N,

Information
?ﬁ% Processing
Letters

ELSEVIER Information Processing Letters 82 (2002) 213-221 —_—,
www.elsevier.com/locate/ipl

Signature files and signature trees

Yangjun Chen

Department of Business Computing, Winnipeg University, 515 Portage Avenue, Winnipeg, MB, Canada, R3B 2E9
Received 12 January 2001, received in revised form 15 March 2001

Abstract

The signature file method is a popular indexing technique used in information retrieval and databases. It excels in efficient
index maintenance and lower space overhead. However, it suffers from inefficiency in query processing due to the fact that for
each query processed the entire signature file needs to be scanned. In this paper, we introduce a tree structure, called a signatt
tree, established over a signature file, which can be used to expedite the signature file scanning by one order of magnitude o
more.O 2001 Elsevier Science B.V. All rights reserved.

Keywords:Index; Signature file; Signature identifier; Signature tree; Information retrieval

1. Introduction dergo re-organization under intensive information in-
sertion/updating procedures. Recently, a lot of work
An important question in information retrieval is has been done on the encoding of postings list in
how to create a database index which can be searchedhe context of document databases [19,23]. Using
efficiently for the data one seeks. Today, one or more Golomb’s encoding for the integers [13], the size of
of the following three techniques have been frequently the inverted index can be reduced to 14% of the in-
used: full text searching, inversion and the signature dexed data with little or no loss of retrieval effective-
file. Full text searching imposes no space overhead, ness [23]. However, Golomb’s encoding can not be uti-
but requires long response time. In contrast, inversion lized in some applications. For instance, in an object-
and the signature file work quickly, but need a large oriented database system, if the inverted index is used,
intermediary representation structure (index), which the postings list will be a a series of pairs of the form:
provides direct links to relevant data. (C, oid), whereC represents a class name and rep-
The inverted index excels in query processing ef- resents an object identifier, not satisfying the encoding
ficiency. It is a set of postings lists [15], each of condition. Therefore, in the context of object-oriented
which maps one keyword to a list of links to the databases, the inverted file will require much storage
data entries containing that keyword. Inverted indices space for postings lists [3,14].
can be implemented as sorted arrays, tries, B-trees The signature file method was originally introduced
and various hashing structures, whereby each realas a text indexing methodology [10,12]. Nowadays,
text block address (or document identifier) is stored however, it is utilized in a wide range of applications,
more than once. The scheme needs to frequently un-gych as in office filing [6], hypertext systems [12],
relational and object-oriented databases [5,16,18,21,
E-mail addressychen2@uwinnipeg.ca (Y. Chen). 22], as well as in data mining [1]. Compared to the

0020-0190/01/$ — see front mattér 2001 Elsevier Science B.V. All rights reserved.
PIl: S0020-0190(01)00266-6

214 Y. Chen / Information Processing Letters 82 (2002) 213-221

block: ... SGML ... databases ... information ...

word signature:

queries: query signatures: matching results:
SGML 010000 100 110 SGML 010000 100 110 match with OS
 database 100010010°100 XML 011000 100 100 no match with OS
information v 010 100011 000 informatik 110 100 100 000 false drop

object signature (OS) 110110 111 110

Fig. 1. Signature generation and comparison.

inverted index, the signature file is more efficient in in Fig. 1: (1) the block matches the query; that is, for
handling new insertions and queries on parts of words. every bit set ins,, the corresponding bit in the block
But the scheme introduces information loss. More signatures is also set (i.e.y A sq = s4) and the block
specifically, its output usually involves a number of contains really the query word; (2) the block does not
false drops, which may only be identified by means match the query (i.es A s, # s,); and (3) the signa-

of a full text scanning on every text block short-listed 1 comparison indicates a match but the block in fact
in the output. Also, for each query processed, the y,oqnot match the search criteria (false drop). In order

entire signature file_ needs tq be searched [4'10'_11]"[0 eliminate false drops, the block must be examined
Consequently, the signature file method involves high after the block signature signifies a successful match.

processing and I/O cost. This problem is mitigated by In this paper, we propose a method to speed up the

partitioning the signature file, as well as by exploiting k . .) "
parallel computer architecture [7,17,20]. (sequential) signature file scanning by establishing a

During the creation of a signature file, each word tree structure, calledignature treefor it just like a
is processed separately by a hashing function. The position tree for a text [2]. But by the construction of a
scheme sets a constant numbey of 1s in the[1..F] position tree, gosition identifielis a continuous piece
range. The resulting binary pattern is called the word Of character sequence, while by the construction of a
signature. Each text is seen to consists of fixed size signature tree aignature identifieis not a continuous
logical blocks and each block involves a constant piece of bit string.
number(D) of non-common, distinct words. Th® A closely related work is the S-tree proposed in
word signatures of a block are superimposed (bit OR- [8]. It is in fact an B-tree built over a signature file.
ed) to produce a singl&-bit pattern, which is the Thus, it can be used to speed up the location of a
block signature stored as an entry in the signature file. signature in a signature file just like an B-tree for keys
~ Fig. 1 depicts the signature generation and compar- j 5 relational database. However, in the signature tree
ison process of a block containing three words (then ¢ path corresponds to a signature identifier which
D = 3), say "SGML", “database”, and “information’”. can be used to identify uniquely the corresponding

Each signature is of length = 12, in whichm =4 signature in a signature file. It helps to find the set of
bits are set to 1. When a query arrives, the block sig-
signatures matching a query signature quickly.

natures are scanned and many nonqualifying blocks Signat fil Iso be utilized t
are discarded. The rest are either checked (so that the .|.gn<'51 ure files can aiso e.u lized as .se access
“false drops” are discarded: see below) o they are re- facility in OODBSs [16]. Especially, according to the

turned to the user as they are. Concretely, a query spec-2nalysis of [16], the bit-sliced signature file (BSSF)
ifying certain values to be searched for will be trans- achieves a higher performance than the sequential
formed into a query signatusg in the same way asfor ~ signature file (SSF) by almost 50% (of time cost) in
word signatures. The query signature is then comparedthe best case. But the storage cost of BSSF doubles
to every block signature in the signature file. Three that of SSF and the update cost of BSSF triples that
possible outcomes of the comparison are exemplified of SSF or more [16]. Later on, we will see that the

Y. Chen / Information Processing Letters 82 (2002) 213-221 215

signature tree has a much better time complexity and (2) T hasn leaves labeled 1, 2, ..n, used as pointers
less update costs than BSSF but with almost the same to n different positions ofsy, s2,...,s, in S
storage cost. (signature file). For a leaf node p(u) represents
the pointer to the corresponding signatureSin
(3) Each internal node is associated with a number,

2. Signaturetrees denotedsk(v) which is the bit offset of a given
bit position in the block signature pattern. That bit

A first idea to improve the performance is to sort position will be checked whenis encountered.

the signature file and then employ a binary searching. (4) Let ji, ..., ji, be the numbers associated with the

Unfortunately, this does not work due to the fact that nodes on a path from the root to a leaf node

a signature file is only an inexact filter. The following labeledi (then, this leaf node is a pointer to

example helps for illustration. the ith signature inS). Let p1,..., p» be the
Consider a sorted signature file containing only sequence of labels of edges on this path. Then,

three signatures: (1, p1) - - - (n, pr) makes up a signature identifier

010 000 100 110 for si. si(ja. .- jn)-

010100011 000 . .

100 010 010 100 Example 1. In Fig. 2(b), we show a signature tree for

the signature file shown in Fig. 2(a). In this signature

Assume that the query signaturg is equal 10 yee each edge is labeled with O or 1 and each leaf
000 010 010 100. It matches 100 010 010 100. How- nde is a pointer to a signature in the signature file.

ever, if we use a binary search, 100 010 010 100 can |, aqdition, each internal node is associated with a

not be found. positive integer (which is used to tell how many bits
For this reason, we try another method and construct skip when searching). Consider the path going

a signature tree to avoid scanning a signature file through the nodes marked 1, 7 and 4. If this path is

completely. searched for locating some signatsiréhen three bits
o . of s: s[1], s[7] and s[4] will have been checked at
2.1. Definition of signature trees that moment. Ifs[4] = 1, the search will go to the

)) i right child of the node marked “4”. This child node
Consider a signature of length /. We denoteitas s marked with 5 and then the 5th bit.afs[5] will be

si = si[1]s:[2]...s;[F], where each;[j] € {0, 1}(j = checked.
1,...,F). We also use;(j1,...j,) to denote a se-
quence of pairs w.rts;: (ji, si[jaD (2, silj2D) .- See the path consisting of the dashed edges in

Gns siljnD), where 1< je < F fork € {1,....,). Fig. 2(b), which corresponds to the identifier f

o)) B s6(1,7,4,5) = (1,0)(7,1)(4, 1)(5,1). Similarly, the
Definition 1 (signature identifiey. LetS = s1.52...5,

denote a signature file. Consider (1 <i < n). If
there exists a sequengg .. ., j, such that for any #
i (1< k< n)we haves;(ji,..., jn) # sk(j1s -+ Jn),
then we say; (j1, ..., ji) identifies the signaturg or
says;(j1, ..., jn) is anidentifier ofs;.

011001 000 101
111011001 111
111101010 111
011001 101 111
011101 110 101
011111110101
011001 111 111
111011 111 111

Definition 2 (signature treg A signature tree for a
signature fileS = s1.52...s,, Wheres; #s; fori # j
and j;| = F fork=1,...,n, is a binary treel’ such
that
(1) For each internal node df, the left edge leaving (a)
it is always labeled with 0 and the right edge is
always labeled with 1. Fig. 2. Signature tree.

L &« b b & 1 b U«
PASEAEE ARG CR

216

identifier of s3 is s3(1,4) = (1, 1)(4, 1) (see the path
consisting of the thick edges in Fig. 2(b)).

In the next section, we discuss how to construct such
a signature tree for a signature file in great detail.

2.2. Construction of signature trees

Below we give an algorithm to construct a signature
tree for a signature file, which needs only/D time,
where N represents the number of signatures in the
signature file.

At the very beginning, the tree contains an initial
node: a node containing a pointer to the first signature.

Then, we take the next signature to be inserted into
the tree. Let be the next signature we wish to enter.
We traverse the tree from the root. Lebe the node
encountered and assume thas an internal node with
sk(v) =i. Then,s[i] will be checked. Ifs[i] =0, we
go left. Otherwise, we go right. If is a leaf node, we
compares with the signatureg pointed byv. s can
not be the same assince inS there is no signature
which is identical to any other. But several bits of
s can be determined, which agree wiifhi Assume
that the firstk bits of s agree withsp; but s differs
from so in the (+ 1)th position, wheres has the
digit » and sp has 1— ». We construct a new node
u with sk(u) = k + 1 and replacev with u. (Note
that v will not be removed. By “replace”, we mean
that the position ob in the tree occupied by.v will
become one of’s children.) If b = 1, we makev and
the pointer tos be the left and right children af,
respectively. Ifb = 0, we makev and the pointer te
be, respectively, the right and left children.af

The following is the formal description of the
algorithm.

Algorithm sig-tree-generation(file)

begin
construct a root nodewith sk(r) =1;
(* wherer corresponds to the first signature
in the signature file *)
for j =2ton do
call insert;);
end

Procedureinsert(s)
begin
stack< root;

Y. Chen / Information Processing Letters 82 (2002) 213-221

while stacknot emptydo

1 {v < pop(stack;
2 if vis not a leathen
3 {i < skv);
4 if s[i]=1then {let a be the right child
of v; pushétack a);}
5 else{let a be the left child ofv;
pushétack a);}
6 }
7 gse (*visaleaf. *)
8 {compares with the signatureg
pointed byp(v);
9 assume that the firgtbit of s agree
with so;
10 buts differs fromsg in the + 1)th
11 position;
w < v; replacev with a new
nodeu with sk(u) =k + 1;
12 if slk 4+ 1] =1then
makes andw be, respectively, the right
and left children of:
13 else makes andw be the right
and left children oft, respectively;}
14 }
end

In the procedur@nsert, stackis a stack structure used
to control the tree traversal.

In Fig. 3, we trace the above algorithm against the
signature file shown in Fig. 2(a).

In the following, we prove the correctness of the
algorithmsig-tree-generatioriro this end, it should be
specified that each path from the root to a leaf node in
a signature tree corresponds to a signature identifier.
We have the following proposition.

Proposition 1. Let T be a signature tree for a signa-
turefileS. LetP =vi.e1...v,_1.€,_1.v, be apathin
T from the root to a leaf node for some signaturin
S,i.e., p(vy) =s.Denotej; =sk(v;) (i=1,...,8 —
1). Then,s(j1, j2, ..., jg-1) = (j1.b(e1))...(jg—1,
b(eg—_1)) constitutes an identifier far.

Proof. Let S = s1.52...5, be a signature file an@
a signature tree for it. LeP = vie1...vg_1€4_10,
be a path from the root to a leaf node fgrin T.
Assume that there exists another signatyich that

5t(J1s J2s - -+ Jg—1) = 8i(J1, j2, - - - jg—1), Wherej;

Y. Chen / Information Processing Letters 82 (2002) 213-221 217

insert s, insert s, insert s,
= III = —

insert s_

insert s_
s

insert s,

Fig. 3. Sample trace of signature tree generation.

only one path is searched, which needs at mast)O
time. Thus, we have the following proposition.
Proposition 2. The time complexity of the algorithm
sig-tree-generatiofis bounded byO(N), where N

represents the number of signatures in a signature file.

Proof. See the above analysisc

Finally, we note that the above technique can also
be used for a more general case that a signature file
contains signature duplicates. In this case, a leaf node
may be a set of pointers to different locations with
the identical signature. We change the lines 8-13 of
procedureinsert() to construct such a leaf node as
follows:

Fig. 4. Inserting a node into 7'.

sk(v;) (i =1,...,g — 1). Without loss of generality,
assume that > i. Then, at the moment wheq is
inserted into7, two new nodesv and v will be
inserted as shown in Fig. 4(a) or 4(b). (See lines 10-15 {compares with the signatureg pointed by

of the procedurénsert) Here,v’ is a pointer tos; and a pointer inv;
v is associated with a number indicating the position if s andso are identicathen
wherep(v;) and p(v’) differs. put the address afin v
It shows that the path fos; should bevy.es... else {assume that the firgt bit of s agree
vg—1.€.v€’.vg OF vi.e1...vg_1.€.v¢".vg, Which con- with so;
tradicts the assumption. Therefore, there is not any buts differs fromso in the (k + 1)th position;
other signatures, with s;(j1, j2,..., ju_1) = (j1. w < v; replacev with a new node:
b(e1)) ... (jn-1.b(en—1))- SOs; (j1. j2. ..., ja—1) IS AN ~ with sk(u) =k +1;
identifier ofs;. O if s[k 4+ 1] =1then
makes andw be, respectively, the right and
The analysis of the time complexity of the algorithm left children ofu _
is relatively simple. From the procedursert we see else makes andw be the right and
that there is only one loop to insert all signatures of a left children ofu, respectively;}

signature file into a tree. At each step within the loop, }

218 Y. Chen / Information Processing Letters 82 (2002) 213-221

3. Searching and maintenance of signaturetrees

In this section, we discuss the searching and main-
tenance of signature trees.

3.1. Searching a signature tree

Now we discuss how to search a signature tree to
model the behavior of a signature file as a filter. ket
be a query signature. Thiéh position ofs, is denoted
ass, (i). During the traversal of a signature tree, the
inexact matching is defined as follows: Fig. 5. Signature tree search.

(i) Let v be the node encountered andi) be the
position to be checked.
(i) If s,(i) =1, we move to the right child of.
(iiiy If s4(i) =0, both the right and left child of will
be visited.
In fact, this definition just corresponds to the signature
matching criterion.

To implement this inexact matching strategy, we
search the signature tree in a depth-first manner and
maintain a stack structurstack, to control the tree
traversal.

signature pointed by the leaf node will be checked
againsts,. Obviously, this process is much more
efficient than a sequential searching. For this example,
only 42 bits are checked (6 bits during the tree search
and 36 bits during the signature checking). But by the
scanning of the signature file, 96 bits will be checked.
In general, if a signature file contaiié signatures,
the method discussed above requires ontyWg)
comparisons in the worst case, whédreepresents
the number of bits set in,, since each bit set in
sq will prohibit half of a subtree from being visited.
Compared to the time complexity of the signature file
scanning @N), it is a major benefit. We will discuss
this issue in the next section in more detalil.

Algorithm signature-tree-search

input: a query signature, ;

output: set of signatures which survive the checking;
1. §S<4.

2. Push the root of the signature tree istack,.

3. If stack, is not emptyy < pop(stack;);

else returns). 3.2. Maintenance of a signature tree
4. If v is not a leaf node, < sk(v);
If s,() =0, pushc, and¢; into stack,; (where When a signature is added to a signature file, the
¢, andc; arewv’s right and left child, respectively) corresponding signature tree can be changed easily by
otherwise, push only, into stack,. running the algorithnmsert() once withs as the input
5. Compares, with the signature pointed by(v). (see Section 2.2).
(* p(v)-pointer to the block signature *) When a signature is removed from the signature file,
If s, matchesS < SU {p(v)}. we need to reconstruct the corresponding signature
6. Goto (3). tree as follows:
(i) Let z,u,v, and w be the nodes as shown in
The following example helps to illustrate the main Fig. 6(a) and assume thatis a pointer to the
idea of the algorithm. signature to be removed.
(i) Removeu andv. Set the left pointer ot to w.
Example 2. Consider the signature file and the signa- (If u is the right child ofz, set the right pointer of
ture tree shown in Fig. 2 once again. ztow.)

Assumes, = 000 100 100 000. Then, only part The resulting signature tree is as shown in Fig. 6(b).
of the signature tree (marked with thick edges in From the above analysis, we see that the mainte-
Fig. 5) will be searched. On reaching a leaf node, the nance of a signature tree is an easy task.

Y. Chen / Information Processing Letters 82 (2002) 213-221 219

In addition, on averagk(the number of bits setto 1 in

a query signature) is equal io.
u >_\ < From the above, we derive the time complexity of
VD/ W %W >_\ the signature tree searching as follows:
N/2' ~ Nj2" = Nj2Fn2/D (6)

b
(@ ® In terms of (2) and (6), we have

Fig. 6. lllustration for deleting a signature.
9 g asig N/2(FIn2/D N/Z((IogN—%+%Iogn+%|ogF)In2)/D

. . (In2)/D
4. Computational complexity _ N/(N%ﬁ«/f) G

4.1. Time complexity Finally, we have the inequality

To analyze the performance of the signature tree, 2 1 (n2)/D
we consider four parameters! — the number of ~ N/2¢F™")/DéN/ <N VG ﬁﬁ)
signatures in a signature filef — the signature
length, m — the number of bits set to 1 in a 1 1
signature, andD — the size of a block. When gN/(N- ﬁﬁ <IogN—§
the average signature is half-populated with 1s, the 1/2\ (In2)/D
false drop probability and storage overhead trade-off +log+/7 + log ﬁ)
combination is optimized [4]. In such a setting, the two
parameter®V and F satisfy the following inequality. (In2)/D
2 (In2)/D
F ~|]= -N/(N/logN) .
F< . @ i
We have the above inequality based on a simple _. .
observation that ifN > (FI;Z) there must exist two]Ic:c;gr;rhjlashows the calculation related to the above

signatures having the same binary strings. In this case,

one of them will be removed from the signature file. In Fig. 7, the signatures checked are computed in

- FAF terms of N — the size of a signature file. From this,

In terms ofStirling formula, ! ~ Z”F(E) » We we can see that the performance of the signature tree
have searching degrades as the size of a block increases. It
(F > N i oF @) is because given a fixed signature length a larger block

F/2 nF ’ requires that fewer bits in a term signature are setto 1,
Then, we have which weakens the filtering power of signature trees

when it comes to single term query processing.

N < /i oF ©) The above result also shows that the signature

nF tree outperforms the bit-sliced signature file (BSSF).
From this, we have logN < % _ % log, 7 — % log, F In terms of the analysis of [16], BSSF improves
+ F. the signature file scanning by almost 50%. But the

Thus, F satisfies the following inequality: signature tree can be 10 times better than the scanning
1 1 1 of a signature file.

log, N — > + > log, w + > log, F < F. 4) When compared with the S-tree [8], we note that

given the sizeN of a signature file and the length

of the signatures in it the S-tree’s time complexity de-
creases linearly as the query weight increases (see the
experimental results of [8]). But the time complexity
of the signature tree reduces exponentially with the
FxIn2=m x D. (5) query weight increments according to(/2'), the

According to [4,9], in the case that the average block
signature involves an equal number of 1s and Os,
the three design parametets F, and D satisfy the
relationship below:

220 Y. Chen / Information Processing Letters 82 (2002) 213-221
number of bit
comparison signature file scanning: —
12000} signature tree searching: ——
10000+
8000}
6000 D =16In2
4000f _ =7 7 7 Dpasm
2000} - =7
- —
= 7 - D =2In2
Ok — — — T T T T T

2000 4000 6000 8000 10000 12000

Fig. 7. Time complexities of signature files scanning and signature tree searching.

number of comparisons to be conducted during a sig-
nature tree traversal, whereepresents the number of
bits set to 1 in the query signature.

We also notice that the uncompressed inverted
index structure is very space-consuming. It requires
50 to 300% of the space required for the data [14].

level, 2 bits for the third level, and so on. The space
overhead can then be reduced to

k
F+222"-(i+1),
=0

N x log, (9)

Therefore, in the case that the integer encoding can notwhere 2 = N. It is almost half of the size of the

be used for inversion, the signature tree is a promising
choice.

4.2. Extra space overhead of a signature tree

Note that the signature tree is a binary tree. Thus,

corresponding signature file.

5. Conclusion

In this paper, a new concept of signature identifiers

a signature tree can be stored as a set of triples thas been introduced, which can be used to differentiate

the form: (v, Ip, rp), wherev represents the number
associated with a nodig represents the pointer to the
left subtree andp represents the pointer to the right
subtree.

Assume that the length of a signaturefisand the
number of signatures in a file ¥. (The size of the
signature file is therefor® x F bits.) Then, for each
we need logF bits and for eachp (rp) we need
log, N bits. Accordingly, for all the internal nodes of
a signature tree, we need x log, F + 2N x log, N
bits space. To mitigate this problem to some extent, we
use the following relative address encoding:

(1) The triples for a signature tree are stored in the
breadth-first order.

(2) Ip andrp are relative addresses, i.e., the absolute
address of node’ (denotedadd(v’)) pointed by
Ip (or rp) is equal toadd(v') = add(v) + Ip (or
add(v) + rp).

In this way, we need only 2 bits for the addresses
of the nodes at the first level? dits for the second

signatures in a signature file from each other. Based on
this concept, a tree structure, called a signature tree, is
proposed in which each path from the root to a leaf
node corresponds to a signature identifier. Then, the
scanning of a signature file can be replaced by the
traversal of a signature tree, which improves the query
processing efficiency significantly.

References

[1] H. Andre-Joesson, D. Badal, Using signature files for querying
time-series data, in: Proc. 1st European Symp. on Principles of
Data Mining and Knowledge Discovery, 1997.

[2] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and
Analysis of Computer Algorithms, Addison-Wesley, London,
1974.

[3] A. Cardenas, Analysis and performance of inverted data base
structures, Comm. ACM 18 (5) (1975) 253-263.

[4] S. Christodoulakis, C. Faloutsos, Design consideration for a
message file server, IEEE Trans. Software Engrg. 10 (2) (1984)
201-210.

[5] W.W. Chang, H.J. Schek, A signature access method for the

6

—

(7]

(8]

El

(20]

(11]

(12]

(23]
(14]

(15]

Y. Chen / Information Processing Letters 82 (2002) 213-221

STARBURST database system, in: Proc. 19th VLDB Conf.,
1989, pp. 145-153.

S. Christodoulakis, M. Theodoridou, F. Ho, M. Papa, A. Pat-
hria, Multimedia document presentation, information extrac-
tion and document formation in MINOS — A model and a
system, ACM Trans. Office Inform. Systems 4 (4) (1986) 345—
386.

P. Ciaccia, P. Zezula, Declustering of key-based partitioned
signature files, ACM Trans. Database Systems 21 (3) (1996)
295-338.

U. Deppisch, S-tree: A dynamic balanced signature index
for office retrieval, in: ACM SIGIR Conf., September 1986,
pp. 77-87.

D. Dervos, Y. Manolopulos, P. Linardis, Comparison of
signature file models with superimposed coding, Inform.
Process. Lett. 65 (1998) 101-106.

C. Faloutsos, Access methods for text, ACM Computing
Surveys 17 (1) (1985) 49-74.

C. Faloutsos, Signature files, in: W.B. Frakes, R. Baeza-Yates
(Eds.), Information Retrieval: Data Structures & Algorithms,
Prentice-Hall, Englewood Cliffs, NJ, 1992, pp. 44—-65.

C. Faloutsos, R. Lee, C. Plaisant, B. Shneiderman, Incorporat-
ing string search in hypertext system: User interface and sig-
nature file design issues, HyperMedia 2 (3) (1990) 183—-200.
S.W. Golomb, Run-length encoding, IEEE Trans. Inform.
Theory 12 (3) (1966) 399-401.

R. Haskin, Special purpose processors for text retrieval,
Database Engrg. 4 (1) (1981) 16-29.

D. Harman, E. Fox, R. Baeza-Yates, Inverted files, in:
W.B. Frakes, R. Baeza-Yates (Eds.), Information Retrieval:

[16]

(17]

(18]

221

Data Structures & Algorithms, Prentice-Hall, Englewood
Cliffs, NJ, 1992, pp. 28-43.

Y. Ishikawa, H. Kitagawa, N. Ohbo, Evaluation of signature
files as set access facilities in OODBs, in: Proc. of ACM
SIGMOD Internat. Conf. on Management of Data, Washing-
ton, DC, May, 1993, pp. 247-256.

D.L. Lee, Massive parallelism on the hybrid text-retrieval
machine, Inform. Process. Management 31 (6) (1992) 281—
289.

W. Lee, D.L. Lee, Signature file methods for indexing object-
oriented database systems, in: Proc. ICIC’92 — 2nd Internat.
Conf. on Data and Knowledge Engineering: Theory and
Application, Hongkong, December 1992, pp. 616—-622.

[19] A. Moffat, J. Zobel, Self-indexing inverted files for fast text

retrieval, ACM Trans. Inform. Syst. 14 (4) (1996) 349-379.

[20] C. stanfill, B. Kahle, Parallel free-text search on connection

machine system, Comm. ACM 29 (12) (1986) 1229-1239.

[21] R. Sacks-Davis, A. Kent, K. Ramamohanarao, J. Thom,

J. Zobel, Atlas: A nested relational database system for text
application, IEEE Trans. Knowledge Data Engrg. 7 (3) (1995)
454-470.

[22] H.S. Yong, S. Lee, H.J. Kim, Applying signatures for forward

traversal query processing in object-oriented databases, in:
Proc. of 10th Internat. Conf. on Data Engineering, Houston,
TX, February, 1994, pp. 518-525.

[23] J. Zobel, A. Moffat, K. Ramamohanarao, Inverted files ver-

sus signature files for text indexing, ACM Trans. Database
Syst. 23 (4) (December 1998) 453—-490.

