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Abstract—Advanced database application areas, such as computer aided design, office automation, digital libraries, data-mining, as

well as hypertext and multimedia systems, need to handle complex data structures with set-valued attributes, which can be

represented as bit strings, called signatures. A set of signatures can be stored in a file, called a signature file. In this paper, we propose

a new method to organize a signature file into a tree structure, called a signature tree, to speed up the signature file scanning and

query evaluation. In addition, the average time complexity of searching a signature tree is analyzed and how to maintain a signature

tree on disk is discussed. We also conducted experiments, which show that the approach of signature trees provides a promising index

structure.

Index Terms—Signature files, bit-slice files, S-trees, signature trees, information retrieval.
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1 INTRODUCTION

AN important question in information retrieval is how to
create a database index which can be searched

efficiently for the data one seeks. Today, one or more of
the following techniques have been frequently used: full
text searching, B-trees [3], inversion [18], [30], and the
signature file [13], [15], [21]. Full text searching imposes no
space overhead, but requires high response time. In
contrast, B-trees, inversion, and the signature file work
quickly, but need a large intermediary representation
structure (index), which provides direct links to relevant
data. In this paper, we concentrate on the techniques of
signature files and discuss a new approach for organizing
signature files.

The signature file method was originally introduced as a
text indexing methodology [13], [15]. Nowadays, however,
it is utilized in a wide range of applications, such as office
filing [7], hypertext systems [16], and relational and object-
oriented databases [4], [19], [24], [29], as well as data mining
[1]. In comparison with the other index structures, it has
mainly the following advantages:

. it can be used to efficiently evaluate set-oriented
queries and

. it can handle insertion and update operations easily.

A typical query processing with the signature file is as
follows: When a query is given, a query signature (a bit
string) is formed from the query values. Then, each
signature in the signature file is examined over the query
signature. If a signature in the file matches the query
signature, the corresponding data object becomes a candi-
date that may satisfy the query. Such an object is called a
drop. The next step of the query processing is the false drop
resolution. Each drop is accessed and checked whether it
actually satisfies the query condition. Drops that fail the test

are called false drops while the qualified data objects are
called actual drops. Different approaches for constructing
signature files have been proposed, such as sequential
signature files, bit-slice files, S-trees, and their different
variants. In this paper, we discuss a new mechanism to
organize a signature file, called a signature tree, which
improves the searching of signatures in a signature file by
one order of magnitude or more. Especially, we have
generalized the structure of signature trees to fit for
different applications with different signature lengths.

The remainder of the paper is organized as follows: In
Section 2, we show what is a signature file and review the
relevant work. In Section 3, we discuss the signature trees
and balanced signature trees, and analyze their time
complexity. Section 4 is devoted to the maintenance of
signature trees. In Section 5, we generalize the structure of
signature trees, and in Section 6, we report the experiment
results. Finally, Section 7 is a short conclusion.

2 SIGNATURE FILES AND SIGNATURE FILE

ORGANIZATION

Intuitively, a signature file can be considered as a set of bit
strings, which are called signatures. Compared to the
inverted index, the signature file is more efficient in
handling new insertions and queries on parts of words,
and it is especially suitable for set-oriented query evalua-
tion. But, the scheme introduces information loss. More
specifically, its output usually involves a number of false
drops, which may be identified only by means of a full text
scanning on every text block short-listed in the output. Also,
for each query processed, the entire signature file needs to
be searched [13], [15]. Consequently, the signature file
method involves high processing and I/O cost. This
problem is mitigated by partitioning the signature file, by
introducing auxiliary data structure, as well as by exploit-
ing parallel computer architecture [9].

2.1 Signature Files

Signature files are based on the inexact filter. They provide
a quick test, which discards many of the nonqualifying
elements. But, the qualifying elements definitely pass the
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test, although some elements which actually do not satisfy
the search requirement may also pass it accidentally, i.e.,
there may exist “false hits” or “false drops” [13], [15]. In an
object-oriented database, for instance, an object is repre-
sented by a set of attribute values. The signature of an
attribute value is a hash-coded bit string of length m with
k bit set to ”1”. As an example, assume that we have an
attribute value “professor.” Its signature can be constructed
as follows: In terms of [6], the letter triplets in a word (or an
attribute value) are the best choice for information carrying
text segment in the construction of the signature for that
word. Then, we will decompose “professor” into a series of
triplets: “pro,” “rof,” “ofe,” “fes,” “ess,” and “sor.” Using a
hash function hash, we will map a triplet to an integer p
indicating that the pth bit in the string will be set to 1. For
example, assume that we have hashðproÞ ¼ 2, hashðrofÞ ¼ 4,
hashðofeÞ ¼ 8, and hashðfesÞ ¼ 9. Then, we will establish a
bit string: 010 100 011 000 for “professor” as its word
signature (see [12] for a detailed discussion.) An object
signature is formed by superimposing the signatures for all
its attribute values. (By “superimposing.” we mean a bit-
wise OR operation.) Object signatures of a class will be
stored sequentially in a file, called a signature file. Fig. 1
depicts the signature generation and comparison process of
an object having three attribute values: “John,” “12345678,”
and “professor.”

When a query arrives, the object signatures are scanned
and many nonqualifying objects are discarded. The rest are
either checked (so that the “false drops” are discarded) or
they are returned to the user as they are. Concretely, a query
specifying certain values to be searched for will be
transformed into a query signature sq in the same way as
for attribute values. The query signature is then compared to
every object signature in the signature file. Three possible
outcomes of the comparison are exemplified in Fig. 1: 1) The
object matches the query; that is, for every bit set in sq, the
corresponding bit in the object signature s is also set (i.e.,
s ^ sq ¼ sq) and the object contains really the query word.
2) The object does not match the query (i.e., s ^ sq 6¼ sq).
3) The signature comparison indicates a match but the object
in fact does not match the search criteria (false drop). In
order to eliminate false drops, the object must be examined
after the object signature signifies a successful match.

In addition, we can see that the signature matching is a
kind of inexact matching. That is, sq matches a signature s if
for any bit set to 1 in sq, the corresponding bit in s is also set
to 1. However, for any bit set to 0 in sq, it does not matter
whether the corresponding bit in s is set to 1 or 0. The
purpose of using a signature file is to screen out most of the
nonqualifying objects. A signature failing to match the
query signature guarantees that the corresponding object
can be ignored. Therefore, unnecessary object access is
prevented. To determine the size of a signature file, we use
the following formula [6]:

m� ln 2 ¼ k�D;
where D is the average size of a block. (In a relational or an
object-oriented database, D can be considered to be the
average number of attributes in a tuple or in an object.)

In a signature file, a set of signatures is sequentially
stored, which is easy to implement and requires low storage
space and low update cost. However, when a query is
given, a full scan of the signature file is required. Therefore,
it is generally slow in retrieval. Fig. 2a is a quite simple
signature file.

In this signature file, each signature is associated with an
object identifier. If we have more than one same signatures
in a file, we keep only one of them and associate it with
more than one object identifiers.

2.2 Bit-Slice Files and Compressed Bit-Slice Files

A signature file can be stored in a column-wise manner.
That is, the signatures in the file are vertically stored in a set
of files [19]. Concretely, if the length of the signatures is m,
then all the signatures will be stored in m files, in each of
which one bit per signature for all the signatures is stored as
shown in Fig. 2b.

With such a data structure, the signatures are checked
slice-by-slice (rather than signature-by-signature) to find
matching signatures. To demonstrate the retrieval process,
consider a query signature sq ¼ 10110000. First, we check
the first bit-slice file shown in Fig. 2b and find that only
three positions: first, fourth, and sixth positions match the
first bit in sq. Then, we check the second bit-slice file. This
time, however, only those three positions in the second file
will be checked. Since the second bit in sq is 0, no positions
will be filtered. (Recall that the signature matching is an
inexact matching. For a bit set to 0 in sq, the corresponding
bit in a signature in the signature file can be 1 or 0.) Next,
we check the third bit-slice file against the third bit in sq.
Since all the three positions in it are set to 1, the same
positions in a next bit-slice file, i.e., in the fourth bit-slice file
will be checked against fourth bit in sq. Since none of the
three positions in the fourth bit-slice file matches this bit in
the query, the search stops and reports a nil.
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Fig. 1. Signature generation and comparison.
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From this process, we can see that only part of the m bit-
slice files have to be scanned. Therefore, the search cost is
lower than that of a sequential file. However, update cost
becomes larger. For example, an insertion of a new
signature requires about m disk accesses, one for each bit-
slice file.

A bit-slice file can also be compressed. According to [14],
[22], if a proper hash function is chosen, which maps each
keyword to a signature with only one bit set to 1 (i.e., k ¼ 1),
a signature file will contain much less 1s than 0s. In this
case, a signature file can be considered as a sparse matrix,
and can be effectively compressed. A simple way to
compress a bit-slice file is to replace each 1 with an address
to a text position where the corresponding keyword can be
found. All the addresses in a slice are then stored in a
collection of buckets that are linked together. For example,
the bit-slice file shown in Fig. 2b can be compressed as
shown in Fig. 3.

In Fig. 3, an array (called a hash table in [14]) is used, in
which each entry is a pointer to the head of a linked list of
buckets. Each of them contains several addresses. Assume
that we have a word “professor” that hashes to a signature
with the second bit set to 1 (i.e., hash(“professor”) = 2), and
that it appears in the document starting at the 45th byte of
the text file. Then, searching the second linked bucket list,
we will find the position where the word “professor”
appears.

The space saved by this method can be estimated as
follows: Let l be the size of an address. Then, the size of
all the linked bucket lists is on Oðn �D � lÞ. The size of
the corresponding bit-slice file is Oðn �mþ n � lÞ. So, if
D < m

l � 1, some space can be saved. However, such a
space optimization is achieved at cost of query evalua-
tion time since the probability of false drops will be
definitely increased in the case of sparse signature files.
In terms of [6], when a signature file is half-populated

with 1s and half-populated with 0s, we have the lowest
false drop probability. Obviously, the precondition for
compressing a bit-slice file is just opposite to that.

2.3 S-Trees and Multilevel Signature Files

Similar to a Bþ-tree, an S-tree is a height balanced multiway
tree [11]. Each internal node corresponds to a page, which
contains a set of signatures and each leaf node contains a set
of entries of the form < s; oid > , where oid is an object
identifier and s is the signature of the corresponding object.
Let v be the parent node of v0. Then, there exists a signature
in v, whose value is obtained by superimposing all the
signatures in v0. See Fig. 4 for illustration.

To retrieve a query signature sq ¼ 00110000, we search
the S-tree top-down. However, more than one path may be
visited. For example, the first signature in the root v1 shown
in Fig. 4a leads us to its child node v2 because the third and
fourth bits are set to 1. In v2, the second and third signatures
match sq. Then, we go to the leaf node v4 and v5. In v4, we
find two matching candidates o4 and o5, and in v5, we have
only one o7.

The construction of an S-tree is an insertion-splitting
process. At the very beginning, the S-tree contains only an
empty leaf node and signatures in a file are inserted into it
one by one. When a leaf node v becomes full, it will be split
into two nodes and at the same time, a parent node vparent
will be generated if it does not exist. In addition, two new
signatures will be put in vparent. Assume that the capacity of
v is K (i.e., v can accommodate K signatures.) Then, when
we try to insert the ðK þ 1Þth signature into v, it has to be
split into two nodes v� and v�. To do this, we will pick a
signature in v, which has the heaviest signature weight (i.e.,
with the most 1s) in v. It is called the �-seed and will be put
in v�. Then, we select a second signature, which has the
maximum number of 1s in those positions where � has 0.
That is, the signature provides the maximal weight increase
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to �. This signature is called the �-seed and put in v�. Any of
the rest K � 1 signatures is assigned to v� or v�, depending
on whether it is closer to v� or v�. The two new signatures
(denoted s� and s�) to be put into the parent node are
obtained by superimposing the signatures in v� and v�,
respectively. See Fig. 4b for illustration.

The advantage of this method is that the scanning of a
whole signature file is replaced by searching several paths
in S-tree. However, the space overhead is almost doubled.
Furthermore, due to superimposing, the nodes near the root
tend to have heavy weights and thus have low selectivity.
This is improved by Tousidou et al. [27], [28]. They
elaborate the selection of �-seeds and �-seeds so that their
distance is increased. However, this kind of improvement is
achieved at cost of time, i.e., by checking more signatures,
which makes the insertion of a signature into a S-tree
extremely inefficient.

In [28], two algorithms were discussed. One needs Oðl2Þ
time to determine a �-seed and a �-seed, referred to as the
quadratic algorithm, where l is the number of the signatures
in a node. The other one needs Oðl3Þ time, referred to as the
cubic algorithm.

In general, to increase the selectivity of a signature in an
internal node, longer signatures should be used, or the page
for a node should not be fully populated. Both of them
require more space. The multilevel signature file method
discussed in [23] follows the same principle as the S-tree.
The difference between them is in the way that signatures at
a higher level are constructed. In the multilevel signature
file method, a signature at a higher level is a superimposed
code generated directly from a group of p text blocks,
instead of superimposing p signatures at the lower level. In
other words, a signature at a higher level can be considered
as being generated from a bigger block containing more
words. Assume that any signature at the lowest level (leaf
level) is created from a block of size D. Then, any signature
at the second lowest level is generated from a block of size
pD. For a better understanding, consider the S-tree shown
in Fig. 4a once again. Corresponding to this S-tree, we may
have a multilevel signature file as shown in Fig. 5.

As in a S-tree, any signature at the lowest level
corresponds to an object (or a text block). But, any signature
at a higher level is constructed in a different way. We pay
attention to the level L1 shown in Fig. 5, at which each
signature is not generated by superimposing some signa-
tures at the level L0, but created directly from the text
blocks. For example, the first signature at L1 is generated by
taking o1, o2, and o3 as a single block. So, it will have a
different length than the signatures in L0. Obviously, such a
data structure needs more space than S-trees. However, the
filtering power of any signature at a higher level is
effectively increased. It is because the ratio of 1s over the
signature length at a higher level is kept unchanged. Recall
that in an S-tree, a signature in an internal node may be
populated with more 1s than in a leaf node, decreasing its
selectivity significantly.

Another interesting method is the so-called signature
graphs proposed in [5]. It works in a similar way to the
signature trees to be discussed in this paper. The problem of
this method is, however, there is no way to guarantee that

the paths visited are of the same length, or say, the graph is

“balanced.” In the worst case, such a graph degrades to a

signature file. In the following, we discuss the method of

signature trees in great detail, by means of which all the

drawbacks of S-trees as well as multilevel signature files can

be removed.

3 SIGNATURE TREES

A signature tree works for a signature file like a trie [20],

[25] for a text. But in a signature tree, each path is a signature

identifier (defined below) which is not a continuous piece of

bits, quite different from a trie, in which the bits (or

characters) labeling a path are consecutive. In fact, the

signature identifiers can be considered as a generalization

of the concept of position identifiers [2], [11], extended to

handle inexact matchings. As mentioned above, by the

inexact matching, we ask for matches at the 1 bit positions

of a query and indifferent at the 0 bit positions.
In comparison with the methods described in Section 2,

the signature tree has the following advantages:

1. The slice checking in the bit-slice method is replaced
with a single bit checking and less time is needed for
both the insertion and deletion of signatures.

2. The checking of signatures in an internal node of an
S-tree is changed to a binary tree searching and
much less space is needed for the tree structure.

3.1 Definition of Signature Trees

Consider a signature si of length m. We denote it as

si ¼ si½1�si½2� . . . si½m�;

where each si½j� 2 f0; 1gðj ¼ 1; . . . ;mÞ. We also use

siðj1; . . . ; jhÞ to denote a sequence of pairs with regard

to si : ðj1; si½j1�Þðj2; si½j2�Þ . . . :ðjh; si½jh�Þ, where 1 � jk � m
for k 2 f1; . . . ; hg.
Definition 1 (signature identifier). Let S ¼ s1:s2 . . . :sn

denote a signature file. Consider sið1 � i � nÞ. If there exists

a sequence: j1; . . . ; jh such that for any k 6¼ ið1 � k � nÞ, we

have siðj1; . . . ; jhÞ 6¼ skðj1; . . . ; jhÞ, then we say siðj1; . . . ; jhÞ
identifies the signature si or say siðj1; . . . ; jhÞ is an identifier

of si with regard to S.

For example, in Fig. 4a,
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s6ð1; 7; 4; 5Þ ¼ ð1; 0Þð7; 1Þð4; 1Þð5; 1Þ

is an identifier of s6 since for any i 6¼ 6, we have

sið1; 7; 4; 5Þ 6¼ s6ð1; 7; 4; 5Þ. (For instance,

s1ð1; 7; 4; 5Þ ¼ ð1; 0Þð7; 0Þð4; 0Þð5; 0Þ 6¼ s6ð1; 7; 4; 5Þ;
s2ð1; 7; 4; 5Þ ¼ ð1; 1Þð7; 0Þð4; 0Þð5; 1Þ 6¼ s6ð1; 7; 4; 5Þ;

and so on. Similarly, s1ð1; 7Þ ¼ ð1; 0Þð7; 0Þ is an identifier for

s1 since any i 6¼ 1 we have sið1; 7Þ 6¼ s1ð1; 7Þ.)
In the following, we’ll see that in a signature tree, each

path corresponds to a signature identifier.

Definition 2 (signature tree). A signature tree for a signature

file S ¼ s1:s2 . . . :sn, where si 6¼ sj for i 6¼ j and jskj ¼ m for

k ¼ 1; . . . ; n, is a binary tree T such that

1. For each internal node of T , the left edge leaving it is
always labeled with 0 and the right edge is always
labeled with 1.

2. T has n leaves labeled 1; 2; . . . ; n, used as pointers to
n different positions of s1; s2; . . . and sn in S. Let v be
a leaf node. Denote pðvÞ the pointer to the correspond-
ing signature.

3. Each internal node v is associated with a number,
denoted by skðvÞ, to tell which bit will be checked.

4. Let i1; . . . ; ih be the numbers associated with the nodes
on a path from the root to a leaf v labeled i (then, this
leaf node is a pointer to the ith signature in S, i.e.,
pðvÞ ¼ i). Let p1; . . . ; ph be the sequence of labels of
edges on this path. Then, ðj1; p1Þ . . . ðjh; phÞ makes up
a signature identifier for si; siðj1; . . . ; jhÞ.

Example 1. In Fig. 6b, we show a signature tree for the

signature file shown in Fig. 6a. In this signature tree, each

edge is labeled with 0 or 1 and each leaf node is a pointer

to a signature in the signature file. In addition, each

internal node v is marked with an integer skðvÞ to tell

which bit will be checked. Consider the path going

through the nodes marked 1, 7, and 4. If this path is

searched for locating some signature s, then three bits of

s : s½1�, s½7�, and s½4� must be checked. If s½4� ¼ 1, the

search will go to the right child of the node marked “4.”

This child node is marked with 5 and then the fifth bit of

s : s½5� will be checked. Also, see the path consisting of

the dashed edges in Fig. 6b, which corresponds to the

identifier of s6 : s6ð1; 7; 4; 5Þ ¼ ð1; 0Þð7; 1Þð4; 1Þð5; 1Þ. Simi-

larly, the identifier of s3 is s3ð1; 4Þ ¼ ð1; 1Þð4; 1Þ (see the

path consisting of thick edges).

In the following sections, we discuss how to construct a
signature tree for a signature file and how a signature tree is
searched.

3.2 A Simple Way for Constructing Signature Trees

Below, we give an algorithm to construct a signature tree
for a signature file, which needs only Oðn �mÞ time, where n
represents the number of the signatures in the signature file
and m is the length of a signature.

At the very beginning, the tree contains an initial node: a
node containing a pointer to the first signature.

Then, we take a next signature and insert it into the tree.
Let s be the next signature we wish to enter. We traverse the
tree from the root. Let v be the node encountered and
assume that v is an internal node with skðvÞ ¼ i. Then, s½i�
will be checked. If s½i� ¼ 0, we go left. Otherwise, we go
right. If v is a leaf node, we compare s with the signature s0

pointed to by v. s cannot be the same as v since in S, there is
no signature which is identical to anyone else. (If we have
two identical signatures, one will be removed and the
remaining one will be associated with two OIDs.) But,
several bits of s can be determined, which agree with s0.
Assume that the first k bits of s agree with s0; but, s differs
from s0 in the ðkþ 1Þth position, where s has the digit b and
s0 has 1� b. We construct a new node u with skðuÞ ¼ kþ 1
and replace v with u. (Note that v will not be removed. By
“replace,” we mean that the position of v in the tree is
occupied by u and v becomes one of u’s children.) If b ¼ 1,
we make v and the pointer to s be the left and right child of
u, respectively. If b ¼ 0, we make v the right child of u and
the pointer to s the left child of u. The following is the
formal description of the algorithm.

Algorithm sig-tree-generation(file)

begin

construct a root node r with skðrÞ ¼ 1; /*where r

corresponds to the first signature s1 in the signature file*/

for j ¼ 2 to n do

call insertðsjÞ;
end

Procedure insertðsÞ
begin

stack root;

while stack not empty do

1 fv popðstackÞ;
2 if v is not a leaf then

3 fi skðvÞ;
4 if s½i� ¼ 1 then

{let a be the right child of v; pushðstack; aÞ;}
5 else {let a be the left child of v; pushðstack; aÞ;}
6 }

7 else (*v is a leaf.*)

8 {compare s with the signature s0 pointed by pðvÞ;
9 assume that the first k bit of s agree with s0;

10 but s differs from s0 in the ðkþ 1Þth position;
11 w v; replace v with a new node u with

skðuÞ ¼ kþ 1;

12 if s½kþ 1� ¼ 1 then

make s and w be respectively the right and left

children of u
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13 else make w and s be the right and left children of u,

respectively;}

14 }

end

In the procedure insertðÞ, stack is a stack structure used

to control the tree traversal.
In Fig. 7, we trace the above algorithm against the

signature file shown in Fig. 6a.
In the following, we prove the correctness of the

Algorithm sig-tree-generation(). To this end, it should be

specified that each path from the root to a leaf node in a

signature tree corresponds to a signature identifier. We

have the following proposition.

Proposition 1. Let T be a signature tree for a signature file S. Let

P ¼ v1:e1 . . . vg�1:eg�1:vg be a path in T from the root to a leaf

node for some signature s in S, where viði ¼ 1; . . . ; gÞ is a

node and eiði ¼ 1; . . . ; g� 1Þ is an edge from vi�1 to vi. Then,

we have pðvgÞ ¼ s. Denote ji ¼ skðviÞði ¼ 1; . . . ; g� 1Þ.
Then, sðj1; j2; . . . ; jg�1Þ ¼ ðj1; bðe1ÞÞ . . . ðjg�1; bðeg�1ÞÞ makes

up an identifier for s.

Proof. Let S ¼ s1:s2::::sn be a signature file and T a

signature tree for it. Let P ¼ v1e1 . . . vg�1eg�1vg be a path

from the root to a leaf node for si in T . Assume that there

exists another signature st such that

stðj1; j2; . . . ; jg�1Þ ¼ siðj1; j2; . . . ; jg�1Þ;

where ji ¼ skðviÞði ¼ 1; . . . ; g� 1Þ. Without loss of gen-

erality, assume that t > i. Then, at the moment when st is
inserted into T , two new nodes v and v0 will be inserted

as shown in Figs. 8a or 8b (see lines 10-15 of the

procedure insertðÞ). Here, v0 is a pointer to st and v is

associated with a number indicating the position where
pðvtÞ and pðv0Þ differ.

It shows that the path for si should be

v1:e1 . . . vg�1:e:ve
0:vg

or v1:e1 . . . vg�1:e:ve
00:vg, which contradicts the assump-

tion. Therefore, there is not any other signature st with

stðj1; j2; . . . ; jn�1Þ ¼ ðj1; bðe1ÞÞ . . . ðjn�1; bðen�1ÞÞ:

So, siðj1; j2; . . . ; jn�1Þ is an identifier of si. tu
The analysis of the time complexity of the algorithm is

relatively simple. From the procedure insertðÞ, we see that

there is only one loop to insert all signatures of a signature
file into a tree. At each step within the loop, only one path is
searched. Obviously, each path is bounded by m. Thus, we
have the following proposition.

Proposition 2. The time complexity of the algorithm sig-tree-
generation is bounded by Oðn �mÞÞ.

Proof. See the above analysis. tu

3.3 Searching of Signature Trees

Now, we discuss how to search a signature tree to model
the behavior of a signature file as a filter. Let sq be a query
signature. The ith position of sq is denoted as sq½i�. During
the traversal of a signature tree, the inexact matching is
done as follows:

1. Let v be the node encountered and sq½i� be the
position to be checked.

2. If sq½i� ¼ 1, we move to the right child of v.
3. If sq½i� ¼ 0, both the right and left child of v will be

explored.

In fact, this process just corresponds to the signature
matching criterion, i.e., for a bit position i in sq, if it is set
to 1, the corresponding bit position in s must be set to 1; if it
is set to 0, the corresponding bit position in s can be 1 or 0.

To implement this kind of inexact matching, we search
the signature tree in a depth-first manner and maintain a
stack structure stackp to control the tree traversal.

Algorithm signature-tree-search

input: a query signature sq;

output: a set of signatures which survive the checking;

1. R ;.
2. Push the root of the signature tree into stackp.

3. If stackp is not empty, v popðstackpÞ; else returnðRÞ.
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4. If v is not a leaf node, i skðvÞ;
If sqðiÞ ¼ 0, push cr and cl into stackp; (where cr and cl
are v’s right and left child, respectively.) otherwise,

push only cr into stackp.

5. Compare sq with the signature pointed by pðvÞ.
/*pðvÞ–pointer to the block signature*/

If sq matches, R R [ fpðvÞg.
6. Go to (3).

The following example helps for illustrating the main
idea of the algorithm.

Example 2. Consider the signature file and the signature tree
shown in Fig. 6 once again. Assume sq ¼ 000 100 100 000.
Then, only part of the signature tree (marked with thick
edges in Fig. 9) will be searched. On reaching a leaf node,
the signature pointed to by the leaf node will be checked
against sq. Obviously, this process is much more efficient
than a sequential searching since only three signatures
need to be checked while a signature file scanning will
check eight signatures. For a balanced signature tree, the
height of the tree is bounded by Oðlog2 nÞ, where n is the
number of the leaf nodes. Then, the cost of searching a
balanced signature tree will be Oð� � log2 nÞ on the
average, where � represents the number of paths
traversed, which is equal to the number of signatures
checked. Let t represent the number of bits which are set
in sq and checked during the search. Then, � ¼ Oðn=2tÞ. It
is because each bit set to 1 (in sq), which is checked during
the search, will prevent half of a subtree from being
visited. Compared to the time complexity of the signature
file scanning OðnÞ, it is a major benefit. We will discuss
this issue in Section 3.5 in great detail.

3.4 Balanced Signature Trees

A signature tree can be quite skewed as shown in Fig. 10.
But, the tree shown in Fig. 11 is completely balanced for

the same signature file. However, the signature identifiers
for the signatures are different from those shown in Fig. 10b.

The problem is how to control the process of construct-
ing a signature tree in such a way that the generated
signature tree is almost balanced.

In the following, we propose a weight-based method,
which needs more time than the method discussed above,
but always returns a balanced tree.

3.4.1 Weight-Based Method

An observation shows that a signature tree for a signature
file corresponds to a recursive partitioning of the file. For
instance, the left and right subtrees of the root divides the

signature file into two parts: A and B. If jAj ¼ jBj, we say
the signature file is evenly divided. Again, each of A and B
is further divided along the signature tree. If the partition-
ing at each level is even, then the corresponding signature
tree must be well balanced and its height is on the order of
OðlognÞ. Based on the above observation, we propose a
method to recursively divide a signature file in such a way
that any time a subfile is partitioned as evenly as possible.
The signature tree is created as a data structure “recording”
this process.

Intuitively, a signature file S ¼ s1:s2 . . . :sn can be
considered as a Boolean matrix. We use S½i� to represent
the ith column of S. We calculate the weight of each S½i�,
i.e., the number of 1s appearing in S½i�, denoted wðS½i�Þ. This
needs Oðn �mÞ time. Then, we choose a j such that
jwðS½i�Þ � 1

2nj is minimum. Here, the tie is resolved
arbitrarily. Using this j, we divide S into two groups g1 ¼
fsi1 ; si2 ; . . . ; sikg with each sip ½j� ¼ 0 ðp ¼ 1; . . . ; kÞ and g2 ¼
fsikþ1

; sikþ2
; . . . ; siN g with each siq ½j� ¼ 1 ðq ¼ kþ 1; . . . ; nÞ;

and generate a tree as shown in Fig. 12a. In a next step,
we consider each giði ¼ 1; 2Þ as a single signature file and
perform the same operations as above, leading to two trees
generated for g1 and g2, respectively. Replacing g1 and g2

with the corresponding trees, we get another tree as shown
in Fig. 12b. We repeat this process until the leaf nodes of a
generated tree cannot be divided any more.

In Fig. 12a, g1 ¼ fs1; s3; s5; s6g and g2 ¼ fs2; s4; s7; s8g;
and, in Fig. 12b, g11 ¼ fs3; s5g, g12 ¼ fs6; s1g, g21 ¼ fs8; s7g,
and g22 ¼ fs4; s2g.

Below is a formal description of the above process.

Algorithm balanced-tree-generation(file)

input: a signature file.

output: a signature tree.
begin

let S ¼ file; N  jSj;
if N > 1 then {

choose j such that jwðS½i�Þ � 1
2Nj is minimum;

let g1 ¼ fsi1 ; si2 ; . . . ; sikgwith each sip ½j� ¼ 0 ðp ¼ 1; . . . ; kÞ;
let g2 ¼ fsikþ1

; sikþ2
; . . . ; siNg with each

siq ½j� ¼ 1ðq ¼ kþ 1; . . . ; NÞ
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generate a tree containing a root r and two child nodes

marked with g1 and g2, respectively;

skipðrÞ  j;

replace the node marked g1 with

balanced-tree-generationðg1Þ;
replace the node marked g2 with

balanced-tree-generationðg2Þ;}
else return;

end

By applying this algorithm to the signature file shown in
Fig. 10a, a balanced signature tree as shown in Fig. 9 will be
created. Since Oðn �mÞ time is needed to generate the nodes
at each level of the tree, the time complexity of the whole
process is on the order of Oðn �m � lognÞ.

3.5 Average Number of Checked Nodes

For a balanced binary tree of size n, it takes OðlognÞ time to
search along a path. However, when exploring a balanced
signature tree, more than one path is traversed. An
interesting question is, how many nodes in the tree will
be checked? In the following, we give a probabilistic
analysis to answer this question.

Denote by t a signature tree, in which the edges are
labeled with 0 or 1. Let s ¼ s½1�s½2� . . . :s½m� be a query
signature, where s½i� 2 f0; 1g. Then, 1 in s matches only 1 in
t, while 0 in s matches both 0 and 1 in t. We use csðtÞ to
represent the cost of searching t against s. In addition, we
use s0; s00; s000; . . . to designate the patterns obtained by
circularly shifting the bits of s to the left by 1, 2, 3, ...
positions.

Obviously, if the first bit of s is 0, we have, for the
expected cost of a random string s,

csðtÞ ¼ 1þ cs0 ðt1Þ þ cs0 ðt2Þ; ð1Þ

where t1, and t2 represent the two subtrees of the root of t.
See Fig. 13 for illustration.

It is because in this case, the search has to proceed in
parallel along the two subtrees with s changing cyclically to
s0. If the first bit in s is 1, we have

csðtÞ ¼ 1þ cs0 ðt2Þ ð2Þ

since in this case, the search proceeds only in t2.
Given n ðn � 2Þ random nodes in t, the probability that

jt1j ¼ p; jt2j ¼ n� p ð3Þ

can be estimated by the Bernoulli probabilities

n
p

� �
1
2

� �p 1
2

� �n�p¼ 1
2n

n
p

� �
: ð4Þ

Let cs;n denote the expected cost of searching a signature
tree of size n against s. We have the following recurrences:

if s starts with 0; cs;n ¼ 1þ 2
2n

P
p

n
p

� �
cs0;p; n � 2; ð5Þ

if s starts with 1; cs;n ¼ 1þ 1
2n

P
p

n
p

� �
cs0;p; n � 2 : ð6Þ

Let �i ¼ 1 if ith bit in s is 1, and �i ¼ 2 if ith bit in s is 0.

The above recurrence can be rewritten as follows:

cs;n ¼ 1þ �1

2n

X
p

n
p

� �
cs0;p � �n;0 � �n;1; ð7Þ

where �n;jðj ¼ 0; 1Þ is equal to 1 if n ¼ j; otherwise, equal to 0.

Proposition 3. The exponential generating function of the

average cost

CsðzÞ ¼
X
n�0

cs;n
zn

n! ð8Þ

satisfies the relation

CsðzÞ ¼ �1ez=2 Cs0
z

2

� �
þ ez � 1� z: ð9Þ

Proof. In terms of (7), CsðzÞ can be rewritten as follows:

CsðzÞ ¼
X
n�0

1þ �1
1
2

� �nX
p

n

p

� �
cs0;p � �n;0 � �n;1

 !
zn

n!

¼
X
n�0

zn

n! þ
X
p

�1
1
2

� �nX
n�0

n

p

� �
cs0;p

zn

n! �
X
n�0

�n;0
zn
n!

�
X
n�0

�n;1
zn
n!

¼ ez þ �1

X
p

z=2ð Þp
p!

X
n�0

cs0;p
z=2ð Þn�p
n�pð Þ! � 1� z

¼ �1e
z=2Cs0

z
2

� �
þ ez � 1� z:

ð10Þ

tu

In the same way, we will get Cs0 ðzÞ; Cs00 ðzÞ; . . . , and so on.

Concretely, we will have the following equations:

CsðzÞ ¼ �1e
z=2Cs0

z
2

� �
þ ez � 1� z;

Cs0 ðzÞ ¼ �2e
z=2Cs00

z
2

� �
þ ez � 1� z

. . . . . .

Csðm�1Þ ðzÞ ¼ �mez=2Cs
z
2

� �
þ ez � 1� z:

ð11Þ

These equations can be solved by successive transporta-

tion. For instance, when we transport the expression of

Cs0 ðzÞ given by the second equation in (11), we have

CsðzÞ ¼ aðzÞ þ �1e
z=2a z

2

� �
þ �1�2e

z=2ez=22

Cs00
z
22

� �
; ð12Þ

where aðzÞ ¼ ez � 1� z.
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In a next step, we transport Cs000 into the equation given in

(12). This kind of transformation continues until the relation

is only on Cs itself. Then, we have

CsðzÞ ¼ �1�2 . . .�mexp z 1� 1
2m

� �� 	
Csð z2mÞ

þ
Xm�1

j¼0

�1�2 � � ��jexp z 1� 1
2j

� �h i
exp z

2j

� �
� 1� z

2j

� �
¼ 2m�kexp z 1� 1

2m

� �� 	
Csð z2mÞ

þ
Xm�1

j¼0

�1�2 � � ��jexp z 1� 1
2j

� �h i
exp z

2j

� �
� 1� z

2j

� �
;

ð13Þ

where k is the number of 1s in s.
Let � ¼ 2m�k; � ¼ 1� 1

2m; � ¼ 1
2m and

AðzÞ ¼
Xm�1

j¼0

�1�2 � � ��jexp z 1� 1
2j

� �h i
exp z

2j

� �
� 1� z

2j

� �
:

We have

CsðzÞ ¼ �e�zCsð�zÞ þAðzÞ: ð14Þ

This equation can be solved by iteration as discussed

above:

CsðzÞ ¼
X1
j¼0

�jexp �1��j
1��z

� �
A �jz
� �

¼
X1
j¼0

2j m�kð Þ
Xm�1

h¼0

�1�2 � � ��h
�
expðzÞ

� exp z 1� 1
2h2mj

� �� �
1þ z

2h2mj

� �	
:

ð15Þ

Using the Taylor formula to expand expðzÞ and

exp z 1� 1
2h2mj

� �� �
1þ 1

2h2mj

� �
in CsðzÞ given by the above

sum, and then extracting the Taylor coefficients, we get

cs;n ¼
Xm�1

h¼0

�1�2 � � ��h
X
j�0

2jðm�kÞDjhðnÞ; ð16Þ

where D00ðnÞ ¼ 1 and for j > 0 and h > 0,

DjhðnÞ ¼ 1� ð1� 2�mj�hÞn � n2�mj�hð1� 2�mj�hÞn�1: ð17Þ

To estimate cs;n, we resort to the complex analysis, which

shows that cs;n � n1� km. If k
m ¼ 1

2, we have

cs;n ¼ Oðn0:5Þ: ð18Þ

(See the Appendix, which can be found on the Computer

Society Digital Library at http://computer.org/tkde/

archives.htm, for a detailed computation based on the

contour integration of complex variabled functions.)
In terms of above analysis, we have the following

proposition.

Proposition 4. Let T be a signature tree over a signature file

S ¼ s1:s2 . . . :sn with jsij ¼ k ði ¼ 1; . . . ; nÞ. Let sq be a query

signature of length m with k bits set to 1. Then, the average

nodes checked during the searching of T against sq is on the

order of Oðn1� kmÞ.

Proof. See the above analysis. tu

4 SIGNATURE TREE MAINTENANCE

In this section, we address how to maintain a signature tree.
First, we discuss the case that a signature tree can entirely fit
in main memory in Section 4.1. Then, we discuss the case
that a signature tree cannot be put in main memory once for
all in Section 4.2.

4.1 Maintenance of Internal Signature Trees

An internal signature tree refers to a tree that can fit entirely
in main memory. In this case, insertion and deletion of a
signature into a tree can be done quite easily as discussed
below. When a signature s is added to a signature file, the
corresponding signature tree can be changed by simply
running the procedure insertðÞ with s as the input (see
Section 3.2). When a signature is removed from the
signature file, we need to change the corresponding
signature tree as follows:

1. Let z, u, v, and w be the nodes as shown in Fig. 14a
and assume that v is a pointer to the signature to be
removed.

2. Remove u and v. Set the left pointer of z to w. (If u is
the right child of z, set the right pointer of z to w.)

The resulting signature tree is as shown in Fig. 14b.
From the above analysis, we see that the maintenance of

an internal signature tree is an easy task. However, after
several insertions and deletions, a signature tree may
become unbalanced. For this reason, we will maintain a
variable to record the difference between the lengths of the
longest and the shortest paths. If the value of the variable is
above a given threshold, the signature tree should be
reconstructed by running balanced-tree-generation( ).

4.2 Maintenance of External Signature Trees

In a database, files are normally very large. Therefore, we
have to consider the situation where a signature tree cannot
fit entirely in main memory. We call such a tree an external
signature tree (or an external structure for the signature tree).
In this case, a signature tree is stored in a series of pages
organized into a tree structure as shown in Fig. 15, in which
each node corresponds to a page containing a binary tree.

Formally, an external structure ET for a signature tree T
is defined as follows (to avoid any confusion, we will, in the
following, refer to the nodes in ET as the page nodes while
the nodes in T as the binary nodes or simply the nodes.):

1. Each internal page node n of ET is of the form:
bnðrn; an1; . . . ; aninÞ, where bn represents a subtree ofT ,
rn is its root, and an1; . . . ; anin are its leaf nodes. Each
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internal nodeuof bn is of the form:< vðuÞ; lðuÞ; rðuÞ > ,
where vðuÞ, lðuÞ, and rðuÞ are the value, left link, and
right link of u, respectively. Each leaf node anij of bn is
of the form:< vðanijÞ; lpðanijÞ; rpðanijÞ > , wherevðanijÞ
represents the value ofanij , and lpðanijÞand rpðanijÞare
two pointers to two pages containing the left and right
subtrees of anij , respectively.

2. Let m be a child page node of n. Then, m is of the
form: bmðrm; am1; . . . ; amimÞ, where bm represents a
binary tree, rm is its root and am1; . . . ; amim are its leaf
nodes. If m is an internal page node, am1; . . . ; amim
will have the same structure as an1; . . . ; amin de-
scribed in (1). If m is a leaf node, each amil ¼ pðsÞ, the
position of some signature s in the signature file.

3. The size jbj of the binary tree b (the number of nodes
in b) within an internal page node of ET satisfies

jbj � 2k;

where k is an integer.
4. The root page of ET contains at least a binary node

and the left and right links associated with it.

If 2k�1 � jbj � 2k holds for each node in ET , it is said to

be balanced; otherwise, it is unbalanced. However, accord-

ing to the analysis of Section 3.4, an external signature tree

is normally balanced, i.e., 2k�1 � jbj � 2k holds for almost

every page node in ET .
As with a Bþ-tree, insertion and deletion of page nodes

always begins from a leaf node. To maintain the tree
balance, internal page nodes may split or be merged during
the process. In the following section, we discuss these issues
in great detail.

4.2.1 Insertion of Binary Nodes

Let s be a signature newly inserted into a signature file S.

Accordingly, a node as will be inserted into the signature

tree T for S as a leaf node. In effect, it will be inserted into a

leaf page node m of the external structure ET of T . It can be

done by taking the binary tree within that page into main

memory and then inserting the node into the tree as

discussed in Section 4.1. If for the binary tree b in m we have

jbj2k, the following node-splitting will be conducted:

1. Let bmðrm; am1; . . . ; amimÞ be the binary tree within m.
Let rm1 and rm2 are the left and right child node of
rm, respectively. Assume that

bm1ðrm1; am1; . . . ; amijÞðij < imÞ

is the subtree rooted at rm1 and

bm2ðrm1; amijþ1
; . . . ; amimÞ

is rooted at rm2. We allocate a new page m0 and put

bm2ðrm1; amijþ1
; . . . ; amimÞ into m0. Afterwards, pro-

mote rm into the parent page node n of m and
remove bm2ðrm1; amijþ1

; . . . ; amimÞ from m.
2. If the size of the binary tree within n becomes larger

than 2k, split n as above. The node-splitting repeats
along the path bottom-up until no splitting is
needed.

4.2.2 Deletion of Binary Nodes

When a node is removed from a signature tree, it is always
removed from the leaf level as discussed in Section 4.1. Let a
be a leaf node to be removed from a signature tree T . In
effect, it will be removed from a leaf page node m of the
external structure ET for T . Let b be the binary tree within
m. If the size of b becomes smaller than 2k�1, we may merge
it with its left or right sibling as follows:

1. Let m0 be the left (right) sibling of m. Let

bmðrm; am1; . . . ; amimÞ

and bm0 ðrm0 , am01; . . . ; am0im0 Þ be two binary trees in m
and m0, respectively. If the size of bm0 is smaller than
2k�1, move bm0 into m and afterwards eliminate m0.
Let n be the parent page node of m and r is the
parent node of rm and rm0 . Move r into m and
afterwards remove r from n.

2. If the size of the binary tree within n becomes
smaller than 2k�1, merge it with its left or right
sibling if possible. This process repeats along the
path bottom-up until the root of ET is reached or no
merging operation can be done.

Note that it is not possible to redistribute the binary trees
of m and any of its left and right siblings due to the
properties of signature trees, which may leave an external
signature tree unbalanced. According to the analysis of
Section 3.4, however, it is seldom. If it is the case, i.e., if the
difference between the lengths of the longest and the shortest
paths is above a given threshold, we will use balanced-tree-
generation( ) to reconstruct the whole signature tree.

5 ON THE GENERAL SIGNATURE TREES

In this section, we extend the above signature tree structure
by assigning each internal node v a sequence: i1; i2; . . . ; il for
some l to tell that the i1th; i2th; . . . , and ilth bits in sq will be
checked when v is encountered during the searching of a
signature tree against sq. In this way, the size of a signature
tree can be significantly reduced.

5.1 Definition of General Signature Trees

Assume that S ¼ s1:s2 . . . :sn is a signature file. For each si,
we denote it as si ¼ si½1�si½2� . . . si½m�, where each
si½j� 2 f0; 1gðj ¼ 1; . . . ;mÞ.
Definition 3 (general signature tree). A general signature tree

with respect to an integer l for a signature file
S ¼ s1:s2 . . . :sn, where si 6¼ sj for i 6¼ j and jskj ¼ m for
k ¼ 1; . . . ; n, is a binary tree T ðlÞ such that

1. Each internal node v is associated with a sequence:
i1; i2; . . . ; il for some l, denoted cðvÞ, to tell that the
i1th; i2th; . . . , and ilth bits in the query signature will
be checked when v is encountered.
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2. For each internal node of T ðlÞ, the number of its
outgoing edges is bounded by 2l. Each edge e is labeled
with a different bit string b1b2 . . . bl, denoted labelðeÞ.

3. T ðlÞ has n leaves labeled 1; 2; . . . ; n, used as pointers to
n different positions of s1; s2 . . . and sn in S. Let v be a
leaf node. Denote pðvÞ the pointer to the corresponding
signature.

4. Let v1; . . . ; vh be the nodes on a path from the root
to a leaf v labeled i (then, this leaf node is a pointer
to the ith signature in S, i.e., pðvÞ ¼ i). Let
fij1; i

j
2; . . . ; ijlg be the sequence associated with

vjð1 � j � h� 1Þ. Let e1; . . . ; eh�1 be the edges on
the path and let bj1; b

j
2; . . . ; bjl be the bit string

labeling ejð1 � j � h� 1Þ. Then,

ði11; b1
1Þ . . . ði1l ; b1

l Þ . . . ðih�1
1 ; bh�1

1 Þ . . . ðih�1
l ; bh�1

l Þ

makes up a signature identifier for

si; siði11; . . . ; i1l ; . . . ; ih�1
1 ; . . . ; ih�1

l Þ:

Example 3. In Fig. 16b, we show a general signature tree

with l ¼ 2, generated for the signature file shown in

Fig. 16a. It is easy to see that this general signature tree

contains less nodes than the signature tree shown in

Fig. 16c, which is generated for the same file.

In addition, we notice that if the sequence associated

with each node is contiguous, we need to store only one

integer for a sequence. For example, the tree shown in

Fig. 16b can be stored as shown in Fig. 16d, in which a

contiguous sequence is implicitly implemented. The search-

ing of a general signature tree against a query signature sq
can be done in a way similar to that of a signature tree, but

different in the label checkings as described below:

1. Let v be the node encountered. Assume that the
sequence associated with it is i1; i2; . . . ; il for some l.
Then, sq½i1�; . . . ; sq½il� will be checked.

2. Let e be an edge outgoing from v and labeled with a
bit string b1b2 . . . bl. Then, if b1b2 . . . bl matches

sq½i1�; . . . ; sq½il�, explore e. Recall that by “matching,”
we mean that for every jð1 � j � lÞ, if sq½j� ¼ 1, we
have bj ¼ 1; if sq½j� ¼ 0, bj can be 1 or 0.

Example 4. Consider the signature file shown in Fig. 16a

once again. Assume sq ¼ 100 110 010 000. Then, only

part of the general signature tree (marked with thick

edges in Fig. 17a) will be searched. On reaching a leaf

node, the signature pointed to by the leaf node will be

checked against sq.
We also notice that, when we search the signature tree

established for the same file, more edges will be
accessed. (See the dashed edges in Fig. 17b.)

From the above example, we can see that in comparison

with the signature trees, the general signature trees have the

following two advantages:

1. A general signature tree tends to have fewer nodes.
2. When searching a general signature tree, fewer

edges will be visited.

5.2 Construction of General Signature Trees

Now, we discuss how a general signature tree is con-

structed for a given signature file S.
Given an integer l, we choose, from S, the i1th; i2th; . . . ,

and ilth columns to divide the whole S into jð� 2lÞ groups:

g1 ¼ fs1
1; s

1
2; . . . ; s1

i1
g; . . . ; gj ¼ fsj1; s

j
2; . . . ; sjijg such that:

1. In each gkð1 � k � jÞ, for any two signatures ska and
skb , we have ska½i1� ¼ skb ½i1�; . . . , and ska½il� ¼ skb ½il�.

2. For any two different groups gx and gy, there exists
at least an iz 2 i1; i2; . . . ; ilg such that for any s1 2 gx
and s2 2 gy, we have s1½iz� 6¼ s2½iz�.

3. maxfjg1j; . . . ; jgjjg �minfjg1j; . . . ; jgjjg is minimized,
which guarantees that S is divided as evenly as
possible.

Then, we can generate a tree TS of two levels with the

root labeled with a sequence fi1; i2; . . . ; ilg and j leaf

nodes with each labeled with a gk. For instance, for the

signature file shown in Fig. 16a, we can generate a tree as
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shown in Fig. 18a. In this tree, g1 ¼ fs3; s5g, g2 ¼ fs1; s6g,
g3 ¼ fs7; s8g, and g2 ¼ fs2; s4g. In the next step, we

consider each gkðk ¼ 1; . . . ; jÞ as a single signature file

with i1th; i2th; . . . , and ilth columns removed, and per-

form the same operations as above. Assume that Tgkðk ¼
1; . . . ; jÞ is the tree generated for gk. Replacing gk with Tgk
for each k in TS , we get another tree which is three levels

high. For example, for the signature file shown Fig. 16a, a

tree as shown in Fig. 18b can be created, in which

g11 ¼ fs3g, g12 ¼ fs1g, g21 ¼ fs6g, g22 ¼ fs1g, g31 ¼ fs8g,
g32 ¼ fs7g, g41 ¼ fs4g, and g42 ¼ fs2g.

We repeat this process until the leaf nodes of a generated

tree cannot be divided any more. Below is a formal

description of the above process.

Algorithm general-tree-generation(file, l)

input: file–a signature file; l–an integer.
output: a general signature tree.

begin

let S ¼ file; n jSj;
ifn > 1 then {

choose the i1th; i2th; . . . , and ilth columns to divide the

whole S into jð� 2lÞ groups:

g1 ¼ fs1
1; s

1
2; . . . ; s1

i1
g; . . . ; gj ¼ fsj1; s

j
2; . . . ; sjijg as described

above; generate a tree containing a root r and j child
nodes marked with g1; . . . ; gj, respectively;

cðrÞ  fi1; i2; . . . ; ilg;
for (i ¼ 1 to j) do

{replace the node marked gi with

general-tree-generationðgi; lÞ;}
else return;

end

By applying this algorithm with l ¼ 2 to the signature file

shown in Fig. 16a, a general signature tree as shown in

Fig. 16b will be created. Since Oð m�l�i
l

� �
� l � nÞ time is needed

to generate the nodes at level i in the tree, the time

complexity of the whole process is on the order of

XðlognÞ=ld e

i¼1

m� l � i
l

� �
� l � n:

In the above discussion, a very important issue has not
yet been addressed. That is, for a file with the signature
length m, what l should be chosen?

In the following, we discuss a heuristics for this task.
Consider a complete balanced signature tree T with

the outdegree of each internal node k ¼ 2l, constructed
for a signature file containing n signatures. Let v1; v2; . . . ,
and vk be the child nodes of a node v in T , and
e1 ¼ ðv; v1Þ; e2 ¼ ðv; v2Þ; . . . , and ek ¼ ðv; vkÞ be the out-
going edges from v. If k is not so large, we can arrange
an array A of size k to accommodate these edges in such
a way that each entry A½j� stores a link to a node vi iff
labelðeiÞ ¼ j. So, when we meet v during the searching of
T against sq, all those child nodes, which should be
further explored, can be easily located. Assume that
cðvÞ ¼ fi1; i2; . . . ; ilg and sq½i1� . . . sq½il� ¼ b1 . . . bl. Then, any
entry A½j� with j equal to the value of a bit string
b01 . . . b0l should be explored if for any i with bi ¼ 1, we
have b0i ¼ 1. It is easy to show that the average number
of entries in A, which may be explored, is

1
2l

2l þ l
1

� �
2l�1 þ l

2

� �
2l�2 þ � � � þ 1

� �
¼ 3

2

� �l
: ð19Þ

Therefore, the average number of the nodes, which may

be visited during the searching of T against a query

signature, can be estimated by O
�ð3=2Þ log2 nd e�1

ð3=2Þl�1

�
.

However, if k is large, we cannot store the children of a

node in an array as shown above since it can be quite

sparsely populated, leading to a high space overhead. In

this case, we need to store them in a linked list to avoid

wasting space. In this way, to locate the child nodes to be

explored, the linked list has to be scanned and at average

Oð2l�1Þ time is needed. So, in this case, the average number

of the nodes to be checked is estimated by O
�ð3=2Þ log2 nd e�1

ð3=2Þl�1

�
.
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Fig. 17. Illustration for searching general signature trees and signature trees.

Fig. 18. Illustration of generation of general signature trees.



Assume that, when k � 2l0 for some l0, the child nodes
are stored in arrays while when k > 2l0 , they are stored in
linked lists. Then, the average number of nodes to be
checked when searching a general signature tree is of the
pattern shown in Fig. 19.

In practice, we can try different l’s with the child nodes
stored in arrays until the size of the general signature tree
becomes larger than a given threshold. For instance, one of
the goals of the general signature tree approach is to reduce
the tree size. However, if due to the sparse population of
child links in the arrays the size of a general signature tree
with respect to an integer l becomes larger than the
corresponding signature tree for the same signature file,
we should set l0 to be an integer smaller than l.

6 EXPERIMENT RESULTS

We have implemented a test bed in C++, with our own
buffer management (with first-in-first-out replacement
policy). The computer was Intel Pentium III, running
standalone. The capacity of the hard disk is 4.95 GB and
the amount of the main memory available is 46 MB.

The tests are organized into two groups. In the first
group, we test seven methods: sequential signature files
(SSF for short) [13], [15], bit-slice files (BSSF for short) [19],
compressed bit-slice files (CBSSF for short) [14], S-trees [11],
improved S-trees (which uses the cubic algorithm to find
�-seed and �-seed) [28], (MLSF for short) [23], and the
signature trees (ST for short) discussed in this paper. In the
second group, we compare the signature tree approach with
different versions of general signature trees.

6.1 Experiment I

In this experiment, we apply the seven methods mentioned
above to different signature queries against the signature
files of different sizes. All the signatures are created
randomly using a uniform distribution for the positions
that will be set to 1. The performance measure was
considered to be the number of page accesses and the time
required to satisfy a query. For each query, an average of
20 measurements was taken.

The considered parameters and the tested values for
each parameter are given in Table 1.

For SSF, S-trees, and the signature tree method, an entry
in a signature file contains two fields: a signature and an
object identifier as shown in Fig. 20a. A bit-slice file is stored
as shown in Fig. 2b and a compressed bit-slice file is stored
as shown in Fig. 3. In addition, an S-tree is stored as shown
in Fig. 4a and a multilevel signature file is stored as shown
in Fig. 5. A signature tree is stored as discussed in
Section 4.2. Each entry in an internal node of an S-tree also

contains two fields: a signature and a pointer to a child page
while the node structure for a signature tree contains three
fields: an integer to indicate which bit of a query signature
will be checked, and two pointers to the left and the right
child of a node, respectively. (See Fig. 20b for illustration.)

Fig. 21 shows the test results for group I. The query
signatures are generated randomly with all those positions
to be set 1 uniformly distributed. Each of the queries is
evaluated by different strategies.

From Fig. 21, we can see that the signature tree structure
outperforms all the other three strategies. First, we discuss
why the signature tree is better than the S-tree. In this test,
the size of each page is 1 K. So, each page can accommodate
10 signatures (and the corresponding OIDs) and all the
signatures are stored in 5� 1; 024 ¼ 5; 120 pages. However,
for the S-tree, to increase the filter ability of the signatures in
an internal node, a page should not be fully populated since
in this case, a signature in an internal node will be with too
many 1s, degrading the performance dramatically. We have
tested different population ratios from 30 to 80 percent of
the page capacity and report the average test results over
30 percent, 40 percent, 50 percent, 60 percent, and 70 percent
of the page capacity since when each page is 80 percent
populated, the performance is much worse than when each
page is 70 percent populated. If each page is 70 percent
populated, then all the signatures need 7,312 pages to store
instead of 5,120 pages. The number of the internal page
nodes is about 824 and the outdegree of an internal page
node cannot be larger than 7. However, although the
number of the internal nodes of the signature tree is about
1
2ð50� 1; 024Þ ¼ 25; 100, each node only occupies 30 bits and
each page can accommodate 32 nodes, i.e., a subtree of
height 5. Then, the number of the internal page nodes is
about 785. More importantly, the outdegree of an internal
page node can be up to 16. So, the height of the signature
tree should be lower than that of the S-tree. Another reason
why the signature tree outperforms the S-tree is that each
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Fig. 19. Average number of the nodes to be checked.

TABLE 1
Considered Parameters and the Tested Values

for Each Parameter

Fig. 20. Illustration for storage structures.



internal page node of the signature tree is a tree itself (a

nonlinear structure) while each internal node of the S-tree is

a set of signatures (a linear structure). Normally, a nonlinear

structure should be stronger as a filter than a linear

structure.
Using the bit-slice file strategy, all the signatures are

stored in 64 files with each containing 50� 1; 024 bits. So,

the size of each file is 50 pages. For evaluating a query sq,

we will check these files one by one. But, for a bit set to 0 in

sq, the corresponding file need not be checked. In addition,

the result of checking a bit sq½i� against the ith file can be

used to reduce the number of the pages to be checked when

examining the s½iþ 1� against the ðiþ 1Þth file. This is the

main reason why the bit-slice file is better than the S-tree in

some cases, especially when the query weight is low.

However, as a filter, the bit-slice file is not so efficient as the

signature tree since each time when checking a page for an

internal node, the signature tree can examine up to 5 bits,

which may need more than one page access by means of the

bit slice file.
In addition, we notice that the compressed bit-slice file is

much worse than the bit-slice file. It is because in this test,

the signature file is not a sparse one and the size of all

linked bucket lists is actually much bigger than that of all

bit-slice files.
The multilevel signature file is slightly better than the

S-tree. Theoretically, the multilevel signature file needs

more space than the S-tree. But, in practice, each node in the

S-tree is at most 70 percent populated. So, the space

occupied by the multilevel signature file is just a little bit

more than that of the S-tree. On the other hand, however, a

signature at a higher level in the multilevel signature file is

normally a more powerful filter than a signature in an
internal node in the S-tree.

Fig. 22 shows the test results for group II. From this, we
can see that when the weight of signatures in a signature file
is low, the performance of the S-tree becomes better. It is
because in this case, the signatures in the internal nodes of a
S-tree will be less heavily populated. In contrast, the
performance of the bit-slice file degrades because the more
1s a bit-slice file has, the more chance a bit in a next bit-slice
file will be checked. However, the compressed bit-slice file
is better since less 1s are in the file, leading to less addresses
stored in the linked bucket lists. Also, the signature tree
becomes worse because in this case, we have much more 0s
than 1s and the tree cannot be well balanced.

Fig. 23 and 24 show the test results for groups III and IV,
respectively. In these two cases, since the signatures are
much longer, the number of the internal nodes of a S-tree
are greatly increased since each internal node needs more
space for the signatures stored, which are used as filters.
However, the size of an internal node of a signature tree is
only one bit augmented. So, the number of page accesses is
almost not changed. The BSSF becomes worse because for
longer signatures, more bit-slice files need to be checked.

In the above tests, the impact of compressed bit-slice files
cannot be observed since each signature file generated is not
a sparse matrix. To see in what cases the compression of bit-
slice signature files is beneficial, we did an extra test, by
which the number of 1s in signatures is limited. The test
result is shown in Fig. 25. For the test, the signature file
contains 50� 1; 024 signatures.

From this, we can see that, when a signature file contains
less 1s, the compression is quite effective. However, as a
signature file is populated with more 1s, the benefit
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Fig. 22. Test results of group 11.



diminishes. Especially, when a signature file is half-

populated with 1s, the compressed bit-slice file is worse

than the bit-slice file without compression.
Fig. 26 shows the impact of page sizes. For this test, the

number of signatures is 50� 1; 024.
From Fig. 26, we can see that the page access of both

BSSF and the improved S-tree reduces almost linearly as the

size of pages increases. However, the page access of the

signature tree decreases a little bit faster. It is because the

larger a page is, the less space in it is wasted. This can also

be seen from Fig. 15. Smaller page sizes make more space in

a page not used. Finally, the weight of a query signature

(i.e., the percentage of 1-bits in a query signature) affects

BSSF, the S-tree, and signature trees greatly. Fig. 27 shows

the number of page access when the three methods are used

to search a signature file containing 50� 1; 024 signatures to

locate query signatures with different weights.

From this, we can see that as the weight of a query
signature increases, the searching time of both the signature
tree method and the S-tree reduces. It is because each bit set
to 1 in the query signature may cut off a subtree. For BSSF,
however, each bit set to 1 in the query signature entails
more access to bits in bit-slice files. The weight of a query
signature has almost no impact on SSF.

6.2 Experiment II

We have also experimentally compared the signature tree
approach (ST) and the general signature tree approach
(GST). For the GST, only two versions are tested: two
contiguous bit checking (TwoCBC) and three contiguous bit
checking (ThreeCBC). By the TwoCBC, each time when a
node is encountered, two contiguous bits in the query
signature will be checked, while by ThreeCBC, each time
three contiguous bits in the query signature will be checked.
They are applied to different signature queries against the
signature files of different sizes. All the signatures are
created randomly using a uniform distribution for the
positions that will be set to 1. The performance measure was
considered to be the number of page accesses required to
satisfy a query. For each query, an average of 20 measure-
ments was taken.

For the comparison purpose, a general signature trees is
also stored page-wise as illustrated in Fig. 28.

The considered parameters and the tested values for
each parameter are given in Table 2.

For all the methods implemented, an entry in a signature
file contains two fields: a signature and an object identifier
as shown in Fig. 29a. Each internal node structure for a
signature tree contains three fields: an integer to indicate
which bit of a query signature will be checked, and two
pointers to the left and the right child of a node,

CHEN AND YIBIN CHEN: ON THE SIGNATURE TREE CONSTRUCTION AND ANALYSIS 15

Fig. 23. Test results of group III.

Fig. 24. Test results of group IV.

Fig. 25. Comparison of bit-slice and compressed bit-slice signature files.



respectively. (See Fig. 29b for illustration.) Similarly, each

internal node of a general signature tree with l ¼ 2 has an

integer to indicate a contiguous bit string of length 2 to be

checked, and four pointers to its child nodes. (See Fig. 29c

for illustration.)

Fig. 30 shows the test results for group V. The query
signatures are generated randomly with all those positions
to be set 1 uniformly distributed. Each of the queries is
evaluated by different strategies.

From this figure, we can see that TwoCBC is much better
than ST. But, ThreeCBC is not much better than TwoCBC as
we expect. It is because although the tree size of ThreeBCB
is smaller than that of TwoCBC, a tree generated by
ThreeCBC may not be so balanced as a tree generated by
TwoCBC. However, as the length of signatures increases,
we have more chance to find a balanced tree for threeCBC.
So, the discrepancy between ThreeCBC and TwoCBC
increases as shown in Fig. 31.

In Fig. 32 and Fig. 33, we show the results of Group VII
and Group VIII, respectively. These results also confirm the
above analysis.

In addition, the weight of a query signature (i.e., the
percentage of 1-bits in a query signature) affects both
signature trees and general signature trees greatly. Fig. 34
shows the number of page access when the three
methods are used to search a signature file containing
100� 1; 024 signatures to locate query signatures with
different weights.

From this, we can see that as the weight of a query
signature increases, the searching time of both the
signature trees and the general signature trees reduces. It
is because each bit set to 1 in the query signature may cut
off a subtree. However, more bits set to 1 in a query
signature impacts the general signature trees more than it
does to the signature trees.

7 CONCLUSION

In this paper, a new method to organize signature files has

been proposed. The main idea of this approach is the

concept of signature identifiers, which can be used to

distinguish signatures in a file from each other. Based on

this concept, we transform a signature file into a balanced

signature tree, in which each edge is labeled with 0 or 1, and

each node is associated with a number, indicating which bit

in a query signature to check. In this way, the searching of a

signature file is replaced by a binary tree searching. In

addition, a general signature tree structure is discussed. In

such a general structure, each node is associated with a

sequence of integers showing what bits in a query signature

to check. This can be quite useful in the cases where the

signatures are very long. Next, a probabilistic analysis of
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Fig. 26. Impact of page sizes.

Fig. 27. Impcat of weight of query signatures.

Fig. 28. Illustration for tree storage.

TABLE 2
Considered Parameters and the Tested Values for Each

Parameter

Fig. 29. Illustration for storing signature file entries and internal nodes in signature trees.



signature tree searching is conducted, which shows a

sublinear time complexity. Especially, if a query signature

is half-populated, the cost of searching a signature tree is

bounded by Oðn0:5Þ. In order to show the efficiency of the

signature tree method, a series of experimental tests were

performed to compare it with the most important existing

methods, such as sequential signature files, bit-slice

signature files, compressed bit-slice signature files, S-trees,

and multilevel signature files. All the conducted tests show

that the signature tree method significantly outperforms all

such methods. Finally, the maintenance of a signature tree

is discussed, which shows that it can be done in a way

similar to Bþ-trees.
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