = label(q’’) (see lines 16–17 in A1-1()).

In addition, a query node q in QS(v) may come from a QS of some child node of v.
Obviously, we have T’[v] containing Q[q].

Only-if-part. The proof of this part is tedious. In the following, we give only a proof for
the simple case that Q contains no /-edges, which is done by induction of the height h of
the nodes in T’.

Basis. When h = 0, for the leaf nodes of T’, the proposition trivially holds.

Induction step. Assume that the proposition holds for all the nodes at height h ≤ k.
Consider the nodes v at height h = k + 1. Assume that there exists a q in Q such that T’[v]
contains Q[q] but q does not appear in QS(v). Then, there must be a child node qi of q

such that (1) χ(qi) = φ, or (2) χ(qi) is not subsumed by v when q is checked against v.
Obviously, Case 1 is not possible since T’[v] contains Q[q] and qi must be contained in a
subtree rooted at a node v’ which is a child (descendant) of v. So χ(qi) will be changed to
a value not equal to φ in terms of the induction hypothesis. Now we show that Case 2 is
not possible, either. First, we note that during the whole process, χ(qi) may be changed
several times since it may appear in more than one QS’s. Assume that there exist a

 Unordered tree matching and ordered tree matching 271

sequence of nodes v1, …, vk for some k ¥ 1 with v1.LeftPos > v2.LeftPos >... > vk.LeftPos
such that qi appears in QS(v1), …, QS(vk). In terms of the induction hypothesis, v’ = vj for
some j ∈ {1, …, k}. Let l be the largest integer ≤ k such that vl.LeftPos > v.LeftPos. Then,
for each vp (j ≤ p ≤ l), we have

v’.LeftPos ≥ vl.LeftPos > v.LeftPos.

In terms of Lemma 1, each vp (j ≤ p ≤ l) is subsumed by v. When we check q against v,
the actual value of χ(qi) is the node name for some vp’s parent, which is also subsumed by
v (in terms of Lemma 1), contradicting (2). The above explanation shows that Case 2 is
impossible. This completes the proof of the proposition. �

Lemma 1 helps to clarify the only-if part of the above proof. In fact, it reveals an
important property of the tree encoding, which enables us to save both space and time.
That is, it is not necessary for us to keep all the values of χ(qi), but only one to check the
ancestor-descendant/parent-child relationship. Due to this property, the path join (Bruno
et al., 2002), as well as the result enumeration (Chen et al., 2006b), can be completely
avoided.

The time complexity of the algorithm can be divided into three parts:

1 The first part is the time spent on accessing L(Q). Since each element in a L(Q) is
visited only once, this part of cost is bounded by O(|D|⋅|Q|).

2 The second part is the time used for constructing QS(vj)’s. For each node vj in the
matching subtree, we need O

ij
i

c⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ time to do the task, where

ijc is the outdegree

of ,
ijq which matches vj (see line 2 and 3 in Function subsumption-check() for

explanation). So this part of cost is bounded by

| |

| | (| | | |).
i

Q

j k
j i k

O c O D c O D Q
⎛ ⎞

⎛ ⎞ ⎜ ⎟≤ ⋅ = ⋅⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠
∑∑ ∑

3 The third part is the time for establishing χvalues, which is the same as the second
part since for each q in a QS(v) its χvalue is assigned only once.

Therefore, the total time is O(|D|⋅|Q|).
The space overhead of the algorithm is easy to analyse. Besides the data streams, each

node in the matching subtree needs a parent link and a right-sibling link to facilitate the
subtree reconstruction, and an QS to calculate χ values. So the extra space requirement is
bounded by O(|D|⋅|Q| + |D| + |Q|) = O(|D|⋅|Q|).

However, if we record only those parts of T’, which contain the whole Q or the
subtree rooted at the output node, the runtime memory usage must be much less than
O(|D|⋅|Q|) for the following two reasons:

1 The QS data structure for a node is removed once its parent node is created. So the
space overhead is bounded by O(|D|⋅leafQ)

2 During the whole process, the elements in the data streams are removed one by one.

Of course, if we want to record all those parts of T’, which contain one or more parts of
Q, we need O(|D|⋅|Q|) space to store all the results.

 272 Y. Chen and L. Zou

4.3 Twig pattern matching with *

In the case that Q contains *, any query node labeled with * will be associated with the
same data stream L that contains all the elements of a document. For this reason, when
we reconstruct the matching subtree, we only use this stream and the data streams
associated with any non-wildcard query node needn’t be considered. But any node v in L
should be associated with a query node stream, denoted s(v), which contains all the query
nodes q that match v (i.e., v satisfies the node name test at q). Note that s(v) should also
contains all the *-nodes.

In terms of such an arrangement, the algorithm A1-1() given in the previous section
is changed as follows.

Algorithm A1-2(L)
input: L – a data stream containing all the elements of a document.
output: a matching subtree T’ of T, Droot and Doutput.
begin
1 Let L = {v1, …, vn};
2 for i = n downto 1 do {
3 generate node v for vi;
4 if v is the first node created then
5 {QS(v) ← subsumption-check(v, s(vi)); }
6 else
7 {let v’ be the quadruple chosen just before v, for which a node is constructed;
8 if v’ is not a child (descendant) of v then
9 {right-sibling(v) ← v’;
10 QS(v) ← subsumption-check(v, s(vi)); }
11 else
12 {v’’ ← v’; w ← v’; (*v’’ and w are two temporary units.*)
13 while v’’ is a child (descendant) of v do
14 {parent(v’’) ← v; (*generate a parent link.*)
15 for each q in QS(v’’) do {
16 if ((q is a //-child) or
17 (q is a /-child and v’’ is a /-child and
18 label(q) = label(v’’)))
19 then χ(q) ← v; }
20 w ← v’’; v’’ ← right-sibling(v’’);
21 remove right-sibling(w);
22 }
23 right-sibling(v) ← v’’;
24 }
25 let v1, …, vj be the child nodes of v;
26 q’ ← merge(QS(v1), …, QS(vk));

 Unordered tree matching and ordered tree matching 273

27 remove QS(v1), …, QS(vk);
28 q ← subsumption-check(v, q);
29 QS(v) ← merge(q, q’);
30 }
end

The above algorithm works in a way similar to A1-1(). The only difference is that this
algorithm generates the matching subtree along a single data stream that contains all the
elements of a document. The computational complexities can also be analysed similar to
A1-1(). If the number of the wildcards is bounded by a constant, the time cost of the
algorithm is bounded by O(|D|⋅|Q|). Otherwise, it needs O(|T|⋅|Q|) time. In both cases, the
space overhead is bounded by O(|D|⋅|Q|).

5 Algorithm A2

In this section, we discuss our second algorithm A2 according to Definition 2. It needs
more time and space. But it deals with a more difficult problem, by which both the
ancestor-descendant relationship and the sibling order are considered.

For this purpose, we associate each node q of Q with a link from it to the left-most
leaf node in Q[q], denoted by δ(q) [see Figure 13(a)].

Figure 13 Labelled trees and postorder numbering

(a) (b)

For a leaf node q’, δ (q’) is defined to be q’ itself. So in Figure 13(a), we have
δ(q1) = δ(q2) = δ(q3) = q3. If we consider q’ = δ(q) as a function, we can also define its
reverse function, denoted by δ–1(q’). Its value is a set containing all those nodes q such
that δ(q) = q’, including q’ itself. For example, for q3 in Figure 13(a), we have
δ–1(q3) = {q1, q2, q3}, δ–1(q4) = {q4}, and δ–1(q5) = {q5}.

In addition, we devise a new data structure, which is able to record both subtree
embedding and ordering simultaneously and efficiently.

1 First, we number the nodes of Q in postorder. So the nodes in Q will be referenced
by their postorder numbers. Additionally, we set a virtual node for Q, numbered 0,
considered to be to the left of any node in Q. (See the boldfaced numbers in Figure
13(b) for illustration)

2 Each time we create a node v in T’, we associate it with an array Av of length |Q|,
indexed from 0 to |Q| – 1. In Av, each entry is a query node (represented by its
postorder number) or φ, defined below:

q1 A

B q5 q2 B

q3 B C q4

0
Q:

2

3 4
5

virtual node 1

q1 A

B q5 q2 B

q3 B C q4

δ(q2)

δ(q1)
Q:

 274 Y. Chen and L. Zou

1

1

max{ | (') [] [], if there is a leaf node '

larger than such that (')
[] contains at least one

with [] embedding [];
otherwise.

v

x x q T v embeds Q x q

q q
A q x

T v Q x

δ

δ

φ

−

−

⎧ ∈ ∧
⎪
⎪
⎪= ⎨
⎪
⎪
⎪⎩

See Figure 14(a) for illustration.
In Figure 14(a), q’ represents a closest leaf node to the right of q (i.e., the least leaf

node larger than q) such that there exists at least one x ∈ δ-1(q’) with T[v] embedding
Q[x]. We may have more than one nodes x ∈ δ-1(q’) such that T[v] embeds Q[x]. But we
make Av[q] point to the largest one since the embedding of a tree in T[v] implies the
embedding of any of its subtrees in T[v]. In this way, the left-to-right order is implicitly
recorded.

Figure 14 Illustration for Av[q] and a tree

(a)

(b)

Such entries can be produced in a computation as below.

• If we find Q[x] can be embedded in T[v], we will set Av[q1], ..., Av[qk] to x, where
each ql (1 ≤ l ≤ k) is a query node to the left of x, to record the fact that x is the
closest node to the right of ql such that T[v] embeds Q[x].

• If some time later we find another node x’ such that Q[x’] can be embedded in T[v],
we distinguish between two cases:
a If x’ is to the right of x, we will set Av[p1], ..., Av[ps] to x’, where each pl (1 ≤ l ≤

s) is to the left of x’ but to the right of qk.

q’

q
.
..

x1

xj

q’ is the closest leaf node to the
right of q.

Av:

 Unordered tree matching and ordered tree matching 275

b If x’ is an ancestor of x, we will find all those entries in Av pointing to a
descendant of x’ on the left-most path in Q[x’]. Replace these entries with x’.

As an example, consider node v4 in T shown in Figure 14(b).
After it is checked against node 1 (q3) of Q shown in Figure 13(b), we will set

4vA [0]

to 1 since node 1 (q3) of Q is the closest node to the right of node 0 (the virtual node of
Q) such that T[v4] embeds Q[q3] [see Figure 15(a)]. At a later time point, we find that
T[v4] also embeds Q[q2]. Then,

4vA [0] is changed to 3 [see Figure 15(b)]. It is because

node 1 (q3) is a descendant of node 3 (q2) on the left-most path in Q[q2]. In the
subsequent computation, we will find that T[v4] can embed Q[q5]. In order to record this
fact,

4vA will be further modified as shown in Figure 15(c) since node 4 (q5) is the closest

node to the right of node 1 (q3), 2 (q4), and 3 (q2) such that T[v4] embeds Q[q5].

Figure 15 Changes in
4vA

(a) (b) (c)

Using Av’s, the ordered tree embedding can be checked very efficiently as follows:

• Let v be a node taken from L(q). Let v1, …, vk be the child nodes of v. Let q1, …, ql
be the child nodes of q. We first check

1vA starting from
1vA [p], where p = δ(q) – 1.

We begin the searching from δ(q) - 1 because it is the closest node to the left of the
first child of q. Let

1vA [p] = p’. If p’ is an ancestor of q1, this shows that T[v1] embes

Q[q] and thus T[v] embes Q[q]. If p’ is q1 and (q, q1) is a // -edge, or both (q, q1) and
(v, v1) are /-edges, we will check

2vA [p’] in a next step. Otherwise, we check
2vA [p]

in a next step. This process continues until one of the following conditions is
satisfied:
1 all

ivA ‘s (i = 1, …, k) are exhausted

2 all qj (j = 1, …, l) are covered.

Case 1 shows that T[v] is not able to embed Q[q] while the Case 2 indicates an
embedding of Q[q] in T[v]. If T[v] embeds Q[q], Av should be changed as described by (a)
and (b) above. To facilitate this process, each node v in T is associated with a variable,
denoted τ(v), used to keep the most recently found query node r such that T[v] embeds
Q[r]. Initially, τ(v) is 0.

In the following algorithm A2(), the input is also a set of data streams for
Q: B(Q) = {B(q1), ..., B(ql)}, where each B(qj) contains the same entries as L(qj), but
sorted by the RightPos values. From this, a matching subtree can also be constructed, but
each time we identify a data stream B(q) with the first node being of the minimal
RightPos value. In addition, for each node v generated for an element from a B(q), Av is
created and each entry is initialised to φ. Then, for each q ∈ q, we will check whether
T[v] embeds Q[q]. This is done by executing lines 7 - 16, in which two index variables: i
and j are used to scan the children of v and q, respectively. The searching begins from

1vA [p], where p = δ(q) – 1 (see line 8). In each iteration of the while-loop (see lines

1 5 5 5 φ 3 φ φ φ φ1 φ φ φ φ 4vA :

 276 Y. Chen and L. Zou

10–15), we check vi against qj by examining whether one of the following two conditions
is satisfied:

1
ivA [p] is an ancestor of qj

2
ivA [p] is equal to qj, and (q, qj) is a //-edge, or both (q, qj) and (v, vi) are /-edges.

If (i) holds, T[vi] embeds Q[q]. So T[v] embeds Q[q]. If (ii) holds, T[vi] embeds Q[qj]. We
will continue to check T[vi + 1] against Q[qj + 1] in a next step. This is done by executing
p’ ←

1+ivA [p’] (line 13), by which we get a query node represented by p’, which is the
closest to the right of qj, such that T[vi + 1] embeds Q[p’].

Algorithm A2(B(Q)) (*B(Q) is similar to L(Q). But each data stream in it is sorted by

 RightPos values.*)

Input: all data streams B(Q).

Output: Sv’s, which show the tree embedding.

begin

1 repeat until each B(q) in B(Q) become empty

2 {identify q such that the first element v of B(q) is of the minimal RightPos value;

 remove v from B(q);

3 generate node v; Av ← φ; Sv ← φ;

4 let v1, …, vk be the children of v.

5 for each q ∈ q do { (*nodes in q are sorted.*)

6 let q1, …, ql be the children of q;

7 if l = 0 then j ← 1 (*set j = 1 to execute lines 16–25.*)

8 else { p ← δ(q) - 1;

9 i ← 1; j ← 1; p’ ← [p];

10 while i ≤ k and j ≤ l do

11 { if (p’ is an ancestor of qj then j ← l + 1 (*T[vi] embeds Q[q].*)

12 else if p’ is qj and ((q, qj) is a //-edge, or

 both (q, qj) and (v, vi) are /-edges))

13 then { p’ ←
1ivA

+
[p’]; i ← i + 1; j ← j + 1; }

14 else {p’ ←
1ivA

+
[p]; i ← i + 1;}

15 }

16 }

17 if j = l + 1 then

18 { Sv ← Sv ∪{q};

19 if q is to the right of τ(v)

20 then { r ← τ(v);

 Unordered tree matching and ordered tree matching 277

21 for b = r to q - 1 do

22 {if b is to the left of q then Av[b] ← q; }

23 }

24 else replace with q all those entries pointing to a descendant of q on the left-most path
in Q[q] in Av;

25 τ(v) ← q;

26 }

27 }

28 for i = 1 to k do Av ← merge(Av, ivA);

29 remove
1vA , …, ;

kvA

30 }

end

In the above algorithm, if for vi against qj both (i) and (ii) do not hold, T[vi] cannot embed
Q[qj] and we will check vi+1 against qj by doing p’ ←

1+ivA [p] (see line 14). This process

continues until one of the following conditions is met: i > k, or j > l (see line 10).
If i > k, there exists a Q[qa] (1 ≤ a ≤ l) which cannot be embedded in any T’[vc]

(1 ≤ c ≤ k). If j > l, we must have j = l + 1 (see line 17), showing that each Q[qa] (1 ≤ a
≤ l) is embedded in a T’[vc] (1 ≤ c ≤ k) in the left-to-right order. So T[v] contains Q[q]. If
q is to the right of τ(v), for all those postorder numbers b such that τ(v) ≤ b ≤ q - 1 and b
is to the left of q, Av[b] is set to q. (See lines 18 - 23.) If q is an ancestor of τ(v), replace
with q all those entries in Av pointing to a descendant of q on the left-most path in Q[q]. It
is because the embedding of Q[q] in T[v] implies the embedding of Q[τ(v)] in T[v] (see
line 24). Finally, we need to merge each into Av (line 28) since the embedding of a
subtree in T[vi] implies the embedding of that subtree in T[v]. merge(Av, ivA) is defined

as below:

()
){ })}
){ }

max [], [] [] [] ;
, []

min [], [] .

i i

i

i

v v

v v
v

A j A j if A j and A j are on the same path
merge A A j

A j A j otherwise

⎧
⎪= ⎨
⎪⎩

In this definition, we handle φ as a negative integer (e.g., –1) and consider it as a
descendant of any node. Obviously, if Av[j] and

ivA [j] are on the same path, merge(Av[j],

ivA [j]) should be set to be max{Av[j], ivA [j]}. However, if Av[j] and
ivA [j] are on

different paths, merge(Av[j], ivA [j]) is set to be min{Av[j], ivA [j]}. It is because in Av each

entry Av[j] is the closest node j’ to the right of j such that T[v] contains Q[j’]. In line 29,
we remove

1
,...,

kv vA A since they will not be used any more.

The time complexity of A2() is obviously bounded by O(|T’|⋅|Q|). But its space
overhead is in the order of O(leafT’⋅|Q|). It is because after a v is checked all the arrays
associated with its children are removed. So at any time point during the execution, at
most leafT’ nodes in T’ are associated with an array (see line 29.)

 278 Y. Chen and L. Zou

The algorithm is somehow related to the method discussed in Kilpelainen and
Mannila (1995), in which each node in Q is associated with an array of size |T|. So its
space complexity is in the order of O(|T|⋅|Q|). Especially, that method cannot be adapted
to an indexing environment since an index is always established over T.

6 Conclusions

In this paper, two new algorithms A1 and A2 are discussed, according to two
different definitions of tree embedding. By the first definition, we consider only the
ancestor-descendant relationship among the nodes in a tree structure. By the second
definition, not only the ancestor-descendant relationship but also the order of siblings is
taken into account. Almost all the existing strategies are designed according to the first
definition. We provide the second definition as an option in the case that the user wants
to do so. Both A1 and A2 have the best worst-case time complexities for this problem.
Especially, we show that for the twig pattern matching problem, neither the join nor the
result enumeration (a join-like operation) is necessary. Our experiments demonstrate that
our methods are both effective and efficient for the evaluation of twig pattern queries.

References
Abiteboul, S., Buneman, P. and Suciu, D. (1999) Data on the Web: from Relations to

Semistructured Data and XML, Morgan Kaufmann Publisher, Los Altos, CA 94022, USA.
Aghili, A., Li, H., Agrawal, D. and Abbadi, A.E. (2006) TWIX: twig structure and content

matching of selective queries using binary labeling, INFOSCALE.
Al-Khalifa, S., Jagadish, H.V., Koudas, N., Patel, J.M., Srivastava, D. and Wu, Y. (2002)

‘Structural joins: a primitive for efficient XML query pattern matching’, Proc. of IEEE Int.
Conf. on Data Engineering.

Bruno, N., Koudas, N. and Srivastava, D. (2002) ‘Holistic twig joins: optimal XML pattern
matching’, Proc. SIGMOD Int. Conf. on Management of Data, June, pp.310–321, Madison,
Wisconsin.

Chamberlin, D.D., Clark, J., Florescu, D. and Stefanescu, M. (2007) XQuery1.0: An XML Query
Language, available at http://www.w3.org/TR/query-datamodel/.

Chamberlin, D.D., Robie, J. and Florescu, D. (2000) ‘Quilt: an XML query language for
heterogeneous data sources’, WebDB.

Chen, Y., Davison, S.B. and Zheng, Y. (2006a) ‘An efficient XPath query processor for XML
streams, Proc. ICDE, 3–8 April, Atlanta, USA.

Chen, S., Li, H-G., Tatemura, J., Hsiung, W-P., Agrawa, D. and Canda, K.S. (2006b) ‘Twig2Stack:
bottom-up processing of generalized-tree-pattern queries over XML documents’, Proc. VLDB,
September, pp.283–294, Seoul, Korea.

Chen, T., Lu, J. and Ling, T.W. (2005) ‘On boosting holism in XML twig pattern matching’, Proc.
SIGMOD, pp.455–466.

Chen, Y. (2006a) ‘Evaluating tree pattern queries based on tree embedding’, Proc. Int. Conf.
Software Engineering and Data Technologies (ICSOFT’2006), 11–14 September, Vol. II,
pp.79–85, Springer Verlag, Setubal, Portugal.

Chen, Y. (2006b) ‘On the stack encoding and twig joins’, WSEAS Transactions on Information
Science & Applications, October, Vol. 3, No. 10, pp.1865–1872.

Chen, Y. (2007) ‘An efficient algorithm for tree matching in XML databases’, Journal of Computer
Science, Vol. 3, No. 7, pp.487–493, Science Publication.

 Unordered tree matching and ordered tree matching 279

Chen, Y. (2008) ‘On the XML data stream and XPath queries’, Proc. 19th Information Resources
Management Association Intl. Conference, 18–20 May, pp.62–72, Niagara, Ontario, Canada.

Chen, Y. and Che, D. (2006a) ‘Efficient processing of XML tree pattern queries’, Journal of
Advanced Computational Intelligence and Intelligent Informatics, Vol. No. 5, pp.738–743.

Chen, Y. and Che, D. (2006b) ‘Efficient processing of XML tree pattern queries in the presence of
integrity constraints’, Journal of Advanced Computational Intelligence and Intelligent
Informatics, Vol. No. 5, pp.744–751.

Chung, C., Min, J. and Shim, K. (2002) ‘APEX: an adaptive path index for XML data’, ACM
SIGMOD, June.

Cooper, B.F., Sample, N., Franklin, M., Hialtason, A.B. and Shadmon, M. (2001) ‘A fast index for
semistructured data’, Proc. VLDB, September, pp.341–350.

Dutch, A., Fernandez, M., Florescu, D., Levy, A. and Suciu, D. (1999) ‘A query language for
XML’, Proc. 8th World Wide Web Conf., May, pp.77–91.

Florescu, D. and Kossman, D. (1999) ‘Storing and querying XML data using an RDMBS’, IEEE
Data Engineering Bulletin, Vol. 22, No. 3, pp.27–34.

Goldman, R. and Widom, J. (1997) ‘DataGuide: enable query formulation and optimization in
semistructured databases’, Proc. VLDB, August, pp.436–445.

Gottlob, G., Koch, C. and Pichler, R. (2005) ‘Efficient algorithms for processing XPath queries’,
ACM Transaction on Database Systems, June, Vol. 30, No. 2, pp.444–491.

Götz, M., Koch, C. and Martens, W. (2007) ‘Efficient algorithms for the tree Homeomorphism
problem’, Pro. Int. Symposium on Database Programming Language.

Gou, G. and Chirkova, R. (2007) ‘Efficient algorithms for evaluating XPath over streams’, Proc.
SIGMOD, 12–14 June.

Hoffmann, C.M. and O’Donnell, M.J. (1982) ‘Pattern matching in trees’, J. ACM, Vol. 29, No. 1,
pp.68–95.

Kaushik, R., Bohannon, P., Naughton, J. and Korth, H. (2002) ‘Covering indexes for branching
path queries’, ACM SIGMOD, June.

Kilpelainen, P. and Mannila, H. (1995) ‘Ordered and unordered tree inclusion’, SIAM Journal of
Computing, Vol. 24, pp.340–356.

Koch, C. (2003) ‘Efficient processing of expressive node-selecting queries on XML data in
secondary storage: a tree automata-based approach’, Proc. VLDB, September.

Li, Q. and Moon, B. (2001) ‘Indexing and querying XML data for regular path expressions’, Proc.
VLDB, September, pp.361–370.

Lu, J., Ling, T.W., Chan, C.Y. and Chan, T. (2005) ‘From region encoding to extended Dewey: on
efficient processing of XML twig pattern matching’, Proc. VLDB, pp.193–204.

Miklau, G. and Suciu, D. (2004) ‘Containment and equivalence of a fragment of XPath’, J. ACM,
Vol. 51, No. 1, pp.2–45.

Ramanan, P. (2007) ‘Holistic join for generalized tree patterns’, Information Systems, Vol. 32,
pp.1018–10

Wang, H. and Meng, X. (2005) ‘On the sequencing of tree structures for XML indexing’, Proc.
Conf. Data Engineering, April, pp.372–385, Tokyo, Japan.

Wang, H., Park, S., Fan, W. and Yu, P.S. (2003) ‘ViST: a dynamic index method for querying
XML data by tree structures, SIGMOD Int. Conf. on Management of Data, June, San Diego,
CA.

World Wide Web Consortium (2007) ‘XML path language (XPath)’, W3C Recommendation,
available at http://www.w3.org/TR/ xpath20.

World Wide Web Consortium (2007) ‘XQuery 1.0: an XML query language’, W3C
Recommendation, January, Version 1.0, available at http://www.w3.org/TR/xquery.

Zhang, C., Naughton, J., Dewitt, D., Luo, Q. and Lohman, G. (2001) ‘Supporting containment
queries in relational database management systems’, Proc. of ACM SIGMOD.

