
Information Processing Letters 82 (2002) 213–221

Signature files and signature trees

Yangjun Chen
Department of Business Computing, Winnipeg University, 515 Portage Avenue, Winnipeg, MB, Canada, R3B 2E9

Received 12 January 2001; received in revised form 15 March 2001

Abstract

The signature file method is a popular indexing technique used in information retrieval and databases. It excels in efficient
index maintenance and lower space overhead. However, it suffers from inefficiency in query processing due to the fact that for
each query processed the entire signature file needs to be scanned. In this paper, we introduce a tree structure, called a signature
tree, established over a signature file, which can be used to expedite the signature file scanning by one order of magnitude or
more. 2001 Elsevier Science B.V. All rights reserved.

Keywords:Index; Signature file; Signature identifier; Signature tree; Information retrieval

1. Introduction

An important question in information retrieval is
how to create a database index which can be searched
efficiently for the data one seeks. Today, one or more
of the following three techniques have been frequently
used: full text searching, inversion and the signature
file. Full text searching imposes no space overhead,
but requires long response time. In contrast, inversion
and the signature file work quickly, but need a large
intermediary representation structure (index), which
provides direct links to relevant data.

The inverted index excels in query processing ef-
ficiency. It is a set of postings lists [15], each of
which maps one keyword to a list of links to the
data entries containing that keyword. Inverted indices
can be implemented as sorted arrays, tries, B-trees
and various hashing structures, whereby each real
text block address (or document identifier) is stored
more than once. The scheme needs to frequently un-

E-mail address:ychen2@uwinnipeg.ca (Y. Chen).

dergo re-organization under intensive information in-
sertion/updating procedures. Recently, a lot of work
has been done on the encoding of postings list in
the context of document databases [19,23]. Using
Golomb’s encoding for the integers [13], the size of
the inverted index can be reduced to 14% of the in-
dexed data with little or no loss of retrieval effective-
ness [23]. However, Golomb’s encoding can not be uti-
lized in some applications. For instance, in an object-
oriented database system, if the inverted index is used,
the postings list will be a a series of pairs of the form:
(C,oid), whereC represents a class name andoid rep-
resents an object identifier, not satisfying the encoding
condition. Therefore, in the context of object-oriented
databases, the inverted file will require much storage
space for postings lists [3,14].

The signature file method was originally introduced
as a text indexing methodology [10,12]. Nowadays,
however, it is utilized in a wide range of applications,
such as in office filing [6], hypertext systems [12],
relational and object-oriented databases [5,16,18,21,
22], as well as in data mining [1]. Compared to the

0020-0190/01/$ – see front matter 2001 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(01)00266-6

214 Y. Chen / Information Processing Letters 82 (2002) 213–221

Fig. 1. Signature generation and comparison.

inverted index, the signature file is more efficient in
handling new insertions and queries on parts of words.
But the scheme introduces information loss. More
specifically, its output usually involves a number of
false drops, which may only be identified by means
of a full text scanning on every text block short-listed
in the output. Also, for each query processed, the
entire signature file needs to be searched [4,10,11].
Consequently, the signature file method involves high
processing and I/O cost. This problem is mitigated by
partitioning the signature file, as well as by exploiting
parallel computer architecture [7,17,20].

During the creation of a signature file, each word
is processed separately by a hashing function. The
scheme sets a constant number(m) of 1s in the[1..F]
range. The resulting binary pattern is called the word
signature. Each text is seen to consists of fixed size
logical blocks and each block involves a constant
number(D) of non-common, distinct words. TheD
word signatures of a block are superimposed (bit OR-
ed) to produce a singleF -bit pattern, which is the
block signature stored as an entry in the signature file.

Fig. 1 depicts the signature generation and compar-
ison process of a block containing three words (then
D = 3), say “SGML”, “database”, and “information”.
Each signature is of lengthF = 12, in whichm = 4
bits are set to 1. When a query arrives, the block sig-
natures are scanned and many nonqualifying blocks
are discarded. The rest are either checked (so that the
“false drops” are discarded; see below) or they are re-
turned to the user as they are. Concretely, a query spec-
ifying certain values to be searched for will be trans-
formed into a query signaturesq in the same way as for
word signatures. The query signature is then compared
to every block signature in the signature file. Three
possible outcomes of the comparison are exemplified

in Fig. 1: (1) the block matches the query; that is, for
every bit set insq , the corresponding bit in the block
signatures is also set (i.e.,s ∧ sq = sq) and the block
contains really the query word; (2) the block does not
match the query (i.e.,s ∧ sq �= sq); and (3) the signa-
ture comparison indicates a match but the block in fact
does not match the search criteria (false drop). In order
to eliminate false drops, the block must be examined
after the block signature signifies a successful match.

In this paper, we propose a method to speed up the
(sequential) signature file scanning by establishing a
tree structure, calledsignature tree, for it just like a
position tree for a text [2]. But by the construction of a
position tree, aposition identifieris a continuous piece
of character sequence, while by the construction of a
signature tree asignature identifieris not a continuous
piece of bit string.

A closely related work is the S-tree proposed in
[8]. It is in fact an B-tree built over a signature file.
Thus, it can be used to speed up the location of a
signature in a signature file just like an B-tree for keys
in a relational database. However, in the signature tree
each path corresponds to a signature identifier which
can be used to identify uniquely the corresponding
signature in a signature file. It helps to find the set of
signatures matching a query signature quickly.

Signature files can also be utilized as set access
facility in OODBSs [16]. Especially, according to the
analysis of [16], the bit-sliced signature file (BSSF)
achieves a higher performance than the sequential
signature file (SSF) by almost 50% (of time cost) in
the best case. But the storage cost of BSSF doubles
that of SSF and the update cost of BSSF triples that
of SSF or more [16]. Later on, we will see that the

Y. Chen / Information Processing Letters 82 (2002) 213–221 215

signature tree has a much better time complexity and
less update costs than BSSF but with almost the same
storage cost.

2. Signature trees

A first idea to improve the performance is to sort
the signature file and then employ a binary searching.
Unfortunately, this does not work due to the fact that
a signature file is only an inexact filter. The following
example helps for illustration.

Consider a sorted signature file containing only
three signatures:

010 000 100 110
010 100 011 000
100 010 010 100

Assume that the query signaturesq is equal to
000 010 010 100. It matches 100 010 010 100. How-
ever, if we use a binary search, 100 010 010 100 can
not be found.

For this reason, we try another method and construct
a signature tree to avoid scanning a signature file
completely.

2.1. Definition of signature trees

Consider a signaturesi of lengthF . We denote it as
si = si [1]si[2] . . . si[F], where eachsi [j] ∈ {0,1}(j =
1, . . . ,F). We also usesi (j1, . . . jh) to denote a se-
quence of pairs w.r.t.si : (j1, si [j1])(j2, si [j2]) . . .

(jh, si [jh]), where 1� jk � F for k ∈ {1, . . . , h}.

Definition 1 (signature identifier). LetS = s1.s2 . . . sn

denote a signature file. Considersi (1 � i � n). If
there exists a sequencej1, . . . , jh such that for anyk �=
i (1 � k � n) we havesi (j1, . . . , jh) �= sk(j1, . . . , jh),
then we saysi (j1, . . . , jh) identifies the signaturesi or
saysi (j1, . . . , jh) is an identifier ofsi .

Definition 2 (signature tree). A signature tree for a
signature fileS = s1.s2 . . . sn, wheresi �= sj for i �= j

and |sk| = F for k = 1, . . . , n, is a binary treeT such
that
(1) For each internal node ofT , the left edge leaving

it is always labeled with 0 and the right edge is
always labeled with 1.

(2) T hasn leaves labeled 1, 2, . . . ,n, used as pointers
to n different positions ofs1, s2, . . . , sn in S

(signature file). For a leaf nodeu,p(u) represents
the pointer to the corresponding signature inS.

(3) Each internal nodev is associated with a number,
denotedsk(v) which is the bit offset of a given
bit position in the block signature pattern. That bit
position will be checked whenv is encountered.

(4) Let j1, . . . , jh be the numbers associated with the
nodes on a path from the root to a leaf node
labeled i (then, this leaf node is a pointer to
the ith signature inS). Let p1, . . . , ph be the
sequence of labels of edges on this path. Then,
(j1,p1) . . . (jh,ph) makes up a signature identifier
for si , si (j1, . . . , jh).

Example 1. In Fig. 2(b), we show a signature tree for
the signature file shown in Fig. 2(a). In this signature
tree, each edge is labeled with 0 or 1 and each leaf
node is a pointer to a signature in the signature file.
In addition, each internal node is associated with a
positive integer (which is used to tell how many bits
to skip when searching). Consider the path going
through the nodes marked 1, 7 and 4. If this path is
searched for locating some signatures, then three bits
of s: s[1], s[7] and s[4] will have been checked at
that moment. Ifs[4] = 1, the search will go to the
right child of the node marked “4”. This child node
is marked with 5 and then the 5th bit ofs: s[5] will be
checked.

See the path consisting of the dashed edges in
Fig. 2(b), which corresponds to the identifier ofs6:
s6(1,7,4,5) = (1,0)(7,1)(4,1)(5,1). Similarly, the

Fig. 2. Signature tree.

216 Y. Chen / Information Processing Letters 82 (2002) 213–221

identifier of s3 is s3(1,4) = (1,1)(4,1) (see the path
consisting of the thick edges in Fig. 2(b)).

In the next section, we discuss how to construct such
a signature tree for a signature file in great detail.

2.2. Construction of signature trees

Below we give an algorithm to construct a signature
tree for a signature file, which needs only O(N) time,
whereN represents the number of signatures in the
signature file.

At the very beginning, the tree contains an initial
node: a node containing a pointer to the first signature.

Then, we take the next signature to be inserted into
the tree. Lets be the next signature we wish to enter.
We traverse the tree from the root. Letv be the node
encountered and assume thatv is an internal node with
sk(v) = i. Then,s[i] will be checked. Ifs[i] = 0, we
go left. Otherwise, we go right. Ifv is a leaf node, we
compares with the signatures0 pointed byv. s can
not be the same asv since inS there is no signature
which is identical to any other. But several bits of
s can be determined, which agree withs0. Assume
that the firstk bits of s agree withs0; but s differs
from s0 in the (k + 1)th position, wheres has the
digit b and s0 has 1− b. We construct a new node
u with sk(u) = k + 1 and replacev with u. (Note
that v will not be removed. By “replace”, we mean
that the position ofv in the tree occupied byu.v will
become one ofu’s children.) Ifb = 1, we makev and
the pointer tos be the left and right children ofu,
respectively. Ifb = 0, we makev and the pointer tos
be, respectively, the right and left children ofu.

The following is the formal description of the
algorithm.

Algorithm sig-tree-generation(file).

begin
construct a root noder with sk(r)= 1;
(* wherer corresponds to the first signatures1
in the signature file *)
for j = 2 to n do

call insert(sj);
end

Procedure insert(s)
begin

stack← root;

while stacknot emptydo
1 { v← pop(stack);
2 if v is not a leafthen
3 { i← sk(v);
4 if s[i] = 1 then {let a be the right child

of v; push(stack,a);}
5 else {let a be the left child ofv;

push(stack, a);}
6 }
7 else (* v is a leaf. *)
8 {compares with the signatures0

pointed byp(v);
9 assume that the firstk bit of s agree

with s0;
10 but s differs froms0 in the (k+ 1)th
11 position;

w← v; replacev with a new
nodeu with sk(u)= k + 1;

12 if s[k + 1] = 1 then
makes andw be, respectively, the right
and left children ofu

13 else makes andw be the right
and left children ofu, respectively;}

14 }
end

In the procedureinsert, stackis a stack structure used
to control the tree traversal.

In Fig. 3, we trace the above algorithm against the
signature file shown in Fig. 2(a).

In the following, we prove the correctness of the
algorithmsig-tree-generation. To this end, it should be
specified that each path from the root to a leaf node in
a signature tree corresponds to a signature identifier.
We have the following proposition.

Proposition 1. Let T be a signature tree for a signa-
ture fileS. LetP = v1.e1 . . . vg−1.eg−1.vg be a path in
T from the root to a leaf node for some signatures in
S, i.e.,p(vg)= s. Denoteji = sk(vi) (i = 1, . . . , g −
1). Then, s(j1, j2, . . . , jg−1) = (j1, b(e1)) . . . (jg−1,

b(eg−1)) constitutes an identifier fors.

Proof. Let S = s1.s2 . . . sn be a signature file andT
a signature tree for it. LetP = v1e1 . . . vg−1eg−1vg

be a path from the root to a leaf node forsi in T .
Assume that there exists another signaturest such that
st (j1, j2, . . . , jg−1)= si(j1, j2, . . . , jg−1), whereji =

Y. Chen / Information Processing Letters 82 (2002) 213–221 217

Fig. 3. Sample trace of signature tree generation.

Fig. 4. Inserting a nodev into T .

sk(vi) (i = 1, . . . , g − 1). Without loss of generality,
assume thatt > i. Then, at the moment whenst is
inserted intoT , two new nodesv and v′ will be
inserted as shown in Fig. 4(a) or 4(b). (See lines 10–15
of the procedureinsert.) Here,v′ is a pointer tost and
v is associated with a number indicating the position
wherep(vt) andp(v′) differs.

It shows that the path forsi should bev1.e1 . . .

vg−1.e.ve′.vg or v1.e1 . . . vg−1.e.ve′′.vg , which con-
tradicts the assumption. Therefore, there is not any
other signaturest with st (j1, j2, . . . , jn−1) = (j1,

b(e1)) . . . (jn−1, b(en−1)). Sosi (j1, j2, . . . , jn−1) is an
identifier ofsi . ✷

The analysis of the time complexity of the algorithm
is relatively simple. From the procedureinsert, we see
that there is only one loop to insert all signatures of a
signature file into a tree. At each step within the loop,

only one path is searched, which needs at most O(F)

time. Thus, we have the following proposition.

Proposition 2. The time complexity of the algorithm
sig-tree-generationis bounded byO(N), where N

represents the number of signatures in a signature file.

Proof. See the above analysis.✷
Finally, we note that the above technique can also

be used for a more general case that a signature file
contains signature duplicates. In this case, a leaf node
may be a set of pointers to different locations with
the identical signature. We change the lines 8–13 of
procedureinsert() to construct such a leaf node as
follows:

{compares with the signatures0 pointed by
a pointer inv;

if s ands0 are identicalthen
put the address ofs in v

else {assume that the firstk bit of s agree
with s0;

but s differs froms0 in the(k + 1)th position;
w← v; replacev with a new nodeu

with sk(u)= k + 1;
if s[k + 1] = 1 then

makes andw be, respectively, the right and
left children ofu

else makes andw be the right and
left children ofu, respectively;}

}

218 Y. Chen / Information Processing Letters 82 (2002) 213–221

3. Searching and maintenance of signature trees

In this section, we discuss the searching and main-
tenance of signature trees.

3.1. Searching a signature tree

Now we discuss how to search a signature tree to
model the behavior of a signature file as a filter. Letsq

be a query signature. Theith position ofsq is denoted
as sq(i). During the traversal of a signature tree, the
inexact matching is defined as follows:
(i) Let v be the node encountered andsq (i) be the

position to be checked.
(ii) If sq(i)= 1, we move to the right child ofv.
(iii) If sq(i)= 0, both the right and left child ofv will

be visited.
In fact, this definition just corresponds to the signature
matching criterion.

To implement this inexact matching strategy, we
search the signature tree in a depth-first manner and
maintain a stack structurestackp to control the tree
traversal.

Algorithm signature-tree-search.
input: a query signaturesq ;
output: set of signatures which survive the checking;
1. S←∅.
2. Push the root of the signature tree intostackp .
3. If stackp is not empty,v← pop(stackp);

else return(S).
4. If v is not a leaf node,i← sk(v);

If sq(i) = 0, pushcr and cl into stackp; (where
cr andcl arev’s right and left child, respectively)
otherwise, push onlycr into stackp .

5. Comparesq with the signature pointed byp(v).
(* p(v)-pointer to the block signature *)
If sq matches,S← S ∪ {p(v)}.

6. Go to (3).

The following example helps to illustrate the main
idea of the algorithm.

Example 2. Consider the signature file and the signa-
ture tree shown in Fig. 2 once again.

Assumesq = 000 100 100 000. Then, only part
of the signature tree (marked with thick edges in
Fig. 5) will be searched. On reaching a leaf node, the

Fig. 5. Signature tree search.

signature pointed by the leaf node will be checked
against sq . Obviously, this process is much more
efficient than a sequential searching. For this example,
only 42 bits are checked (6 bits during the tree search
and 36 bits during the signature checking). But by the
scanning of the signature file, 96 bits will be checked.
In general, if a signature file containsN signatures,
the method discussed above requires only O(N/2l)

comparisons in the worst case, wherel represents
the number of bits set insq , since each bit set in
sq will prohibit half of a subtree from being visited.
Compared to the time complexity of the signature file
scanning O(N), it is a major benefit. We will discuss
this issue in the next section in more detail.

3.2. Maintenance of a signature tree

When a signatures is added to a signature file, the
corresponding signature tree can be changed easily by
running the algorithminsert() once withs as the input
(see Section 2.2).

When a signature is removed from the signature file,
we need to reconstruct the corresponding signature
tree as follows:
(i) Let z,u, v, and w be the nodes as shown in

Fig. 6(a) and assume thatv is a pointer to the
signature to be removed.

(ii) Removeu and v. Set the left pointer ofz to w.
(If u is the right child ofz, set the right pointer of
z to w.)

The resulting signature tree is as shown in Fig. 6(b).
From the above analysis, we see that the mainte-

nance of a signature tree is an easy task.

Y. Chen / Information Processing Letters 82 (2002) 213–221 219

Fig. 6. Illustration for deleting a signature.

4. Computational complexity

4.1. Time complexity

To analyze the performance of the signature tree,
we consider four parameters:N — the number of
signatures in a signature file,F — the signature
length, m — the number of bits set to 1 in a
signature, andD — the size of a block. When
the average signature is half-populated with 1s, the
false drop probability and storage overhead trade-off
combination is optimized [4]. In such a setting, the two
parametersN andF satisfy the following inequality.

F �
(

F

F/2

)
. (1)

We have the above inequality based on a simple
observation that ifN >

(
F

F/2

)
there must exist two

signatures having the same binary strings. In this case,
one of them will be removed from the signature file.

In terms ofStirling formula,F ! ∼ √2πF
(

F
e

)F , we
have(

F

F/2

)
∼
√

2

πF
· 2F . (2)

Then, we have

N �
√

2

πF
· 2F . (3)

From this, we have log2 N � 1
2− 1

2 log2 π − 1
2 log2 F

+ F .
Thus,F satisfies the following inequality:

log2 N − 1

2
+ 1

2
log2 π + 1

2
log2 F � F. (4)

According to [4,9], in the case that the average block
signature involves an equal number of 1s and 0s,
the three design parametersm, F , andD satisfy the
relationship below:

F × ln 2=m×D. (5)

In addition, on averagel (the number of bits set to 1 in
a query signature) is equal tom.

From the above, we derive the time complexity of
the signature tree searching as follows:

N/2l ∼N/2m =N/2(F ln2)/D. (6)

In terms of (2) and (6), we have

N/2(F ln2)/D � N/2((logN− 1
2+ 1

2 logπ+ 1
2 logF) ln2)/D

= N
/(

N · 1√
2
· √π · √F

)(ln2)/D

.(7)

Finally, we have the inequality

N/2(F ln2)/D �N
/(

N · 1√
2
· √π · √F

)(ln2)/D

�N
/(

N · 1√
2
· √π ·

(
logN − 1

2

+ log
√

π + log
√

F

)1/2
)(ln2)/D

∼
(√

2

π

)(ln2)/D

·N/
(
N
√

logN
)(ln2)/D

.

(8)

Fig. 7 shows the calculation related to the above
formula.

In Fig. 7, the signatures checked are computed in
terms ofN — the size of a signature file. From this,
we can see that the performance of the signature tree
searching degrades as the size of a block increases. It
is because given a fixed signature length a larger block
requires that fewer bits in a term signature are set to 1,
which weakens the filtering power of signature trees
when it comes to single term query processing.

The above result also shows that the signature
tree outperforms the bit-sliced signature file (BSSF).
In terms of the analysis of [16], BSSF improves
the signature file scanning by almost 50%. But the
signature tree can be 10 times better than the scanning
of a signature file.

When compared with the S-tree [8], we note that
given the sizeN of a signature file and the lengthF
of the signatures in it the S-tree’s time complexity de-
creases linearly as the query weight increases (see the
experimental results of [8]). But the time complexity
of the signature tree reduces exponentially with the
query weight increments according to O(N/2l), the

220 Y. Chen / Information Processing Letters 82 (2002) 213–221

Fig. 7. Time complexities of signature files scanning and signature tree searching.

number of comparisons to be conducted during a sig-
nature tree traversal, wherel represents the number of
bits set to 1 in the query signature.

We also notice that the uncompressed inverted
index structure is very space-consuming. It requires
50 to 300% of the space required for the data [14].
Therefore, in the case that the integer encoding can not
be used for inversion, the signature tree is a promising
choice.

4.2. Extra space overhead of a signature tree

Note that the signature tree is a binary tree. Thus,
a signature tree can be stored as a set of triples of
the form: 〈v, lp, rp〉, wherev represents the number
associated with a node,lp represents the pointer to the
left subtree andrp represents the pointer to the right
subtree.

Assume that the length of a signature isF and the
number of signatures in a file isN . (The size of the
signature file is thereforeN×F bits.) Then, for eachv
we need log2 F bits and for eachlp (rp) we need
log2 N bits. Accordingly, for all the internal nodes of
a signature tree, we needN × log2 F + 2N × log2 N

bits space. To mitigate this problem to some extent, we
use the following relative address encoding:
(1) The triples for a signature tree are stored in the

breadth-first order.
(2) lp andrp are relative addresses, i.e., the absolute

address of nodev′ (denotedadd(v′)) pointed by
lp (or rp) is equal toadd(v′) = add(v) + lp (or
add(v)+ rp).

In this way, we need only 2 bits for the addresses
of the nodes at the first level, 22 bits for the second

level, 23 bits for the third level, and so on. The space
overhead can then be reduced to

N × log2 F + 2
k∑

i=0

2i · (i + 1), (9)

where 2k = N . It is almost half of the size of the
corresponding signature file.

5. Conclusion

In this paper, a new concept of signature identifiers
has been introduced, which can be used to differentiate
signatures in a signature file from each other. Based on
this concept, a tree structure, called a signature tree, is
proposed in which each path from the root to a leaf
node corresponds to a signature identifier. Then, the
scanning of a signature file can be replaced by the
traversal of a signature tree, which improves the query
processing efficiency significantly.

References

[1] H. Andre-Joesson, D. Badal, Using signature files for querying
time-series data, in: Proc. 1st European Symp. on Principles of
Data Mining and Knowledge Discovery, 1997.

[2] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley, London,
1974.

[3] A. Cardenas, Analysis and performance of inverted data base
structures, Comm. ACM 18 (5) (1975) 253–263.

[4] S. Christodoulakis, C. Faloutsos, Design consideration for a
message file server, IEEE Trans. Software Engrg. 10 (2) (1984)
201–210.

Y. Chen / Information Processing Letters 82 (2002) 213–221 221

[5] W.W. Chang, H.J. Schek, A signature access method for the
STARBURST database system, in: Proc. 19th VLDB Conf.,
1989, pp. 145–153.

[6] S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, A. Pat-
hria, Multimedia document presentation, information extrac-
tion and document formation in MINOS — A model and a
system, ACM Trans. Office Inform. Systems 4 (4) (1986) 345–
386.

[7] P. Ciaccia, P. Zezula, Declustering of key-based partitioned
signature files, ACM Trans. Database Systems 21 (3) (1996)
295–338.

[8] U. Deppisch, S-tree: A dynamic balanced signature index
for office retrieval, in: ACM SIGIR Conf., September 1986,
pp. 77–87.

[9] D. Dervos, Y. Manolopulos, P. Linardis, Comparison of
signature file models with superimposed coding, Inform.
Process. Lett. 65 (1998) 101–106.

[10] C. Faloutsos, Access methods for text, ACM Computing
Surveys 17 (1) (1985) 49–74.

[11] C. Faloutsos, Signature files, in: W.B. Frakes, R. Baeza-Yates
(Eds.), Information Retrieval: Data Structures & Algorithms,
Prentice-Hall, Englewood Cliffs, NJ, 1992, pp. 44–65.

[12] C. Faloutsos, R. Lee, C. Plaisant, B. Shneiderman, Incorporat-
ing string search in hypertext system: User interface and sig-
nature file design issues, HyperMedia 2 (3) (1990) 183–200.

[13] S.W. Golomb, Run-length encoding, IEEE Trans. Inform.
Theory 12 (3) (1966) 399–401.

[14] R. Haskin, Special purpose processors for text retrieval,
Database Engrg. 4 (1) (1981) 16–29.

[15] D. Harman, E. Fox, R. Baeza-Yates, Inverted files, in:
W.B. Frakes, R. Baeza-Yates (Eds.), Information Retrieval:

Data Structures & Algorithms, Prentice-Hall, Englewood
Cliffs, NJ, 1992, pp. 28–43.

[16] Y. Ishikawa, H. Kitagawa, N. Ohbo, Evaluation of signature
files as set access facilities in OODBs, in: Proc. of ACM
SIGMOD Internat. Conf. on Management of Data, Washing-
ton, DC, May, 1993, pp. 247–256.

[17] D.L. Lee, Massive parallelism on the hybrid text-retrieval
machine, Inform. Process. Management 31 (6) (1992) 281–
289.

[18] W. Lee, D.L. Lee, Signature file methods for indexing object-
oriented database systems, in: Proc. ICIC’92 — 2nd Internat.
Conf. on Data and Knowledge Engineering: Theory and
Application, Hongkong, December 1992, pp. 616–622.

[19] A. Moffat, J. Zobel, Self-indexing inverted files for fast text
retrieval, ACM Trans. Inform. Syst. 14 (4) (1996) 349–379.

[20] C. Stanfill, B. Kahle, Parallel free-text search on connection
machine system, Comm. ACM 29 (12) (1986) 1229–1239.

[21] R. Sacks-Davis, A. Kent, K. Ramamohanarao, J. Thom,
J. Zobel, Atlas: A nested relational database system for text
application, IEEE Trans. Knowledge Data Engrg. 7 (3) (1995)
454–470.

[22] H.S. Yong, S. Lee, H.J. Kim, Applying signatures for forward
traversal query processing in object-oriented databases, in:
Proc. of 10th Internat. Conf. on Data Engineering, Houston,
TX, February, 1994, pp. 518–525.

[23] J. Zobel, A. Moffat, K. Ramamohanarao, Inverted files ver-
sus signature files for text indexing, ACM Trans. Database
Syst. 23 (4) (December 1998) 453–490.

