
A Space-Economic Representation of Transitive Closures in Relational
Databases

Yangjun Chen*

Dept. Applied Computer Science, University of Winnipeg,
515 Portage Ave. Winnipeg, Manitoba, Canada R3B 2E9

ychen2@uwinnipeg.ca
ABSTRACT

A composite object represented as a directed graph (digraph for
short) is an important data structure that requires efficient support
in CAD/CAM, CASE, office systems, software management, web
databases, and document databases. It is cumbersome to handle
such objects in relational database systems when they involve an-
cestor-descendant relationships (or say, recursive relationships).
In this paper, we present a new encoding method to label a di-
graph, which reduces the footprints of all previous strategies.
This method is based on a tree labeling method and the concept
of branchings that are used in graph theory for finding the short-
est connection networks. A branching is a subgraph of a given di-
graph that is in fact a forest, but covers all the nodes of the graph.
On the one hand, the proposed encoding scheme achieves the
smallest space requirements among all previously published
strategies for recognizing recursive relationships. On the other
hand, it leads to a new algorithm for computing transitive clo-
sures for DAGs (directed acyclic graph) in O(e⋅b) time and O(n⋅b)
space, where n represents the number of the nodes of a DAG, e
the numbers of the edges, and b the DAG’s breadth. In addition,
this method can be extended to cyclic digraphs and is especially
suitable for a relational environment.

Keywords: Directed Graphs, Trees, Transitive Closures, Branch-
ings, Graph Encoding

1. INTRODUCTION

It is a general opinion that relational database systems are inade-
quate for manipulating composite objects that arise in novel ap-
plications such as web and document databases [3, 12, 13, 35,
49], CAD/CAM, CASE, office systems and software manage-
ment [8, 28, 43]. Especially, when recursive relationships are in-
volved, it is cumbersome to handle them in relational databases,
which sets current relational systems far behind the navigational
ones [31].

A composite object can be generally represented as a directed
graph (digraph). For example, in a CAD database, a composite
object corresponds to a complex design, which is composed of
several subdesigns [8]. Often, subdesigns are shared by more than
one higher-level designs, and a set of design hierarchies thus
forms a directed acyclic graph (DAG). As another example, the
* The author is supported by NSERC 239074-01 (242523) (Natural Sci-
ences and Engineering Council of Canada).
citation index of scientific literature, recording reference relation-
ships between authors, constructs a directed cyclic graph. As a
third example, we consider the traditional organization of a com-
pany, with a variable number of manager-subordinate levels,
which can be represented as a tree hierarchy.

In a relational system, composite objects must be fragmented
across many relations, requiring joins to gather all the parts. A typ-
ical approach to improving join efficiency is to equip relations
with hidden pointer fields for coupling the tuples to be joined [11].
The so-called join index is another auxiliary access path to miti-
gate this difficulty [46, 47]]. Also, several advanced join algo-
rithms have been suggested, based on hashing and a large main
memory. In addition, a different kind of attempts to attain a com-
promise solution is to extend relational databases with new fea-
tures, such as clustering of composite objects, by which the
concatenated foreign keys of ancestor paths are stored in a primary
key (see [23, 33, 39] for detailed description). Another extension

to relational system is nested relations (or NF2 relations, see, e.g.,
[18]). Although it can be used to represent composite objects with-
out sacrificing the relational theory, it suffers from the problem
that subrelations cannot be shared. Moreover, recursive relation-
ships cannot be represented by simple nesting because the depth is
not fixed. Finally, deductive databases and object-relational data-
bases can be considered as two quite different extensions to handle
this problem [29, 37, 15].
In this paper, we discuss a new encoding approach to pack “ances-
tor paths” in a relational environment. The main idea of this meth-
od is tree labeling, by means of which we associate each node v
with a pair of integers (α, β) such that if v’, another node associat-
ed with (α’, β’), is a descendant of v, some arithmetical relation-
ship between α and α’, as well as β and β’ can be determined.
Then, such relationships can be used to find all descendants of a
node, and the recursive closure w.r.t. a tree can be computed very
efficiently. This method can be generalized to DAGs or digraphs
containing cycles by decomposing a graph into a series of trees, for
which the approach described above can be employed. As we can
see later, a new method for computing recursion efficiently in a re-
lational environment can be developed based on these techniques.
In fact, it is a new algorithm to handle this problem with a repre-
sentation of transitive closures different from traditional ones. It
needs only O(e⋅b) time and O(n⋅b) space, where b is the breadth of
the graph, defined to be the least number of disjoined paths that
cover all the nodes of a graph. This computational complexity is
better than any existing method for this problem, including the
graph-based algorithms [20, 21, 34, 36, 38], the graph encoding [1,
2, 6, 7, 14, 16, 46, 46] and the matrix-based algorithms [24, 32, 44,

45]. (See Section 6 for a detailed comparison.)
The remainder of the paper is organized as follows. Section 2
specifies the problem to be solved. Section 3 introduces the con-
cept of tree labeling, and applies it to simple tree-structured re-
cursion hierarchies. Section 4 elaborates the technique to
arbitrary recursion pattern. In Section 5, we address how to
change labels when a new node or a new edge is inserted into a
DAG. In Section 6, we discuss and compare the relevant work.
Section 7 reports test results. Finally, a short conclusion is set
forth in Section 8.

2. TASK DEFINITION

We consider composite objects represented by a digraph, where
nodes stand for objects and edges for parent-child relationships,
stored in a binary relation. In many applications, the transitive
closure of a digraph needs to be computed, which is defined to be
all ancestor-descendant pairs.
Let G = (V, E) be a directed graph (digraph for short). Digraph G*
= (V, E*) is the reflexive, transitive closure of G if (v, w) ∈ E* iff
there is a path from v to w in G. For example, the graph shown in
Fig. 1(b) is the transitive closure of the graph shown in Fig. 1(a).

A lot of research has been done on this issue. Among them, the
semi-naive [10] and the logarithmic [46] are typical algorithmic
solutions. Another main approach is the materialization of a tran-
sitive closure, either partially or completely [1, 2, 5, 6, 7, 49]. The
implementation of the transitive closure algorithms in a relational
environment has received extensive attention, including perfor-
mance and the adaptation of the traditional algorithms [2, 4, 5, 6,
19, 26, 43].
The method proposed in this paper can be characterized as a par-
tial materialization method. Given a node, we want to compute all
its descendants efficiently based on a specialized data structure.
The following is a typical structure to accommodate part-subpart
relationships [17]:

- Part(Part-id, ...)
- Connection(Parent-id, Child-id, ...)

where Parent-id and Child-id are both foreign keys, referring to
Part-id. In order to speed up the recursion evaluation, we’ll asso-
ciate each node with a pair of integers, which helps to recognize
ancestor-descendant relationships.
In the rest of the paper, the following three types of digraphs will
be discussed.

(i) Tree hierarchy, in which the parent-child relationship is
of one-to-many type, i.e., each node has at most one par-
ent.

(ii) Directed acyclic graph (DAG), which occurs when the re-
lationship is of many-to-many type, with the restriction
that a part cannot be sub/superpart of itself (directly or in-

v1

v2
v3 v4

v5

(a)

v1

v2
v3 v4

v5

(b)

Fig. 1. A DAG and its transitive closure
directly).
(iii) Directed cyclic graph, which contains cycles.

Later we’ll use the term graph to refer to the directed graph, since
we do not discuss non-directed ones at all.

3. TREE LABELING AND RECURSION COMPUTATION

In this section, we discuss how to label a tree to speed up the com-
putation of recursion in a relational environment.

Consider a tree T. By traversing T in preorder, each node v will ob-
tain a number (it can an integer or a real number) pre(v) to record
the order in which the nodes of the tree are visited. In a similar
way, by traversing T in postorder, each node v will get another
number post(v). These two numbers can be used to characterize
the ancestor-descendant relationships as follows.
Proposition 1. Let v and v’ be two nodes of a tree T. Then, v’ is a
descendant of v iff pre(v’) > pre(v) and post(v’) < post(v).

Proof. See Exercise 2.3.2-20 in [30].

If v’ is a descendant of v, then we know that pre(v’) > pre(v) ac-
cording to the preorder search. Now we assume that post(v’) >
post(v). Then, according to the postorder search, either v’ is in
some subtree on the right side of v, or v is in the subtree rooted at
v’, which contradicts the fact that v’ is a descendant of v. There-
fore, post(v’) must be less than post(v). The following example
helps for illustration.
Example 1. See the pairs associated with the nodes of the graph
shown in Fig. 2. The first element of each pair is the preorder num-
ber of the corresponding node and the second is its postorder num-
ber. With such labels, the ancestor-descendant relationships can be
easily checked.
For instance, by checking the label associated with b against the
label for f, we see that b is an ancestor of f in terms of Proposition
1. Note that b’s label is (2, 4) and f’s label is (5, 2), and we have
2 < 5 and 4 > 2. We also see that since the pairs associated with g
and c do not satisfy the condition given in Proposition 1, g must

not be an ancestor of c and vice versa.

Definition 1. (label pair subsumption) Let (p, q) and (p’, q’) be
two pairs associated with nodes u and v. We say that (p, q) is sub-
sumed by (p’, q’), denoted (p, q) (p’, q’), if p > p’ and q < q’.
Then, u is a descendant of v if (p, q) is subsumed by (p’, q’).

To the best of our knowledge, this nice property has never been
utilized in the database research or in the subtyping tests to recog-
nize the ancestor-descendant relationships. Although in the rela-
tive numbering [40] the postorder numbers are used, it works in a
quite different way. With this strategy, each node v is labeled with
two numbers: the largest and the smallest postorder numbers in the
subtree rooted at v. It is a more complicated labeling process than
the tree labeling shown above. The range-compression [2] is a
generalization of the relative numbering to DAGs. Its space re-

a

b g h

c e

f

Fig. 2. Labeling a tree

(3, 1)

(5, 2)

(4, 3)

(2, 4) (6, 5)
(7, 6)

(1, 7)

quirement is on O(n2) and it is different from our general strategy
to be discussed in the next section. In [49], to speed up evaluation
of containment queries, a node v (which represents an element in
a document tree) is associated with a triple (begin, end, level),
where begin is in fact a preorder number, end is the largest preor-
der number in the subtree rooted at v, and level is the depth, at
which v is located. Therefore, it is also quite different from our
method.
According to the tree labeling discussed above, the relational
schema to handle recursion can consists of only one relation of
the following form:

Node(Node_id, label_pair, ...),

where label_pair is used to accommodate the preorder and the
postorder numbers of the nodes of a graph, denoted
label_pair.preorder and label_pair.postorder, respectively. Then,
to retrieve the descendants of node x, we issue two queries as be-
low.

Q1: SELECT label_pair

FROM Node
WHERE Node_id = x

Let the label pair obtained by evaluating Q1 be y. Then, the sec-

ond query is of the following form:

Q2: SELECT *

FROM Node
WHERE label_pair.preorder > y.preorder

and label_pair.postorder < y.postorder

From this, we can see that with the tree labeling, the recursion
w.r.t. a tree can be handled conveniently in a relational environ-
ment.

4. GENERALIZATION

Now we discuss how to recognize the ancestor-descendant rela-
tionships w.r.t. a general structure: a DAG or a graph containing
cycles. First, we address the problem of DAGs in 4.1. Then, cy-
clic graphs will be discussed in 4.2. 4.3 is devoted to the compu-
tation of transitive closures.

4.1 Recursion w.r.t. DAGs

What we want is to apply the technique discussed above to a
DAG. To this end, we establish a branching of the DAG as fol-
lows.

Definition 2. (branching [T42]) A subgraph B = (V, E’) of a di-
graph G = (V, E) is called a branching if it is cycle-free and dinde-

gree(v) ≤ 1 for every v ∈ V.

Clearly, if for only one node r, dindegree(r) = 0, and for all the rest

of the nodes, v, dindegree(v) = 1, then the branching is a directed

tree with root r. Normally, a branching is a set of directed trees.
Now, we assign every edge e a same cost (e.g., let cost c(e) = 1
for every edge e). We will find a branching for which the sum of

the edge costs, , is maximum.

For example, the trees shown in Fig. 3(b) are a maximal branch-

c e()

e E ′∈
∑

ing of the graph shown in Fig. 3(a) if each edge has a same cost.
Assume that the maximal branching for G = (V, E) is a set of trees
Ti with root ri (i = 1, ..., m). We introduce a virtual root r for the

branching and an edge r → ri for each Ti, obtaining a tree Gr, called

the representation of G. For instance, the tree shown in Fig. 3(c) is
the representation of the graph shown in Fig. 3(a). Using Tarjan’s
algorithm for finding optimum branchings [42], we can always
find a maximal branching for a directed graph in O(|E|) time if the
cost for every edge is equal to each other. Therefore, the represen-
tative tree for a DAG can be constructed in linear time.
By traversing Gr in preorder, each node v will obtain a number

pre(v); and by traversing Gr in postorder, each node v will get an-

other number post(v). These two numbers can be used to recognize
the ancestor-descendant relationships of all Gr’s nodes as dis-

cussed in Section 3.

In a Gr (for some G), a node v can be considered as a representa-

tion of the subtree rooted at v, denoted Tsub(v); and the pair (pre,

post) associated with v can be considered as a pointer to v, and thus
to Tsub(v). (In practice, we can associate a pointer with such a pair

to point to the corresponding node in Gr.) In the following, what

we want is to construct a pair sequence: (pre1, post1), ..., (prek,

postk) for each node v in G, representing the union of the subtrees

(in Gr) rooted respectively at (prej, postj) (j = 1, ..., k), which con-

tains all the descendants of v. In this way, the space overhead for
storing the descendants of a node is dramatically reduced. Later
we will shown that a pair sequence contains at most O(b) pairs,
where b is the breadth of G. (The breadth of a digraph is defined to
be the least number of the disjoint paths that cover all the nodes of
the graph.)
Example 2. The representative tree Gr of the DAG G shown in

Fig. 3(a) can be labeled as shown in Fig. 4(a). Then, each of the
generated pairs can be considered as a representation of some sub-
tree in Gr. For instance, pair (3, 3) represents the subtree rooted at

c in Fig. 4(a).

a b

c d
g

a

c g

e

b

d
a

c g

e

b

d

fe
f

f

Fig. 3. A DAG and its branching

(a) (b) (c)

r

(1, 8)

(2, 5)

(3, 3)

(4, 1) (5, 2)

(7, 7)a

c g

e

b

d

f

(6, 4) (8, 6)

a

b

c

d

e

f

g

2, 5

4, 1 5, 2 6, 4

3, 3

7, 7

4, 1 5, 2 6, 4 8, 6

4, 1 5, 2 6, 4

4, 1

5, 2

Fig. 4. Tree labeling and illustration for transitive closure

(a)

(b)

Tsub(e) ∪ Tsub(f) ∪ Tsub(g) ∪ Tsub(b)
Tsub(a)

Tsub(c)
Tsub(e) ∪ Tsub(f) ∪ Tsub(g) ∪ Tsub(d)

Tsub(e)
Tsub(f)
Tsub(e) ∪ Tsub(f) ∪ Tsub(g)

representation

If we can construct, for each node v, a pair sequence as shown in
Fig. 4(b), where it is stored as a linked list, the descendants of the
nodes can be represented in an economical way. Let L = (pre1,

post1), ..., (prek, postk) be a pair sequence and each (prei, posti) is

a pair labeling vi (i = 1, ..., k). Then, L corresponds to the union

of the subtrees Tsub(v1) , ..., and Tsub(vk). For example, the pair

sequence (4, 1)(5, 2)(6, 4)(8, 6) associated with d in Fig. 4(b) rep-
resents a union of 4 subtrees: Tsub(e), Tsub(f), Tsub(g) and Tsub(d),

which contains all the descendants of d in G.

The question is how to construct such a pair sequence for each
node v so that it corresponds to a union of some subtrees in Gr,

which contains all the descendants of v in G.
First, we notice that by labeling Gr, each node in G = (V, E) will

be initially associated with a pair as illustrated in Fig. 5. That is,
if a node v is labeled with (pre, post) in Gr, it will be initially la-

beled with the same pair (pre, post) in G.

To compute the pair sequence for each node, we sort the nodes of
G topologically, i.e., (vi, vj) ∈ Ε implies that vj appears before vi

in the sequence of the nodes. The pairs to be generated for a node
v are simply stored in a linked list Av. Initially, each Av contains

only one pair produced by labeling Gr.

We scan the topological sequence of the nodes from the begin-
ning to the end and at each step we do the following:

Let v be the node being considered. Let v1, ..., vk be the chil-

dren of v. Merge Av with each for the child node vl (l =

1, ..., k) as follows. Assume Av = p1 → p2 → ... → pg and

= q1 → q2 → ... → qh, as shown in Fig. 6. Assume that

both Av and are increasingly ordered. (We say a pair p

is larger than another pair p’, denoted p > p’ if p.pre > p’.pre
and p.post > p’.post.)

We step through both Av and from left to right. Let pi and qj

be the pairs encountered. We’ll make the following checkings.
(1) If pi.pre > qj.pre and pi.post > qj.post, insert qj into Av after

pi-1 and before pi and move to qj+1.

(2) If pi.pre > qj.pre and pi.post < qj.post, remove pi from Av and

move to pi+1. (*pi is subsumed by qj.*)

(3) If pi.pre < qj.pre and pi.post > qj.post, ignore qj and move to

qj+1. (*qj is subsumed by pi; but it should not be removed

a b
c d

g

fe

Fig. 5. Graph labeling

(2, 5)
(7, 7)

(3, 3) (6, 4) (8, 6)

(4, 1) (5, 2)

Avl

Avl

Avl

Av:

 p1 p2 pg

viA :

 q1 q2 qh

Fig. 6. linked lists associated with nodes in G

Avl
from .*)

(4) If pi.pre < qj.pre and pi.post < qj.post, ignore pi and move to

pi+1.

(5) If pi = pj’ and qi = qj’, ignore both (pi, qi) and (pj’, qj’), and

move to (pi+1, qi+1) and (pj+1’, qj+1’), respectively.

In terms of the above discussion, we have the following algorithm
to merge two pair sequences together.

Algorithm pair-sequence-merge(A1, A2)

Input: A1 and A2 - two linked lists associated with v1 and v2.

Output: A - modified A1, obtained by merging A2 into A1, contain-

ing all the pairs in A1 and A2 with all the subsumed pairs removed.

begin
1 p ← first-element(A1);

2 q ← first-element(A2);

3 while p ≠ nil do{
4 while q ≠ nil do{
5 if (p.pre > q.pre ∧ p.post > q.post) then
6 {insert q into A1 before p;

7 q ← next(q);}
(*next(q) represents the pair next to q in A2.*)

8 else if (p.pre > q.pre ∧ p.post < q.post) then
9 {p’ ← p; (*p is subsumed by q; remove p from A1.*)

10 remove p from A1;

11 p ← next(p’);}
(*next(p’) represents the pair next to p’ in A1.*)

12 else if (p.pre < q.pre ∧ p.post > q.post) then
13 {q ← next(q);}

(*q is subsumed by p; move to the next element of q.*)

14 else if (p.pre < q.pre ∧ p.post < q.post) then
15 {p ← next(p);}
16 else if (p.pre = q.pre ∧ p.post = q.post)
17 then {p ← next(p); q ← next(q);}

18 if p = nil ∧ q ≠ nil then {attach the rest of A2 to the end of A1;}

end

The following example helps for illustration.

Example 3. Assume that A1 = (7, 7)(11, 8) and A2 = (4, 3)(8, 5)(10,

11). Then, A = pair-sequence-merge(A1, A2) = (4, 3)(7, 7)(10, 11).

Fig. 7 shows the entire merging process.

In each step, the A1-pair pointed by p and the A2-pair pointed by q

Avi

(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(11, 8)
(4, 3)(8, 5)(10, 11)

p

q

(4, 3)(7, 7)(10, 11)
(4, 3)(8, 5)(10, 11)

p = nil

q

A1:
A2:

A

(a) (b) (c)

(d) (e)

Fig. 7. An entire merging process

are compared. In the first step, (7, 7) in A1 will be checked against

(4, 3) in A2 (see Fig. 7(a)). Since (4, 3) is smaller than (7, 7), it

will be inserted into A1 before (7, 7) (see Fig. 7(b)). In the second

step, (7, 7) in A1 will be checked against (8, 5) in A2. Since (8, 5)

is subsumed by (7, 7), we move to (10, 11) in A2 (see Fig. 7(c)).

In the third step, (7, 7) is smaller than (10, 11) and we move to
(11, 8) in A1 (see Fig. 7(d)). In the fourth step, (11, 8) in A1 is

checked against (10, 11) in A2. Since (11, 8) is subsumed by (10,

11), it will be removed from A1 and p becomes nil (see Fig. 7(e)).

In this case, (10, 11) will be attached to A1 (see line 18 of Algo-

rithm pair-sequence-merge()), forming the result A = (4, 3)(7,
7)(10, 11) (see Fig. 7(e)). Fig. 8 is a pictorial illustration of the re-
sult of merging A2 into A1.

From this, we can see that A1 represents the union of two subtrees

respectively rooted at (7, 7) and (10, 11) while A2 represents the

union of three subtrees rooted at (4, 3), (8, 3) and (10, 11), respec-
tively. The result A got by merging A2 into A1 is the union of three

subtrees rooted at (4, 3), (7, 7) and (10, 14), respectively (see the

dashed arrows in Fig. 7).

In the following, we establish several propositions to clarify the
properties of the above algorithm.

Proposition 2. Let A1 and A2 be two pair sequences sorted in in-

creasing order. Let A be the result obtained by merging A2 into A1

using Algorithm pair-sequence-merge(). Then, A is also sorted
increasingly.

Proof. During the execution of the algorithm, some pairs may be
removed from A1 and some pair of A2 may be inserted into A1.

Obviously, removing a pair from A1 will not change the ordering

of A1. Let q be a pair of A2 inserted into A1. It may be done at line

6 or at line 18. If it is done at line 6, there must be pair p in A1

such that p > q. Consider the pair p’ before p. We have p’ < q; oth-
erwise, q will be inserted before p’ or will not be inserted into A1

at all. In this case, the proposition holds. If q is inserted into A1

by executing line 18, all the pairs in A1 must be used up before the

line 18 is carried out. We notice that at this moment, all the pairs
in A1 are increasingly ordered and smaller than all the remaining

pairs in A2, which are originally in increasing order. Therefore, in

this case, the proposition holds, too.

Proposition 3. Let A1 and A2 be two pair sequences sorted in in-

creasing order. Let A be the result obtained by merging A2 into A1

using Algorithm pair-sequence-merge(). If v is a node in a sub-
tree of Gr, which is rooted at some node labeled with a pair in A2,

then there must be a pair in A such that the subtree rooted at it

(4, 3)

(7, 7)

(8, 5)
(10, 11)

(11, 8)

A1:

A2:
A:

a branching

Fig. 8. Illustration of merging two pair sequences
contains v.

Proof. Assume that v is in a subtree rooted at u labeled with (pre,
post) that appears in A2. If (pre, post) appears in A, the proposition

holds. Suppose that (pre, post) does not appear in A. In this case,
there must be a pair (pre’, post’) in A1, which subsumes (pre,

post). Notice that (pre’, post’) cannot be subsumed by any pair in
A2 since it subsumes (pre, post). Otherwise, we will have a pair

(pre’’, post’’) in A2 such that pre’’ < pre’ and post’’ > post’. But

we have (pre, post) < (pre’’, post’’) or (pre, post) > (pre’’, post’’).
In the former case, we have pre < pre’’ < pre’. It contradicts the
fact that (pre’, post’) subsumes (pre, post). In the latter case, we
have post > post’’ > post’. It also contradicts the fact that (pre’,
post’) subsumes (pre, post). Therefore, (pre’, post’) will appear in
A. Since v is in the subtree rooted at (pre, post), it must be in the

subtree rooted at (pre’, post’). Thus, the proposition holds.

Proposition 4. Let A1 and A2 be two pair sequences sorted in in-

creasing order. Let A be the result obtained by merging A2 into A1

using Algorithm pair-sequence-merge(). If v is a node in a subtree
of Gr, which is rooted at some node labeled with a pair in A1, then

there must be a pair in A such that the subtree rooted at it contains
v.

Proof. Similar to Proposition 3.

Proposition 5. The time complexity of Algorithm pair-sequence-
merge is bounded by O(|A1| + |A2|).

Proof. During the execution of the algorithm, each pair in A1 and

A2 is visited at most once.

Based on the merging operation discussed above, the pair se-
quences for all the nodes in a DAG can be computed as follows.

Algorithm all-sequence-generation

begin

1 Let vn, vn-1, ..., v1 be the topological sequence of the nodes of

G;

2 for i from n downto 1 do

3 {let , ..., be the child nodes of vi;

4 for j from 1 to k do

5 call pair-sequence-merge(Ai,);

6 }

end

Proposition 6. The space complexity of Algorithm all-sequence-
generation is bounded by O(n⋅b), where b is the breadth of G and
n is the number of the nodes of G.

Proof. In the algorithm, each node v is associated with a linked list
Av. We claim that the size of Av is bounded by b. Assume that Av

contains b + 1 pairs that are different from each other. Then, there
must exist two pairs p and q so that p subsumes q or vice versa.
Therefore, one of them will be removed. Thus, the space needed

for Algorithm all-sequence-generation is bounded by O(n⋅b).

Proposition 7. The time complexity of Algorithm all-sequence-
generation is bounded by O(e⋅b), where b is the breadth of G and
e is the number of the edges of G.

vi1
vik

Aij

Proof. In the out for-loop of the algorithm, n steps are performed.
In each step, di merge operations are made for each vi, where di

represents the outdegree of vi. Therefore, the time spent for each

step is O(di⋅b). The whole time complexity is thus O()

= O(e⋅b).
Since the decomposition and the labeling of a DAG need only
O(e) time and O(e) space, the whole time complexity of our algo-
rithm is bounded by O(e⋅b) according to Proposition 7, and the
space complexity is bounded by O(n⋅b) according to Proposition
6. This computational complexity is superior to any existing
ones. We compare our algorithm with the relevant work in Sec-
tion 6.
Proposition 8. Let v be a node in G. Any descendant u of v must
be in a subtree of Gr rooted at a node labeled with a pair in Av con-

structed by Algorithm all-sequence-generation.

proof. Assume that vn → vn-1 → ... → v1 is a topological sequence

of G. We prove the proposition by induction on the ordinal
number l in the topological sequence.

Basis. When l = 1, vn is a leaf node in G and its linked list contains

only one label associated with vn. The proposition holds.

Hypothesis. Suppose that when m ≤ k the proposition holds. That
is, each linked list Ai associated with vi (i = n, ..., n - k) contains

all the pairs covering all the descendants of vi.

Consider l = k + 1. According to the property of the topological
sequence, all the child nodes of vn-k-1 must appear in {vn, vn-1, ...,

vn-k}. Then, from lines 3 - 6 of Algorithm all-sequence-genera-

tion, as well as Proposition 2, 3 and 4, we can see that the linked
list An-k-1 associated with vn-k-1 must contain all the pairs cover-

ing all the descendants of vn-k-1. It completes the proof.

Example 4. A possible topological sequence for the graph shown
in Fig. 3(a) is: e → f → g → c → d → a → b. The pairs associated
with them are: (4, 1), (5, 2), (6, 4), (3, 3), (8, 6), (2, 5) and (7, 7),
respectively. They are obtained by labeling the tree shown in Fig.
4(a). Applying Algorithm all-sequence-generation to this se-
quence, we will produce a linked list for each of them as shown

in Fig. 9.

We can store physically the label pair for each node, as well as its
label pair sequence produced using Algorithm all-sequence-gen-
eration. Concretely, the relational schema to handle recursion
w.r.t. a DAG can be established in the following form:

Node(Node_id, label, label_sequence, ...),

where label and label_sequence are used to accommodate the la-
bel pairs and the label pair sequences associated with the nodes
of a graph, respectively. Then, to retrieve the descendants of node

di b⋅∑

a

b

c

d

e

f

g

2, 5

4, 1 5, 2 6, 4

3, 3

7, 7

4, 1 5, 2 6, 4 8, 6

4, 1 5, 2 6, 4

4, 1

5, 2

topological order

Fig. 9. linked lists representing pair sequences
x, we issue two queries. The first query is similar to Q1:

Q3: SELECT label_sequence

FROM Node
WHERE Node_id = x.

Let the label sequence obtained by evaluating Q3 be y. Then, the

second query will be of the following form:

Q4: SELECT *

FROM Node
WHERE φ(label, y),

where φ(p, s) is a boolean function with the input: p and s, where
p is a pair and s a pair sequence. If there exists a pair p’ in s such

that p p’ (i.e., p.pre > p’.pre and p.post < p’.post), then φ(p, s)
returns true; otherwise false.
We note that each execution of φ function needs only O(log|s|)
time. This can be done as follows. Assume s = p1 → p2 → ... →

pg, which is stored in two arrays and : one for all the pi⋅pres

and the other for all the pi⋅posts. To check whether p is subsumed

by a pi, we make a binary search of to find the largest i such

that pi⋅pre < p⋅pre. Then, we search from the 1st to the ith el-

ement to find whether there exists j such that pj⋅post < p⋅post. If it

is the case, p is subsumbed by some pair in s; otherwise not. Ob-
viously, the time complexity of this process is O(log|s|). Since |s|
is bounded by the breadth b of the graph, this method requires only
O(n⋅log|b|) time to find all the descendants of a given node.

4.2 Recursion w.r.t. cyclic graphs

Based on the method discussed in the previous subsection, we can
easily develop an algorithm to compute recursion for cyclic
graphs. First, we use Tarjan’s algorithm for identifying strongly
connected components (SCCs) to find the cycles of a cyclic graph
[41] (which needs only O(n + e) time). Then, we take each SCC as
a single node (i.e., condense each SCC to a node) and transform a
cyclic graph into a DAG. Next, we handle the DAG as discussed
in 4.1. In this way, however, all nodes in an SCC will be assigned
the same pair (and the same pair sequence). For this reason, the
method for computing the recursion at some node x should be
slightly changed. In the following, Q5 is the same as Q3, but Q6 is

different from Q4.

Q5: SELECT label_sequence

FROM Node
WHERE Node_id = x

Let the label sequence obtained by evaluating Q5 be y. Then, the

second query will be of the following form:

Q6: SELECT *

FROM Node
WHERE γ(label, y),

where γ(t, s) is a boolean function with the input: t and s, where t
is a pair and s a pair sequence. If there exists a pair t’ in s such that

t’.pre ≤ t.pre and t’.post ≥ t.post, then γ(t, s) returns true; otherwise
false.
We note that γ() is slightly different from φ() defined in 4.1.

Av
1 Av

2

Av
1

Av
2

In Q6, any two nodes in the same SCC are considered to be the

descendants of each other.
Finally, we point out that the time complexity of computing re-
cursion w.r.t. a cyclic graph is still O(e⋅b) since Tarjan’s algorithm
runs in O(n + e) time [41].

4.3 About computation of transitive closures

The algorithm discussed in 4.1 is in essence a new strategy with
a representation of transitive closures quite different from the tra-
ditional methods. As mentioned in 4.1, each pair in a pair se-
quence associated with a node in G can be considered as a pointer
to a subtree in Gr. (In practice, each pair can be associated with a

physical pointer as illustrated in Fig. 10(a).) Then, the union of all
the subtrees pointed to by the pairs in a pair sequence associated
with a node v contains all the descendants of v.

For an intuitive explanation, see the pair (2, 5) associated with a
in Fig. 10(a). It is a pointer to the node a in the branching, indi-
cating that all the nodes in the subtree rooted at a (in the branch-
ing) are the descendants of a in the original graph. As another
example, see the pair sequence for b that contains 4 pairs, repre-
senting 4 pointers as shown in the figure. From the original graph
shown in Fig. 3(a), we see that the union of the subtrees pointed
to by these 4 pointers contains really all the descendants of b. In
this way, we need only O(n⋅b) space to store a transitive closure,
where b is the breadth of the graph. As discussed in 4.1, the time
spent to generate the pair sequences for all the nodes in a graph is
O(e⋅b).
In a traditional method, however, the transitive closure of a graph
is represented by a set of lists and each list contains all the descen-
dants of some node (see Fig. 10(b)) or by a n × n boolean matrix
Therefore, the space requirement for storing a transitive closure

is O(n2).

5. INCREMENTAL CHANGES TO GRAPHS

In a dynamic environment, the data in a database can be frequent-
ly changed. With a static encoding, the recomputation of labels is
needed, which is normally very time consuming. However, in our
method, adding a node to a DAG needs only O(b) time for calcu-
lating its label. Adding an edge is more difficult since it may

cause O(n2) edges in the transitive closure of a graph (see [27]).
In our method, it needs O(b) time in the best case and O(n⋅b) time
in the worst case. But for n consecutive insertions of edges, it
takes only O(n⋅b) time. Therefore, the average time for inserting
an edge is O(b). In the following, we discuss the node insertion

r

a

b

c

d

e

f

g

2, 5

4, 1 5, 2 6, 4

3, 3

7, 7

4, 1 5, 2 6, 4 8, 6

4, 1 5, 2 6, 4

4, 1

5, 2

.

a:

b:

c:

d:

e:

f:

g:

[e]
[f]

[g, e, f]

[c, e, f]

[d, g, e, f]

[a, c, g, e, f]

[b, d, g, e, f]

Fig. 10. linked lists representing pair sequences

(a) (b)

a

d g

e f

d

b

and the edge insertion in 5.1 and 5.2, respectively.

5.1 Node insertion

We notice that a label can be a real number, not always an integer.
Between two consecutive integers, we have infinitely many real
numbers. Then, when a new node is inserted into a graph, we can
assign a real number to a node as its preorder or postorder number,
which will not twist the mechanism discussed in the preceding
section. However, infinitely many numbers are not implement-
able. Depending on different applications, we set different num-
bers of digits to the right of the decimal point for the possible
insertion. It can be considered as an extension to the idea discussed
in [2], which leaves gaps between each pair of successive post-
numbers for inserting nodes.

In the following, we first discuss the node insertion into a tree.
Then, the node insertion into a DAG is briefly outlined.

- Node insertion into a tree

First, we consider two cases of node insertion into a tree.

1. A new node v is inserted into a tree T as a direct right sibling
of some node u.

2. A new node v is inserted into a tree T as a parent of some
node u.

In these two cases, the pair (pre, post) associated with v is calcu-
lated as follows.

Let the pair associated with u be (p, q). Let the pair associated with
the node s preceding u (according to the preorder numbering) be
(ps, qs). Let the pair associated with the node t next to s (according

to the postorder numbering) be (pt, qt). We have

pre = ps + , and post = qt - .

Obviously, if each node keeps a pointer to its predecessor (accord-
ing to the preorder numbering) and a pointer to its successor (ac-
cording to the postorder numbering), this operation needs only a
constant time.

Now we consider another two cases that are dual to case 1 and 2,
respectively.

3. A new node v is inserted into a tree T as a direct left sibling
of some node u.

4. A new node v is inserted into a tree T as a child of some node
u and the parent of one of u’s children.

Let the pair associated with u be (p, q). Let the pair associated with
the node s preceding u (according to the postorder numbering) be
(ps, qs). Let the pair associated with the node t next to s (according

to the preorder numbering) be (pt, qt). We have

pre = p + , and post = q - .

- Node insertion into a DAG

To calculate the pair and the pair sequence for a new node inserted
into a DAG, we have to determine where to insert the node in the
corresponding branching. This can be done by checking the parent
of the new node, which is an easy task since the information on its
parent must be specified. Two cases will be considered:

1. The node is inserted as a child of some node in the branching.

2. The node is inserted between an edge (u, v) (i.e., it is inserted
as a child of u and the parent of v.)

p ps–

2

qt q–

2

pt p–

2

q qs–

2

For both cases, we compute the pair for the new node using the
method discussed above; but yet we need to merge the pair se-
quence of its child with its pair for case 2. The time complexity is
O(b).

5.2 Edge insertion

Now we consider the insertion of an edge e into a DAG G. Let e
= (u, v). Let Au and Av be the label sequences for u and v, respec-

tively. The following algorithm changes the labels of G when e is
inserted into it.

Algorithm inserting-one-edge(G, e)

begin
call pair-sequence-merge(Av, Au);(*pair-sequence-merge(Av,

Au) was discussed in Section 3.*)

if Av is not changed then return;

else {Let vn, vn-1, ..., v1 be the topological sequence of the

nodes of G;

Assume v = vl for some l;

for i from l downto 1 do(*change the labels of the nodes
along the topological order.*)

{let , ..., be the child nodes of vi;

for j from 1 to k do

* if is not changed then call pair-sequence-

merge(Ai,);

** if there are b consecutive label sequences not changed
(*b represents the breadth of G.*)

then return;

}

end

This algorithm is similar to the Algorithm all-sequence-genera-
tion. The main difference is the line marked with ‘*’, where

whether is changed is checked before pair-sequence-

merge(Ai,) is invoked. Another difference is the line marked

with ‘**’, where we check whether there are b consecutive label
sequences not changed (b represents the breadth of G). If it is the
case, the algorithm terminates. Recall that the time complexity of
Algorithm pair-sequence-merge() is O(b). Therefore, we need
only O(b) time for inserting an edge in the case that Av is not

changed after Au is merged into it. In the worst case, we will ex-

ecute the algorithm pair-sequence-merge() l times (if v is the lth
node in the topological sequence of G). For each of these nodes,
we will merge all those changed pair sequences of its children
with its pair sequence. (See the line marked ‘*’ in the above algo-
rithm.) Since at most n pair sequences may be changed, the time
complexity is bounded by O(n⋅b).

We notice that inserting m (m > 1) edges consecutively into a
DAG G does not require more time than inserting only one edge.
This is because after changing the label sequences for all the
nodes involved, we need to scan the topological sequence of G
only once. Therefore, the time complexity of inserting m edges

into G is bounded by O(m⋅ ⋅b).

In particular, if m = n, the time complexity is O(n⋅b).

vi1
vik

Aij

Aij

Aij

Aij

n
min m n,{ }

6. RELEVANT WORK AND COMPARISON

In the past several decades, the transitive closure of a graph has be
extensively researched and a lot of different strategies have been
proposed, such as the graph-based algorithms [20, 21, 34, 36, 38],
the graph encoding [1, 2, 7, 14, 16, 27, 43, 48] and the matrix-
based methods [24, 32, 44, 45]. In the following, we mainly dis-
cuss the graph encoding and the matrix-based methods since they
uniformly outperform the graph-based methods.

- Graph encoding

Perhaps the most elegant algorithm for encoding is relative num-
bering [40] (also called Schubert’s numbering), by means of
which each node v is associated with an interval [qv, pv] to facili-

tate the checking of ancestor-descendant relationships, where pv is

the postorder number of v and qv is the least postorder number of

the subtree rooted at v. This method was generalized to DAGs by
Agrawal, Borgida and Jagadish [2] into what is called range-com-
pression. In this method, each node v is associated with a postorder
number pv and two arrays Av and Bv such that if there exists anoth-

er node u satisfying the following condition for some i: Au[i] < pv

< Bu[i], v is a descendant of u. Since the size of Av (or Bv) is on the

order O(n), the space overhead of this encoding is O(n2). To gen-
erate such arrays, all the edges have to be accessed. Thus, the time
overhead of this method is O(n⋅e). In addition, by leaving gaps be-
tween each pair of successive postorder numbers, inserting a node
can be done efficiently. However, for a new node, its arrays has to
be created and therefore, at least, O(n) time is needed. To insert an
edge is more difficult since the data structures for all the descend-

ants have to be recomputed, which needs in the worst case O(n2)
time. Finally, O(n) time is needed for path checking since both the
arrays associated with a node will be scanned.

Bommel and Beck [7] improves the method proposed in [2] only
by setting suitable gaps. Therefore, their method has the same
computational complexities as [2].

In [27], Jagdish discussed a different graph encoding, by means of
which, for any pair of nodes u and v with labels (i, j) and (k, j), if i
< k, there exists a directed path from u to v. Since for all the nodes
on each path (called a chain in [27]) such labels are established,
the space overhead is O(c⋅n), where c is the number of paths cov-
ering all the nodes of a graph. Since the paths may not be disjoined
(i.e., a node may appear on more than one path), the number of the
labels associated with a node is on the order O(n) in the worst case.
The time complexity of this method is O(n⋅e) and it needs O(c⋅n)
time to insert an edge. Finally, inserting a node needs at least O(n)
time since for each path where the node appears the labels have to
be created, and the labels for all the descendants as well as all the
ancestors have to be changed.

In the method proposed by Abdeddaim [1], a node v is associated
with two integer sequences of the same length: p = p1, ..., pk and s

= s1, ..., sk, where k is the number of the disjoined paths covering

the graph. Each pi in p is the number of the nodes on a path Pi,

which are the predecessors of v while each sj in s is equal to |Pj| -

succj(v) + 1, where |Pj| is the number of nodes on Pj and succj(v)

is the number of the successors of v on Pj. With such sequences as-

sociated with the nodes, the path checking can be done in O(k)
time. However, this method maintains the transitive closure of a

graph in O(k2⋅e + n⋅min{n, e}) time and O(k⋅n) space; and needs

O(n2) time to modify relevant succj(v)’s when inserting an edge.

In [43], Teuhola discussed an interesting bit-sequence encoding.
In this method, each node v is associated with an interval (l, h),
where l and h are two signatures each consisting of a bit string.
These bit strings are constructed in such a way that if the interval
associated with a descendant of v is (l’, h’), then l ≤ l’ and h ≥ h’
hold. In the case of DAGs, the space and time overhead of this
method are bounded respectively by O(d⋅n) and O(d⋅e), where d
is the length of a signature. However, the length of a signature is
sensitive to the height of a graph (which is defined to be the long-
est path in a graph) and the outdegrees of the nodes. Therefore, in
the worst case, inserting a node or an edge needs to change all the
signatures of the graph, leading to an O(d⋅e) time complexity.
Obviously, the path checking only needs O(d) time. The main
problem of this method is that the graph decomposition is not
clearly defined, which is needed to label a graph using signatures.
Besides the above methods, several other encodings have been
developed in the context of programming languages to speed up
type-subtype checkings, such as Cohen’s encoding [16], Packed-
Encoding (also called PE-Encoding) [14] and PQ-Encoding [48].
Cohen’s encoding can be used only for tree structures; and PE-
Encoding is a bit-vector based strategy. The length of a bit-vector
is on O(n), where n is the number of the types (subtypes) in a hi-
erarchy. The PE-Encoding was proposed by Zibin and Gil in
2001 [48], which associates each node v with an array of integers
Av and an interval [lv, hv] such that for any ancestor u of v we have

lu < Av[i] < hu for some i. The length of the array is shortened by

decomposing a graph into slices in such a way that there is only
an entry in the array for each slice. This encoding is based on the
concept of PQ-trees, a data structure proposed in [9], which is
used to test for the consecutive 1’s property in binary matrices.
However, since the size of a slice is bounded by a constant, the
length of the array is on O(n/g), where g represents average num-
ber of nodes in a slice. Therefore, the space overhead of the PQ-

Encoding is on O(n2/g). The time overhead should be O(n⋅e/g).
Inserting an edge and inserting a node are difficult since in the
worst case, the slices have to be redefined, leading to a time com-
plexity of O(n⋅e/g). In terms of the analysis of [48], a path check-
ing needs O(logn) time.

From the discussion in Section 3, we can see that our algorithm
is a new graph encoding different from any one outlined above
and needs only O(e⋅b) time and O(n⋅b) space to compute the tran-
sitive closure of a graph. The time for Inserting a node is bounded
by O(b). In addition, we need only O(logb) time for path check-

ing and O(m⋅ ⋅b) time for inserting m edges succes-

sively.

Table 1 shows the computational complexities of all the main
graph encoding algorithms.

Table 1. Comparison of computation complexities.

- Matrix-based methods

In the computing graph theory, the transitive closure has been
long an interesting topic. Many methods have been proposed
based on the matrix representation, such as the methods discussed
in [24, 32, 44, 43]. In such methods, a transitive closure is main-
tained as a matrix M with M[i, j] = 1 indicating that there exists a

n
min m n,{ }

path from node i to node j in G. Among all these algorithms, the
most interesting is Warren’s [45]. It improves the time complexity

of Washall’s [45] from O(n3) to O(n⋅e). Since the transitive clo-
sure of a graph is stored in a matrix, the time for path checking is

bounded by a constant. However, the space overhead is O(n2). In
addition, even applying the well-known set-union algorithm, in-
serting m edges successively needs O(mα(m + e, n) + e + n) time,
where α(x, y) is a very slowly growing function. Adding a node is
also difficult since a n × n matrix will be changed to a (n + 1) × (n
+ 1) one. Therefore, it needs at least O(n) time.

The method proposed by Ibaraki and Katoh [24] maintains the
transitive closure of a graph in the same computation complexity

as Warren’s. However, it needs only O(n3) time to insert q edges
successively by using a special bit operation. When the order of m

is larger, O(n3) is better than O(mα(m + e, n) + e + n).

In Italiano’s method [25], an n × n matrix of pointers is used. Each
of them points to a spanning tree. Therefore, more time and space
than Warren’s are needed. The goal of Italiano’s was to get a better
amortized time complexity for two operations: inserting an edge
and checking a path (if such a path exists, return it). Using Ital-
iano’s data structure, each of the above two operations can be done
in O(n) amortized time.

The method discussed in [32] is a more complicated strategy. In-
stead of computing the transitive closure of a G = (V, E), this meth-

od computes the transitive closure of G’s reduction G- = (V, E-),

where E- is defined as follows:

E- = E / {(u, v) | (u, v) | (u, v) ∈ E and there is path P from u
to v with |P| ≥ 2}.

Obviously, |E-| ≤ |E|. Therefore, the computation of the transitive

closure of G- needs less time than G. But the time complexity is
still on the order of O(n⋅e). In addition, during the computation,
two matrices are used and thus more space than Warren’s is need-
ed. The time for inserting m edges successively is O(m⋅n).

Table 2 shows the computational complexities of all the main ma-
trix-based algorithms.

Tabel 2. Comparison of computation complexities

Agrawal

O(n⋅e)

O(n2)

O(n)

O(n2)

O(n)

Bommel

O(n⋅e)

O(n2)

O(n)

O(n2)

O(n)

Jagdish

O(n⋅e)

O(c⋅n)

O(n)

O(c⋅n)

O(n)

Teuhola

O(d⋅e)

O(d⋅n)

O(d)

O(d⋅e)

O(d⋅e)

Abdeddam

O(k2⋅e + n⋅min{n, e})

O(k⋅n)

O(k)

O(n2)

≥O(n)

our graph labeling

O(b⋅e)

O(b⋅n)

O(logb)

O((n/min{m, n})⋅b)

O(b)

time

space

path check

insert an edge

insert a node

Beck
Zibin

O(n⋅e/g)

O(n2/g)

O(logn)

O(n⋅e/g)

O(n⋅e/g)

Gil
Borgida
Jagadish

Warren

O(n⋅e)

O(n2)

O(1)

O(mα(m + e, n) + e + n)

≥O(n)

Ibaraki and

O(n⋅e)

O(n2)

O(1)

O(n3)

≥O(n)

Italiano

O(n⋅e)

O(n2)

O(n)

O(m⋅n)

≥O(n)

La Poutre and

O(n⋅e)

O(n2)

O(1)

O(m⋅n)

≥O(n)

Katoh Leeuwen

time

space

path check

insert m edges

insert a node

7. EXPERIMENT RESULTS

We have implemented a test bed in C++, with our own buffer
management (with first-in-first-out replacement policy) and B+-
tree structure. The computer was Intel Pentium III, running stan-
dalone.
We have tested two methods: the method based on signatures
(Teuhola’s), and the method based on graph labeling (the one dis-
cussed in this paper). We chose Teuhola’s method for testing
since it has best space complexity over the others.
We used two structure types: Trees and DAGs, and measured the
physical I/O quota as well as the cpu time. We did not check cy-
clic digraphs since in [43] no formal method was suggested to
handle this case using signatures. In fact, even for DAGs, it was
not explicitly discussed in [43] how to decompose a digraph into
a set of ‘spanning’ trees (as defined in that article). We code for
the specific data setting described in [43]; but it is not a general
strategy.
Along with [43], we have tested the following three cases:
(1) a forest of 18 trees with three children per nonleaf; eight lev-

els, 59040 nodes, and 59022 connections;
(2) a forest of 18 trees with four children per nonleaf; eight lev-

els, 393192 nodes, and 393174 connections;
(3) a DAG of 640 roots with three children per nonleaf; two

parents per nonroot, eight levels, 31525 nodes and 61770
connections.

For the two methods tested, the data files are designed a little bit
differently as shown in Fig. 11. In both the data files, a node is
represented by a node identifier that is in fact an integer repre-
sented as a bit sequence. The file for testing Teuhola’s method
contains, for each node, 32 or 64 bits for its signature plus 4 bits
for the level, at which the node appears. In this file, only the low
value (a signature) of the interval associated with a node is stored;
and the high value of the interval can be calculated using the low
value and the corresponding level number. The file for testing the
graph-labeling method contains a preorder number and a pos-
torder number for each node. Each of them is 18 or 22 bits long.
For the tests, the buffer is of 50 pages and each page is of size
4096 bytes.

Fig. 12 shows the test results of case (1). For this test, each of the
signatures for Teuhola’s is 32 bits long while each of the preorder
(postorder) numbers for the graph-labeling takes 18 bits.
From this, we can see that in the case of trees, if the signatures of
Teuhola’s method have the same length as the labels of the graph-
lebeling method, they have almost the same performance. How-
ever, if the signatures become longer, the performance of Teuho-
la’s degrades. See Fig. 13 for illustration. This figure shows the
test results of case (2). For this test, each signature is 64 bits long
while each preorder (postorder) number takes 22 bits. Especially,
there is a sharp increase of page accesses of Teuhola’s method

Fig. 11. File structures

24 bits 8 bits n bits 4 bits

node identifier signature level

file structure used
for testing

24 bits 8 bits m bits m bits

node identifier pre-number

file structure used
for testing

post-number

for case (1) and (3): n = 32, m = 18
for case (2): n = 64, m = 22

Teuhola’s method:

 graph-labelling method:
from level 6 onwards. It is because in these cases, the accumulated
impact of long signatures becomes evident.

The test results of case (3) are gathered in Table 1. In this test, all
the descendants of a root (3041 nodes on average) are retrieved.

From Table 3, we can see that in the case of DGAs, Teuhola’s
method is much worse than ours. It is because a DAG has to be de-
composed into a series of spanning trees to use Teuhola’s method.
For each decomposed tree, the signatures associated with the
nodes can be used to check descendants; but the child signature of
each accessed connection must be checked. If it is outside the
[Low, High] range of the signatures of the current tree, then the
child belongs to another tree, and a new query is issued against it.
This leads to a lot of extra page accesses. However, for the graph-
labeling method, the graph decomposition is utilized only for the
generation of pair sequences, no extra page access is caused. But
we notice that in the DAG case, although the number of page ac-
cess of this method is not much larger than the case of trees, the
time difference of these two cases is relatively big. It is because for
a DAG each node is associated with a sequence of label pairs and
each check of label pair sequences needs more time.
Fig. 14 shows the test results for the trees with different outde-
grees. The forest contains 18 trees each of 3280 nodes. We change
the outdegree of the nodes for each run and adjust the signatures
so that each time the signatures have different length. In contrast,
the label length of our algorithm remains unchanged. This ar-
rangement is reasonable since the length of the nodes’ signatures
at a level (in a tree) depends on the largest outdegree at this level.

Table 3: Test results of DAGs

structure node
accessed

Teuhola’s
 page cpu time

 accesses (sec.)

graph-labeling
page cpu time

 accesses (sec.)

DAG 3041 1851 39 322 9

3

1

2

4

2 4 6 8

time (sec.)

level

150

50

100

200

2 4 6 8

page access

Teuhola’s

graph-labeling

1 3 5 7 level 1 3 5 7

Teuhola’s

graph-labeling

Fig. 12. Test results of case (1)

60

20

40

80

2 4 6 8

time (sec.)

level

600

200

400

800

2 4 6 8

page access

Teuhola’s

graph-labeling

1 3 5 7 level 1 3 5 7

100

300

500

700

900
1000

10

30

50

70
Teuhola’s

graph-labeling

Fig. 13. Test results of case (2)

If there is a node at a level has a large outdegree, the signatures
for all the nodes at that level must be set very long according to
the signature construction proposed in [43]. However, the length
of labels used in ours depends only on the labels’ values. The
largest label is equal to the number of the nodes of a graph.
Finally, we emphasize that the academic merit of the proposed
method does not only consists in speeding-up the recursion in a
relational environment, but also in the new representation of re-
cursive closures, which leads to a better computational complex-
ity than any existing strategies for this problem.

8. CONCLUSION

In this paper, a new labeling technique has been proposed. Using
this technique, the recursion w.r.t. a tree hierarchy can be comput-
ed without join operations. The proposed method can be extended
to compute the recursion w.r.t. DAGs and graphs containing cy-
cles. Given a DAG, we can always find a maximal branching as
its representation, which is in fact a tree (or a forest) and thus can
always be labeled. To find the recursive closure of the DAG, we
construct a sequence of label pairs for each node, which can be
done in a topological order of the DAG in O(e⋅b) time and O(n⋅b)
space, where n represents the number of the nodes of the DAG, e
the numbers of the edges, and b the DAG’s breadth. To compute
the recursion w.r.t. a cyclic graph, we first use Tarjan’s algorithm
[41] to find all its SCCs; and then condense each SCC onto a sin-
gle node, resulting in a DAG. Since Tarjan’s algorithm needs only
O(n + e) time, the time complexity for finding the sequences of
label pairs for all nodes of a cyclic graph is theoretically bounded
by O(e⋅b). Finally, we notice that the sequences of label pairs are
in fact a new representation of the transitive closure of a graph
with a much less space overhead than any existing strategy.
Therefore, the method discussed in this paper can be considered
as a new method for computing transitive closures with optimal
time and space complexities.

REFERENCES

[1] S. Abdeddaim, On Incremental Computation of Transitive
Closure and Greedy Alignment, in: Proc. 8th Symp. Com-
binatorial Pattern Matching, ed. Alberto Apostolico and
Jotun Hein, 1997, pp. 167-179.

[2] R. Agrawal, A. Borgida and H.V. Jagadish, “Efficient
management of transtive relationships in large data and
knowledge bases,” Proc. of the 1989 ACM SIGMOD Intl.
Conf. on Management of Data, Oregon, 1989, pp. 253-
262.

[3] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G.

6

2

4

8

2 4 8 16

time (sec.)

outdegree

Fig. 14. Test results

Teuhola’s

graph-labeling
Moerkotte, J. Simon, “Quering documents in object data-
bases,” Int. J. Digital Libraries, Vol. 1, No. 1, April 1997,
pp. 5 - 19.

[4] R. Agrawal, S. Dar, H.V. Jagadish, “Direct transitive clo-
sure algorithms: Design and performance evaluation,”
ACM Trans. Database Syst. 15, 3 (Sept. 1990), pp. 427 -
458.

[5] R. Agrawal and H.V. Jagadish, “Materialization and Incre-
mental Update of Path Information,” in: Proc. 5th Int. Conf.
Data Engineering, Los Angeles, 1989, pp. 374 - 383.

[6] R. Agarawal and H.V. Jagadish, “Hybrid transitive closure
algorithms,” In Proc. of the 16th Int. VLDB Conf., Brisbane,
Australia, Aug. 1990, pp. 326 -334.

[7] M.F. van Bommel and T.J. Beck, “Incremental Encoding of
Multiple Inheritance Hierarchies Supporting Lattice Oper-
ations, Linkoping Electronic Articles in Computer and In-
formation Science, http://www.ep.liu.se/ea/cis/2000/001.

[8] J. Banerjee, W. Kim, S. Kim and J.F. Garza, “Clustering a
DAG for CAD Databases,” IEEE Trans. on Knowledge
and Data Engineering, Vol. 14, No. 11, Nov. 1988, pp. 1684
- 1699.

[9] K.S. Booth and G.S. Leuker, “Testing for the consecutive
ones property, interval graphs, and graph palanity using
PQ-tree algorithms,” J. Comput. Sys. Sci., 13(3):335-379,
Dec. 1976.

[10] F. Bancihon and R. Ramakrishnan, “An Amateurs Introduc-
tion to Recursive Query Processing Strategies,” in: Proc.
ACM SIGMOD Conf., Washington D.C., 1986, pp. 16 - 52.

[11] M. Carey et al., “An Incremental Join Attachment for Star-
burst,” in: Proc. 16th VLDB Conf., Brisbane, Australia,
1990, pp. 662 - 673.

[12] Y. Chen, K. Aberer, “Layered Index Structures in Docu-
ment Database Systems,” Proc. 7th Int. Conference on In-
formation and Knowledge Management (CIKM), Bethesda,
MD, USA: ACM, 1998, pp. 406 - 413.

[13] Y. Chen and K. Aberer, “Combining Pat-Trees and Signa-
ture Files for Query Evaluation in Document Databases,”
in: Proc. of 10th Int. DEXA Conf. on Database and Expert
Systems Application, Florence, Italy: Springer Verlag, Sept.
1999. pp. 473 - 484.

[14] L. Cardelli, J. Donahue, M. Jordan, B. Kalsow, and G. Nel-
son, “The Modula-3 type system,” Proc. of 16th Simposium
on Principles of Programming Languages, POPL’89,
ACM SIGPLAN, Austin, Texas, Jan. 1989, pp. 202-212.

[15] Y. Chen, “On the Graph Traversal and Linear Binary-chain
Programs,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 15, No. 3, May 2003, pp. 573-596.

[16] N.H. Cohen, “Type-extension tests can be performed in
constant time,” ACM Transactions on Programming Lan-
guages and Systems, 13:626-629, 1991.

[17] R.G.G. Cattell and J. Skeen, “Object Operations Bench-
mark,” ACM Trans. Database Systems, Vol. 17, no. 1, pp. 1
-31, 1992.

[18] P. Dadam et al., “A DBMS Prototype to Support Extended

NF2 Relations: An Integrated View on Flat Tables and Hi-
erarchies,” Proc. ACM SIGMOD Conf., Washington D.C.,
1986, pp. 356-367.

[19] S. Dar and R. Ramarkrishnan, “A Performance Study of
Transitive Closure Algorithm,” in Proc. of SIGMOD Int.
Conf., Minneapolis, Minnesota, USA, 1994, pp. 454 - 465.

[20] J. Dzikiewicz, “An Algorithm for Finding the Transitive
Closure of a Digraph,” Computing 15, 75 - 79, 1975.

[21] J. Ebert, “A Sensitive Transitive closure Algorithm,” Inf.
Process Letters 12, 5 (1981).

[22] J. Eve and R. Kurki-Suonio, “On Computing the Transi-
tive Closure of a Relation,” Acta Informatica 8, 303 - 314,
1977.

[23] R.L. Haskin and R.A. Lorie, “On Extending the Functions
of a Relational Database System,” Proc. ACM SIGMOD
Conf., Orlando, Fla., 1982, pp. 207-212.

[24] T. Ibaraki and N. Katoh, On-line Computation of transitive
closure for graphs, Information Processing Letters, 16:95-
97, 1983.

[25] G.F. Italiano, Amortized effieciency of a path retrieval data
structure, Theoretical Computer Science, 48:273-281,
1986.

[26] Y.E. Ioannidis, R. Ramakrishnan and L. Winger, “Transi-
tive Closure Algorithms Based on Depth-First Search,”
ACM Trans. Database Syst., Vol. 18. No. 3, 1993, pp. 512
- 576.

[27] H.V. Jagadish, “A Compression Technique to Materialize
Transitive Closure,” ACM Trans. Database Systems, Vol.
15, No. 4, 1990, pp. 558 - 598.

[28] T. Keller, G. Graefe and D. Maier, “Efficient Assembly of
Complex Objects,” Proc. ACM SIGMOD conf. Denver,
Colo., 1991, pp. 148-157.

[29] W. Kim, “Object-Oriented Database Systems: Promises,
Reality, and Future,” Proc. 19th VLDB conf., Dublin, Ire-
land, 1993, pp. 676-687.

[30] D.E. Knuth, The Art of Computer Programming, Vol.1,
Addison-Wesley, Reading, 1969.

[31] H.A. Kuno and E.A. Rundensteiner, “Incremental Mainte-
nance of Materialized Object-Oriented Views in MultiV-
iew: Strategies and Performance Evaluation,” IEEE
Transactions on Knowledge and Data Engineering, vol.
10. No. 5, 1998, pp. 768-792.

[32] A. La Poutre and J. van Leeuwen, Maintenance of Transi-
tive closure and transitive reduction of graphs, in Proc.
Workshop on Graph-Theoretic Concepts in Computer Sci-
ence, pp. 106-120. Lecture Notes in Computer Science
314, Springer-Verlag, 1988.

[33] B. Lindsay, J. McPherson and H. Pirahesh, “A Data Man-
agement Extension Architecture,” Proc. ACM SIGMOD
conf., 1987, pp. 220-226.

[34] K. Mehlhorn, “Graph Algorithms and NP-Completeness:
Data Structure and Algorithm 2” Springer-Verlag, Berlin,
1984.

[35] A.O. Mendelzon, G.A. Mihaila, T. Milo, “Querying the
World Wide Web,” Int. J. Digital Libraries, Vol. 1, No. 1,
April 1997, pp. 54 - 67.

[36] P. Purdom, “A Transitive Closure Algorithm,” BIT 10, 76
-94, 1970.

[37] R. Ramakrishnan and J.D. Ullman, “A Survey of Research
in Deductive Database Systems,” J. Logic Programming,
May, 1995, pp. 125-149.

[38] L. Schmitz, “An Improved Transitive Closure Algorithm,”
Computing 30, 359 - 371 (1983).

[39] M. Stonebraker, L. Rowe and M. Hirohama, “The Imple-
mentation of POSTGRES,” IEEE Trans. Knowledge and
Data Eng., vol. 2, no. 1, 1990, pp. 125-142.

[40] M.A. Schubert and J. Taugher, “Determing type, part, co-
lour, and time relationship,” 16 (special issue on Knowl-
edge Representation):53-60, Oct. 1983.

[41] R. Tarjan: Depth-first Search and Linear Graph Algo-
rithms, SIAM J. Compt. Vol. 1. No. 2. June 1972, pp. 146 -
140.

[42] J. Tarjan: Finding Optimum Branching, Networks, 7. 1977,
pp. 25 -35.

[43] J. Teuhola, “Path Signatures: A Way to Speed up Recursion
in Relational Databases,” IEEE Trans. on Knowledge and
Data Engineering, Vol. 8, No. 3, June 1996, pp. 446 - 454.

[44] S. Warshall, “A Theorem on Boolean Matrices,” JACM, 9.
1(Jan. 1962), 11 - 12.

[45] H.S. Warren, “A Modification of Warshall’s Algorithm for
the Transitive Closure of Binary Relations,” Commun.
ACM 18, 4 (April 1975), 218 - 220.

[46] P. Valduriez and H. Boral, “Evaluation of Recursive Que-
ries Using Join Indices,” in: Proc. 1st Workshop on Expert
Database Systems, Charleston, S.C., 1986, pp. 197 - 208.

[47] P. Valduriez, S. Khoshafian and G. Copeland, “Implementa-
tion Techniques of Complex Objects,” Proc. 12th VLDB
Conf., Kyoto, Japan, 1986, pp. 101-109.

[48] Y. Zibin and J. Gil, “Efficient Subtyping Tests with PQ-En-
coding,” Proc. of the 2001 ACM SIGPLAN conf. on Object-
Oriented Programming Systems, Languages and Applica-
tion, Florida, October 14-18, 2001, pp. 96-107.

[49] C. Zhang, J. Naughton, D. DeWitt, Q. Luo and G. Lohman,
“On Supporting Containment Queries in Relational Data-
base Management Systems, in Proc. of ACM SIGMOD Intl.
Conf. on Management of Data, California, USA, 2001.

	Table 3: Test results of DAGs
	A Space-Economic Representation of Transitive Closures in Relational Databases

