
Our reference: TCS 11465 P-authorquery-v14

AUTHOR QUERY FORM

Journal: TCS Please e-mail your responses and any corrections to:

Article Number: 11465 E-mail: corrections.esch@elsevier.vtex.lt

Dear Author,

Please check your proof carefully and mark all corrections at the appropriate place in the proof. It is crucial that you
NOT make direct edits to the PDF using the editing tools as doing so could lead us to overlook your desired
changes. Rather, please request corrections by using the tools in the Comment pane to annotate the PDF and call
out the changes you would like to see. To ensure fast publication of your paper please return your corrections within
48 hours.

For correction or revision of any artwork, please consult http://www.elsevier.com/artworkinstructions

Any queries or remarks that have arisen during the processing of your manuscript are listed below and highlighted
by flags in the proof.

Location Query / Remark: Click on the Q link to find the query’s location in text
in article Please insert your reply or correction at the corresponding line in the proof

Q1 Your article is registered as a regular item and is being processed for inclusion in a regular
issue of the journal. If this is NOT correct and your article belongs to a Special
Issue/Collection please contact <S.Selvi@elsevier.com> immediately prior to returning your
corrections. (p. 1/ line 1)

Q2 The author names have been tagged as given names and surnames (surnames are highlighted
in teal color). Please confirm if they have been identified correctly and are presented in the
desired order. (p. 1/ line 14)

Q3 Please indicate which author(s) should be marked as ‘Corresponding author’. (p. 1/ line 15)

Q4 IMPORTANT!!! Please note that your MS Word manuscript was converted to LaTeX in the
appropriate Journal layout and style. Therefore, the final proof might have some flaws.
Kindly please check your proof carefully in this regard. (p. 1/ line 43)

Q5 Please check the e-mail address that has been added here, and correct if necessary.
(p. 1/ line 58)

Q6 Please check and approve/correct the numeration of equations (4) and (5). Please note that the
same numbers of equations are on p. 15, lines 18,25. (p. 16/ line 43)

Q7 Please note that Figure 13 was not cited in the text. Please check that the citation suggested
by the copyeditor is in the appropriate place, and correct if necessary. (p. 17/ line 33)

Q8 Please note that Table 11 was not cited in the text. Please check that the citation suggested by
the copyeditor is in the appropriate place, and correct if necessary. (p. 23/ line 18)

Q9 Uncited references. Please cite them or delete from the list of references. (p. 24/ line 39)

Q10 Please check if sponsor names have been identified correctly and correct if necessary.

(p. 26/ line 4)

Thank you for your assistance. Page 1 of 2

mailto:corrections.esch@elsevier.vtex.lt
http://www.elsevier.com/artworkinstructions
http://www.elsevier.com/artworkinstructions

Location Query / Remark: Click on the Q link to find the query’s location in text
in article Please insert your reply or correction at the corresponding line in the proof
Q11 Highlights items are too long, each individual highlight must not exceed 125 characters, only
3 to 5 highlights are allowed. Please adhere to the given specifications. (p. 27/ line 4)

Please check this box or indicate
your approval if you have no
corrections to make to the PDF file
Thank you for your assistance. Page 2 of 2

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.1 (1-25)

Theoretical Computer Science ••• (••••) •••–•••

1Q1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14Q2 14

15Q3 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43Q4 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58Q5 58

59 59

60 60

61 61
Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the string matching with k mismatches ✩

Yangjun Chen, Yujia Wu

Dept. of Applied Computer Science, University of Winnipeg, 515 Portage Ave. Winnipeg, Manitoba, R3B 2E9, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 26 June 2017
Received in revised form 12 January 2018
Accepted 1 February 2018
Available online xxxx
Communicated by R. Giancarlo

Keywords:
String matching
DNA sequences
Tries
Burrows–Wheeler transformation

In this paper, we discuss an efficient and effective index mechanism to do the string
matching with k mismatches, by which we will find all the substrings in a target string s
having at most k positions different from a pattern string r. The main idea is the Burrows–
Wheeler transformation of s, denoted as BWT(s), used as an index to search r against
it. During the process, the precomputed mismatch information of r will be utilized to
speed up the BWT(s)’s navigation. In this way, the time complexity can be reduced to
O(kn′ + n + m log m), where m = |r|, n = |s|, and n′ is the number of leaf nodes of a tree
structure, called a mismatching tree, produced during a search of BWT(s). In the case of m ≥
2(k + 1), the average value of n′ is bounded by O((1 + 1

|Σ |)
k+1), where Σ is an alphabet

from which we take symbols to make up target and pattern strings. Extensive experiments
have been conducted, which show that our method for this problem is promising.
Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]:
Non-numerical Algorithms and Problems Pattern matching; computation on discrete structures
General Terms: Databases, Algorithms, Performance

© 2018 Published by Elsevier B.V.

1. Introduction

By the string matching with k mismatches, we mean a problem to find all the occurrences of a pattern string r in a
target string s with each occurrence having up to k positions different between r and s. This problem is important for DNA
databases to support the biological research, where we need to locate all the appearances of a read (a short DNA sequence)
in a genome (a very long DNA sequence) for disease diagnosis or some other purposes. Due to polymorphisms or mutations
among individuals or even sequencing errors, the read may disagree in some positions at any of its occurrences in the
genome.

As an example, consider a target s = ccacacagaagcc, and a pattern r = aaaaacaaac. Assume that k = 4. Let us see whether
there is an occurrence of r with k mismatches that starts at the third position in s.

✩ This work is supported by NSERC, Canada, 239074-01 (242523). The article is a modification and extension of a paper published in Proc. Int. Conf. on
Data Engineering, IEEE, April 19–22, 2017, USA [14]. Permission to make digital or hardcopies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the first page
or initial screen of a display along with the full citation. Copyrights for components of this work owned by others than ACM must be honored. Abstracting
with credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this work in other works
requires prior specific permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY
10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.

E-mail address: y.chen @uwinnipeg .ca (Y. Chen).

https://doi.org/10.1016/j.tcs.2018.02.001
0304-3975/© 2018 Published by Elsevier B.V.

https://doi.org/10.1016/j.tcs.2018.02.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
Query text:
Inserted query:
Q1: Your article is registered as a regular item and is being processed for inclusion in a regular issue of the journal. If this is NOT correct and your article belongs to a Special Issue/Collection please contact <S.Selvi@elsevier.com> immediately prior to returning your corrections.

Query text:
Inserted query:
Q2: The author names have been tagged as given names and surnames (surnames are highlighted in teal color). Please confirm if they have been identified correctly and are presented in the desired order.

Query text:
Inserted query:
Q3: Please indicate which author(s) should be marked as `Corresponding author'.

Query text:
Inserted query:
Q4: IMPORTANT!!! Please note that your MS Word manuscript was converted to LaTeX in the appropriate Journal layout and style. Therefore, the final proof might have some flaws. Kindly please check your proof carefully in this regard.

Query text:
Inserted query:
Q5: Please check the e-mail address that has been added here, and correct if necessary.

Original text:
Inserted Text:
Given name

Original text:
Inserted Text:
Surname

Original text:
Inserted Text:
Given name

Original text:
Inserted Text:
Surname

Original text:
Inserted Text:
\cny {Canada} \postcode {R3B 2E9}

mailto:y.chen@uwinnipeg.ca
https://doi.org/10.1016/j.tcs.2018.02.001

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.2 (1-25)

2 Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
a a a a a c a a a c
c c a c a c a g a a g c c

| | | |
At only four locations s and r have different characters, implying an occurrence of r starting at the third position of s.
Note that the case k = 0 is the extensively studied exact string matching problem.
This topic has received much attention in the research community and many efficient algorithms have been proposed,

such as [2,16,21,29,35,44]. Among them, [21] and [29] are two on-line algorithms (using no indexes) with the worst-case
time complexities bounded by O(kn +m log m), where n = |s| and m = |r|. By these two methods, the mismatching information
among substrings of r is used to speed up the working process. The methods discussed in [2] and [44] are also on-line
strategies, but with a slightly better time complexity O(n

√
k log k) by utilizing the periodicity within r. Only the algorithms

discussed in [16,35] are index-based. By the method discussed in [16], a (compressed) suffix tree over s is created. Then,
a brute-force tree searching is conducted to find all the possible string matchings with k mismatches. Its time complexity is
bounded by O(m +n + (c log n)k/k!), where c is a very large constant. For DNA databases, this time complexity can be much
worse than O(nk) since n tends to be very large and k is often set to be larger than 10. By the method discussed in [35],
s is transformed to an array by using the Burrows-Wheeler transformation (denoted BWT(s)) [1] as part of an index, called
F M-index [20]. In comparison with suffix trees, BWT(s) uses much less space [20]. However, the time complexity of [35] is
bounded by O(mn′ + n), where n′ is the number of leaf nodes of a tree produced during the search of BWT(s). Again, this
time requirement can also be much worse than the best on-line algorithm for large patterns. Thus, simply indexing s is not
always helpful for k mismatches. The reason for this is that in both the above index-based methods neither mismatching
information nor periodicity within r is employed, leading to a lot of redundancy, which shadows the benefits brought by
indexes. However, to use such information efficiently and effectively in an indexing environment is very challenging since
in this case s will no longer be scanned character by character and the auxiliary information extracted from r cannot be
simply integrated into an index searching process.

In this paper, we address this issue, and propose a new method for the k-mismatch problem, based on the Burrows–
Wheeler transformation (BWT-transformation for short), but with the mismatching information within r being effectively
utilized.

Specifically, two techniques are introduced, which will be combined with a scanning of BWT(s)):

• An efficient method to calculate the mismatches between r[i..m] and r[j..m] (i, j ∈ {1, . . . , m}, i �= j), where r[i..m]
represents a substring of r starting from position i and ending at position m. The mismatches between them is stored
in an array R such that if R[p] = q then we have r[i + q − 1] �= r[j + q − 1] and it is their pth mismatch.

• A new tree structure D to store the mismatches between r and different segments of s. In D , each node v stores an
integer i, indicating that there are some positions i1, i2, . . . , il in s such that s[iq + i − 1] �= r[i] (q = 1, . . . , l). If v is at
the pth level of D , it also shows that it is the pth mismatch between each s[iq ..iq + i − 1] and r.

By using these two techniques, the time complexity can be reduced to O(kn′ +n). In the case of m ≥ 2(k +1), the average
value of n′ is bounded by O((1 + 1

|Σ |)
k+1), where Σ is the alphabet. Our experiment over a DNA database shows that n′ � n.

The remainder of the paper is organized as follows. In Section 2, we review the related work. In Section 3, we briefly
describe how a Burrows–Wheeler transformation can be used to speed up string matches. Section 4 is devoted to the
discussion of our algorithm to find all the occurrences of r in s, but up to k mismatches. In Section 5, the time complexity
of the algorithm is analyzed. In Section 6, we discuss how our method can be further improved by using the so-called
rankALL mechanism and the multi-character checking. Section 7 reports the test results. Finally, we conclude with a short
summary and a brief discussion on the future work in Section 8.

In the Appendix A, we show all the notations and symbols used in the paper for reference.

2. Related work

The string matching problem has always been one of the main focuses in computer science. A huge number of algorithms
have been proposed. Roughly speaking, all of them can be divided into two categories: exact matching and inexact matching.
In the first case, all the occurrences of a pattern string r in a target string s will be searched. In the second case, a best
alignment between r and s (i.e., a correspondence with the highest score) is searched in terms of a given distance function
or a score matrix M , which is established to indicate the relevance between different characters.

– Exact matching

The first interesting algorithm for this problem is the famous Knuth–Morris–Pratt’s algorithm [27], which scans both r
and s from left to right and uses an auxiliary next-table (for r) containing the so-called shift information (or say, failure
function values) to indicate how far to shift the pattern from right to left when the current character in r fails to match the
current character in s. Its time complexity is bounded by O(m + n), where m = |r| and n = |s|. (By the shift information, we
mean a largest integer j associated with a position i in r such that r[1.. j] = r[i − j + 1..i]. Thus, if the current character

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.3 (1-25)

Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–••• 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
from the target does not match r[i + 1], we will compare r[j + 1] with the character next to the current one at a next step.)
The Boyer–Moore’s approach [9,21] works a little bit better than the Knuth–Morris–Pratt’s. In addition to the next-table,
a skip-table skip of size | ∑ | (also for r) is kept, in which each entry skip[w] is a smallest integer j such that r[m − j] = w .
For a large alphabet and small pattern, the expected number of character comparisons is about n/m, and is O(m + n) in the
worst case. These two methods have sparked a series of subsequent research on this problem [1,32,50,51]. Especially, the
idea of the ‘shift information’ has also been adopted by Aho and Corasick [1] for multiple pattern matches, by which s is
searched for an occurrence of any one of a set of l patterns: {r1, r2, . . . , rl}. Their algorithm needs only O

∑l
i=1 |r1| +n) time.

This method has been slightly improved in different ways. In [18], Commentz-Walter combines the Boyer–Moore’s technique
into the Aho–Corasick’s algorithm. In [55], Wu and Manber extend the Boyer–Moore’s algorithm to currently search multiple
pattern strings. Instead of using bad character heuristics to compute shift values, they utilize a character block containing
2 or 3 characters. In addition, hash tables are created to link the blocks and the related patterns. In [56], a concept of
superalphabets is introduced, in which each (super) character corresponds to a set of q-grams (each being a substring from a
certain pattern and represented as a bit string, called a signature, generated by using a hash function). In this way, a super
automaton can be created, in which each transition is labeled with a super character. s will also be handled as a sequence
of q-grams and searched in the same way as the Aho and Corasick’s algorithm. The main problem of this method is the false
positive and a very time-consuming verification process is needed. In [12], Crochemore et al. combine the directed acyclic
word graphs into the Aho–Corasick’s algorithm. If the total length of all patterns is polynomial with respect to the shortest
length m′ of a pattern, the average number of comparisons is O((n/m′) log m′).

However, all the improved algorithms have the same worst-case time complexity as the Aho–Corasick’s.
In situations where a fixed string s is to be searched repeatedly, it is worthwhile constructing an index over s, such as

suffix trees [42,53], suffix arrays [40], and more recently the Burrows–Wheeler transformation [10,13,35,36]. A suffix tree is
in fact a trie structure [26] over all the suffixes of s; and by using the Weiner’s algorithm [53] it can be built in O(n) time.
However, in comparison with the Burrows–Wheeler transformation, a suffix tree needs much more space. Especially, for
DNA sequences the Burrows–Wheeler transformation works highly efficiently due to the small alphabet Σ of DNA strings.
By the Burrows–Wheeler transformation, the smaller Σ is, the less space will be occupied by the corresponding indexes.
According to a survey done by Li and Homer [37] on sequence alignment algorithms for next-generation sequencing, the
average space required for each character is 12–17 bytes for suffix trees while only 0.5–2 bytes for the Burrows–Wheeler
transformation. Our experiments also confirm this distinction [13,15]. For example, the file size of chromosome 1 of human
is 270 Mb. But its suffix tree is of 26 Gb in size while its Burrows–Wheeler transformation needs only 390 Mb–1 Gb for
different compression rates of auxiliary arrays, completely handleable on PC or laptop machines.

By the hash-table-based algorithms [25], short substrings called ‘seeds’ will be first extracted from a pattern r and a
signature (a bit string) for each of them will be created. The search of a target string s is similar to that of the Brute
Force searching, but rather than directly comparing the pattern at successive positions in s, their respective signatures are
compared. Then, stick each matching seed together to form a complete alignment. Its expected time is O(m + n), but in the
worst case, which is extremely unlikely, it takes O(mn) time. The hash technique has also been extensively used in the DNA
sequence research [23,33,38,47]. However, almost all experiments show that they are generally inferior to the suffix tree
and the FM index in both running time and space requirements.

– Inexact matching

By the inexact matching, we will find, for a certain pattern r and an integer k, all the substrings s′ of s such that d(s′, r)
≤ k, where d is a distance function. In terms of different distance functions, we distinguish between two kinds of inexact
matches: string matching with k mismatches and string matching with k errors. A third kind of inexact matching is that
involving Don’t Care, or wild-card symbols which match any single symbol, including another Don’t Care.

k mismatches When the distance function is the Hamming distance, the problem is known as the string matching with
k mismatches [2,30]. By the Hamming distance, the number of differences between r and the corresponding substring s′
is counted. There are a lot of algorithms proposed for this problem, such as [2,4,5,22,29,30,44,50,51]. They are all on-line
algorithms. Except those discussed in [2,5,22,29,30,44], all the other methods have the worst-case time complexity O(mn).
In [5], a method called the shift-add is discussed, by which the mismatches are represented by bit strings and the bit
string ‘shift’ and bit-wise ‘and’ operations are used to check string matches. But this method is efficient only for small
string patterns (i.e., when m log m is smaller than the system word-size). For large patterns, multiple-precision arithmetic
operations are required in the manipulation of s and the pre-process of r, and the running time then becomes quadratic.
The methods discussed in [22] and [30], however, need only O(kn + m logm) time, by which the mismatching arrays for r
are precomputed and exploited to speed up the search of s. The methods discussed in [2,44] work slightly better, by which
the periodicity within r is utilized. Their time complexity is bounded by O(n

√
k log k). The algorithm discussed in [35] is

index-based, by which s is transformed to BWT(s), used as an index. Its time complexity is bounded by O(mn′ + n), where
n′ is the number of leaf nodes of a tree produced during the search of BWT(s). If m is large, it can be worse than all those
on-line methods discussed in [2,22,30,44]. Another index-based method is based on a brute-force searching of suffix trees
[16]. Its time complexity is bounded by O(m + n + (c log n)k/k!), where c is a very large constant. It can also be worse than
an on-line algorithm when n is large and k is larger than a certain constant.

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.4 (1-25)

4 Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 1. Rotation of a string.

k errors When the distance function is the Levenshtein distance, the problem is known as the string matching with k
errors [4]. By the Levenshtein distance, we have

di, j = min
{

di−1, j + w(ri, φ),di, j−1 + w
(
φ, s′

j

)
,di−1, j−1 + w

(
ri, s′

j

)}
,

where di, j represents the distance between r[1..i] and s′[1.. j], ri (s′
j) the ith character in r (resp. jth character in s′), φ an

empty character, and w(ri, s′
j) the cost to transform ri into s′

j .
Also, many algorithms have been proposed for this problem [6,11,19,52]. They are all some kinds of variants of the dy-

namic programming paradigm with the worst-case time complexity bounded by O(mn). However, by the algorithm discussed
in [11], the expected time can reach O(kn).

don’t care As a different kind of inexact matching, the string matching with Don’t-Cares has been a third active research
topic for decades, by which we may have wild-cards in r, in s, or in both of them. A wild card matches any character. Due to
this property, the ‘match’ relation is no longer transitive, which precludes straightforward adaption of the shift information
used by Knuth–Morris–Pratt and Boyer–Moore. Therefore, all the methods proposed to solve this problem seem not so skillful
and in general need a quadratic time [45]. Using a suffix array as the index, however, the searching time can be reduced to
O(log n) for some patterns, which contain only a sequence of consecutive Don’t Cares [41].

3. Burrows–Wheeler transformation

In this section, we give a brief description of the Burrows–Wheeler transformation to provide a discussion background.

3.1. BWT and string searching

We use s to denote a string that we would like to transform. Assume that s terminates with a special character $,
which does not appear elsewhere in s and is alphabetically prior to all other characters. In the case of DNA sequences with
Σ = {a, c, g, t}, we have $ < a < c < g < t . As an example, consider s = ccagaca$. We can rotate s consecutively to create
eight different strings, and put them in a matrix as illustrated in Fig. 1(a).

Now we sort the rows of the matrix alphabetically, and get another matrix, as shown in Fig. 1(b), which is called the
Burrow-Wheeler Matrix [10] and denoted as BWM(s). In particular, the last column L of BWM(s), read from top to bottom,
is called the Burrows–Wheeler transform and denoted as BWT(s). So, for s = ccagaca$, we have BWT(s) = acgcac$ a (see
Fig. 1(c)). The first column is referred to as F .

Special attention should be paid to Fig. 1(b) and 1(c). In both of them, for ease of explanation, the position of a character
in s is represented by its subscript. (That is, we rewrite s as c1c2a1 g1a2c3a3$.) For example, a2 representing the second
occurrence of a in s; and c1 the first occurrence of c in s. In the same way, we can check all the other occurrences of
different characters.

When ranking the elements e in both F and L in such a way that if e is the ith appearance of a certain character it
will be assigned i, the same element will get the same number in these two columns. For example, in F the rank of a3,
denoted as rkF (a3), is 1, showing that a3 is the first occurrence of a in F . Its rank in L, rkL (a3) is also 1. (See Fig. 2(a) for
illustration.) We can check all the other elements and find that this property, called the rank correspondence (also known as
L F -mapping [20]), holds for all the elements. That is, for any element e in s, we always have

rkF (e) = rkL(e) (1)

Thanks to this property, a string searching can be very efficiently conducted. To see this, let us consider a pattern string
r = aca and try to find all its occurrences in s = ccagaca$.

First, we notice that we can store F as |Σ | +1 intervals, such as F$ = F [1..1], Fa = F [2..4], Fc = F [5..7], F g = F [8..8], and
Ft = ∅ (empty set) for the above example (see Fig. 1(c).) We can also represent a segment within an Fx (with x ∈ Σ) as a

Original text:
Inserted Text:
skilful

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.5 (1-25)

Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–••• 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 2. Sample trace.

pair of the form 〈x, [α, β]〉, where α ≤ β are two ranks of x. Thus, we have Fa = F [2..4] = 〈a, [1, 3]〉, Fc = F [5..7] = 〈c, [1, 3]〉,
and F g = F [8..8] = 〈g, [1, 1]〉.

We will also use Yx and Zx to represent the positions of the first and the last element of Fx in F , respectively. For
example, Ya is 2 and Za is 4. Then, for a given 〈x, [α, β]〉, its segment in F can be easily determined: F [Yx + α − 1..Yx +
β − 1]. In addition, we can use Lπ to represent a range in L corresponding to a pair π = 〈x, [α, β]〉. For example, in Fig. 1(c),
L〈a,[1,3]〉 = L[2..4], L〈a,[2,3]〉 = L[3..4], L〈c,[1,2]〉 = L[5..6], and so on.

Finally, we use a procedure search(z, π) to search Lπ to find the first and the last rank of z (denoted as α′ and β ′ ,
respectively, which then make up an interval [α′ , β ′]) within Lπ , and return 〈z, [α′, β ′]〉 as the result:

search(z,π) =
{ 〈

z, [α′, β ′]〉, if z appears in Lπ ;
φ, otherwise.

(2)

To locate r in s, we work on the characters in r in the reverse order (referred to as a backward search). That is, we will
search r̄ (reverse of r) against BWT(s), as shown below.

Trace of searching r̄ against s:
Step 1: Check r[3] = a in the pattern string r, and then figure out Fa = F [2..4] = 〈a, [1, 3]〉. (See Fig. 2(a) for illustration.)
Step 2: Check r[2] = c. Call search(c, L〈a,[1,3]〉). It will search L〈a,[1,3]〉 = L[2..4] to find a range bounded by the first and

last rank of c. Concretely, we will find rkL (c3) = 1 and rkL (c2) = 2. So, search(c, L〈a,[1,3]〉) returns 〈c, [1, 2]〉. It is F [5..6]
since Yc + 1 − 1 = 5 and Yc + 2 − 1 = 6 (see Fig. 2(b)).

Step 3: Check r[3] = a. Call search(a, L〈c,[1,2]〉). Notice that L〈c,[1,2]〉 = L[5..6]. So, search(a, L〈c,[1,2]〉) returns 〈a, [2, 2]〉. It is
F [2..2]. Since now we have exhausted all the characters in r and F [2..2] contains only one element, one occurrence of r in
s is found. It is represented by a2 in s (see Fig. 2(c)). (In general, let l be the number of entries in the segment (in F) found
in the last step of such a process. Then, there are l occurrences of r in s with each indicated by an entry in that segment.)

The above working process can be represented as a sequence of three pairs: 〈a, [1, 3]〉, 〈c, [1, 2]〉, 〈a, [2, 2]〉. In general, for
r̄ = c1 · · · cm , its search against BWT(s) can always be represented as a sequence of pairs (with each made up of a character
and an interval):〈

x1, [α1, β1]
〉
, . . . ,

〈
xm, [αm, βm]〉,

where 〈x1, [α1, β1]〉 = Fx1 , and 〈xi, [αi, βi]〉 = search(xi, Lxi−1,[αi−1,βi−1]) for 1 < i ≤ m. We call such a sequence as a search
sequence. Thus, the time used for this process is bounded by O(

∑m
i=1 τi), where τi is the time for an execution of search(xi ,

Lxi−1,[αi−1,βi−1]). However, this time complexity can be reduced to O(m) by using the so-called rankAll method (with more
space to be used [10]) and the multi-character checking to be discussed in Section 6.

From the above discussion, we can observe a most important property of the Burrows–Wheeler transformation, by which
we check, in each step, a subset of characters (represented by a subsegment of F) from a target string s while by any on-line
strategy only one character from s is checked in each step.

3.2. Construction of BWT(s)

A BWT(s) can be constructed in terms of a relationship to the suffix arrays [10,48].
As mentioned above, a string s = a1a1...an is always ended with $ (i.e., ai ∈ Σ for i = 1, . . . , n − 1, and an = $). Let

s[i] = ai (i = 1, 2, . . . , n) be the ith character of s, s[i.. j] = ai ...a j a substring and s[i..n] a suffix of s. Suffix array H of s
is a permutation of the integers 1, ..., n such that H[i] is the start position of the ith smallest suffix [40]. The relationship
between H and L = BWT(s) can be determined by the following formulas:{

L[i] = $, if H[i] = 1;
(3)
L[i] = s[H[i] − 1], otherwise.

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.6 (1-25)

6 Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 3. Search for string matching with 2 mismatches.

Since a suffix array can be generated in O(n) time (cf. for instance [57]), L can then be created in linear time. However,
most algorithms for constructing suffix arrays require at least O(n log n) bits of working space, which is prohibitively high
and amounts to 12 GB for the human genome. Recently, Hon et al. [54] proposed a space-economical algorithm that uses
n bits of working space and requires only <1 GB memory at peak time for constructing L of the human genome. This
algorithm is further improved by Nong [58], whose approach needs only O(|Σ | log n)-bits space. Either of the methods can
be used for our purpose.

4. String matching with k mismatches

4.1. Basic working process

By the string matching with k mismatches, we allow up to k characters in a pattern r to match different characters in
a target s. By using the FM index, for finding all such string matches, a tree structure will be generated, in which each
path corresponds to a search sequence discussed in the previous section. It is due to the possibility that a position in r
may be matched to different characters in s and we need to call search() multiple times to do this task, leading to a tree
representation.

Definition 1 (Search tree). Let r be a pattern string and s be a target string. The search of r against BWT(s̄) (which is
equivalent to the search of r̄ against BWT(s)) can be represented as a tree structure called a search tree T (S-tree for
short). In T , each node is a pair of the form 〈x, [α, β]〉), and there is an edge from v(= 〈x, [α, β]〉) to u(= 〈x′, [α′, β ′]〉) if
search(x, Lv) = u. Then, each path in T represents a process to find an occurrence of r in s with at most k mismatches.

As an example, consider the case where r = acacc, s = acagacc and k = 2. To find all occurrences of r in s with up to
two mismatches, a search tree T shown in Fig. 3 will be created.

In Fig. 3, v0 is a virtual root, representing the whole L, and ‘virtually’ corresponds to the virtual starting character r[0]
= ‘–’. By exploring paths P1 = v1 → v4 → v10 → v16 → v21 and P3 = v1 → v5 → v12 → v18 → v22, we will find two
occurrences of r with at most 2 mismatches: s[1..5](= a1c1a2 g1a3) and s[3..7] (= a2 g1a3c2c3) while by any of other paths
P2, P4, P5, P6 and P7 no string matching with at most 2 mismatches can be found.

A node 〈x, [α, β]〉 in such a tree is called a matching node if it corresponds to a same character in r. Otherwise, it is
called a mismatching node. For example, node v1 = 〈a, [1, 3]〉 is a matching node since it corresponds to r[1] = a while
v16 = 〈g, [1, 1]〉 is a mismatching node since it corresponds to r[4] = c.

For a path Pl , we can store all its mismatching positions in an array Bl of length k + 1 such that Bl[i] = j if Pl[j] �=
r[j] and this is the ith mismatch between Pl and r, where Pl[j] is the jth character appearing on Pl . If the number of
mismatches, k′ , say, between Pl and r is less than k + 1, then the default value from position k′ + 1 to k + 1 is ∞, i.e.,

Bl
[
k′ + 1

] = Bl
[
k′ + 2

] = · · · = Bl[k + 1] = ∞.

We call Bl a mismatch array. For instance, in Fig. 3, for P1, we have B1 = [4, 5, ∞], indicating that at position 4, we have
the first mismatch P1[4] = g �= r[4] = c and at position 5 we have the second mismatch P1[5] = a �= r[5] = c. For the same
reason, we have B2 = [3, 4, ∞], B3 = [2, ∞, ∞], B4 = [1, 2, 3], B5 = [1, 3, ∞], B6 = [1, 2, ∞], and B7 = [1, 2, 3].

These data structures can be easily created by maintaining and manipulating a temporary array B of length k + 1 to
record the mismatches between the current path P and r. Initially, each entry of B is set to be ∞ and an index variable i
pointing to the first entry of B . Each time a mismatch is met, its position is stored in B[i] and then i is increased by 1. Each
time r is exhausted or B becomes full (i.e., each entry is set a value not equal to ∞), we will store B as a Bl (and associate
it with the leaf node of the corresponding Pl). Then, ‘backtrack’ to the lowest ancestor of the current node, which has at

Original text:
Inserted Text:
mismatchines

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.7 (1-25)

Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–••• 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
least a branch not yet explored, to search a new path. For instance, when we check v21, r is exhausted and the current
value of B is [4, 5, ∞]. We will store B in B1 (the array associated with the leaf node v21 of P1) and ‘backtrack’ to v4 to
explore a new path P2. At the same time, all those values in B , which are set after v4, will be reset to ∞, i.e., B will be
changed to [∞, ∞, ∞].

Now we consider another path P4. The search along it will stop at v13 since when reaching it B becomes full (B =
[1, 2, 3]). Therefore, the search will not be continued, and v19, v23 will not be created.

It is essentially a brute-force search to check all the possible occurrences of r in s. Denote by n′ the number of leaf nodes
in T . The time used by this process is bounded by O(mn′).

In fact, what is described above is the main process discussed in [35]. That is, during the execution of the algorithm pro-
posed in [35], an S-tree will be generated. The only difference is that in [35] a simple heuristics is used, which precomputes,
for each position i in r, the number μ(i) of consecutive, disjoint substrings in r[i..m], which do not appear in s. For exam-
ple, in Fig. 3, μ(1) = 1 since in r[1..5] = acacc we have a substring: r[1..4] = acac, which does not occur in s = acagacc. But
μ(3) = 0 since any substring in r[1..3] = acc does appear in s. Assume that the number of mismatches between r[1..i − 1]
and P [1..i − 1] (the current path) is l. Then, if k − l < μ(i), we can immediately stop exploring the subtree rooted at P [i − 1]
as no satisfactory answers can be found by exploring it.

The time required to establish such a heuristics is O(n) by using BWT(s) [35]. However, the theoretic time complexity of
this method is still O(mn′ + n). Even in practice, this heuristics is not quite helpful since μ(i) delivers only the information
related to r[i..m] and the whole s, rather than the information related to r[i..m] and the relevant substrings of s, to which
it will be compared. To see this, pay attention to part of the tree marked grey in Fig. 3. Since μ(3) = 0, the search along P7
will be continued. But no answer can be found. The heuristics here is in fact useless since it is not about r[3..5] and s[5..7],
which is to be checked in the subsequent computation.

4.2. Mismatching information

Searching S-trees is an improvement over scanning strings, but it often happens that there are repetitive traversals of
similar subtrees due to the multiple appearances of a same pair. (For example, node v16 is exactly the same as node v5.)
However, such repeated appearance of pairs cannot be simply removed since they may be aligned to different positions in r.
For example, the first appearance of 〈g, [1, 1]〉 (v16 in Fig. 3) is compared to r[4] while its second appearance of it (v5) is
to r[2]. Hence, we cannot use the result computed for v16 (when 〈g, [1, 1]〉 is first met) as the result for v5.

However, if we have stored the mismatching information R between substrings of r, like r[4..5] and r[2..3], in some way,
the mismatches along P3 can be (partially) derived from R and B1 (the mismatches recorded for P1), instead of simply
exploring P3 again in a way done for P1. To do so, for each pair i, j ∈ {1, . . . , m}, we need to maintain a data structure Rij

containing the positions of the first k + 1 mismatches between r[i..m − q + i] and r[j..m − q + j], where q = max{i, j}, such
that if Rij[l] = f (�= ∞) then r[i + f − 1] �= r[j + f − 1] or one of them does not exist, and it is the lth mismatch between
them. For example, for r = acacc, we have R23 = [1, 2, ∞, ∞, ∞]. It is because r2 = r[2..5] = cacc, r3 = r[3..5] = acc, and the
first two characters of them are not equal.

This design is inspired by the method discussed in [30], but with essential difference. By [30], only R12, . . . , R1m (giving
the positions of the mismatches between the pattern r and its suffixes r[2..m], r[3..m], . . . , r[m..m]) are created. (See Fig. 4(b)
for illustration.) During the scanning of s, r will be matched with the substrings of s from left to right. At each step, when r
is checked against s[j.. j +|r| − 1], for instance, R1 j and R1i for some i < j, as well as the mismatching information between
r and s[i..i + |r| − 1] will be used to derive part of mismatches between r and s[j.. j + |r| − 1] (see [30] to know how i is
determined).

By ours, however, all Rij ’s (i, j ∈ {1, . . . , m}) may be required, and clearly O(km2) time and space are needed to generate
such information. For this reason, we will only precompute R12, . . . , R1m , and derive the others whenever it is necessary.

In Fig. 4(b), we show the running pattern r = acacc and all the possible right-to-left shifts: r1 = r[1..5] = acacc, r2 =
r[2..5] = cacc, r3 = r[3..5] = acc, and so on. In Fig. 4(c), we give R12, . . . , R15 for r1. In an R1i (i = 2, . . . , 5), if the number of
mismatches, k′ , say, between r[1..m − i] and r[i + 1..m] is less than 2k + 1, then the default value ∞ from position k′ +1
onwards, i.e.,

R1i[k′ + 1] = R1i[k′ + 2] = · · · = R1i[2k + 1] = ∞.
We will also use δ(R1i) to represent the number of all those entries in R1i , which are not ∞. Trivially, R11 is set to be

[∞, . . . , ∞] and therefore δ(R11) = 0.
Using the algorithm of [30], R12, . . . , R1m can be constructed in O(m log m) time, just before the process for the string

matching gets started. In addition, we need to keep 2k + 1, rather than k + 1 mismatches in each R1i (i = 2, . . . , m), since
for generating an R1 j , up to 2k + 1 mismatches in some R1i with i < j are needed to get an efficient algorithm (see [30] for
detailed discussion).

Each time we meet a node u (compared to a certain r[j]), which is the same as an already encountered one v (compared
to an r[i]), we need to derive dynamically the relevant mismatches, Rij , between r[i..m − q + i] and r[j..m − q + j] from R1i

and R1 j , as well as r, to compute mismatching information for some new paths to avoid exploring them by using search().
(A node 〈x, [α, β]〉 is said to be the same as another node 〈x′, [α′, β ′]〉 if x = x′ , α = α′ and β = β ′ .) For this purpose, we
design a general algorithm to create Rij efficiently.

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.8 (1-25)

8 Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 4. Illustration for table R .

Fig. 5. Illustration for merge().

• Let ω, ω1 and ω2 be three strings. Let A1 and A2 be two arrays containing all the positions of mismatches between ω
and ω1, and ω and ω2, respectively.

• Create a new array A such that if A[i] = j (�= ∞), then ω1[j] �= ω2[j], or one of them does not exists. It is the ith
mismatch between them.

The algorithm works in a way similar to the sort–merge–join, but with a substantial difference in handling a case when
an entry in A1 is checked against an equal entry in A2. In the algorithm, two index variables p and qare used to scan A1
and A2, respectively. The result is stored in A.

1. If one of A2 and A1 is φ, set A to φ and return. (A = φ means that A is empty.)
2. p := 1; q := 1; l := 1;
3. If A2[q] < A1[p], then {A[l] := A2[q]; q := q + 1; l := l + 1; }
4. If A1[p] < A2[q], then {A[l] := A1[p]; p := p + 1; l := l + 1; }
5. If A1[p] = A2[q], then {if ω1[p] �= ω2[q], then {A[l] := q; l := l + 1;} p := p + 1; q := q + 1;}
6. If p > |A1|, q > |A2|, or both A1[p] and A2[q] are ∞, stop (if A1 or A2 has some remaining elements, which are not ∞,

first append them to the rear of A, and then stop.)
7. Otherwise, go to (3).

We denote this process as merge(A1, A2, ω1, ω2). As an example, let us consider the case where A1 = R12 =
[1, 2, 3, ∞, ∞] (representing the mismatches between ω = r[1..5] = acacc and ω1 = r[2..4] = cacc), A2 = R13 = [3, ∞,

∞, ∞, ∞] (the mismatches between ω and ω2 = r[3..5] = acc), and demonstrate the execution of merge(A1, A2, ω1, ω2)

in Fig. 5. The result is A = [1, 2, ∞, ∞, ∞], showing the mismatches between these two substrings.
In step 1: p = 1, q = 1, l = 1. We compare A1[p] = A1[1] and A2[q] = A2[1]. Since A1[1] = 1 < A2[1] = 3, A[1] is set to

be equal to A1[1] = 1. p := p + 1 = 2, q is not changed, l := l + 1 = 2.
In step 2: p = 2, q = 1, l = 2. We compare A1[2] and A2[1]. Since A1[2] = 2 < A2[1] = 3, A[2] is set to be equal to

A1[2] = 2. p := p + 1 = 3, q is not changed, l := l + 1 = 3.
In step 3: p = 3, q = 1, l = 3. We compare A1[3] and A2[1], and find that A1[3] = A2[1] = 3. So, we need to compare

ω1[3] and ω2[3]. Since ω1[3] = ω2[3] = c, A[3] is still ∞. p := p + 1 = 4, q := q + 1 = 2, l is not changed.
In step 4: p = 4, q = 2, l = 3. We compare A1[4] and A2[2], and find that both A1[4] and A2[2] are ∞. Stop.
Obviously, the running time of this process is bounded by O(2k + 1).

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.9 (1-25)

Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–••• 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Proposition 1. Let A be the result of merge(A1, A2 , ω1 , ω2) with A1 , A2 , ω1 , ω2 defined as above. Let k′ be the number of mismatches
between ω1 and ω2 . Then, A[i] must be the position of the ith mismatch between ω1 and ω2 , or ∞, depending on whether i is
≤ k′ .

Proof. Consider ω2[j]. Position j may satisfy either, neither, or both of the following conditions:

i) j corresponds to the lth mismatch between ω and ω2 for some l, i.e., ω[j] �= ω2[j] and A2[l] = j.
ii) j corresponds to the f th mismatch between ω and ω1 for some f , i.e., ω[j] �= ω1[j] and A1[f] = j.

If (i) holds, but (ii) not, step (3) in merge(A1, A2, ω1, ω2) will be executed. Since in this case, we have ω[j] �= ω2[j] and
ω[j] = ω1[j], step (3) is correct.

If (ii) holds, but (i) not, step (4) will be executed. Since in this case, we have ω[j] �= ω1[j] and ω[j] = ω2[j], step (4) is
also correct.

If both (i) and (ii) hold, no conclusion concerning ω1[j] and ω2[j] can be drawn and we need to compare them. In this
case, step (5) is executed. If neither (i) nor (ii) is satisfied, we must have ω[j] = ω2[j] and ω[j] = ω1[j]. So ω2[j] = ω1[j],
i.e., we have a matching at j. �

4.3. Main idea: mismatching information derivation

Now we are ready to present the main idea of our algorithm, which is similar to the generation of an S-tree described
in Subsection 4.1. However, each time we meet a node u (compared to a position in r, say, r[j]), which is the same as a
previous one v (compared to a different position in r, say, r[i]), we will not explore T [u] (the subtree rooted at u), but do
the following operations to derive the relevant mismatching information:

First, we will create Rij by executing merge(R1i, R1 j, r[i..m − q + i], r[j..m − q + j]), where q = max{i, j}. Then, we will
create a set of mismatch arrays for all the sub-paths in T [u], which start at u and end at a leaf node, by doing two steps
explained below.

• For each path Pl going through v , figure out a sub-array of Bl , denoted as Bi
l , containing only those values in Bl , which

are larger than or equal to i. Moreover, each value in it will be decreased by i − 1. (For example, for B4 = [1, 2, 3], we
have B1

4 = [1, 2, 3], B2
4 = [1, 2], B3

4 = [2], B4
4 = B5

4 = φ.)
• Create the mismatch arrays for all the paths going through u by executing merge(Bi

l , Rij , Pl[i..ml], r[j..m]) for each Pl ,
where ml = |Pl|.

We denote this process as mi-creation (u, v , j, i).
As an example, consider v3 (in Fig. 3, labeled 〈g, [1, 1]〉 and compared to r[1] = a), which is the same as v5 (compared

to r[2] = c). By executing mi-creation (v3, v5, 1, 2), the following operations will be performed, to avoid repeated generation
of the corresponding subtree (i.e., part of P7 shown in Fig. 6(a)):

1. Create R21:
R12 = [1, 2, 3, 4, ∞], R11 = [∞, ∞, ∞, ∞, ∞].
R21 = merge(R12, R11, r[2..5], r[1..4]) = [1, 2, 3, 4].

2. Create part of mismatch information for P7:
B3 = [2, ∞, ∞], B2

3 = [1, ∞, ∞]. P3[2..5] = gacc, r[1..4]) = acac. merge(B2
3, R21, P1[2..5], r[1..4]) = [1, 2, 3].

In general, we will distinguish between two cases:

(i) i < j. This case can be illustrated in Fig. 6(b). In this case, the mismatching information for the new paths can be
completely derived.

(ii) i > j. This case can be illustrated in Fig. 6(c), in which only part of mismatching information for the new paths can be
derived. Thus, after the execution of merge(), we have to continue to extend the corresponding paths.

Therefore, among different appearances of a certain node v , we should always use the one compared to r[i] with i being
the least to derive as much mismatching information as possible for the to be created paths.

Finally, we notice that it is not necessary for us to consider the case i = j since the same node will never appear at the
same level more than once. The following lemma is easy to prove.

Lemma 1. In an S-tree T , if two nodes are with the same pair, then they must appear at two different levels.

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.10 (1-25)

10 Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 6. Illustration for derivation of mismatch information.

4.4. Algorithm description

The main idea presented in the previous subsection can be dramatically improved. Instead of keeping a Bl for each Pl ,
we can organize all Bl ’s into a tree structure, called a mismatch tree, to store the mismatching information for all the created
paths. First, we define two simple concepts related to S-trees.

Definition 2 (Match path). A sub-path in an S-tree T is called a match path if each node on it is a matching node in T .

Definition 3 (Maximal match sub-path). A maximal match sub-path (MM-path for short) in an S-tree T is a match sub-path
such that the parent of its first node in T is the root or a mismatching node and its last node is a leaf node or has only
mismatching nodes as its children.

For example, edge v1 → v4 → v10 in T shown in Fig. 3 is a MM-path. Path v12 → v18 → v22 is another one. The node
v7 alone is also a MM-path in T .

Based on the above concepts, we define another important concept, the so-called mismatch trees.

Definition 4 (Mismatch trees). A mismatch tree D (M-tree for short) for a given S-tree T , is a tree, in which for each
mismatching node 〈x, [α, β]〉 (compared to r[i] for some i) in T we have a node of the form 〈x, i〉, and for each MM-path
we have a node of the form 〈−, 0〉. There is an edge from u to u′ if one of the following three conditions is satisfied:

• u is of the form 〈x, i〉 corresponding to a pair 〈x, [α, β]〉 (compared to r[i]), which is the parent of the first node of an
MM-path represented by u′ in T ; or

• Both u and u′ correspond to mismatching nodes, compared to two consecutive positions in r, respectively; or
• u is of the form 〈−, 0〉 and u′ corresponds to a mismatching node which is a child of a node on the MM-path repre-

sented by u.

Without causing confusion, we will also call 〈−, 0〉 in D a matching node, and 〈x, i〉 a mismatching node.
For example, for T shown in Fig. 3, we have its M-tree shown in Fig. 7, in which u0 is a virtual root corresponding to

the virtual root of the S-tree shown in Fig. 3. Its value is set to be 〈−, 0〉 since it will be handled as a matching node. Then,
each path in the M-tree corresponds to a Bl . For instance, path u0 → u1 → u4 → u11 corresponds to B1 = [4, 5, ∞] if all
the matching nodes on the path are ignored. For the same reason, u0 → u1 → u5 → u12 corresponds to B2 = [3, 4, ∞].

In addition, we can store all the different nodes v(= 〈x, [α, β]〉) in T in a hash table with each entry associated with a
pointer to a node in the corresponding M-tree D , described as follows.

• If v is a mismatching node (compared to r[i] for some i ∈ {1, . . . , m}), a node u = 〈x, i〉 will be created in D and a
pointer (associated with v) to u will be generated.

• If v is a matching node (compared to r[i]), a node u = 〈−, 0〉 will be created in D and a pointer to u will be generated.
If the parent u′ of u itself is a matching node of the form 〈−, 0〉, u will be merged into its parent. That is, v will be
linked to u′ while u itself will not be generated.

For instance, when 〈a, [1, 3]〉 (v1 in T shown in Fig. 3) is created, it is compared to r[1] = a and we have a matching. For
this, a node u1 = 〈−, 0〉 in the M-tree D will be created. At the same time, we will insert 〈a, [1, 3]〉 into the hash table and
produce a pointer associated with it to u1 (see Fig. 7 for illustration). When 〈c, [1, 2]〉 (v4 in T shown in Fig. 3) is created,
it is compared to r[2] = c and we have a second matching node. But no node is generated for it in D . We only need to
create a link from 〈c, [1, 2]〉 (in the hash table) to u1. However, when 〈g, [1, 1]〉 (v16 in T shown in Fig. 3) is created, it is

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.11 (1-25)

Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–••• 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 7. A mismatch tree.

compared to r[4] = c and we will create a mismatching node u4 = 〈g, 4〉 in D since g �= c. Again, we will insert 〈g, [1, 1]〉
into the hash table and produce a pointer associated with it to u4 (see Fig. 7).

In order to generate D , we will use a stack S to control the process, in which each entry is a quadruple (v , j, κ , u),
where

v – a node inserted into the hash table.
j – j is an integer to indicate that v is compared to r[j].
κ – the number of mismatches between the path and r[0.. j] (recall that r[0] = ‘–’).
u– the parent of a node in D to be created for v .
In this way, the parent/child link between u and the node to be created for v can be easily established, as described

below.
Each time an entry e = (v, j, κ, u) with v = 〈x, [α, β]〉 is popped out from S , we will check whether x = r[j].

i) If x �= r[j], we will generate a node u′ = 〈x, j〉 (if x �= $) and link it to u as a child.
ii) If x = r[j], we will check whether u is a node of the form 〈−, 0〉. If it is not the case or u is the root of D , generate a

node u′ = 〈−, 0〉. Otherwise, set u′ to be u.
iii) Using search() to find all the children of v: v1, . . . , vl . Let vi = 〈yi, [αi, βi]〉 (i = 1, . . . , l). Push each (vi, j + 1, κ ′, u′)

into S with κ ′ being κ or κ + 1, depending on whether yi = r[j + 1]. If yi = r[j + 1], κ ′ = κ . Otherwise, κ ′ = κ + 1.

Obviously, in the case that x = $, j = |r|, or κ > k + 1, (iii) will not be conducted.
Finally, note that in this process it is not necessary to keep T , but insert all the nodes (of T) in the hash table as

discussed above.

Example 1. In this example, we run the above process on r = acacc and L = BWT(s̄)(s̄ = ccagaca) shown in Fig. 1(c) with
k = 2, and show its first 8 steps. The tree created is shown in Fig. 7.

Step 1: Create the root, v0 = 〈−, [1, 8]〉. Push (v0, 0, 0, φ) into S , where φ is used to represent the parent of the root D . See
Fig. 8(a).

Step 2: Pop out the top element (v0, 0, 0, φ) from S . Create the root u0 of D , which is set to be a child of φ. Push
〈v3, 1, 1, u0〉, 〈v2, 1, 1, u0〉, 〈v1, 1, 0, u0〉 into S , where v3, v2, and v1 are three children of v0. See Fig. 8(b).

Step 3: Pop out (v1, 1, 0, u0) from S . v1 = 〈a, [1.3]〉. Since r[1] = a, a matching node u1 = 〈−, 0〉 will be created and set
to be a child of u0. Then, push two entries 〈v5, 2, 1, u1〉 and 〈v4, 2, 0, u1〉 into S , where v4 is the child of v1. See
Fig. 8(c).

Step 4: Pop out (v4, 2, 0, u1) from S . v4 = 〈c, [1, 2]〉. Since r[2] = c, we would create a matching node 〈−, 0〉. However, its
parent u1 itself is a matching node. So, this new matching node will be merged into u1. Push 〈v11, 3, 1, u1〉 and
〈v10, 3, 0, u1〉 into S , where v10 and v11 are children of v4. See Fig. 8(d).

Step 5: Pop out 〈v10, 3, 0, u1〉 from S . v8 = 〈a, [2, 2]〉. r[3] = a. However, no new node is created since u1 is a matching
node. Push (v16, 4, 1, u1) into S , where v16 is the only child of v10. See Fig. 8(e).

Step 6: Pop out 〈v16, 4, 1, u1〉 from S . v16 = 〈g, [1, 1]〉. r[4] = c �= g . A mismatching node u4 = 〈g, 4〉 will be generated. Push
〈v21, 5, 2, u4〉 into S . See Fig. 8(f).

Step 7: Pop out 〈v21, 5, 2, u1〉 from S . v21 = 〈a, [3, 3]〉. r[5] = c �= a. A mismatching node u11 = 〈a, 5〉 will be generated. No
new entries will be pushed into S since now j = |r|. See Fig. 8(g).

Step 8: Pop out 〈v11, 3, 1, u1〉 from S . v11 = 〈c, [3, 3]〉. r[3] = a �= c. A mismatching node u5 = 〈c, 3〉 will be generated. Push
〈v17, 4, 1, u5〉 into S . See Fig. 8(h).

From the above sample trace, we can see that D can be easily generated. In the following, we will discuss how to extend
this process to a general algorithm for our task.

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.12 (1-25)

12 Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 8. Illustration for stack changes.

Fig. 9. Illustration for generation of subtrees in T ′ .

Fig. 10. A modified mismatch tree.

As with the basic process, each time a node v = 〈x, [α, β]〉 (compared to r[j]) is encountered, which is the same as a
previous one v ′ = 〈x′, [α′, β ′]〉 (compared to r[i]), we will not create a subtree in T in a way as for v ′ , but create a new node
u for v in D and then go along the link associated with v ′ to find the corresponding nodes u′ in D and search D[u′] in the
breadth-first manner to generate a subtree rooted at u in D by simulating the merge operation discussed in Subsection 4.2
and 4.3. In other words, D[u] (to be created) corresponds to the mismatch arrays for all the paths going though v in T ,
which will not be actually produced. See Fig. 9 for illustration.

For this purpose, we introduce a third kind of nodes of the form 〈−, ∞〉 into D to represent symbol ∞ in mismatching
arrays. For example, for k = 2, the M-tree shown in Fig. 7 will be changed to the tree shown in Fig. 10. (In the modified
tree, symbol $ will be removed if its parent has only one child since in this case it needn’t be checked.)

To search D[u′] breadth-first, a queue data structure Q is used to control the search of D[u′] and at the same time
generate D[u]. In Q , each entry e is a triplet (w , γ , h) with w being a node in D[u′], γ an entry in Rij , and h the number
of mismatching nodes on the path from the root to the node to be created in D[u]. Initially, put (u′ , Rij[1], h′) into Q ,
where h′ is the number of mismatching nodes on the path from the root to u. In the process, when e is dequeued from Q
(taken out from the front), we will make the following operations (simulating the steps in merge()):

1. Let e = (w, Rij[l], h). Assume that w = 〈z, f 〉 and Rij[l] = val.
– If 〈z, f 〉 is equal to 〈−, 0〉, then create a copy of 〈−, 0〉 added to D[u]. Let u1, . . . , ug be the children of w . We will

enqueue (append at the end) (u1, Rij[l], h), . . . , (ug , Rij[l], h) into Q in turn.

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.13 (1-25)

Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–••• 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 11. Illustration for generation of nodes in D .

– If 〈z, f 〉 is a mismatching node, do (2), (3), or (4).
– If 〈z, f 〉 is equal to 〈−, ∞〉, do (5).

2. If f < i + val − 1, add 〈z, j + f − i + 1〉 to D[u]. If h < k + 1, enqueue (u1, Rij[l], h + 14), . . . , (ug, Rij[l], h + 1) into Q .
3. If f > i + val − 1 (and f �= ∞), we will scan Rij starting from Rij[l] until we meet the largest l′ ≤ k − h + l such that

f > i + Rij[l′] − 1. For each Rij[q] (l ≤ q ≤ l′), we create a new node 〈r[i + Rij[q] − 1], j + Rij[q] − 1〉 added to D[u]. If
l′ < k − h + l, enqueue 〈w , Rij[l′ + 1], h + l′ − l + 1〉 into Q .

4. If f = i + val − 1, we will distinguish between two subcases: z �= r[j + val − 1] and z = r[j + val − 1]. If z �= r[j + val − 1],
we have a mismatch and a copy of w will be generated and added to D[u]. If h < k + 1, enqueue (u1, Rij[l + 1], h +
1), . . . , (ug, Rij[l + 1], h + 1) into Q . If z = r[j + val − 1], create a node 〈−, 0〉 added to D[u]. (If its parent is also 〈−, 0〉,
it will be merged into its parent.) Also, enqueue < u1, Rij[l + 1], h), . . . , < ug, Rij[l + 1], h) into Q .

5. If w = 〈−, ∞〉, scan Rij starting from Rij[l] until we find the largest l′ ≤ k − h + l such that Rij[l] �= ∞. For each
Rij[q] (l ≤ q ≤ l′), we create a new node 〈r[i + Rij[q] − 1], j + Rij[q] − 1〉 added to D[u]. If l′ < k − h + l, add 〈−, ∞〉 to
D[u].

Roughly speaking, in the above process, (2) corresponds to step 3 in merge(), (3) to step 4 in merge(), (4) to step 5 in
merge(), and (5) to step 6 in merge(). Specifically, the following correspondence between the above process and merge()
can be recognized:

Rij − A1,

r[i..m] − ω1,

a path in D
[
u′] − A2,

r[j..m] − ω2,

a path in D
[
u′] − A.

In (2), we handle the case when f < i + val − 1. In this case, we must have r[f] = r[j + f − i]. Then, by the following
simple inference:

P [f] �= r[f], r[f] = r[j + f − i] ⇒ P [f] �= r[j + f − i] (see Fig. 11(a) for illustration),

we know that a mismatching node should be added to D[u]. Here, P stands for a path starting from v ′ in T corresponding
to a path starting from u′ in D , and P [f] for the f th node on P . See Fig. 11(a) for illustration.

In (3), we handle the case that f > i + val − 1. In this case, we have, for each i′ ∈ {i + val − 1, . . . , f } with Rij[q] = i′
(l ≤ q ≤ l′),

P
[
i′
] = r

[
i′
]
, r

[
i′
] �= r

[
j + i′ − i

] ⇒ P
[
i′
] �= r

[
j + i′ − i

]
(see Fig. 11(b) for illustration).

Thus, for each Rij[q] (l ≤ q ≤ l′), a mismatching node will be created and added to D[u].
In the above description, we ignored the technical details on how D[u] is constructed for simplicity. However, in the

presence of D[u′], it is easy to do such a task by manipulating links between nodes and their respective parents. (See
Appendix B for a detailed description of this process.)

Denote the above process by node-creation(w , h, γ , i, j, Rij). We have the following proposition.

Proposition 2. Node-creation (w, h, γ , i, j, Rij) create nodes in D[u] correctly.

Proof. The correctness of node-creation (w , h, γ , i, j, Rij) can be derived from Proposition 1. �

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.14 (1-25)

14 Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Example 2. As an example, consider Fig. 3 and Fig. 10 once again. Assume that D[u6] (shown in Fig. 10) has been created.
Here, u6 = 〈g, 2〉 is generated when we meet 〈g, [1, 1]〉 (compared to r[2] = c). When we meet 〈g, [1, 1]〉 (compared to
r[1] = a) again, we generate the corresponding subtree (see u3 in Fig. 10) by the derivation of mismatching information.

Step 1: i = 2, j = 1. Generate R21 = [1, 2, 3, 4].
Step 2: Enqueue (〈g, 2〉, R21[1] = 1, 0) into Q .
Step 3: (〈g, 2〉, 1, 0) := dequeue(Q). h = 0. f = 2 = R21[1] + i − 1 = 1 + 2 − 1 = 2. (3) will be executed, by which we will

compare g and r[j + R21[1] − 1] = r[1] = a. Since g �= a, a mismatching node 〈g, 1〉 (u3 in Fig. 1) will be generated.
Enqueue (u13, R21[2], h + 1) = (〈−, ∞〉, 2, 1).

Step 4: (〈−, ∞〉, 2, 1) := dequeue(Q). h = 1. (5) will be carried out, by which we will find R21[2] and R21[3] (i.e., l = 2,
l′ = 3), and for each of them a mismatching node will be constructed. That is, two nodes: 〈r[i + Rij[2] − 1], j +
Rij[2] − 1〉 = 〈r[3], 2〉 = 〈a, 2〉 and 〈r[i + Rij[3] − 1], j + Rij[3] − 1〉 = 〈r[4], 3〉 = 〈c, 3〉 will be added to D . (See the
subtree rooted at u3 in Fig. 10.)
Since l′ = 3 is not smaller than k − h + l = 2 − 1 + 2 = 3. We will not add 〈−, ∞〉 as the last node of the newly
generated path.

Finally, if i > j, D[u] needs to be extended in some cases, which can be done in a way similar to the extension of
mismatch arrays as discussed in Subsection 4.3.

The following is the formal description of the working process.

Algorithm strMisMatch(L, r, k).

begin
1. create root of T ; push(S , (root, 0, 0, φ));
2. while S is not empty do {
3. (v , j, κ , u) := pop(S); let v = 〈x,α,β〉;
4. if v is same as an existing v ′ (compared to r[i]) then {
5. q := max{i, j};
6. Rij := merge(R1i , R1 j , r[i..m − q + i], r[j..m − q + j]);
7. enqueue(Q , (p(v ′), Rij [1],h)), where h is the number of mismatching nodes on the path from the root

to the node to be created (for v) in D[u];
8. while Q is not empty do {
9. (w , γ , h′) := dequeue(Q); node-creation(w , h′ , γ , i, j, Rij); } }
10. else {
11. if x �= r[j] then create u′ = 〈x, j〉 and make it a child of u;
12. else if u is 〈−,0〉 then u′ := u
13. else create u′ = 〈−,0〉 and make it a child of u;
14. p(v) := u′; (*associate with v a pointer to u′ .*)
15. if j < |r| and κ ≤ k then {
16. for each y ∈ ∑

within Lv do {
17. w := search(y, Lv);
18. if w �= φ then {
19. if y = r[j + 1] then push(S , (w , j + 1, κ , u′));
20. if y �= r[j + 1] and κ < k then {push(S , (w , j + 1, κ + 1, u′));
21. }}}}}
end

If we ignore lines 3–9 in the above algorithm, it is almost a depth-first search of a tree. Each time an entry (v , j, κ , u)
is popped out from S (see line 4), it will be checked whether v is the same as a previous one v ′ (compared to r[i]). (See
line 4.) This can be done in O(1) time by maintaining a hash table � as illustrated in Fig. 7, by which we will use a hash
function HASH to create a hash address HASH(v) = j in �. If �[j] is not Nil, we will compare v with each value in the
corresponding conflict chain. In this way, we can find whether v is the same as a previous one. If not, we will append v to
the end of the conflict chain (if �[j] is Nil, we will create a conflict chain associated with �[j] and add v to it as the first
value). At the same time, a node u′ for v will be created in D (see lines 11–14). Then, all the children of v will be found
by using the procedure search() (see line 17) and pushed into S (see lines 18, and 19). Otherwise, we will first create Rij
by executing merge(R1i , R1 j , r[i..m − q + i], r[j..m − q + j]), where q = max{i, j} (see lines 5–6). Then, we create a subtree
in D by executing a series of node-creation operations (see lines 8–9).

Concerning the correctness of the algorithm, we have the following proposition.

Proposition 3. Let L be a BWT-transformation for the reverse ̄s of a target string s, and r a pattern. Algorithm strMisMatch(L, r,k) will
generate a mismatching tree D, in which each root-to-leaf path represents an occurrence of r in s having up to k positions different
between r and s.

Proof. In the execution of strMisMatch(L, r, k), two data structures will be generated: a hash table and a mismatching tree D ,
in which some subtrees in D are derived by using the mismatching information over r. Replacing each matching node in

Original text:
Inserted Text:
. (

Original text:
Inserted Text:
.)

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.15 (1-25)

Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–••• 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
D with its corresponding maximum matching path and each mismatching node 〈x, i〉 with its corresponding pair 〈x, [α, β]〉
(compared to r[i]), we will get an S-tree, in which each path corresponds to a search sequence discussed in Section 4. Thus,
in D each root-to-leaf path represents an occurrence of r in s having up to k positions different between r and s. �
5. Analysis of time complexity

The time complexity of the algorithm mainly consists of three parts: the cost for generating the mismatching information
over r which is bounded by O(m log m); the cost for generating the M-tree and maintaining the hash table, which is bounded
by O(kn′), where n′ is the number of the M-tree’s leaf nodes; and the cost for checking the characters in s against the
characters in r, which is bounded by O(n) if the cost of search() can be reduced to O(1). So, to know the time complexity
of our method, we need to make an estimation of n′ . In the worst case, n′ is bounded by O(|Σ |k+1) since each node in a
M-tree has at most |Σ | children and the height of the M-tree is bounded by k + 1. In following, we estimate the average
value of n′ .

It is reasonable to assume that the probability of a character ∈ Σ appearing in s is p = 1
|Σ | . Let q = 1 − p. The probability

that a path in D contains i mismatching nodes is

(
k + 1

i

)
pm−iqi =

(
k + 1

i

)(
1

|Σ |
)m−i(

1 − 1

|Σ |
)i

. (4)

The number of such paths is obviously bounded by |Σ |i .
Therefore, the average number of leaf nodes in D generally is

k+1∑
i=0

(
k + 1

i

)(
1

|Σ |
)m−i(

1 − 1

|Σ |
)i

|Σ |i =
k+1∑
i=0

(
k + 1

i

)(
1

|Σ |
)k−i+1(|Σ | − 1

)i
(

1

|Σ |
)m−k−1

. (5)

If m ≥ 2(k + 1), we have

k+1∑
i=0

(
k + 1

i

)(
1

|Σ |
)k−i+1(|Σ | − 1

)i
(

1

|Σ |
)m−k−1

≤
k+1∑
i=0

(
k + 1

i

)(
1

|Σ |
)k−i+1(|Σ | − 1

)i
(

1

|Σ |
)k+1

≤
k+1∑
i=0

(
k + 1

i

)(
1

|Σ |
)k−i+1

=
(

1 + 1

|Σ |
)k+1

.

If m < 2(k + 1), we have δ = m−k−1
k+1 < 1.

k+1∑
i=0

(
k + 1

i

)(
1

|Σ |
)k−i+1(|Σ | − 1

)i
(

1

|Σ |
)m−k−1

=
k+1∑
i=0

(
k + 1

i

)(
1

|Σ |
)k−i+1(|Σ | − 1

|Σ |m−k−1
i

)i

≤
k+1∑
i=0

(
k + 1

i

)(
1

|Σ |
)k−i+1(|Σ | − 1

|Σ |δ
)i

=
(

1

|Σ | + |Σ |1−δ − 1

|Σ |δ
)k+1

.

However, in practice, m is often ≥ 2(k + 1). Especially, in DNA databases, the length m of a read (pattern string) is
normally larger than 100 while k is set to be between 10 and 20. Thus, in such scenarios, the number of leaf nodes of D is
bounded by O((1 + 1

|Σ |)
k+1).

According to the above analysis, the following proposition is easy to prove.

Proposition 4. If m ≥ 2(k + 1), the average time of our algorithm for the string matching with k mismatches is bounded by O(k(1 +
1

|Σ |)
k+1 + n + m log m) if the execution of search() requires only a constant time, where n = |s|, and m = |r|.

Proof. Since for all the same nodes inserted into the hash table the array L is accessed only once, the total cost of
searching L (for constructing the whole D) is bounded by O(n) if the cost of search() is O(1). Taking the cost for cre-
ating D , as well as the cost for generating mismatching information over r into account, the whole cost is bounded by
O(k(1 + 1

|Σ |)
k+1 + n + m log m). �

In the next section, we discuss a method for implementing search(), by which the cost of search() is reduced to O(1).

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.16 (1-25)

16 Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43Q6 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 12. L F -mapping and rank-correspondence.

6. Further improvements

The operation search() discussed in 3.1 can be greatly improved in two ways. One is to use the so-called rankAll mech-
anism, by which |Σ | arrays are arranged each for a character x ∈ Σ [10]. With help of such data structures, the cost of
search() can be reduced to O(1). In the second way, we will rearrange the search of a segment of L when we visit a node
v in T to do the so-called multi-character checking to further decrease the searching cost of L.

In the following, we will discuss these two methods in great detail.

6.1. RankAll

By the rankAll, we will arrange |Σ | arrays each for a character x ∈ Σ such that x[i] (the ith entry in the array for x) is
the number of appearances of x within L[1..i]. For instance, in Fig. 12(a) x[1] is 1 since L[1..1] contains only one a. But x[5]
is 2 since L[1..5] contains two a’s.

Now, instead of scanning a certain segment L[α..β] (α ≤ β) to find a subrange for a certain x ∈ Σ , we can simply
look up the array for α to see whether x[α − 1] = x[β]. If it is the case, then x does not occur in L[α..β]. Otherwise,
[x[α − 1] + 1, x[β]] should be the found range. For example, to find the first and the last appearance of c in L[2..5], we only
need to find c[2 − 1] = c[1] = 0 and c[5] = 2. So the corresponding range is [c[2 − 1] + 1, c[5]] = [1, 2].

In this way, the searching of L can be saved and we need only a constant time to determine a subrange for a character
encountered during a pattern searching.

The problem of this method is its high space requirement, which can be mitigated by replacing x[] with a compact
array Ax for each x ∈ Σ , in which, rather than for each L[i](i ∈ {1, . . . , n}), only for some entries in L the number of their
appearances will be stored. For example, we can divide L into a set of buckets of the same size and only for each bucket a
value will be stored in Ax . Obviously, doing so, more search will be required. In practice, the size σ of a bucket (referred to
as a compact factor) can be set to different values. For example, we can set σ = 4, indicating that for each four contiguous
elements in L a group of |Σ | integers (each in an Ax) will be stored. That is, we will not store all the values in Fig. 12(a),
but only store $[4], a[4], c[4], g[4], t[4], and $[8], a[8], c[8], g[8], t[8] in the corresponding compact arrays, as shown in
Fig. 12(b). However, each x[j] for x ∈ Σ can be easily derived from Ax by using the following formulas:

x[j] = Ax[i] + ρ, (4)

where i = � j/σ � and ρ is the number of x’s appearances within L[i · σ + 1.. j], and

x[j] = Ax
[
i′
] − ρ ′, (5)

where i′ = � j/σ � and ρ ′ is the number of x’s appearances within L[j + 1..i′ · σ].
Thus, we need two procedures: sDown(L, j, σ , x) and sUp(L, j, σ , x) to find ρ and ρ ′ , respectively. In terms of whether

j − i · σ ≤ i′ · σ − j, we will call sDown(L, j, σ , x) or sUp(L, j, σ , x) so that fewer entries in L will be scanned to find x[j].
Another way to implement search() is to construct a Wavelet tree [60], instead of rankAll arrays, for L to support rank

queries. By a rank query, we will find the number of a certain character’s appearances up to a given position in L. Thus,
by using a Wavelet tree, we can dynamically compute the values in each Ax (x ∈ Σ), rather than storing them explicitly.
The size of a Wavelet tree is bounded by O(|L| log |Σ |) bits. If the Wavelet tree is well balanced, O(log |Σ |) rank operations
over a binary string need to be performed (see the discussion in Chapter 7 of [59]). Each of such operations requires only
a constant time by using an auxiliary data structure, called RRR [61]. However, the size of this data structure is comparable
to the rankAll when Σ is small (see page 15 in [61]).

6.2. Multiple character checking

From the above discussion, we can see that each time we meet a node v = 〈x, [α, β]〉 in T , we have to call sDown() or
sUp() to generate each of its children. That is, for each of its children, L will be searched in some way to determine the

Query text:
Inserted query:
Q6: Please check and approve/correct the numeration of equations (4) and (5). Please note that the same numbers of equations are on p. 15, lines 18,25.

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.17 (1-25)

Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–••• 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33Q7 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 13. Illustration for counters.

Fig. 14. Illustration for sDown().

corresponding intervals. Instead of searching the segment for each child separately, however, we can manage to search the
segment only once for all the children of v . To this end, we will use integers to represent characters in Σ . For example, we
can use 1, 2, 3, 4, 5 to represent a, c, g , t , $ in a DNA sequence. In addition, a counter Ci is associated with each i ∈ Σ to
record the number of i’s appearances during the search of a segment in L. Initially, each Ci (i = 1, 2, 3, 4, 5) is set to 0. In
the searching, each time we meet an L[l], we will increase CL[l] by one (Fig. 13).

See Fig. 9 for illustration
With these counters, we change sDown(L, j, σ , x) and sUp(L, j, σ , x) to sDown(L, j, σ) and sUp(L, j, σ), respectively, to

search L for all the children of v , but only in one scanning of L.
Let j′ = � j/σ � · σ + 1. sDown(L, j, σ) will search a segment L[j′.. j] from top to bottom, and store the result in an array

E of length |Σ |, in which each entry E[i] is the rank of i (representing a character), equal to Ci + Ai[� j/σ �]. Remember
that Ci records the number of i’s appearances within L[j′.. j].

Function sDown(L, j, σ)

begin
1. Ci := 0 for each i ∈ ∑

;
2. l := � j/σ � · σ + 1;
3. while l ≤ j do {
4. CL[l] := CL[l] + 1;
5. l := l + 1;
6. }
7. for k = 1 to |∑ | do {
8. E[k] := Ak[� j/σ �] + Ck ;
9. }
10. return E;
end

In the algorithm sDown(L, j, σ), L[j′.. j] is scanned only once in the main while-loop (see lines 3–6). For each en-
countered entry L[l] (j′ ≤ l ≤ j), CL[l] will be increased by 1 to count encountered entries which are equal to L[l].
After the while-loop, we compute the ranks for all the characters respectively labeling the children of v (see lines
7–8).

Fig. 14 helps for illustration.
sUp(L, j, σ) is dual to sDown(L, j, σ), in which a segment of L will be search bottom-up.

Query text:
Inserted query:
Q7: Please note that Figure 13 was not cited in the text. Please check that the citation suggested by the copyeditor is in the appropriate place, and correct if necessary.

Original text:
Inserted Text:
,

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.18 (1-25)

18 Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 15. Illustration for periodic stretches and breaks.

Function sUp(L, j, σ)

begin
1. Ci := 0 for each i ∈ ∑

;
2. l := � j/σ � · σ ;
3. while l ≥ j + 1 do {
4. CL[l] := CL[l] + 1;
5. l := l − 1;
6. }
7. for k = 1 to |∑ | do {
8. E[k] := Ak[� j/σ �] − Ck ;
9. }
10. return E;
end

By using the above two procedures, search(z, π) will be changed to search(π) as described below.

Function search(π)

begin
1. let π = 〈x, [α,β]〉 ;
2. j := Yx + α − 1; j := j − 1; i := � j/σ �; i′ ← � j/σ �;
3. if j − i · σ = 0 then { for k = 1 to |

∑
| do {E[k] ← Ak[j]; }

4. if j − i · σ ≤ i′ · σ − j then E := sDown(L, j, σ)
5. else E := sUp(L, j, σ)
6. j := Yx + β − 1; i := � j/σ �; i′ := � j/σ �;
7. if j − i · σ ≤ i′ · σ − j then E ′ := sDown(L, j, σ)
8. else E ′ := sUp(L, j, σ)
9. }
10. return (E , E ′);
end

The return value of the algorithm search(π) is a pair of arrays: (E , E ′), from which we can construct all the five chil-
dren of a node v representing the input π = 〈x, [α, β]〉 : 〈a, [E[1] + 1, E ′[1]]〉, 〈c, [E[2] + 1, E ′[2]]〉, 〈g, [E[3] + 1, E ′[3]]〉,
〈t, [E[4] + 1, E ′[4]]〉, and 〈$, [E[5] + 1, E ′[5]]〉.

7. Experiments

In our experiments, we have tested altogether four different methods:

– BWA [35],
– Amir et al.’s method [2] (Amir for short),
– Cole et al.’s method [16] (Cole for short),
– Algorithm strMisMatch discussed in this paper (sMM() for short)

By the BWA method, an S-tree will be created as described in Section 4, but with μ(i) being used to cut off branches,
where μ(i) is the number of consecutive, disjoint substrings in r[i..m] not appearing in s. By the Amir’s algorithm, a pattern
r is divided into several periodic stretches separated by 2k aperiodic substrings, called breaks, as illustrated in Fig. 15. Then,
for each break bi , located at a certain position i, find all those substrings s j (located at different positions j) in s such that
bi = s j , and then mark each of them. After that, discard any position that is marked less than k times. In a next step, verify
every surviving position in s.

By the Cole’s, a suffix tree for a target is constructed. (The code for constructing suffix trees is taken from the gsuffix
package: http :/ /gsuffix .Sourceforge .net/.)

All the four methods are implemented in C++, compiled by GNU make utility with optimization of level 2. In addition,
all of our experiments are performed on a 64-bit Ubuntu operating system, run on a single core of a 2.40 GHz Intel Xeon
E5-2630 processor with 32 GB RAM.

http://gsuffix.Sourceforge.net/

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.19 (1-25)

Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–••• 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Table 2
Characteristics of genomes.

Genomes Genome sizes (bp) Size of BWT (Mbyte) Time for creating BWT (s)

Rat (Rnor_6.0) 2,909,701,677 11,638.81 3127.8
Zebra fish (GRCz10) 1,464,443,456 5,857.78 1562.3
Rat chr1 (Rnor_6.0) 290,094,217 1,160.4 297.04
C. elegans (WBcel235) 103,022,290 412.1 135.2
C. merolae (ASM9120v1) 16,728,967 66.9 18.15

Fig. 16. Test results on varying values of k and read length (on the Rat genome).

Table 3
Number of leaf nodes of S-trees.

k/length-of-read 5/50 10/100 20/150 30/200
No. of leaf nodes 2 K 0.7 M 16.5 M 102 M

For the tests, five reference genomes shown in Table 2 are used. They are all obtained from a biological project conducted
in a laboratory at University of Manitoba [28]. For them, all their lengths, and the corresponding BWT arrays, as well as the
time for creating these BWT arrays are listed. In addition, all the simulating reads are taken from these five genomes, with
varying lengths and amounts. It is done by using the wgsim program included in the SAMtools package [38] with a default
model for single reads simulation. Concretely, we take 5000 reads with length varying from 100 bps to 300 bps.

All the tests are organized in two groups: group I and group II. In group I, we compare our method with the existing
methods. In group II, we test the impact of the rankAll array compression and the multiple character checking.

– Group I

To store BWT(s̄), we use 2 bits to represent a character ∈ {a, c, g , t} and store 4 rankAll values (respectively in Aa , Ac ,
Ag , and At) for every 4 elements (in L) with each taking 32 bits.

In Fig. 16(a) and (b), we report the average time of testing the Rat (Rnor_6.0) for matching 100 reads of length 100 to
300 bps. From this figure, we can see that Algorithm strMisMatch() outperforms all the other three methods. But the Amir’s
method is better than the other two methods. The BWA and the Cole’s method are comparable. However, for small k, the
Cole’s is a little bit better than the BWA method while for large k their performances are reversed.

To show why strMisMatch() has the best running time, we show the number n′ of leaf nodes in the M-trees created by
strMisMatch() for some tests in Table 3, which demonstrates that n′ can be much smaller than n. Thus, the time complexity
O(kn′) of strMisMatch() should be a significant improvement over O(n

√
k log k) – the time complexity of Amir’s.

In this test (and also in the subsequent tests), the time for constructing BWT(s̄) is not included as it is completely
independent of r. Once it is created, it can be repeatedly used.

In Table 4, we show the space used by all the four tested algorithms when checking reads of 200 characters long with
at most 30 mismatches.

From Table 4, we can see that the Amir’s uses the least space, by which only a space for accommodating the target
string and the pattern string is used. Our method uses a little more space than the BWA since beside the BWT array some
memory has to be arranged to store the M-tree created during the working process. The space overhead of the Cole’s is
worst among all the other methods since the suffix tree for the genome has to be loaded and manipulated by it.

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.20 (1-25)

20 Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Table 4
Space usage.

Algorithms BWA Amir’s Cole’s sMM

Space usage (Mbyte) 11,638 2,909 26,656 11,751

Fig. 17. Test results on varying values of k and read length (on the Zebra fish genome).

Table 5
Number of leaf nodes of S-trees.

k/length-of-read 5/50 10/100 20/150 30/200
No. of leaf nodes 0.7 K 0.30 M 9.2 M 89 M

Table 6
Space usage.

Algorithms BWA Amir’s Cole’s sMM

Space usage (Mbyte) 5,857 1,464 21,012 5,941

Table 7
Space usage.

Algorithms BWA Amir’s Cole’s sMM

Space usage (Mbyte) 1,161 290 13,653 1,163

In Fig. 16(b), we show the impact of read lengths. For this test, k is set to 25. It can be seen that the BWA and the
Cole’s are more sensitive to the length of reads than strMisMatch() and the Amir’s. For the BWA, more time is required to
construct S-trees for longer reads while for the Cole’s longer paths in a suffix tree will be searched as the lengths of reads
increase. For the other two methods: strMisMatch() and the Amir’s, the lengths of reads only impact the time for the read
pre-processing, but it is completely overshadowed by the time spent on searching genomes. For the Amir’s, the time for
recognizing breaks is linear in |r| [2] while for strMisMatch() the time for generating the mismatch information is bounded
by O(|r| log |r|). No significant difference between them can be measured since r is quite short in the tests.

In Fig. 17(a) and (b), we report the test results of searching the Zebra fish (GRCz10).
Again, similar to Fig. 16(a), the performance of Algorithm strMisMatch() is best, and the Amir’s is still better than both

the BWA and the Cole’s.
In Table 5, we show the number n′ .
In Table 6, we show the space usage when checking reads of 200 characters long with at most 30 mismatches.
Fig. 17(b) shares the same features as Fig. 16(b). It also shows that only the BWA and the Cole’s are sensitive to the

length of reads.
In Fig. 18, 19, and 20, we show the tests on Rat chr1 (Rnor_6.0), C. elegans (WBcel235), and C. merolae (ASM9120v1),

respectively. Their space usage when checking reads of 200 characters long with at most 30 mismatches are shown respec-
tively in Tables 7, 8 and 9.

From these figures, the most important feature we can observe is that as the size of genomes becomes smaller, the
difference between the Amir’s and Cole’s diminishes. But the BWA and strMisMatch() remain the worst and the best,
respectively. Although strMisMatch() is impacted by the number of leaf nodes of an S-tree, the impact factor is small in

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.21 (1-25)

Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–••• 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 18. Test results on varying values of k and read length (on the Rat chr1 genome).

Fig. 19. Test results on varying values of k and read length (on the C. elegans genome).

Table 8
Space usage.

Algorithms BWA Amir’s Cole’s sMM

Space usage (Mbyte) 412.1 103 4,945 412.5

Table 9
Space usage.

Algorithms BWA Amir’s Cole’s sMM

Space usage (Mbyte) 66.90 16 602.1 66.92

comparison with the size of the whole S-tree, which dominates the time complexity of the BWA method. Also, the big
difference between strMisMatch() and Amir’s shows that using M-trees the cost for creating mismatch information of r’s
occurrences in s can be significantly reduced.

– Group II

In this group, we check the impact of the impact of the rankAll array compression and the multiple character checking.
For this purpose, we set σ to different values for different tests and then each time the sizes of Ax ’s (x ∈ Σ) are different.
However, for each test, we use the same size of reads and the same value of k.

In Fig. 21(a), (b), (c), (d), and (e), we show the test results by checking a read containing 150 characters against all the
five gnomes: Rat (Rnor_6.0), Zebra fish (GRCz10), Rat chr1 (Rnor_6.0), C. elegans (WBcel35), and C. merolae (ASM9120v1),
respectively. For each test, we have run the two versions of our method: with multi-character checking (with MC), and
without multi-character checking (without MC), with k set to be 20. From these figures, we can see that the performance
can be significantly improved if the multi-character checking is used.

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.22 (1-25)

22 Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61
Fig. 20. Test results on varying values of k and read length (on the C. merolae genome).

Fig. 21. Impact of rankAll array compression and multiple character checking.

Table 10
Space usage.

Rat (Rnor_6.0) Zebra fish (GRCz10) Rat chr1 (Rnor_6.0) C. elegans (WBcel235) C. merolae (ASM9120v1)

σ = 0 – 23,796.7 Mb 4,712.2 Mb 1,673.1 Mb 260.4 Mb
σ = 4 11,655 Mb 5,863.9 Mb 1,162 Mb 412.1 Mb 66.9 Mb
σ = 8 6,546.8 Mb 3,294.9 Mb 652.5 Mb 231.75 Mb 36 Mb
σ = 16 3,637.12 Mb 1,830.5 Mb 362.6 Mb 128.7 Mb 20 Mb
σ = 32 2,182.27 Mb 1,098.3 Mb 217.1 Mb 77.2 Mb 12 Mb

In Table 10, we show the space overhead. We notice that no matter whether the multiple character checking is used,
the space consumed is almost the same for both of them. It is because by the multiple character checking we need only to
maintain five counters Ci (i = 1, . . . , 5) for the children of a node in an M-tree to record how many times each character
is encountered during a search of a segment in L. The values of these counters can be dynamically changed for each node
created in a M-tree and no extra space is required. Therefore, in Table 10, we only show the usage of space when the
multi-character checking is utilized, which is almost the same as when the multi-character checking not used.

From Table 10, we can also see that the space overhead is roughly linearly decreased as σ is increased. In addition, when
σ is equal to 0, the BWT array for Rat (Rnor_6.0) cannot be generated due to its huge volume.

8. Conclusion and future work

In this paper, a new method to do the string matching with k mismatches is proposed. Its main idea is to transform
the reverse s̄ of target string s to BWT(s̄) and use the mismatch information over a pattern string r to speed up the
computation. Its time complexity is bounded by O(kn′ + n + m logm), where m = |r|, n = |s|, and n′ is the number of leaf
nodes of a tree structure produced during the search of a BWT(s). In the case of m ≥ 2(k + 1), the average value of n′
is bounded by O((1 + 1

|Σ |)
k+1). Our experiments show that it has a better running time than any existing on-line and

index-based algorithms.

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.23 (1-25)

Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–••• 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18Q8 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
As a future work, we will use the BWT to solve another two important problems: the string matching with k errors and
the string matching with don’t-care symbols.

For the string matching with k errors, it seems to be more challenging than the k mismatches since the Levenshtein
distance is more difficult to handle than the Hamming distance.

For the string matching with don’t-care symbols, we need to distinguish between two cases. For the case that only the
pattern contains don’t-care symbols, it is possible to modify the method discussed in this paper to develop an algorithm to
handle the problem efficiently. However, for the case that both the pattern and target contain don’t-care symbols, it is not
clear whether the BWT technique can be effectively utilized.

Acknowledgement

The authors are grateful to the anonymous reviewers for their very detailed comments, which enable us to greatly
improve the manuscript.

Appendix A. Notations

In this appendix, we summarize all the symbols and notations used throughout the paper (see Table 11).

Table 11
symbols and notations.

r a pattern string
r[i] i-th character in r
r[i.. j] substring from i-th to j-th position in r
m m = |r|
s a target string
n n = |s|
Σ an alphabet
x, y, z, a, b,c characters in a string
s̄ reverse of s
L = BWT(s) BWT array for s
F an array, in which the equal characters are clustered in alphabetic order
rkL (e) rank of an element in L
rkF (e) rank of an element in F
T search tree, which is constructed when searching s to find all occurrences of r in s
P a path in T
P [i] the ith node on P
D match tree, whose nodes are created to represent mismatching information
u, v , w nodes in T
π = 〈x, [α,β]〉 a pair representing a segment of F
Lπ a segment in L, corresponding to π
x[] an array created for x ∈ Σ

Ax[] an compact version of x[]
search(z, π) a procedure to find the first and last appearance of z within a segment corresponding to π
search(π) an improved version of search(z, π)
Ya , Yc , Y g , Yt starting position of a-segment, c-segment, g-segment, t-segment in F
Za , Zc , Z g , Zt ending position of a-segment, c-segment, g-segment, t-segment in F
44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

sUP() a procedure to search L from a certain position upwards to a higher position
sDown() a procedure to search L from a certain position downwards to a lower position
Q a queue used to search a subtree of D in the breadth-first manner
Rij an array storing the mismatching information between r[i..m] and r[j..m]

Appendix B. On the generation of D[u]

Continued with Section 4.4. Let w = 〈z, f 〉 be a node in D[u′], γ = Rij[l] for some l, and h be the number of mismatching
nodes on the path from the root to the node to be created in D[u]. Then, in the execution of node-generation(w , γ , h, i, j,
Rij), for w , a node x will be created in D[u] if f ≤ i + val − 1, where val = Rij[l]. But if w = 〈0, ∞〉 or f > i + val − 1, we
will create a path x1 → x2 → ·· · → xa (for some a ≥ 1), rather than a single node (see step 4 and 5 in node-generation()).
In Fig. 22(a), we illustrate this difference (in which we assume that for node w in D[u′] a node x in D[u] while for w ′ a
path is created).

Now we consider a right sibling w ′′ of w ′ and assume that for w ′′ also a path x1 → x2 → ·· · → xb → y
(a > b ≥ 1, y �= xb+1) will be created. Then, for efficiency, we should organize these two paths into a subtree in D[u]
as illustrated in Fig. 22(b).

In general, let w1, . . . , w g be the children of w in D[u′]. Let wb = 〈zb, fb〉 (b = 1, . . . , g). Without loss of generality,
assume that f1 ≤ f2 ≤ · · · ≤ f g , and we can find an integer c such that f1 ≤ · · · ≤ fc ≤ i + val − 1 < fc+1 ≤ · · · ≤ f g . Thus,

Query text:
Inserted query:
Q8: Please note that Table 11 was not cited in the text. Please check that the citation suggested by the copyeditor is in the appropriate place, and correct if necessary.

Original text:
Inserted Text:
.

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.24 (1-25)

24 Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–•••

1 1

2 2

3 3

4 4

5 5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39Q9

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

Fig. 22. Illustration for node generation.

what will be done is to create a single node in D[u] for each wq ∈ {w1, . . . , wc}, but generate a subtree for wc+1, . . . , w g

altogether, as illustrated in Fig. 22(c).
According to the above discussion, we rewrite the algorithm for the node generation in D[u] as follows.

Algorithm genD(u′).

begin
1. generate node u according u′;
2. enqueue(Q ,(u′ , Rij [1], h));
3. while Q is not empty do {
4. (w , γ , h′) := dequeue(Q); let γ = Rij [l] for some l;
5. let w1, . . . , w g be the children of w; let wb = 〈zb, fb〉 (b = 1, . . . , g);
6. assume that f1 ≤ . . . ≤ fc ≤ i + val − 1 < fc+1 ≤ . . . ≤ f g for some c;
7. for each w ′ ∈ {w1, . . . , wc} do {
8. create a node y in D[u]; set y be a child of x, where x is the node created for w;
9. if h < k + 1, enqueue(w ′ , Rij [l], h + 1) into Q ;
10. }
11. create a subtree as illustrated in Fig. 22(c) for wc+1, . . . , w g with leaf nodes yc+1, . . . , yg ;
12. for each wq with fq �= ∞ in {w1, . . . , wc} do {
13. enqueue(wq , Rij [l′ + 1], h + l′ − l + 1), where l′ is a largest integer ≤ k + h + l such that f g > i + Rij [l′] − 1;
14. }
end

The main difference of the above algorithm from node-generation() given in 4.4 consists in that the paths created by
executing step 4 and 5 in node-generation() are separated, but in this algorithm all such paths are organized into a subtree.

Uncited references

[3] [7] [8] [17] [24] [31] [34] [39] [43] [46] [49]

References

[1] A.V. Aho, M.J. Corasick, Efficient string matching: an aid to bibliographic search, Commun. ACM 23 (1) (June 1975) 333–340.
[2] A. Amir, M. Lewenstein, E. Porat, Faster algorithms for string matching with k mismatches, J. Algorithms 50 (2) (Feb. 2004) 257–275.
[3] A. Apostolico, R. Giancarlo, The Boyer–Moore–Galil string searching strategies revisited, SIAM J. Comput. 15 (1) (Feb. 1986) 98–105.
[4] R.A. Baeza-Yates, G.H. Gonnet, A new approach to text searching, in: N.J. Belkin, C.J. van Rijsbergen (Eds.), SIGIR 89, Proc. 12th Annual Intl. ACM Conf.

on Research and Development in Information Retrieval, 1989, pp. 168–175.
[5] R.A. Baeza-Yates, G.H. Gonnet, A new approach in text searching, Commun. ACM 35 (10) (Oct. 1992) 74–82.
[6] R.A. Baeza-Yates, C.H. Perleberg, Fast and practical approximate string matching, in: A. Apostolico, M. Crocchemore, Z. Galil, U. Manber (Eds.), Combi-

natorial Pattern Matching, in: Lecture Notes in Computer Science, vol. 644, Springer-Verlag, Berlin, 1992, pp. 185–192.
[7] S. Bauer, M.H. Schulz, P.N. Robinson, gsuffix, http://gsuffix .Sourceforge .net/, 2014.
[8] A.M. Bolger, M. Lohse, B. Usadel, Trimmomatic: a flexible trimmer for illumina sequence data, Bioinformatics 30 (15) (2014) 2114–2120.
[9] R.S. Boyer, J.S. Moore, A fast string searching algorithm, Commun. ACM 20 (10) (Oct. 1977) 762–772.

[10] M. Burrows, D.J. Wheeler, A Block-Sorting Lossless Data Compression Algorithm, 1994.
[11] W.L. Chang, J. Lampe, Theoretical and empirical comparisons of approximate string matching algorithms, in: A. Apostolico, M. Crocchemore, Z. Galil, U.

Manber (Eds.), Combinatorial Pattern Matching, in: Lecture Notes in Computer Science, vol. 644, Springer-Verlag, Berlin, 1992, pp. 175–184.
[12] M. Crochemore, et al., Fast practical multi-pattern matching, Inform. Process. Lett. 71 (1999) 107–113.
[13] Y. Chen, Y. Wu, On the massive string matching problem, in: Proc. ICNC–FSKD 2016, IEEE, Changsha, China, August 2016, pp. 13–15.
[14] Y. Chen, Y. Wu, Mismatching Trees and BWT Arrays: a New Way for String Matching with k-Mismatches, in: Proc. ICDE2017, April 19–22, 2017, IEEE,

San Diego, USA, pp. 339–410.
[15] Y. Chen, Y. Wu, Searching BWT against pattern matching machine to find multiple string matches, in: Proc. 9th Int. Conf. on Cyber-Enabled Distributed

Computing and Knowledge Discovery, IEEE, 2017, pp. 167–176.
[16] R. Cole, L. Gottlieb, M. Lewenstein, Dictionary matching and indexing with errors and don’t cares, in: STOC’04, 2004, pp. 91–100.
[17] L. Colussi, Z. Galil, R. Giancarlo, On the exact complexity of string matching, in: Proc. 31st Annual IEEE Symposium of Foundation of Computer Science,

vol. 1, 1990, pp. 135–144.

Query text:
Inserted query:
Q9: Uncited references. Please cite them or delete from the list of references.

http://gsuffix.Sourceforge.net/

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.25 (1-25)

Y. Chen, Y. Wu / Theoretical Computer Science ••• (••••) •••–••• 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61
[18] B. Commentz-Walter, A string matching algorithm fast on the average, in: Proc. 6th Colloquium on Automata, Languages and Programming, July 16–20,
1979, pp. 118–132.

[19] A. Ehrenfeucht, D. Haussler, A new distance metric on strings computable in linear time, Discrete Appl. Math. 20 (1988) 191–203.
[20] P. Ferragina, G. Manzini, Opportunistic data structures with applications, in: Proc. 41st Annual Symposium on Foundations of Computer Science, IEEE,

2000, pp. 390–398.
[21] Z. Galil, On improving the worst case running time of the Boyer–Moore string searching algorithm, Commun. ACM 22 (9) (1977) 505–508.
[22] Z. Galil, R. Giancarlo, Improved string matching with k mismatches, ACM SIGACT News 17 (4) (1986) 52b–54.
[23] M.C. Harrison, Implementation of the substring test by hashing, Commun. ACM 14 (12) (1971) 777–779.
[24] H. Jiang, W.H. Wong, SeqMap: mapping massive amount of oligonucleotides to the genome, Bioinformatics 24 (2008) 2395–2396.
[25] R.L. Karp, M.O. Rabin, Efficient randomized pattern-matching algorithms, IBM J. Res. Dev. 31 (2) (March 1987) 249–260.
[26] D.E. Knuth, The Art of Computer Programming, vol. 3, Addison–Wesley Publish Com., Massachusetts, 1975.
[27] D.E. Knuth, J.H. Morris, V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (2) (June 1977) 323–350.
[28] lab website, http://home .cc .umanitoba .ca /~xiej/, 2014.
[29] G.M. Landau, U. Vishkin, Efficient string matching in the presence of errors, in: Proc. 26th Annual IEEE Symposium on Foundations of Computer Science,

1985, pp. 126–136.
14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

[30] G.M. Landau, U. Vishkin, Efficient string matching with k mismatches, Theoret. Comput. Sci. 43 (1986) 239–249.
[31] G. Navarro, Compact Data Structures: A Practical Approach, Cambridge University Press, 2016.
[32] T. Lecroq, A variation on the Boyer–Moore algorithm, Theoret. Comput. Sci. 92 (1) (Jan. 1992) 119–144.
[33] H. Li, et al., Mapping short DNA sequencing reads and calling variants using mapping quality scores, Genome Res. 18 (2008) 1851–1858.
[34] R. Li, et al., SOAP: short oligonucleotide alignment program, Bioinformatics 24 (2008) 713–714.
[35] H. Li, R. Durbin, Fast and accurate short read alignment with Burrows–Wheeler transform, Bioinformatics 25 (14) (2009) 1754–1760.
[36] H. Li, R. Durbin, Fast and accurate long-read alignment with Burrows–Wheeler transform, Bioinformatics 26 (5) (2010) 589–595.
[37] H. Li, Homer, A survey of sequence alignment algorithms for next-generation sequencing, Brief. Bioinform. 11 (5) (2010) 473–483, https://doi .org /10 .

1093 /bib /bbq015.
[38] H. Li, wgsim: a small tool for simulating sequence reads from a reference genome, https://github .com /lh3 /wgsim/, 2014.
[39] H. Lin, et al., ZOOM! Zillions of oligos mapped, Bioinformatics 24 (2008) 2431–2437.
[40] U. Manber, E.W. Myers, Suffix arrays: a new method for on-line string searches, in: Proc. the 1st Annual ACM–SIAM Symposium on Discrete Algorithms,

SIAM, Philadelphia, PA, 1990, pp. 319–327.
[41] U. Manber, R.A. Baeza-Yates, An algorithm for string matching with a sequence of don’t cares, Inform. Process. Lett. 37 (Feb. 1991) 133–136.
[42] E.M. McCreight, A space-economical suffix tree construction algorithm, J. ACM 23 (2) (April 1976) 262–272.
[43] G. Navarro, M. Raffinot, Pattern Matching in Strings, Cambridge University Press, 2002.
[44] M. Nicolas, S. Rajasekarian, On string matching with k mismatches, https://arxiv.org /pdf /1307.1406, 2013.
[45] R.Y. Pinter, Efficient string matching with don’t’ care patterns, in: A. Apostolico, Z. Galil (Eds.), Combinatorial Algorithms on Words, in: NATO ASI Series,

vol. F12, Springer-Verlag, Berlin, 1985, pp. 11–29.
[46] A. Renyi, Probability Theory, North-Holland Publishing Company, Amsterdam, 1970.
[47] M. Schatz, Cloudburst: highly sensitive read mapping with mapreduce, Bioinformatics 25 (2009) 1363–1369.
[48] J. Seward, bzip2 and libbzip2, version 1.0. 5: a program and library for data compression, http://www.bzip .org, 2007.
[49] A.D. Smith, et al., Using quality scores and longer reads improves accuracy of Solexa read mapping, BMC Bioinform. 9 (2008) 128.
[50] J. Tarhio, E. Ukkonen, Boyer–Moore approach to approximate string matching, in: J.R. Gilbert, R. Karlssion (Eds.), SWAT 90: Proc. 2nd Scandinavian

Workshop on Algorithm Theory, in: Lecture Notes in Computer Science, vol. 447, Springer-Verlag, Berlin, 1990, pp. 348–359.
[51] J. Tarhio, E. Ukkonen, Approximate Boyer–Moore string matching, SIAM J. Comput. 22 (2) (1990) 243–260.
[52] E. Ukkonen, Approximate string-matching with q-grams and maximal matches, Theoret. Comput. Sci. 92 (1992) 191–211.
[53] P. Weiner, Linear pattern matching algorithm, in: Proc. 14th IEEE Symposium on Switching and Automata Theory, 1973, pp. 1–11.
[54] W. Hon, et al., A space and time efficient algorithm for constructing compressed suffix arrays, Algorithmica 48 (2007) 23–36.
[55] S. Wu, U. Manber, A Fast Algorithm for Multi-Pattern Searching, Technical Report TR-94-17, Dept. Computer Science, Chung-Cheng University, 1994.
[56] L. Salmela, J. Tarhio, J. Kytöjoki, Multi-pattern string matching with q-grams, ACM J. Exp. Algorithmics 11 (2006).
[57] G. Nong, S. Zhang, W.H. Chan, Two efficient algorithms for linear time suffix array construction, IEEE Trans. Comput. 60 (10) (2011) 1471–1484.
[58] G. Nong, Practical linear-time O(1)-workspace suffix sorting for constant alphabets, ACM Trans. Inf. Syst 31 (3) (2013) 15.
[59] E. Ohlebusch, Bioinformatics Algorithms: Sequence Analysis, Genome Rearrangements, and Phylogenetic Reconstruction, Oldenbusch Verlag, 2013.
[60] R. Grossi, A. Gupta, J. Vitter, High-order entropy-compressed text indexes, in: Proc. 14th SODA, 2003, pp. 841–850.
[61] A. Bowe, Multiary Wavelet Trees in Practice, Master Thesis, School of Computer Science and Information Technology, RMIT University, Melbourne,

Australia, 2010.

Original text:
Inserted Text:
satring

http://home.cc.umanitoba.ca/~xiej/
https://doi.org/10.1093/bib/bbq015
https://github.com/lh3/wgsim/
https://arxiv.org/pdf/1307.1406
http://www.bzip.org
https://doi.org/10.1093/bib/bbq015

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.26 (1-25)

1 1

2 2

3 3

4Q10 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

Sponsor names
Do not correct this page. Please mark corrections to sponsor names and grant numbers in the main text.

NSERC, country=Canada, grants=242523

Query text:
Inserted query:
Q10: Please check if sponsor names have been identified correctly and correct if necessary.

JID:TCS AID:11465 /FLA Doctopic: Algorithms, automata, complexity and games [m3G; v1.231; Prn:14/02/2018; 14:57] P.27 (1-25)

1 1

2 2

3 3

4Q11 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

Highlights

• A new indexing method is proposed for solving the string matching with k mismatches. Specifically, the BWT
transformation is modified to do the task.

• The mismatching information of a pattern string is integrated into the search of a BWT array to speed up the working
process. It is a very challenging research, which has never been done before. Some new concepts are introduced, such
as search trees, mismatching paths, mismatching trees, and so on.

• A new technique “multi-character checking” is also integrated into the search of a BWT array to speed up the process.
• A solid mathematical analysis of the average time complexity of the method.
• Extensive experiments have been conducted to compare our method with the most related approaches in the

literature, which clearly shows the advantage of our method.
• An elaborated example is designed to explain all the technical difficult points.

Query text:
Inserted query:
Q11: Highlights items are too long, each individual highlight must not exceed 125 characters, only 3 to 5 highlights are allowed. Please adhere to the given specifications.

	On the string matching with k mismatches
	1 Introduction
	2 Related work
	3 Burrows-Wheeler transformation
	3.1 BWT and string searching
	3.2 Construction of BWT(s)

	4 String matching with k mismatches
	4.1 Basic working process
	4.2 Mismatching information
	4.3 Main idea: mismatching information derivation
	4.4 Algorithm description

	5 Analysis of time complexity
	6 Further improvements
	6.1 RankAll
	6.2 Multiple character checking

	7 Experiments
	8 Conclusion and future work
	Acknowledgement
	Appendix A Notations
	Appendix B On the generation of D[u]
	References

