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Since the extensible markup language XML emerged as a new standard for informa-

tion representation and exchange on the Internet, the problem of storing, indexing, and 
querying XML documents has been among the major issues of database research. In this 
paper, we study the tree pattern matching and discuss a new algorithm for processing or-
dered tree pattern queries, by which not only ancestor/descendant relationships, but also 
left-to-right ordering of query nodes are considered. Such kind of tree matching has many 
applications in practice, such as the linguistic analysis, the video content-based retrieval, as 
well as the computational biology and the data mining. The time complexities of the new 
algorithm is bounded by O(|D| ⋅ |Q| + |T| ⋅ leafQ) and its space overhead is by O(leafT ⋅ leafQ), 
where T stands for a document tree, Q for a tree pattern and D is the largest data stream 
among all the data streams associated with the nodes in Q. Each data stream contains the 
database nodes that match the predicate at a node q. leafT (leafQ) represents the number of 
the leaf nodes of T (resp. Q). In addition, the algorithm can be adapted to an indexing en-
vironment with XB-trees being used. Experiments have been conducted, which shows that 
our algorithm is promising. 
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1. INTRODUCTION 
 

In XML [39, 40], data are represented as a tree; associated with each node of the tree 
is an element name from a finite alphabet ∑. The children of a node are ordered from left 
to right, and represent the content (i.e., list of subelements) of that element. 

Accordingly, in most of the XML query languages (e.g. XPath [39], XQuery [40], 
XML-QL [14], and Quilt [6, 7]), queries are typically expressed by tree patterns (for ex-
ample, path expressions expressed in XPath, path expressions in the for and let clauses in 
XQuery). In such tree patterns, nodes are labeled with symbols from ∑ ∪ {*} (* is a wild-
card, matching any node name) and string values, and edges are parent-child or ancestor- 
descendant relationships. As an example, consider the query tree shown in Fig. 1, which 
asks for any node of name b (node 3) that is a child of some node of name a (node 1). In 
addition, the node of name b (node 3) is the parent of some nodes of name c and e (node 6 
and 7, respectively), and the node of name e itself is an ancestor of some node of name d 
(node 8). The node of name b (node 2) should also be an ancestor of some node of name f 
(node 5). The query corresponds to the following XPath expression: 
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Fig. 1. A query tree.               Fig. 2. A tree matching a path. 

 
a[b[c and .//f]]/b[c and e//d]. 
 
In Fig. 1, there are two kinds of edges: child edges (/-edges for short) for parent-child 

relationships, and descendant edges (//-edges for short) for ancestor-descendant relation-
ships. A /-edge from node v to node u is denoted by v → u in the text, and represented by 
a single arc; u is called a /-child of v. A //-edge is denoted by v ⇒ u in the text, and repre-
sented by a double arc; u is called a //-child of v. 

In any DAG (directed acyclic graph), a node u is said to be a descendant of a node v 
if there exists a path (sequence of edges) from v to u. In the case of a tree pattern, this path 
could consist of any sequence of /-edges and/or //-edges. We also use label(v) to represent 
the symbol (∈ ∑ ∪ {*}) or the string associated with v. Based on these concepts, the tree 
embedding can be defined as follows. 

Definition 1  An embedding of a tree pattern Q into an XML document T is a mapping f: 
Q → T, from the nodes of Q to the nodes of T, which satisfies the following conditions: 

(1) Preserve node label: For each u ∈ Q, label(u) = label(f(u)) (or say, u matches f(u)). 
(2) Preserve parent-child/ancestor-descendant relationship: If u → v in Q, then f(v) is a 

child of f(u) in T; if u ⇒ v in Q, then f(v) is a descendant of f(u) in T.               
 

If there exists a mapping from Q into T, we say, Q can be embedded into T, or say, T 
contains Q. 

Almost all the existing strategies for evaluating twig join patterns are designed ac-
cording to this definition [4, 8-13, 21, 23-27, 32, 33, 42]. 

This definition allows a tree to match a path as illustrated in Fig. 2. 
It is because by Definition 1 the left-to-right relationships among nodes are not taken 

into account. We call such a problem an unordered tree pattern matching. 
We may consider another problem, called an ordered tree pattern matching, defined 

below, for which the left-to-right order is significant. 
First, we define the sets of left and right relatives of a node v (denoted as Lr(v) and 

Rr(v), respectively).  
 
Definition 2  Let T be a document tree. Let V be the set of its nodes and v be a node in T. 
The set of left relatives of v is defined by 

Lr(v) = {u ∈ V | u and v are not related by ancestor/descendant or parent/child relationship, 
and v follows u when T is traversed in preorder.}                              

See Fig. 3 for illustration. 
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Fig. 4. A target tree and a pattern tree. 

 
In a similar way, we can define Rr(v). 

 
Definition 3  An embedding of a tree pattern Q into an XML document T is a mapping f: 
Q → T, from the nodes of Q to the nodes of T, which satisfies the following conditions: 
 
(1) same as (1) in Definition 1. 
(2) same as (2) in Definition 1. 
(3) Preserve left-to-right order: For any two nodes v1 ∈ Q and v2 ∈ Q, if v1 is in Lr(v2), 

then f(v1) is in Lr(f(v2)) in T.                                                        
 

v1 is said to be to the left of v2 if v1 is in Lr(v2). (Note that v1 and v2 can be siblings or 
in different subtrees.) 

This kind of tree mappings is useful in practice. For instance, an XML data model was 
proposed by Catherine and Bird [5] for representing interlinear text for linguistic appli-
cations, used to demonstrate various linguistic principles in different languages. For the 
purpose of linguistic analysis, it is essential to preserve the linear order between the words 
in a text [5]. In addition to interlinear text, the syntactic structure of textual data should be 
considered, which breaks a sentence into syntactic units such as noun clauses, verb phrases, 
adjectives, and so on. These are used by the language TreeBank [27] to provide a hier-
archical representation of sentences. Therefore, by the evaluation of a tree pattern query 
against the TreeBank, the order between siblings should be considered [27, 30]. As an 
example, consider the parse tree of a natural language sentence, shown in Fig. 4 (a). 

One might want to locate, say, those sentences that include a verb phrase containing 
the verb “reads” and after it a noun “book” followed by any adverb. Such a query can also 
be represented as a tree, as shown in Fig. 4 (b). 

Therefore, the evaluation of such a query is in fact a tree matching problem, by which 
both the ancestor/descendant relationship and the left-to-right ordering need to be taken 
into account. 
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Another application of the ordered tree matching is the video content-based retrieval. 
According to Rui et al. [46], a video can be successfully decomposed into a hierarchical 
tree structure, in which each node represents a scene, a group, a shot, a frame, a feature, 
and so on. Especially, such a tree is an ordered one since the temporal order is very im-
portant for video. 

In addition, ordered tree matching can also be applied in the scene analysis, the com-
putational biology (such as RNA structure matching [45]), as well as in the data mining 
(such as tree mining [47]). 

In 2003, Wang et al. [37] proposed a first index-based method, called ViST, for han-
dling ordered tree pattern queries, by which the XML data are transformed into structure- 
encoded sequences and stored in a disk-based virtual trie using B+-trees. One of the prob-
lems of this method is that the query processing strategy by straightforward sequence 
matching may result in false alarms. Another problem, as pointed out in [30], the size of 
indexes is higher than linear in the total number of elements in an XML document. Such 
problems are removed by a method, called PRIX, discussed in [30]. This method constructs 
two Prüfer sequences to represent an XML document: a numbered Prüfer sequence and a 
labeled Prüfer sequence. For all the labeled Prüfer sequences, a virtual trie is constructed, 
used as an index structure. In this way, the size of indexes is dramatically reduced to O(|T|). 
But it suffers from very high CPU time overhead according to the following analysis. 
The method consists of a string matching phase and several so-called refinement phases, 
for which O(k|Q|log|Q|) time is needed (see page 328 in [30]), where k is the number of 
subsequences of a labeled Prüfer document sequence, which match Q’s labeled Prüfer se-
quence. However, by the string matching defined in [30], a query pattern string can match 
non-consecutive segments within a document target string (see Definition 4.1 in [30], page 
306). So in the worst case k is in the order of O(|T||Q|) since for each position i (in the target) 
matching the first element in the pattern string the second element of the pattern can match 
possibly at |T| − i − 1 positions; and for each position j matching the second element in the 
pattern, the third element in the pattern can possibly match at |T| − j − 1 positions, and so 
on. As an example, consider the following Prüfer string:  

a…ab…bc…cd…d, 

in which each substring containing the same characters is of length n/4. Assume that the 
Prüfer string for a query is abcd. Then, there are O(n4) matching positions. For each of 
them, a tree embedding will be examined. (We note that if the string matching is restricted 
to consecutive segments, there is at most one matching for each position, at which the first 
element in the pattern matches. But it is not the case discussed in [30]. So, PRIX is an ex-
ponential time algorithm.) 

In this paper, we propose a new method for processing ordered tree pattern queries. 
As in [30], we store documents as sequences, but each sequence contains only those nodes 
having the same label. In addition, in a sequence, all the nodes are represented by a kind of 
tree encoding such that their positions can be recognized. (We refer to these sequences as 
data streams.) Then, we design an algorithm for reconstructing subtree structures from the 
data streams, and a new tree labeling technique for query trees to represent left-to-right 
relationships, which enables us to efficiently check different relationships between the 
nodes. The new algorithm runs in O(|D| ⋅ |Q| + |T| ⋅ leafQ) time and O(leafT ⋅ leafQ) space, 
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where leafT (leafQ) represents the number of the leaf nodes of T (resp. Q), and D is the 
largest data stream among all the data streams associated with the nodes of Q. 

The remainder of the paper is organized as follows. In section 2, we restate the tree 
encoding [42], which can be used to facilitate the recognition of different relationships 
among the nodes of trees. In section 3, we discuss our algorithm for evaluating ordered 
tree pattern queries. In section 4, we show how the XB-tree mechanism [4] can be inte-
grated into it to speed up disk access. Section 5 is devoted to experiments. In section 6, we 
review the related work. Finally, a short conclusion is set forth in section 7. 

2. TREE ENCODING 

In [42], a tree encoding method was discussed, which is in fact the well known con-
cept of time stamps produced during a depth-first search of a tree, and can be used to iden-
tify different relationships among the nodes of a tree. 

Let T be a document tree. We associate each node v in T with a quadruple (DocId, 
LeftPos, RightPos, LevelNum), denoted as α(v), where DocId is the document identifier; 
LeftPos and RightPos are generated by counting word numbers from the beginning of the 
document until the start and end of the element, respectively; and LevelNum is the nesting 
depth of the element in the document. (See Fig. 5 for illustration.) By using such a data 
structure, the structural relationships between the nodes in an XML database can be sim-
ply determined: 
 
(1) ancestor-descendant: a node v1 associated with (d1, l1, r1, ln1) is an ancestor of another 

node v2 with (d2, l2, r2, ln2) iff d1 = d2, l1 < l2, and r1 > r2. 
(2) parent-child: a node v1 associated with (d1, l1, r1, ln1) is the parent of another node v2 

with (d2, l2, r2, ln2) iff d1 = d2, l1 < l2, r1 > r2, and ln2 = ln1 + 1. 
(3) left-to-right order: a node v1 associated with (d1, l1, r1, ln1) is to the left of another node 

v2 with (d2, l2, r2, ln2) iff d1 = d2, r1 < l2. 

 
(1, 2, 9, 2) 

A v1 

v2 B B v8 

v3 C B v4 

C v6 D v7 C v5

(1, 1, 11, 1)

(1, 5, 5, 4) 
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(1, 4, 8, 3) 

(1, 10, 10, 2)

(1, 3, 3, 3) 
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T: 

    

C q4
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q3 C 

A q1 Q:

The query nodes with the same tag will be associated 
with the same data stream: B(q2) = B(q5) = {v2, v4, v8}

{v2, v4, v8} 
{v1}

{v3, v5, v6}

 
Fig. 5. Illustration for tree encoding.                  Fig. 6. Illustration for B(qi)’s. 

 
In Fig. 5, v2 is an ancestor of v6 and we have v2.LeftPos = 2 < v6.LeftPos = 6 and 

v2.RightPos = 9 > v6.RightPos = 6. In the same way, we can verify all the other relation-
ships of the nodes in the tree. In addition, for each leaf node v, we set v.LeftPos = v.Right- 
Pos for simplicity, which still work without downgrading the ability of this mechanism. In 
the rest of the paper, if for two quadruples α1 = (d1, l1, r1, ln1) and α2 = (d2, l2, r2, ln2), we 
have d1 = d2, l1 ≤ l2, and r1 ≥ r2, we say that α2 is subsumed by α1. 

For convenience, a quadruple is considered to be subsumed by itself. If no confusion 
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is caused, we will used v and α(v) interchangeably. We also use T[v] to represent a subtree 
rooted at v in T. 

3. ORDERED TREE PATTERN MATCHING 

In this section, we discuss our strategy for the ordered tree pattern matching. First, we 
discuss an algorithm for subtree reconstruction according to a given set of data streams in 
section 3.1. Then, in section 3.2, we extend this algorithm to evaluate ordered tree pattern 
queries by using a new tree labeling technique for queries, which enables us to handle left- 
to-right relationships in an efficient way. The index-based version of the algorithm will be 
discussed in section 4. 

3.1 Tree Reconstruction 
 
As with TwigStack [4], each node q in a tree pattern (or say, a query tree) Q is associ-

ated with a data stream B(q), which contains the positional representations (quadruples) 
of the database nodes v that match q (i.e., label(v) = label(q)). All the quadruples in a 
data stream are sorted by their (DocID, LeftPos) values. For example, in Fig. 6, we show 
a query tree containing 5 nodes and 4 edges and each node is associated with a list of 
matching nodes of the document tree shown in Fig. 5, sorted according to their (DocID, 
LeftPos) values. For simplicity, we use the node names in a list, instead of the node’s 
quadruples. 

Note that iterating through the stream nodes in the sorted order of their LeftPos val-
ues corresponds to access of the document nodes in preorder (top-down). However, vis-
iting the document nodes in preorder does not support an efficient check of tree matching 
since to know whether a query subtree rooted at some node q matches a document subtree 
rooted at a node v, we need first to know whether any subtree of q matches a subtree of v. 
This character hints that it is better to visit the documents nodes in postorder (i.e., in the 
sorted order of their RightPos values). For this reason, we maintain a global stack ST to 
make a transformation of data streams using the following algorithm. In ST, each entry is 
a pair (q, v) with q ∈ Q and v ∈ T (v is represented by its quadruple). 

Algorithm  stream-transformation(B(qi)’s) 
Input: all data streams B(qi)’s, each sorted by LeftPos. 
Output: new data streams L(qi)’s, each sorted by RightPos. 
begin 
1. repeat until each B(qi) becomes empty 
2. { identify qi such that the first element v of B(qi) is of the minimal LeftPos value; 

remove v from B(qi); 
3.   while ST is not empty and ST.top is not v’s ancestor do 
4.   { x ← ST.pop(); Let x = (qj, u); 
5.     put u at the end of L(qi); } 
7.   ST.push(qi, v); 
8. } 
end 
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In the above algorithm, ST is used to keep all the nodes on a path until we meet a 
node v that is not a descendant of ST.top. Then, we pop up all those nodes that are not v’s 
ancestor; put each of them at the end of a L(qi)’s (see lines 3 and 4); and push v into ST 
(see line 7). Then, the elements in each L(qi) must be sorted by RightPos values. However, 
we remark that the popped nodes are in postorder. So we can directly handle the nodes in 
this order without explicitly generating L(qi)’s. But for ease of explanation, we assume that 
all L(qi)’s are completely generated in the following discussion. We also note that the data 
streams associated with different nodes in Q may be the same. (For example, in Fig. 6, we 
have B(q2) = B(q5) = {v2, v4, v8}.) So we use q to represent the set of such query nodes and 
denote by L(q) (B(q)) the data stream shared by them. Without loss of generality, assume 
that the query nodes in q are sorted by their RightPos values. 

We will also use L(Q) = {L(q1), …, L(ql)} (resp. B(Q) = {B(q1), …, B(ql)}) to repre-
sent all the data streams with respect to Q, where each qi (i = 1, …, l) is a set of sorted 
query nodes that share a common data stream. 

First, we discuss how to reconstruct a subtree structure from the data streams, based 
on the concept of matching subtrees, defined below.  

Let T be a tree and v be a node in T with parent node u. Denote by delete(T, v) the tree 
obtained from T by removing node v. The children of v become ‘descendant’ children of u. 
(See Fig. 7 for illustration.) 

 v1 B 

v2 C B v3 

C v5 D v6 C v4 

T: v1 B 

v2 C C v4 C v5 D v6

delete(T, v3) 

    

v1 A

v3 C C v5 C v6 D v7

T:

 

q1 A 

C q2 B q3 

Q: 

 
Fig. 7. The effect of removing v3 from T.          Fig. 8. Illustration for matching subtrees. 

 
Definition 4  matching subtrees: A matching subtree T ′ of T with respect to a tree pattern 
Q is a tree obtained by a series of deleting operations to remove any node in T, which does 
not match any node in Q.                                                  
 

For example, the tree shown in Fig. 8 (a) is a matching subtree of the document tree 
shown in Fig. 5 with respect to the query tree shown in Fig. 8 (b). 

Given L(Q), what we want is to construct a matching subtree from them to facilitate 
the checking of tree pattern matchings. 

The algorithm given below handles the case when the streams contain nodes from a 
single XML document. When the streams contain nodes from multiple documents, the 
algorithm is easily extended to test equality of DocID before manipulating the nodes in the 
streams. 

We will execute an iterative process to access the nodes in L(Q) one by one:  
 
1. Identify a data stream L(q) with the first element being of the minimal RightPos value. 

Choose the first element v of L(q). Remove v from L(q). 
2. Generate a node for v. 
3. If v is not the first node, we do the following: 

Let v′ be the node chosen just before v. If v’ is not a child (descendant) of v, create a 

(a)                (b) 
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link from v to v′, called a left-sibling link and denoted as left-sibling(v) = v′. If v′ is a 
child (descendant) of v, we will first create a link from v′ to v, called a parent link and 
denoted as parent(v′) = v. Then, we will go along the left-sibling chain starting from v′ 
until we meet a node v′′ which is not a child (descendant) of v. For each encountered 
node u except v′′, set parent(u) ← v. Finally, set left-sibling(v) ← v′′ and remove the 
links along the left- sibling chain. 

 

v′

v 

… v′′ 

v′′ is not a child of v 

Link to the left sibling
    

v 

… v′′

 
Fig. 9. Illustration for construction of matching subtrees. 

 
Fig. 9 is a pictorial illustration of this process. In Fig. 9 (a), we show the navigation 

along a left-sibling chain starting from v′ when we find that v′ is a child (descendant) of v. 
This process stops whenever we meet v′′, a node that is not a child (descendant) of v. Fig. 
9 (b) shows that the left-sibling link of v is set to v′′, which is previously pointed to by 
the left-sibling link of v’s left-most child. 

Below is the formal description of the algorithm, which needs only O(|D| ⋅ |Q|) time. 
We elaborate this process since it can be extended to an efficient algorithm for evaluating 
ordered tree pattern queries. 

Algorithm  matching-tree-construction(L(Q)) 
Input: all data streams L(Q). 
Output: a matching subtree T ′. 
begin 
1. repeat until each L(q) in L(Q) becomes empty 
2. { identify q such that the first element v of L(q) is of the minimal RightPos value;  
3.   remove v from L(q); call construction(v, q); } 
end 
 
Algorithm  construction(v, q) 
begin 
1. generate node v;  
2. if v is not the first node created then 
3. { let v′ be the node generated just before v; 
4.   if v′ is not a child (descendant) of v then 
5.     { left-sibling(v) ← v′; }   (* generate a left-sibling link. *) 
6.   else 
7.   { v′′ ← v′; w ← v′;   (* v′′ and w are two temporary variables. *) 
8.     while v′′ is a child (descendant) of v do 
9.       { parent(v′′) ← v;   (* generate a parent link. Also, indicate whether v′′ is a 

/-child or a //-child. *) 
10.         w ← v′′; v′′ ← left-sibling(v′′); 

(a)                                    (b) 
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11.       } 
12.     left-sibling(v) ← v′′; 
13.   } 
14. } 
end 
 

In the above algorithm, for each chosen v from a L(q), a node is created. At the same 
time, a left-sibling link of v is established, pointing to the node v′ that is generated before 
v, if v′ is not a child (descendant) of v (see line 5 in construction( )). Otherwise, we go into 
a while-loop to travel along the left-sibling chain starting from v′ until we meet a node v′′ 
which is not a child (descendant) of v. During the process, a parent link is generated for 
each node encountered except v′′ (see lines 7-11). Finally, the left-sibling link of v is set 
to be v′′ (see line 12). 

Data stream: L(q) = {v1}, L(q′) = {v4, v2, v8}, L(q′′) = {v3, v5, v6} 

 v with the last RightPos Generated data structures: 
Step 1: v3 v3 C  

Step 2: v5 
v5

C

v3 C 
 

Step 3: v6 

 v5

C
v3 C

v6

 
 

Step 4: v4 

 v5

C

v3 C

v6

C

v4
B 

 
Fig. 10. Sample trace. 
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v4  C  
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Example 1: Consider the tree pattern shown in Fig. 5 once again. After the data stream 
transformation, we will have three different data streams: L(q) = {v1}, L(q′) = {v4, v2, v8}, 
L(q′′) = {v3, v5, v6}, where q = {q1}, q′ = {q2, q5}, q′′ = {q3, q4}. Applying the above algo-
rithm to the data streams, we generate a series of data structures as shown in Fig. 10.  

In step 1 (see Fig. 10), v3 is checked since it has the least RightPos; and a node for it 
is created. In step 2, we meet v5. Since it is not a descendant of v3, we establish a left-sib- 
ling link from v5 to v3. In step 3, we generate node v6 and a left-sibling link from v6 to v5. In 

Fig. 11. Sample trace.
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step 4, we generate part of the matching tree, in which two edges from v4 respectively to 
v5 and v6 are created. Special attention should be paid to step 4. In this step, not only two 
edges are constructed, but a left-sibling link from v4 to v3 is also created. It is this kind of 
left-sibling links that enable us to reconstruct a matching subtree in an efficient way. 

The subsequent computation is shown in Fig. 11.                           
 
Proposition 1  Let T be a document tree. Let Q be a tree pattern. Let L(Q) = {L(q1), …, 
L(ql)} be all the data streams with respect to Q and T, where each qi (1 ≤ i ≤ l) is a subset 
of sorted query nodes of Q, which share the same data stream. Algorithm matching-tree- 
construction(L(Q)) generates the matching subtree T ′ of T with respect to Q correctly.  

Proof: Denote L = |L(q1)| + … + |L(ql)|. We prove the proposition by induction on L. 

Basis  When L = 1, the proposition trivially holds. 

Induction Hypothesis  Assume that when L = k, the proposition holds. 

Induction Step  We consider the case when L = k + 1. Assume that all the quadruples in 
L(Q) are {u1, …, uk, uk+1} with RightPos(u1) < RightPos(u2) < … < RightPos(uk) < Right-
Pos(uk+1). The algorithm will first generate a tree structure Tk for {u1, …, uk}. In terms of 
the induction hypothesis, Tk is correctly created. It can be a tree or a forest. If it is a forest, 
all the roots of the subtrees in Tk are connected through left-sibling links. When we meet 
vk+1, two cases need to be considered: 

Case 1: vk+1 is an ancestor of vk, 
Case 2: vk+1 is to the right of vk. 
 

In case 1, the algorithm will generate an edge (vk+1, vk), and then travels along a left- 
sibling chain starting from vk until we meet a node v which is not a descendant of vk+1. For 
each node v′ encountered, except v, an edge (vk+1, v′) will be generated. Therefore, Tk+1 is 
correctly constructed. In case 2, the algorithm will generate a left-sibling link from vk+1 to 
vk. It is obviously correct since in this case vk+1 cannot be an ancestor of any other node. 
This completes the proof.                                                  
 

The time complexity of this process is easy to analyze. First, we notice that each 
quadruple in all the data streams is accessed only once. Secondly, for each node in T ′, all 
its child nodes will be visited along a left-sibling chain for a second time. So we get the 
total time 

O(|D| ⋅ |Q|) + i
i

d∑ = O(|D| ⋅ |Q|) + O(|T′|) = O(|D| ⋅ |Q|), 

where di represents the outdegree of node vi in T ′.  
During the process, for each encountered quadruple, a node v will be generated. As-

sociated with this node have we at most two links (a left-sibling link and a parent link). So 
the used extra space is bounded by O(|T ′|).  
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3.2 Algorithm for Ordered Tree Matching 
 

In fact, the algorithm discussed in section 3.1 hints an efficient way for processing 
ordered tree pattern queries. 

We first observe that during the reconstruction of a matching subtree T ′, we can also 
associate each node v in T ′ with a query node stream Sv. That is, each time we choose a v 
with the least RightPos value from a data stream L(q), we will insert all the query nodes in 
q into Sv. For example, in the first step shown in Fig. 10, the query node stream for v3 can 
be determined as shown in Fig. 12 (a). 
In this way, we can create a matching subtree as shown in Fig. 12 (b), in which each 
node in T′ is associated with a query node stream. If we check, before a q is inserted into 
the corresponding Sv, whether Q[q] (the subtree rooted at q) can be embedded into T′[v], 
we get in fact an algorithm for tree pattern matching. The challenge is how to conduct such 
a checking efficiently. 
 

 v3

C 

{q3, q4} 
 

 
(a) 

 1

C q4

q2 B B q5 

q3 C 

A q1 Q:

3 

5

2

4  
(a) 

 
{q2, q5}v2 B B v8 

v3 C B v4 

C v6 C v5 

T: 

{q2, q5}

{q3, q4} 

{q3, q4} {q3, q4}

{q1} 

{q2, q5} 

A v1 

 
(b) 

 
<2, [4, 5], 2, 5, 2>

C q4

B q5 

q3 C 

q2 B 

A q1 Q: <1, [2, 3], 1, 7, 1> 

<3, φ, 6, 6, 2> 

<5, φ, 4, 4, 3> <4, φ, 3, 3, 3>  
(b) 

Fig. 12. Illustration for generating QS’s. Fig. 13. Illustration for labeling Q. 

 
For this purpose, we will first search Q in the breadth-first fashion, generating a 

number (called a breadth-first number) for each node q in Q, denoted as bf(q), which 
represents the left-to-right order of siblings in a simple way (see Fig. 13 (a) for illustration). 
Then, we use interval(q) to represent an interval covering all the breadth-first numbers of 
q’s children. For example, for Q shown in Fig. 13 (a), we have interval(q1) = [2, 3] and 
interval(q2) = [4, 5]. In the following, we will use q and bf(q) interchangeably. 

Next, we associate each q with a tuple g(q) = <bf(q), interval(q), LeftPos(q), Right-
Pos(q), LevelNum(q)>, as shown in Fig. 13 (b). We say, a q is subsumed by a pair (L, R) if 
L ≤ LeftPos(q) and R ≥ RightPos(q). When checking the tree embedding of Q in T ′, we 
will associate each generated node v in T ′ with a linked list Av to record what subtrees in 
Q can be embedded in T ′[v]. Each entry in Av is a quadruple e = (q, interval, L, R), where 
q is a node in Q, interval = [a, b] ⊆ interval(q) (for some a ≤ b), L = LeftPos(a) and R = 
RightPos(b). Here, we use a and b to refer to the nodes with the breadth-first numbers a 
and b, respectively. Therefore, such a quadruple represents a set of subtrees (in Q[q]) 
rooted respectively at a, a + 1, …, b (i.e., a set of subtrees respectively rooted at a set of 
consecutive breadth-first numbers). See Fig. 14 for illustration. 
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......

q

a b
...  

Fig. 14. Subtrees represented by bf-numbers. 

 
In addition, the following two conditions are satisfied: 

 
(1) For any two entries e1 and e2 in Av, e1.q is not subsumed by (e2.L, e2.R), nor is e2.q sub-

sumed by (e1.L, e1.R). In addition, if e1.q = e2.q, e1.interval ⊄ e2.interval and e2.interval 
⊄ e1.interval. 

(2) For any two entries e1 and e2 in Av with e1.interval = [a, b] and e2.interval = [a′, b′], if 
e1 appears before e2, then RightPost(e1.q) < RightPost(e2.q) or RightPost(e1.q) = Right-
Post(e2.q) but a < a′. 

Condition (1) is used to avoid redundancy due to the following lemma. 

Lemma 1  Let q be a node in Q. Let [a, b] be an interval. If q is subsumed by (LeftPos(a), 
RightPos(b)), then there exists an integer 0 ≤ i ≤ b − a such that bf(q) is equal to a + i or 
q is an descendant of a + i. 

Proof: The proof is trivial.                                                             

Then, by imposing condition (1), Av keeps only quadruples which represent pairwise 
non-covered subtrees. 

Condition (2) is met if the nodes in Q are checked along their increasing RightPos 
values. It is because in such an order the parents of the checked nodes must be non-de- 
creasingly sorted by their RightPos values. Since we explore Q bottom-up (note that each 
q is sorted increasingly by RightPos values), condition (2) is always satisfied. 

See Fig. 15 for a better understanding. 

 
 Av5 :     Av4 :     Av4 :    

e1  q2 [4, 4] 3 3 e1′ q2 [4, 5] 3 4  q1 [2, 2] 2 5 
             

e2  q2 [5, 5] 4 4 e2′ q1 [2, 2] 2 5  q1 [3, 3] 6 6 
             
      e3′ q1 [3, 3] 6 6     
 (a)  (b)  (c) 

Fig. 15. Illustration for linked lists associated with nodes in T. 

 
Fig. 15 (a) shows the linked list created for v5 in T ′ shown in Fig. 12 (b) when it is 

generated and checked against q3 and q4 in Q shown in Fig. 13 (b). Since both q3 and q4 
are leaf nodes, T ′[v5] is able to embed either Q[q3] or Q[q4] and so we have two entries 
e1 and e2 in Av5 Note that bf(q3) = 4 and bf(q3) = 5. So we set their intervals to [4, 4] and 
[5, 5], respectively. In addition, each of them is a child of q2. Thus, we have e1.q = e2.q = 
q2. In Fig. 15 (b), we show the linked list for v4. It contains three entries e1′, e2′ and e3′. 
Special attention should be paid to e1′. Its interval is [4, 5], showing that T′[v4] is able to 
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embed both Q[q3] and Q[q4]. In this case, e1′.L is set to 3 and e1′.R to 4. However, since 
e1′.q = q2 is subsumed by (e2′.L, e2′.R) = (2, 5), the entry will be removed, and the linked 
list is reduced to a data structure shown in Fig. 15 (c). 

With the linked lists associated with the nodes in T ′, the embedding of a subtree Q[q] 
in T ′[v] can be checked very efficiently. First, we define a simple operation over two in-
tervals [a, b] and [a′, b′], which share the same parent: 

[ , ], if 1, ;
[ , ] [ , ]

undefined, otherwise.
a b a a b b b

a b a b
′ ′ ′≤ ≤ + <⎧′ ′Δ = ⎨

⎩
 

For example, in Av5, we have an entry (q2, [4, 4], 3, 3). In Av6 (which is exactly the 
same as Av5), we have an entry (q2, [5, 5], 4, 4). We can merge these two entries to form 
another entry (q2, [4, 5], 3, 4), which can be used to facilitate checking whether T ′[v4] em-
beds Q[q2]. 

The general process to merge two linked list is described below. 
 
1. Let A1 and A2 be two linked list associated with the first two child nodes of a node v in 

T ′, which is being checked against q with label(v) = label(q). 
2. Scan both A1 and A2 from the beginning to the end. Let e1 (from A1) and e2 (from A2) be 

the entries encountered. We will perform the following checkings. 
− If RightPos(e2.q) > RightPos(e1.q), e1 ← next(e1). 
− If RightPos(e2.q) < RightPos(e1.q), then e2′ ← e2; insert e2′ into A1 just before e1; e2 
← next(e2). 

− If RightPos(e2.q) = RightPos(e1.q), then we will compare the intervals in e1 and e2. Let 
e1.interval = [a, b]. Let e2.interval = [a′, b′]. 
If a′ > b + 1, then e1 ← next(e1). 
If a ≤ a′ ≤ b + 1 and b < b′, then replace e1.interval with [a, b] Δ [a′, b′] in A1; 
e1.RightPost ← RightPos(b′); e1 ← next(e1); e2 ← next(e2). 
If [a′, b′] ⊆ [a, b], then e2 ← next(e2). 
If a′ < a, then e2′ ← e2; insert e2′ into A1 just before e1; e2 ← next(e2). 

3. If A1 is exhausted, all the remaining entries in A2 will be appended to the end of A1. 

The result of this process is stored in A1, denoted as merge(A1, A2). We also define 

merge(A1, …, Ak) = merge(merge(A1, …, Ak-1), Ak), 

where A1, …, Ak are the linked lists associated with v’s child nodes: v1, …, vk, respectively. 
If in merge(A1, …, Ak) there exists an e such that e.interval = interval(q), T ′[v] embeds 
Q[q].  

For the merging operation described above, we require that the entries in a linked list 
are sorted. That is, all the entries e are in the order of increasing RightPos(e.q) values; and 
for those entries with the same RightPos(e.q) value their intervals are ‘from-left-to-right’ 
ordered. Such an order is obtained by searching Q bottom-up (or say, in the order of in-
creasing RightPos values) when checking a node v in T′ against the nodes in Q. Thus, no 
extra effort is needed to get a sorted linked list. Moreover, if the input linked lists are sort-
ed, the output linked lists must also be sorted. 
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In terms of the above discussion, we give our algorithm for evaluating ordered tree 
pattern queries. As with the algorithm matching-tree-construction( ), we will generate left- 
sibling links to facilitate the computation. However, in the following description, we focus 
on the checking of tree embedding and that part of technical details is omitted. 

 
Algorithm  tree-embedding(L(Q)) 
Input: all data streams L(Q). 
Output: Sv’s, which show the tree embedding. 
begin 
1. repeat until each L(q) in L(Q) become empty 
2.  { identify q such that the first element v of L(q) is of the minimal 
3.    RightPos value; remove v from L(q); call embedding(v, q); 
4.  } 
end 
 
Algorithm  embedding(v, q) 
begin 
1. generate node v; Av ← φ; 
2. let v1, …, vk be the children of v. 
3. A ← merge(Av1, …, Avk); 
4. for each q ∈ q do {    (* nodes in q are sorted. *) 
5.   if q is a leaf then {Sv ← Sv ∪ {q};} 
6.   else   (* q is an internal node. *) 
7.   { if there exists e in A such that e.interval = interval(q) 
8.     then Sv ← Sv ∪ {q}; } 
9. } 

10.   for each q ∈ Sv do {  
11.      append (q’s parent, [bf(q), bf(q)], q.LeftPos, q.RightPos) to the end of Av; } 
12.   Av ← merge(Av, A); Scan Av to remove subsumed entries; 
13.   remove all Avk’s; 
14.   } 
15. } 
end  
 

In the above algorithm, the nodes in T ′ is created one by one as done in Algorithm 
matching-tree-construction( ). But for each node v generated for an element from a L(q), 
we will first merge all the linked lists of their children and store the output in a temporary 
variable A (see line 3 in Algorithm embedding( )). Then, for each q ∈ q, we will check 
whether there exists an entry e such that e.interval = interval(q) (see lines 7 and 8). If it is 
the case, we will construct an entry for q and append it to the end of the linked list Av (see 
lines 10 and 11). The final linked list for v is established by executing line 12. Afterwards, 
all the Avk’s (for v’s children) will be removed since they will not be used any more (see 
line 13). 

In the same way, we will generate Av5 and Av6 as shown in Figs. 16 (b) and (c), re-
spectively. When we create v4 (taken from L(q′) = {v4, v2, v8} with q′ = {q2, q5}), we will 
first merge Av5 and Av1 to generate a linked list as shown in Fig. 16 (d). Since the interval in  
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 Av3 :     Av5 :     Av6 :    
e1  q2 [4, 4] 3 3 q2 [4, 4] 3 3  q2 [4, 4] 3 3 

             
e2  q2 [5, 5] 4 4 q2 [5, 5] 4 4  q2 [5, 5] 4 4 
 (a)  (b)  (c) 

 
       Av4 :     q2 [4, 4] 3 3 
             
e1  q2 [4, 4] 3 3 q1 [2, 2] 2 5  q2 [5, 5] 4 4 

             
e2  q2 [5, 5] 4 4 q1 [3, 3] 6 6  q1 [2, 2] 2 5 
             
          q1 [3, 3] 6 6 
 (d)  (e)  (f) 

Fig. 16. Illustration for linked lists associated with nodes in T. 

 
the first entry in it is equal to interval(q2), we know that T ′[v4] embeds Q[q2]. As described 
above, the final linked list for v4 will be a list as shown in Fig. 16 (e). When we generate 
v2 (taken from L(q′) = {v4, v2, v8}) we will first merge Av3 and Av4, and get a linked list as 
shown in Fig. 17 (f). Since in this linked list we do not have an entry e with e.interval = 
interval(q2), we will not construct an entry for q2. But in the linked list shown in Fig. 16 (f), 
we already have an entry for q2 (remember that bf(q2) = 2), showing that there must exist a 
subtree rooted at one of v2’s descendant, which embeds Q[q2]. In this way, any redundant 
work can be avoided. Continuing this process, we will find out that T ′ embeds Q. 

The above algorithm can be used only for the case that Q contains no /-edges. In the 
presence of both //-edges and /-edges, it should be slightly modified as below. 

Let q1, …, qk be the children of q; and among them qi1, …, qij be all the /-children. Let 
vl be a child of v and e = <bf(q), [a, b], LeftPos(a), RightPos(b)> be an entry in Avl. If vl is 
a /-child of v, e will not need be changed. Otherwise, we will find the first qic such that 
bf(qic) = x ≥ a and the last qid such that bf(qid) = y ≤ b; and replace e in Avl with the follow-
ing entries before it takes part in the merging operation: 

 
<bf(q), [a, bf(qic) − 1], LeftPos(a), RightPos(bf(qic) − 1)>, 
<bf(q), [bf(qic) + 1, bf(qic+1) − 1], LeftPos(bf(qic) + 1), RightPos(bf(qic+1) − 1)>, 
… 
<bf(q), [bf(qid) + 1, b], LeftPos(bf(qid) + 1), RightPos(bf(b))>. 

 
It is because in the case that vl is a //-child, we should remove the points bf(qic), …, 

bf(qid) from [a, b], as if T ′[vl] is not able to cover Q[qic], …, Q[qid]. 
Concerning the correctness of the algorithm, we have the following proposition. 

Proposition 2  Algorithm tree-embedding( ) computes the entries in Av’s correctly. 

Proof: We prove the proposition by induction on the heights of nodes in T ′. We use h(v) 
to represent the height of node v.  

Basic Step  It is clear that any node v with h(v) = 0 is a leaf node. Then, each entry in Av 
corresponds to a leaf node q in Q with label(v) = label(q). Since all those leaf nodes in Q 
are checked in the order of increasing RightPos values, the entries in Av must be sorted. 
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Induction Step  Assume that for any node v with h(v) ≤ l, the proposition holds. We will 
check any node v with h(v) = l + 1. Let v1, …, vk be the children of v. Then, for each vi (i = 
1, …, k), we have h(vi) ≤ l. In terms of the induction hypothesis, each

ivA is correctly con-
structed and sorted. Then, the output of merge(Av1, …, Avk) is sorted. If there exists an e 
such that e.interval = interval(q) for some q with label(v) = label(q), an entry for q will be 
constructed and appended to the end of Av. Again, since the nodes in Q are checked in the 
order of increasing RightPos values, Av must be sorted. So merge(Av, merge(Av1, …, Avk)) 
is correctly constructed and sorted.                                                     
 

Now we analyze the time complexity of the algorithm. First, we see that for each node 
v in T ′, dv merging operations will be conducted, where dv is the outdegree of v. The cost 
of a merging operation is bounded by O(leafQ) since the length of each linked list Av asso-
ciated with a node v in T ′ is bounded by O(leafQ) according to the following analysis. Con-
sider two nodes q1 and q2 on a path in Q, if both Q[q1] and Q[q2] can be embedded in T′[v], 
Av keeps only one entry for them. If q1 is an ancestor of q2, then Av contains only the entry 
for q1 since embedding of Q[q1] in T ′[v] implies the embedding of Q[q2] in T ′[v]. Oth-
erwise, Av keeps only the entry for q2. Obviously, Q can be divided into exactly leafQ 
root- to-leaf paths. Furthermore, the merge of two linked lists A1 and A2 takes only 
O(max{|A1|, |A2|}) time since both A1 and A2 are sorted lists according to the proof of 
Proposition 2. (It works in a way similar to the sort-merge join.) Therefore, the cost for 
generating all the linked lists is bounded by 

( ) (| | ).v Q Q
v T

O d leaf O T leaf
′∈

′⋅ = ⋅∑  

In addition, for each node v taken from a L(q), each q in q will be checked (see line 4 
in Algorithm embedding( ).) This part of checking can be slightly improved as follows. Let 
L(q) = {q1, …, qk}. Each qj (j = 1, …, k) is associated with an interval [aj, bj]. Since qj’s are 
sorted by RightPos values, we can check A (= merge(Av1, …, Avk)) against q in one scan-
ning to find, for each qj, whether there is an interval in A, which is equal to [aj, bj]. This 
process needs only O(|A| + |q|) time. So the total cost of this task is bounded by O(|T ′| ⋅ 
leafQ) + O(|D| ⋅ |Q|). 

In terms of the above analysis, we have the following proposition. 

Proposition 3  The time complexity of Algorithm tree-embedding( ) is bounded by O(|T ′| 
⋅ leafQ) + O(|D| ⋅ |Q|).                                                                  

The space overhead of Algorithm tree-embedding( ) is in the order of O(leafT ′ ⋅ leafQ). 
It is because at any time point during the execution, at most leafT ′ nodes in T ′ are associ-
ated with a linked list (see line 15 in Algorithm tree-embedding( )). 

In the above discussion, the main algorithm has been described in detail. However, 
two issues yet remain to be addressed. That is, the treatment of the wildcards (*) as well as 
the output node in Q should be made clear. 

In fact, using XB-trees, * is handled in the same way as non-wildcard nodes. As we 
will see in the next section, for each q in Q, no matter whether it is a wildcard or not, we 
will be looking for only one element in the corresponding XB-tree each time. More impor-
tantly, using drilldown and advance operators [4], any entry in an XB-tree is accessed only 
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once. 
As for the output node of Q, we should notice that the set Sv generated for each node 

v in T ′ (such that for each q ∈ SvT ′[v] embeds Q[q]) does not serve as the answer to Q. But 
in the algorithm we can maintain two additional data structures: Gr and Go. Gr contains all 
those document nodes v such that Q[r] can be embedded in T′[v], where r is the root of Q; 
and Go contains all the document nodes u such that Q[o] can be embedded in T′[u], where 
o is the output node of Q. We can sort Gr and Go such that all nodes are increasingly sorted 
by the RightPos values. Then, based on these two data streams, we can create another 
subtree T ′′ of T ′ (in a way similar to the generation of a matching subtree), which contains 
only those nodes v such that T′[v] embeds Q[r] with label(v) = label(r) or embeds Q[o] 
with label(v) = label(o). We call a node v an r-node if T ′[v] contains Q[r] with label(v) = 
label(r), or an o-node if T ′[v] embeds Q[o] with label(v) = label(o). Search T ′′. Any node 
v, which is an o-node and also a child of some r-node, should be an answer if o is not a 
/-child of r. Otherwise an o-node has to be a /-child of some r-node to be an answer. 

4. INDEX-BASED ALGORITHM 

In the algorithm discussed in the previous section, we need to access all the nodes in 
a B(q) for each q ⊂ Q. To improve this, we incorporate the XB-tree [4] into our algorithm. 
However, since XB-tree is initially established for checking the unordered tree matching, 
some changes have to be made for the purpose of ordered tree matching. 

First, we notice that the actual input of our algorithm is B(q)’s (in which the nodes are 
sorted by LeftPos values, see section 3.1). Thus, we can construct an XP-tree for each B(q) 
in the same way as TwigStackXB [4]. An XB-tree is a variant of B+-tree over a quadruple 
sequence. In such an index structure, each entry in a page is a pair a = (LeftPos, RightPos) 
(referred to as a bounding segment) such that any entry appearing in the subtree pointed to 
by the pointer associated with a is subsumed by a. In addition, all the entries in a page are 
sorted by their LeftPos values. As an example, consider a sorted quadruple sequence shown 
in Fig. 17 (a), for which we may generate an XB-tree as illustrated in Fig. 17 (b). 

 
(1, 1, 9, 1) 
(1, 2, 7, 2) 
(1, 3, 3, 3) 
(1, 4, 6, 3) 
(1, 5, 5, 4) 
(1, 8, 8, 2) 

(a) 

 1, 9 3, 6 5, 8

1, 9 2, 7 3, 3 5, 54, 6

P1

P2 P3 P4

p.parent 

8, 8  
(b) 

Fig. 17. A quadruple sequence and XB-tree over it. 

 
In each page P of an XB-tree, the bounding segments may partially overlap, but their 

LeftPos positions are in increasing order. Let a1 and a2 be two consecutive entries. Then 
the leftPos value of any entry in the subtree rooted at a1 is smaller than the leftPos value 
of a2. For instance, in the XB-tree shown in Fig. 17 (b), the first entry of P1: [1, 9] overlaps 
the second entry: [3, 6]. But the leftPos value of any entry in the subtree rooted at [1, 9] is 
smaller than 3. Besides, it has two extra data fields: P.parent and P.parentIndex. P.parent 

p.parent Index 
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is a pointer to the parent of P, and P.parentIndex is a number i to indicate that the ith pointer 
in P.parent points to P. For instance, in the XB-tree shown in Fig. 17 (b), P3.parentIndex 
= 2 since the second pointer in P1 (the parent of P3) points to P3. 

Consider an XB-tree constructed for B(q) with q = {q1, …, qk}. For each qj ∈ q (j = 
1, …, k), we maintain a pair (P, i), denoted βqj, to indicate that the ith entry in the page P 
is currently accessed for qj. Thus, each βqj (j = 1, …, k) corresponds to a different search-
ing of the same XB-tree as if we have a separate copy of that XB-tree over B(qj). 

In [4], two operations are defined to navigate an XB-tree, which change the value of 
βq. 

1. advance(βq) (going up from a page to its parent): If βq = (P, i) does not point to the last 
entry of P, i ← i + 1. Otherwise, βq ← (P.parent, P.parentIndex + 1). 

2. drilldown(βq) (going down from a page to one of its children): If βq = (P, i) and P is not 
a leaf page, βq ← (P′, 1), where P′ is the ith child page of P. 

Initially, for each q, βq points to (rootPage, 0), the first entry in the root page. We 
finish a traversal of the XB-tree for q when βq = (rootPage, last), where last points to the 
last entry in the root page, and we advance it (in this case, we set βq to φ, showing that the 
XB-tree over B(q) is exhausted.) As with TwigStackXB, in each step we will determine a q 
∈ Q and take an entry from the corresponding XB-tree. But an entry taken from an XB- 
tree can be an entry in a non-leaf node, which does not correspond to an element in docu-
ments. So we use the following function to check it: 

isPlainValue(βq): returns true if βq is pointing to a leaf node in the corresponding XB-tree. 

If βq points to an entry in a non-leaf node, we need to navigate the XB-tree. (The 
pruning happens when we advance βq. In this case, the subtree pointed to by the current 
entry is skipped over. See below). Otherwise, it points to an entry in a leaf node. The entry 
(representing a document node) is then pushed into ST as done in Algorithm stream- trans- 
formation( ). Besides, each q ∈ Q is associated with an extra linked list, denoted linkq, such 
that each entry in it contains a pointer to a node v stored in ST with label(v) = label(q). We 
append entries to the end of a linkq one by one as the document nodes are inserted into ST, 
as illustrated in Fig. 18 (a). When a node is popped out from ST, the corresponding entry is 
removed from the corresponding linkq. 

 
..
.

linkq:  … … 

       

 

βq 

βp(q)

q

parent(q) 

T: Q:

 
(a)                                                (b) 

Fig. 18. Illustration for advance(βq). 

 
In the index-based version of our main algorithm, each time to determine a q to check, 

we call a function getNext( ), which returns a query node. In addition, the following three 
functions are also used: 
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end(Q): if for each leaf node q of Q βq = φ (i.e., L(q) is exhausted), then returns true; oth-
erwise, false. 

currL(βq): returns the LeftPos of the entry pointed to by βq. 
currR(βq): returns the RightPos of the entry pointed to by βq. 
isRoot(q): if q is the root, return true; otherwise, false. 
isLeaf(q): returns true if q is a leaf of Q; otherwise, false. 
p(q): returns the parent of q. 
l(q): returns δ (q) − 1, where δ(q) is the postorder number of the left-most leaf node in Q[q]. 

Note that δ(q) − 1 is the largest postorder number to the left of q. 

Algorithm  XB-tree-matching(XB-trees over B(qi)’s) 
Input: XB-trees(qi)’s. 
Output: Sv’s, which show the tree embedding. 
begin 
1. while (¬end(Q)) do 
2. { q ← getNext(root-of-Q); 
3.   if (isPlainValue(βq) then 
4.   { let v be the node pointed to by βq; 
5.     while ST is not empty and ST.top is not v’s ancestor do 
6.     { x ← ST.pop(); Let x = (q′, u); 
7.       call embedding(u, q′); } 
8.     ST.push(q, v); advance(βq); 
9.   }  

10.   else if (¬isRoot(q) ∧ linkp(q) = φ ∧ currR(βq) < currL(βp(q)))  
11.           ∨ l(q) ≠ 0 ∧ currL(βq) ≤ currR(βl(q))) 
12.   then advance(βq)   (* not part of a solution *) 
13.   else drilldown(βq);   (* may find a solution *) 
14. } 
end 
 

In the above algorithm, we distinguish between two cases. If βq is an entry in a leaf 
node in the corresponding XB-tree, we will insert it into ST (see lines 3 and 8). Each time 
an element is popped out of ST, Algorithm embedding( ) will be invoked to check a sub-
tree embedding (see lines 6 and 7). 

If βq is an entry in a non-leaf node, lines 10-13 will be carried out. If currR(βq) < 
currL(βp(q)) (see line 10), we have a situation as illustrated in Fig. 18 (b): for the current 
node v pointed to by βq (which matches q, we cannot find an ancestor of v, which matches 
q’s parent. In this case, we need to advance βq (see line 12.) If currL(βq) ≤ currR(βl(q)) (see 
line 11), the left-to-right ordering is violated and we also need to advance βq. In this way, 
a lot of useless access of document nodes can be saved. If it is not the case, we will drill 
down the corresponding XB-tree (see line 12) since a solution may be found. 

In the following, we discuss getNext( ) in great detail to see how a q ∈ Q is deter-
mined in each step to take an entry from an XB-tree. 

According to [4], each time we determine a q (∈ Q), for which an entry from B(q) is 
taken, the following three conditions are checked: 
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(1) For q, there exists an entry vq in B(q) such that it has a descendant vqi in each of the 
streams B(qi) (where qi is a child of q). 

(2) Each vqi recursively satisfies (1). 
(3) LeftPos(vq) is minimum. 

However, since by the ordered tree matching the order of siblings is significant, we 
can impose a fourth condition to skip more entries in an XB-tree. For this purpose, for 
each q ∈ Q, we establish left-sibling(q) in the same way as described in section 3.1. Then, 
we have 

(4) If l(q) ≠ φ, vq in B(q) is to the right of the entry pointed to by βl(q). 

According to the above conditions, we design our own getNext( ), which is a modifi-
cation of the corresponding algorithm discussed in [4]. It is in essence a bottom-up search 
of Q, but by a recursive process starting from the root of Q. That is, a q is accessed after 
all its children have been visited by recursive calls. The algorithm getNext(q) works as 
follows: 

(1) Once a q, for which βq is pointing to an entry in a non-leaf node in the corresponding 
XB-tree, is encountered, it is immediately returned to XB-tree-matching( ) (see line 4 
in getNext( )), by which advance(βq) or drilldown(βq) will be performed (see line 10 in 
XB-tree-matching( )). 

(2) If for a q we cannot find, by performing advance(βq), a v such that for all its children 
qiβqi is pointing to an entry which is a descendant of v, and condition (4) is satisfied, 
then qmin is returned, where qmin represents the return value of a recursive call getNext(a 
child of q) such that βqmin points to an entry with the least LeftPos value. Otherwise, q 
returns as the output of getNext(q).  

Function  getNext(q)   (* Initially, q is the root of Q. *) 
begin 
1. if (isLeaf(q)) then return q; 
2. for each child qi of q do 
3.   { ri ← getNext(qi); 
4.     if (ri ≠ qi ∨ ¬isPlainValue(βrj)) then return ri;} 
5. qmin ← q′′ such that currL(βq′′) = mini{currL(βrj)}; 
6. qmax ← q′′′ such that currL((βq′′′) = maxi{currL(βrj)}; 
7. while (currR(βq) < currL(βqmin) ∨  (l(q) ≠ 0 ∧ currL(βq) ≤ currR(βl(q))) do advance(βq); 
8. if currL(βq) < currL(βrmax) then return q; 
9. else return qmin; } 
end 

The goal of the above function is to figure out a query node to determine what entry 
from data streams will be checked in a next step, which has to satisfy the above conditions 
(1)-(4). It is a recursive process to search Q bottom up (see line 3). If for one of q’s chil-
dren qiβqi is pointing to an entry in a non-leaf node in the corresponding XB-tree, it is re-
turned (see line 4). Especially, it goes back through all the recursive calls and returns as 
the output of the whole process. It occurs due to the condition ‘ri ≠ qi’ in line 4. Lines 5-9  
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βq 
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q 

T: Q: 

l(q) 

βl(q)

βqmin

β qmin 
If currR(βq) < currL( ) ∧ currL(βq) ≤ currR(βl(q)),
we have to advance βq. 

 
Fig. 19. Illustration for advance(βq). 

 
are used to check whether conditions (1) and (4) are satisfied. (See Fig. 19 for illustration 
of line 7.) In addition, the recursive call performed in line 3 shows that condition (2) is 
met. Since each XB-tree is traversed top-down and the entries in each node are scanned 
from left to right, condition (3) must always be satisfied. 

The main difference of the modified getNext(q) from the corresponding algorithm 
discussed in [4] is in the checking condition: l(q) ≠ 0 ∧ currL(βq) ≤ currR(βl(q)) in line 7, 
which enable us to skip over some subtrees in an XB-tree by checking the left-to-right or-
dering. 

5. EXPERIMENTS 

In this section, we report the test results. We conducted our experiments on a DELL 
desktop PC equipped with Pentium(R) 4 CPU 2.80GHz, 0.99GB RAM and 20GB hard 
disk. The code was compiled using Microsoft Visual C++ compiler version 6.0, running 
standalone. 
 
Tested Methods 

In the experiments, we have tested four methods: 

− TwigStack (TS for short) [4], 
− Twig2Stack (T2S for short) [12], 
− PRIX [30], 
− XB-tree-embedding (discussed in this paper, TE for short). 

 
The theoretical computational complexities of these methods are summarized in Ta-

ble 1.  
The index for PRIX is a trie structure over all the labeled Prüfer sequences, imple-

mented as a B+-tree [30]. The indexes for all the other three methods are XB-trees [4]. 

Table 1. Time and space complexities. 
methods query time runtime space usage 

TwigStack O(|D||Q|) O(|D| ⋅ |Q|) 
Twig2Stack O(|D| ⋅ |Q|2 + |subTwigResults|) O(|D| ⋅ |Q|) 

PRIX O(|D||Q| ) O(|D| + |Q|) 
TE O(|D| ⋅ |Q| + |T′| ⋅ leafQ) O(leafT′ ⋅ |Q|) 
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Table 2. Data sets for experimental evaluation. 
XMark  TreeBank DBLP

1 2 3 4 5 
Data size (MB) 82 127 113 228 340 454 568 
Nodes (million) 2.43 3.33 1.72 3.33 5.1 6.7 8.33 

Max/average depth 36/7.9 6/2.9 12/6.2 

 
Data 

The data sets used for the tests are TreeBank data set [36], DBLP data set [36] and a 
synthetic XMARK data set [41]. The TreeBank data set is a real data set with a narrow 
and deeply recursive structure that includes multiple recursive elements. The DBLP data 
set is another real data set with high similarity in structure. It is in fact a wide and shallow 
document. The XMark (with scaling factors of 1 to 5) is a well-known benchmark data set, 
which is used for scalability analysis. The important parameters of these data sets are 
summarized in Table 2. 

For all the experiments, the buffer pool size was fixed at 2000 pages. The page size of 
8KB was used. For each data set, all the tag names are stored in a single list and then each 
tag name is represented by its order number in that list during the evaluation of queries. In 
our implementation, each DocId occupies 4 bytes while a number in a Prüfer sequence, a 
LeftPos or a RightPos occupies 2 bytes. A levelNum value takes only 1 byte. In addition, 
in DBLP, each proceedings, journal volume and a book is considered to be a individual 
document, and therefore assigned a DocID. 
 
Test results 

In the experiments, we tested altogether 21 queries shown in Tables 3-5. 

Table 3. queries for TreeBank data set. 
query XPath expression 

Q1 //VP[DT]//PRP_DOLLAR 
Q2 //S/VP/PP[IN]/NP 
Q3 //S/VP//PP[NP/VB]/IN 
Q4 //VP[.//PP/IN]//NP/*//JJ 
Q5 //S[CC][.//PP]//NP[VBZ][IN]//JJ 
Q6 //S[*/PRP]/VP[VBD] 
Q7 //S[.//NNP]/VP[.//NP[.//NNP]] 

 

Table 4. Queries for DBLP. 
query XPath expression 

Q8 //article/authot=“C.J. Codd” 
Q9 //inproceedings[author=“Jim Gray”][year=“1990”] 

Q10 //inproceedings[key][author=“Jim Gray”][year=“1990”] 
Q11 //inproceeding[author][title][.//pages][.//url] 
Q12 //articles[author][title][.//volume][.//pages][.//url]/* 
Q13 //section[.//page]//year 
Q14 //incollection[.//url]//booktitle 
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Table 5. Queries for XMark. 
query XPath expression 
Q15 /site//open_auction[.//seller/person]/ 
Q16 /site//open_auction[.//seller/person][.//bidder]/ 
Q17 /site//open_auction[.//seller/person][.//bidder/increase]/ 
Q18 /site//open_auction[.//seller/person][.//bidder[increase][.//initial]]/ 
Q19 /site//open_auction[.//seller/person][.//bidder/increase][.//initial]/*/description/ 
Q20 //item[description]//mail 
Q21 //people//*[homepage]/name 

 
To avoid the frequent use of the axes like following-sibling in the tables, we assume 

that the order between the siblings in a tree query follows the left-to-right order in the cor-
responding XPath expression. For example, //inproceedings[key][author] indicates that key 
is followed by author. 

In Fig. 20 (a), we show the disk I/O of all the methods for TreeBank, which shows 
that the I/O cost of PRIX is obviously better than the XB-tree used by the other three 
methods. But our method is slightly better than TwigStack and Twig2Stack. It is because by 
our method, not only the ancestor-descendant relationship, but the left-to-right order is 
also used to skip over entries in XB-trees. 

However, due to the high CPU cost of PRIX, our method still outperforms PRIX in 
total query process time, as demonstrated in Fig. 20 (b). The reason for this is the multiple 
appearance of the same tag names, leading to a huge number of checkings of tree embed-
ding as analyzed in the introduction. In Fig. 21, we show the time for I/O, which demon-
strates that the I/O occupies only a very small fraction of the whole process time. 
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Fig. 20. I/O page access and execution time for TreeBank. 
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Fig. 21. I/O time for TreeBank. 
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(a)                                   (b) 
Fig. 22. I/O page access for DBLP and XMark. 

In Fig. 22 (a), we show the I/O costs for the DBLP.  
From this we can see that for Q8 our method has less disk access than PRIX since 

most solutions were clustered in small region of the input stream, allowing ours to quickly 
find the relevant pages. But for Q9, ours and PRIX have comparable I/O costs. For Q10, 
ours works better. It is because the element key occurred in every document in the DBLP 
dataset and not much filtering can be achieved by PRIX. But ours can still skip a lot of 
leaf nodes by using the ancestor-descendant as well as left-to-right relationships. Q11 and 
Q12 are two quite low selectivity queries. Again, ours and PRIX have comparable I/O costs 
for them. Q13 and Q14 are also two quite low selectivity queries. But the tree matchings 
occur in different palces in document trees from Q11 and Q12, and no significant difference 
between ours and PRIX can be observed. For this group of queries, both TwigStack and 
Twig2Stack are generally worse than ours and PRIX. However, the difference is small. In 
fact, both the trie structure used by PRIX and the XB-tree used by the other three methods 
use the same information to filter data: label equality and the tree structural information. 
They have the same filtering power. 

In Fig. 22 (b), we show the I/O costs for the XMark (with the scaling factor = 1), for 
which PRIX and the XB-tree are comparable. 

In Figs. 23 (a) and (b), we show the whole execution times for processing queries 
against DBLP and XMark, respectively. From these, we can see that PRIX is much worse 
than all the other three methods. In fact, for both the DBLP and the XMark, PRIX exhibits 
an exponential time behavior. Although in the DBLP each path in a document tree is short 
and possesses no recursive structure, each Prüfer sequence (representing a document tree) 
has always multiple appearance of the same tag names. Each may lead to a checking of 

0

10

20

30

40

50

Q8 Q9 Q10 Q11 Q12 Q13 Q14

PRIX T2S TE TS

        
0

1

2

3

4

5

Q15 Q16 Q17 Q18 Q19 Q20 Q21

PRIX T2S TE TS

 
(a)                                              (b) 

Fig. 23. Execution time for DBLP and XMark. 
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tree embedding. But most of them are not successful. The same analysis applies to the 
XMark.  

In Figs. 24 (a)-(d), we show the scalability experimental results for XMark with dif-
ferent document sizes. We vary the XMark scale factor from 2 to 5. As can be seen, PRIX 
and TwigStack grow much faster than ours and Twig2Stack in terms of the document size. 
Our method again has the best execution time.  

Finally, to observe the impact of XB-trees, we have run our algorithm without in-
dexes for DBLP and recorded the number of page access, shown in Table 6.  
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Fig. 24. Test results for XMark with different scaling factors. 

Table 6. Disk I/O – DBLP. 
Query TE without XB TE 

Q8 1715 pages 93 pages 
Q9 3036 pages 310 pages

Q10 4804 pages 401 pages
Q11 5563 pages 804 pages
Q12 6409 pages 976 pages
Q13 5230 pages 782 pages
Q14 5140 pages 745 pages

 
From this, we can see that using the XB-tree the I/O costs are effectively reduced. The 

tree-embedding algorithm examines every element in the sorted input streams while XB- 
tree-embedding uses XB-trees to skip elements in the sorted data streams. Especially, for 
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the ordered tree embedding, we are able to save a lot of leaf node checking by using ances- 
tor-descendant as well as left-to-right relationships during an XB-tree search. 

6. RELATED WORK 

Besides the strategies for processing the ordered tree pattern queries (which are re-
viewed in the introduction), there is much research on the unordered tree pattern matching. 
Nearly all the proposed strategies can roughly be divided into two categories. One is in-
dex-based and the other is for the so-called XML streaming environment. For example, the 
methods discussed in [2, 17, 23-26, 32, 42] are typically index-based, by which a docu-
ment is decomposed into a set of binary relationships between pairs of nodes, such as par-
ent-child and ancestor-descendant relations, or into a set of paths. The sizes of interme-
diate relations tend to be very large, even when the input and final result sizes are much 
more manageable. As an important improvement, TwigStack was proposed by Bruno et al. 
[4], which compresses the intermediate results by the stack encoding, which represents in 
linear space a potentially exponential number of answers. 

However, TwigStack achieves optimality only for the queries that contain only 
//-edges. In the case that a query contains both /-edges and //-edges, some useless path 
matchings have to be performed. In the worst case, TwigStack needs O(|D||Q|) time for 
doing the merge joins as shown by Chen et al. (see page 287 in [12]). This method is fur-
ther improved by several researchers. In [8], iTwigJoin was discussed, which exploits dif-
ferent data partition strategies. In [24], TJFast accesses only leaf nodes by using extended 
Dewey IDs. By both methods, however, the path joins cannot be avoided. The method 
Twig2Stack proposed by Chen et al. [12] works in a quite different way. It represents tree 
results using the so-called hierarchical stack encoding to avoid any possible useless path 
matchings. In [12], it is claimed that Twig2Stack needs only O(|D| ⋅ |Q| + |subTwigResults|) 
time for generating paths. But a careful analysis shows that the time complexity for this 
task is actually bounded by O(|D| ⋅ |Q|2 + |subTwigResults|). It is because each time a node 
is inserted into a stack associated with a node in Q, not only the position of this node in a 
tree within that stack has to be determined, but a link from this node to a node in some 
other stack has to be constructed, which requires to search all the other stacks in the worst 
case. The number of these stacks is |Q| (see Fig. 4 in [12] to know the working process). 
The following example helps for explanation. 

In Fig. 25 (b), we show the hierarchical stacks associated with the two nodes A and B 
of Q with respect to T shown in Fig. 25 (a). In [12], the nodes in a data stream associated 
with each node of Q are sorted by their (DocID, RightPos) values. So a1 is visited last. 
When it is inserted into HS[A] (hierarchical stack of A), all those stacks in HS[A], which  
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Q:
A

B
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(a)                                         (b) 
Fig. 25. Illustration for hierarchical stacks. 
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are not a descendant of some other stack, will be checked to establish ancestor-descendant 
links. In addition, to generate links to some stacks in HS[B], similar checks will also be 
performed. This needs O(|Q|) time in the worst case, yielding a O(|D| ⋅ |Q|2) time complex-
ity. The method discussed in [28] improves the stack structure used in Twig2Stack to avoid 
storing individual path matches and remove subTwigResults time. But its theoretical time 
complexity is still O(|D| ⋅ |Q|2). The method discussed in [20] also needs O(|D| ⋅ |Q|2) time 
although some checkings can be saved by using ancestor/descendant relationships (see 
Property 1 on page 854). The above problem of Twig2Stack is not removed.  

A large amount of work has also been done on unordered tree pattern matching in an 
XML streaming environment, such as the methods discussed in [11, 16, 29, 44]. The time 
complexity of the method proposed in [11] is bounded by O(ThQd|Q||T| + |Q|2|T|), where Th 
is the height of T and Qd is the largest outdegree of a node in Q. Both the methods dis-
cussed in [16, 29] require only O(|Q||T|) time. However, by the method discussed in [29], 
extra value joins are needed. The algorithm described in [44] checks whether a document T 
embeds a query Q, returning a boolean value. Its time and space complexities are bounded 
by O(|Q| ⋅ log|Q| ⋅ r ⋅ logTh) and O(|T| ⋅ |Q| ⋅ log|Q| ⋅ r), respectively, where r is the recur-
sion depth of T, which is defined to be the length of a longest path in T, whose start node 
and the end node are of the same label. For all these strategies, the order between siblings 
is not considered. 

Finally, we point out that the bottom-up tree matching was first proposed in [19]. But 
it concerns a very strict tree matching, by which the matching of an edge to a path is not 
allowed. In [18], Gottlob et al. identified an XPath fragment called Core XPath, which can 
be evaluated in O(|T| ⋅ |Q|) time. Core XPath is slightly more expressive than the tree pat-
tern queries in that it includes axes other than /-edges and //-edges. However, algorithms 
in [18] cannot be modified to use index structures since they require scanning XML docu-
ments in multiple passes. In [26], an algorithm for tree homomorphism is discussed. As 
with the algorithm proposed in [44], it examines whether a tree contains another and re-
turns a boolean answer. But our algorithms show all the subtrees that are able to embed a 
given tree pattern. The node selecting Queries considered in [22] are in fact a kind of ex-
tended containment queries (whether a tree contains a certain node [42]) and cannot be 
used for the general purpose of twig joins. In [43], a special kind of tree matching, called 
tree homeomorphism, is discussed, which looks for a mapping that maps each edge in Q to 
a path in T. 

7. CONCLUSION 

In this paper, a new algorithms tree-embedding for processing ordered tree pattern 
queries is discussed. For the ordered tree pattern queries, not only the parent-child and 
ancestor-descendant relationships but also the order of siblings are taken into account. 
The time complexities of the algorithm is bounded by O(|D| ⋅ |Q| + |T| ⋅ leafQ) and its space 
overhead is by O(leafT ⋅ leafQ), where T stands for a document tree, Q for a tree pattern 
and D is a largest data stream associated with a node q of Q, which contains the database 
nodes that match the node predicate at q. leafT (leafQ) represents the number of the leaf 
nodes of T (resp. Q). The algorithm can also be implemented with the XB-tree index be-
ing used. Our experiments demonstrate that our method is both effective and efficient for 
the evaluation of ordered tree pattern queries. 
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