
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 28, 1-XXX (2012)

1

Subtree Reconstruction, Query Node Intervals
and Tree Pattern Query Evaluation*

YANGJUN CHEN AND YIBIN CHEN

Department of Applied Computer Science
University of Winnipeg

Winnipeg, Manitoba, Canada R3b 2E9
E-mail: y.chen@uwinnipeg; chenyibin@gmail.com

Since the extensible markup language XML emerged as a new standard for informa-

tion representation and exchange on the Internet, the problem of storing, indexing, and
querying XML documents has been among the major issues of database research. In this
paper, we study the tree pattern matching and discuss a new algorithm for processing or-
dered tree pattern queries, by which not only ancestor/descendant relationships, but also
left-to-right ordering of query nodes are considered. Such kind of tree matching has many
applications in practice, such as the linguistic analysis, the video content-based retrieval, as
well as the computational biology and the data mining. The time complexities of the new
algorithm is bounded by O(|D| ⋅ |Q| + |T| ⋅ leafQ) and its space overhead is by O(leafT ⋅ leafQ),
where T stands for a document tree, Q for a tree pattern and D is the largest data stream
among all the data streams associated with the nodes in Q. Each data stream contains the
database nodes that match the predicate at a node q. leafT (leafQ) represents the number of
the leaf nodes of T (resp. Q). In addition, the algorithm can be adapted to an indexing en-
vironment with XB-trees being used. Experiments have been conducted, which shows that
our algorithm is promising.

Keywords: XML documents, tree pattern queries, tree matching, tree encoding, XB-trees

1. INTRODUCTION

In XML [39, 40], data are represented as a tree; associated with each node of the tree
is an element name from a finite alphabet ∑. The children of a node are ordered from left
to right, and represent the content (i.e., list of subelements) of that element.

Accordingly, in most of the XML query languages (e.g. XPath [39], XQuery [40],
XML-QL [14], and Quilt [6, 7]), queries are typically expressed by tree patterns (for ex-
ample, path expressions expressed in XPath, path expressions in the for and let clauses in
XQuery). In such tree patterns, nodes are labeled with symbols from ∑ ∪ {*} (* is a wild-
card, matching any node name) and string values, and edges are parent-child or ancestor-
descendant relationships. As an example, consider the query tree shown in Fig. 1, which
asks for any node of name b (node 3) that is a child of some node of name a (node 1). In
addition, the node of name b (node 3) is the parent of some nodes of name c and e (node 6
and 7, respectively), and the node of name e itself is an ancestor of some node of name d
(node 8). The node of name b (node 2) should also be an ancestor of some node of name f
(node 5). The query corresponds to the following XPath expression:

Received June 5, 2010; revised April 5, 2011; accepted August 1, 2011.
Communicated by Vincent S. Tseng.
* Results of this paper were partially presented at 20th International Conference on Database and Expert Systems

Applications, 2009.

YANGJUN CHEN AND YIBIN CHEN

2

5 f

1 a

2 b 3 b

7 e c 6

8 d

4 c

output

b

a a

b

c

Q: T:

Fig. 1. A query tree. Fig. 2. A tree matching a path.

a[b[c and .//f]]/b[c and e//d].

In Fig. 1, there are two kinds of edges: child edges (/-edges for short) for parent-child

relationships, and descendant edges (//-edges for short) for ancestor-descendant relation-
ships. A /-edge from node v to node u is denoted by v → u in the text, and represented by
a single arc; u is called a /-child of v. A //-edge is denoted by v ⇒ u in the text, and repre-
sented by a double arc; u is called a //-child of v.

In any DAG (directed acyclic graph), a node u is said to be a descendant of a node v
if there exists a path (sequence of edges) from v to u. In the case of a tree pattern, this path
could consist of any sequence of /-edges and/or //-edges. We also use label(v) to represent
the symbol (∈ ∑ ∪ {*}) or the string associated with v. Based on these concepts, the tree
embedding can be defined as follows.

Definition 1 An embedding of a tree pattern Q into an XML document T is a mapping f:
Q → T, from the nodes of Q to the nodes of T, which satisfies the following conditions:

(1) Preserve node label: For each u ∈ Q, label(u) = label(f(u)) (or say, u matches f(u)).
(2) Preserve parent-child/ancestor-descendant relationship: If u → v in Q, then f(v) is a

child of f(u) in T; if u ⇒ v in Q, then f(v) is a descendant of f(u) in T.

If there exists a mapping from Q into T, we say, Q can be embedded into T, or say, T
contains Q.

Almost all the existing strategies for evaluating twig join patterns are designed ac-
cording to this definition [4, 8-13, 21, 23-27, 32, 33, 42].

This definition allows a tree to match a path as illustrated in Fig. 2.
It is because by Definition 1 the left-to-right relationships among nodes are not taken

into account. We call such a problem an unordered tree pattern matching.
We may consider another problem, called an ordered tree pattern matching, defined

below, for which the left-to-right order is significant.
First, we define the sets of left and right relatives of a node v (denoted as Lr(v) and

Rr(v), respectively).

Definition 2 Let T be a document tree. Let V be the set of its nodes and v be a node in T.
The set of left relatives of v is defined by

Lr(v) = {u ∈ V | u and v are not related by ancestor/descendant or parent/child relationship,
and v follows u when T is traversed in preorder.}

See Fig. 3 for illustration.

ORDERED TREE PATTERN QUERY EVALUATION

3

v

 Rr(v)Lr(v)
Fig. 3. Illustration for left and right relatives.

s

np

det n v

vp

adv

‘The” ‘student” ‘reads”

np

det adj n

‘the” ‘interesting” ‘book”

‘intensively”

‘reads” ‘book”

s

vp

det n

adv

(a) (b)

Fig. 4. A target tree and a pattern tree.

In a similar way, we can define Rr(v).

Definition 3 An embedding of a tree pattern Q into an XML document T is a mapping f:
Q → T, from the nodes of Q to the nodes of T, which satisfies the following conditions:

(1) same as (1) in Definition 1.
(2) same as (2) in Definition 1.
(3) Preserve left-to-right order: For any two nodes v1 ∈ Q and v2 ∈ Q, if v1 is in Lr(v2),

then f(v1) is in Lr(f(v2)) in T.

v1 is said to be to the left of v2 if v1 is in Lr(v2). (Note that v1 and v2 can be siblings or
in different subtrees.)

This kind of tree mappings is useful in practice. For instance, an XML data model was
proposed by Catherine and Bird [5] for representing interlinear text for linguistic appli-
cations, used to demonstrate various linguistic principles in different languages. For the
purpose of linguistic analysis, it is essential to preserve the linear order between the words
in a text [5]. In addition to interlinear text, the syntactic structure of textual data should be
considered, which breaks a sentence into syntactic units such as noun clauses, verb phrases,
adjectives, and so on. These are used by the language TreeBank [27] to provide a hier-
archical representation of sentences. Therefore, by the evaluation of a tree pattern query
against the TreeBank, the order between siblings should be considered [27, 30]. As an
example, consider the parse tree of a natural language sentence, shown in Fig. 4 (a).

One might want to locate, say, those sentences that include a verb phrase containing
the verb “reads” and after it a noun “book” followed by any adverb. Such a query can also
be represented as a tree, as shown in Fig. 4 (b).

Therefore, the evaluation of such a query is in fact a tree matching problem, by which
both the ancestor/descendant relationship and the left-to-right ordering need to be taken
into account.

YANGJUN CHEN AND YIBIN CHEN

4

Another application of the ordered tree matching is the video content-based retrieval.
According to Rui et al. [46], a video can be successfully decomposed into a hierarchical
tree structure, in which each node represents a scene, a group, a shot, a frame, a feature,
and so on. Especially, such a tree is an ordered one since the temporal order is very im-
portant for video.

In addition, ordered tree matching can also be applied in the scene analysis, the com-
putational biology (such as RNA structure matching [45]), as well as in the data mining
(such as tree mining [47]).

In 2003, Wang et al. [37] proposed a first index-based method, called ViST, for han-
dling ordered tree pattern queries, by which the XML data are transformed into structure-
encoded sequences and stored in a disk-based virtual trie using B+-trees. One of the prob-
lems of this method is that the query processing strategy by straightforward sequence
matching may result in false alarms. Another problem, as pointed out in [30], the size of
indexes is higher than linear in the total number of elements in an XML document. Such
problems are removed by a method, called PRIX, discussed in [30]. This method constructs
two Prüfer sequences to represent an XML document: a numbered Prüfer sequence and a
labeled Prüfer sequence. For all the labeled Prüfer sequences, a virtual trie is constructed,
used as an index structure. In this way, the size of indexes is dramatically reduced to O(|T|).
But it suffers from very high CPU time overhead according to the following analysis.
The method consists of a string matching phase and several so-called refinement phases,
for which O(k|Q|log|Q|) time is needed (see page 328 in [30]), where k is the number of
subsequences of a labeled Prüfer document sequence, which match Q’s labeled Prüfer se-
quence. However, by the string matching defined in [30], a query pattern string can match
non-consecutive segments within a document target string (see Definition 4.1 in [30], page
306). So in the worst case k is in the order of O(|T||Q|) since for each position i (in the target)
matching the first element in the pattern string the second element of the pattern can match
possibly at |T| − i − 1 positions; and for each position j matching the second element in the
pattern, the third element in the pattern can possibly match at |T| − j − 1 positions, and so
on. As an example, consider the following Prüfer string:

a…ab…bc…cd…d,

in which each substring containing the same characters is of length n/4. Assume that the
Prüfer string for a query is abcd. Then, there are O(n4) matching positions. For each of
them, a tree embedding will be examined. (We note that if the string matching is restricted
to consecutive segments, there is at most one matching for each position, at which the first
element in the pattern matches. But it is not the case discussed in [30]. So, PRIX is an ex-
ponential time algorithm.)

In this paper, we propose a new method for processing ordered tree pattern queries.
As in [30], we store documents as sequences, but each sequence contains only those nodes
having the same label. In addition, in a sequence, all the nodes are represented by a kind of
tree encoding such that their positions can be recognized. (We refer to these sequences as
data streams.) Then, we design an algorithm for reconstructing subtree structures from the
data streams, and a new tree labeling technique for query trees to represent left-to-right
relationships, which enables us to efficiently check different relationships between the
nodes. The new algorithm runs in O(|D| ⋅ |Q| + |T| ⋅ leafQ) time and O(leafT ⋅ leafQ) space,

ORDERED TREE PATTERN QUERY EVALUATION

5

where leafT (leafQ) represents the number of the leaf nodes of T (resp. Q), and D is the
largest data stream among all the data streams associated with the nodes of Q.

The remainder of the paper is organized as follows. In section 2, we restate the tree
encoding [42], which can be used to facilitate the recognition of different relationships
among the nodes of trees. In section 3, we discuss our algorithm for evaluating ordered
tree pattern queries. In section 4, we show how the XB-tree mechanism [4] can be inte-
grated into it to speed up disk access. Section 5 is devoted to experiments. In section 6, we
review the related work. Finally, a short conclusion is set forth in section 7.

2. TREE ENCODING

In [42], a tree encoding method was discussed, which is in fact the well known con-
cept of time stamps produced during a depth-first search of a tree, and can be used to iden-
tify different relationships among the nodes of a tree.

Let T be a document tree. We associate each node v in T with a quadruple (DocId,
LeftPos, RightPos, LevelNum), denoted as α(v), where DocId is the document identifier;
LeftPos and RightPos are generated by counting word numbers from the beginning of the
document until the start and end of the element, respectively; and LevelNum is the nesting
depth of the element in the document. (See Fig. 5 for illustration.) By using such a data
structure, the structural relationships between the nodes in an XML database can be sim-
ply determined:

(1) ancestor-descendant: a node v1 associated with (d1, l1, r1, ln1) is an ancestor of another

node v2 with (d2, l2, r2, ln2) iff d1 = d2, l1 < l2, and r1 > r2.
(2) parent-child: a node v1 associated with (d1, l1, r1, ln1) is the parent of another node v2

with (d2, l2, r2, ln2) iff d1 = d2, l1 < l2, r1 > r2, and ln2 = ln1 + 1.
(3) left-to-right order: a node v1 associated with (d1, l1, r1, ln1) is to the left of another node

v2 with (d2, l2, r2, ln2) iff d1 = d2, r1 < l2.

(1, 2, 9, 2)

A v1

v2 B B v8

v3 C B v4

C v6 D v7 C v5

(1, 1, 11, 1)

(1, 5, 5, 4)
(1, 6, 6, 4)

(1, 4, 8, 3)

(1, 10, 10, 2)

(1, 3, 3, 3)

(1, 7, 7, 4)

T:

C q4

q2 B B q5

q3 C

A q1 Q:

The query nodes with the same tag will be associated
with the same data stream: B(q2) = B(q5) = {v2, v4, v8}

{v2, v4, v8}
{v1}

{v3, v5, v6}

Fig. 5. Illustration for tree encoding. Fig. 6. Illustration for B(qi)’s.

In Fig. 5, v2 is an ancestor of v6 and we have v2.LeftPos = 2 < v6.LeftPos = 6 and

v2.RightPos = 9 > v6.RightPos = 6. In the same way, we can verify all the other relation-
ships of the nodes in the tree. In addition, for each leaf node v, we set v.LeftPos = v.Right-
Pos for simplicity, which still work without downgrading the ability of this mechanism. In
the rest of the paper, if for two quadruples α1 = (d1, l1, r1, ln1) and α2 = (d2, l2, r2, ln2), we
have d1 = d2, l1 ≤ l2, and r1 ≥ r2, we say that α2 is subsumed by α1.

For convenience, a quadruple is considered to be subsumed by itself. If no confusion

YANGJUN CHEN AND YIBIN CHEN

6

is caused, we will used v and α(v) interchangeably. We also use T[v] to represent a subtree
rooted at v in T.

3. ORDERED TREE PATTERN MATCHING

In this section, we discuss our strategy for the ordered tree pattern matching. First, we
discuss an algorithm for subtree reconstruction according to a given set of data streams in
section 3.1. Then, in section 3.2, we extend this algorithm to evaluate ordered tree pattern
queries by using a new tree labeling technique for queries, which enables us to handle left-
to-right relationships in an efficient way. The index-based version of the algorithm will be
discussed in section 4.

3.1 Tree Reconstruction

As with TwigStack [4], each node q in a tree pattern (or say, a query tree) Q is associ-

ated with a data stream B(q), which contains the positional representations (quadruples)
of the database nodes v that match q (i.e., label(v) = label(q)). All the quadruples in a
data stream are sorted by their (DocID, LeftPos) values. For example, in Fig. 6, we show
a query tree containing 5 nodes and 4 edges and each node is associated with a list of
matching nodes of the document tree shown in Fig. 5, sorted according to their (DocID,
LeftPos) values. For simplicity, we use the node names in a list, instead of the node’s
quadruples.

Note that iterating through the stream nodes in the sorted order of their LeftPos val-
ues corresponds to access of the document nodes in preorder (top-down). However, vis-
iting the document nodes in preorder does not support an efficient check of tree matching
since to know whether a query subtree rooted at some node q matches a document subtree
rooted at a node v, we need first to know whether any subtree of q matches a subtree of v.
This character hints that it is better to visit the documents nodes in postorder (i.e., in the
sorted order of their RightPos values). For this reason, we maintain a global stack ST to
make a transformation of data streams using the following algorithm. In ST, each entry is
a pair (q, v) with q ∈ Q and v ∈ T (v is represented by its quadruple).

Algorithm stream-transformation(B(qi)’s)
Input: all data streams B(qi)’s, each sorted by LeftPos.
Output: new data streams L(qi)’s, each sorted by RightPos.
begin
1. repeat until each B(qi) becomes empty
2. { identify qi such that the first element v of B(qi) is of the minimal LeftPos value;

remove v from B(qi);
3. while ST is not empty and ST.top is not v’s ancestor do
4. { x ← ST.pop(); Let x = (qj, u);
5. put u at the end of L(qi); }
7. ST.push(qi, v);
8. }
end

ORDERED TREE PATTERN QUERY EVALUATION

7

In the above algorithm, ST is used to keep all the nodes on a path until we meet a
node v that is not a descendant of ST.top. Then, we pop up all those nodes that are not v’s
ancestor; put each of them at the end of a L(qi)’s (see lines 3 and 4); and push v into ST
(see line 7). Then, the elements in each L(qi) must be sorted by RightPos values. However,
we remark that the popped nodes are in postorder. So we can directly handle the nodes in
this order without explicitly generating L(qi)’s. But for ease of explanation, we assume that
all L(qi)’s are completely generated in the following discussion. We also note that the data
streams associated with different nodes in Q may be the same. (For example, in Fig. 6, we
have B(q2) = B(q5) = {v2, v4, v8}.) So we use q to represent the set of such query nodes and
denote by L(q) (B(q)) the data stream shared by them. Without loss of generality, assume
that the query nodes in q are sorted by their RightPos values.

We will also use L(Q) = {L(q1), …, L(ql)} (resp. B(Q) = {B(q1), …, B(ql)}) to repre-
sent all the data streams with respect to Q, where each qi (i = 1, …, l) is a set of sorted
query nodes that share a common data stream.

First, we discuss how to reconstruct a subtree structure from the data streams, based
on the concept of matching subtrees, defined below.

Let T be a tree and v be a node in T with parent node u. Denote by delete(T, v) the tree
obtained from T by removing node v. The children of v become ‘descendant’ children of u.
(See Fig. 7 for illustration.)

 v1 B

v2 C B v3

C v5 D v6 C v4

T: v1 B

v2 C C v4 C v5 D v6

delete(T, v3)

v1 A

v3 C C v5 C v6 D v7

T:

q1 A

C q2 B q3

Q:

Fig. 7. The effect of removing v3 from T. Fig. 8. Illustration for matching subtrees.

Definition 4 matching subtrees: A matching subtree T ′ of T with respect to a tree pattern
Q is a tree obtained by a series of deleting operations to remove any node in T, which does
not match any node in Q.

For example, the tree shown in Fig. 8 (a) is a matching subtree of the document tree
shown in Fig. 5 with respect to the query tree shown in Fig. 8 (b).

Given L(Q), what we want is to construct a matching subtree from them to facilitate
the checking of tree pattern matchings.

The algorithm given below handles the case when the streams contain nodes from a
single XML document. When the streams contain nodes from multiple documents, the
algorithm is easily extended to test equality of DocID before manipulating the nodes in the
streams.

We will execute an iterative process to access the nodes in L(Q) one by one:

1. Identify a data stream L(q) with the first element being of the minimal RightPos value.

Choose the first element v of L(q). Remove v from L(q).
2. Generate a node for v.
3. If v is not the first node, we do the following:

Let v′ be the node chosen just before v. If v’ is not a child (descendant) of v, create a

(a) (b)

YANGJUN CHEN AND YIBIN CHEN

8

link from v to v′, called a left-sibling link and denoted as left-sibling(v) = v′. If v′ is a
child (descendant) of v, we will first create a link from v′ to v, called a parent link and
denoted as parent(v′) = v. Then, we will go along the left-sibling chain starting from v′
until we meet a node v′′ which is not a child (descendant) of v. For each encountered
node u except v′′, set parent(u) ← v. Finally, set left-sibling(v) ← v′′ and remove the
links along the left- sibling chain.

v′

v

… v′′

v′′ is not a child of v

Link to the left sibling

v

… v′′

Fig. 9. Illustration for construction of matching subtrees.

Fig. 9 is a pictorial illustration of this process. In Fig. 9 (a), we show the navigation

along a left-sibling chain starting from v′ when we find that v′ is a child (descendant) of v.
This process stops whenever we meet v′′, a node that is not a child (descendant) of v. Fig.
9 (b) shows that the left-sibling link of v is set to v′′, which is previously pointed to by
the left-sibling link of v’s left-most child.

Below is the formal description of the algorithm, which needs only O(|D| ⋅ |Q|) time.
We elaborate this process since it can be extended to an efficient algorithm for evaluating
ordered tree pattern queries.

Algorithm matching-tree-construction(L(Q))
Input: all data streams L(Q).
Output: a matching subtree T ′.
begin
1. repeat until each L(q) in L(Q) becomes empty
2. { identify q such that the first element v of L(q) is of the minimal RightPos value;
3. remove v from L(q); call construction(v, q); }
end

Algorithm construction(v, q)
begin
1. generate node v;
2. if v is not the first node created then
3. { let v′ be the node generated just before v;
4. if v′ is not a child (descendant) of v then
5. { left-sibling(v) ← v′; } (* generate a left-sibling link. *)
6. else
7. { v′′ ← v′; w ← v′; (* v′′ and w are two temporary variables. *)
8. while v′′ is a child (descendant) of v do
9. { parent(v′′) ← v; (* generate a parent link. Also, indicate whether v′′ is a

/-child or a //-child. *)
10. w ← v′′; v′′ ← left-sibling(v′′);

(a) (b)

ORDERED TREE PATTERN QUERY EVALUATION

9

11. }
12. left-sibling(v) ← v′′;
13. }
14. }
end

In the above algorithm, for each chosen v from a L(q), a node is created. At the same
time, a left-sibling link of v is established, pointing to the node v′ that is generated before
v, if v′ is not a child (descendant) of v (see line 5 in construction()). Otherwise, we go into
a while-loop to travel along the left-sibling chain starting from v′ until we meet a node v′′
which is not a child (descendant) of v. During the process, a parent link is generated for
each node encountered except v′′ (see lines 7-11). Finally, the left-sibling link of v is set
to be v′′ (see line 12).

Data stream: L(q) = {v1}, L(q′) = {v4, v2, v8}, L(q′′) = {v3, v5, v6}

 v with the last RightPos Generated data structures:
Step 1: v3 v3 C

Step 2: v5
v5

C

v3 C

Step 3: v6

 v5

C
v3 C

v6

Step 4: v4

 v5

C

v3 C

v6

C

v4
B

Fig. 10. Sample trace.

B

v6

C

v5

C

A

v4

B

v5

C

v3 C

v6

C

v4
B

C

v5

C

v3

v6

C

v4

v2

C

v5

C

v3

v6

v2 v8B B

C
v3

v4 C

v2 v8 B

v1 L

Example 1: Consider the tree pattern shown in Fig. 5 once again. After the data stream
transformation, we will have three different data streams: L(q) = {v1}, L(q′) = {v4, v2, v8},
L(q′′) = {v3, v5, v6}, where q = {q1}, q′ = {q2, q5}, q′′ = {q3, q4}. Applying the above algo-
rithm to the data streams, we generate a series of data structures as shown in Fig. 10.

In step 1 (see Fig. 10), v3 is checked since it has the least RightPos; and a node for it
is created. In step 2, we meet v5. Since it is not a descendant of v3, we establish a left-sib-
ling link from v5 to v3. In step 3, we generate node v6 and a left-sibling link from v6 to v5. In

Fig. 11. Sample trace.

YANGJUN CHEN AND YIBIN CHEN

10

step 4, we generate part of the matching tree, in which two edges from v4 respectively to
v5 and v6 are created. Special attention should be paid to step 4. In this step, not only two
edges are constructed, but a left-sibling link from v4 to v3 is also created. It is this kind of
left-sibling links that enable us to reconstruct a matching subtree in an efficient way.

The subsequent computation is shown in Fig. 11.

Proposition 1 Let T be a document tree. Let Q be a tree pattern. Let L(Q) = {L(q1), …,
L(ql)} be all the data streams with respect to Q and T, where each qi (1 ≤ i ≤ l) is a subset
of sorted query nodes of Q, which share the same data stream. Algorithm matching-tree-
construction(L(Q)) generates the matching subtree T ′ of T with respect to Q correctly.

Proof: Denote L = |L(q1)| + … + |L(ql)|. We prove the proposition by induction on L.

Basis When L = 1, the proposition trivially holds.

Induction Hypothesis Assume that when L = k, the proposition holds.

Induction Step We consider the case when L = k + 1. Assume that all the quadruples in
L(Q) are {u1, …, uk, uk+1} with RightPos(u1) < RightPos(u2) < … < RightPos(uk) < Right-
Pos(uk+1). The algorithm will first generate a tree structure Tk for {u1, …, uk}. In terms of
the induction hypothesis, Tk is correctly created. It can be a tree or a forest. If it is a forest,
all the roots of the subtrees in Tk are connected through left-sibling links. When we meet
vk+1, two cases need to be considered:

Case 1: vk+1 is an ancestor of vk,
Case 2: vk+1 is to the right of vk.

In case 1, the algorithm will generate an edge (vk+1, vk), and then travels along a left-
sibling chain starting from vk until we meet a node v which is not a descendant of vk+1. For
each node v′ encountered, except v, an edge (vk+1, v′) will be generated. Therefore, Tk+1 is
correctly constructed. In case 2, the algorithm will generate a left-sibling link from vk+1 to
vk. It is obviously correct since in this case vk+1 cannot be an ancestor of any other node.
This completes the proof.

The time complexity of this process is easy to analyze. First, we notice that each
quadruple in all the data streams is accessed only once. Secondly, for each node in T ′, all
its child nodes will be visited along a left-sibling chain for a second time. So we get the
total time

O(|D| ⋅ |Q|) + i
i

d∑ = O(|D| ⋅ |Q|) + O(|T′|) = O(|D| ⋅ |Q|),

where di represents the outdegree of node vi in T ′.
During the process, for each encountered quadruple, a node v will be generated. As-

sociated with this node have we at most two links (a left-sibling link and a parent link). So
the used extra space is bounded by O(|T ′|).

ORDERED TREE PATTERN QUERY EVALUATION

11

3.2 Algorithm for Ordered Tree Matching

In fact, the algorithm discussed in section 3.1 hints an efficient way for processing
ordered tree pattern queries.

We first observe that during the reconstruction of a matching subtree T ′, we can also
associate each node v in T ′ with a query node stream Sv. That is, each time we choose a v
with the least RightPos value from a data stream L(q), we will insert all the query nodes in
q into Sv. For example, in the first step shown in Fig. 10, the query node stream for v3 can
be determined as shown in Fig. 12 (a).
In this way, we can create a matching subtree as shown in Fig. 12 (b), in which each
node in T′ is associated with a query node stream. If we check, before a q is inserted into
the corresponding Sv, whether Q[q] (the subtree rooted at q) can be embedded into T′[v],
we get in fact an algorithm for tree pattern matching. The challenge is how to conduct such
a checking efficiently.

 v3

C

{q3, q4}

(a)

 1

C q4

q2 B B q5

q3 C

A q1 Q:

3

5

2

4
(a)

{q2, q5}v2 B B v8

v3 C B v4

C v6 C v5

T:

{q2, q5}

{q3, q4}

{q3, q4} {q3, q4}

{q1}

{q2, q5}

A v1

(b)

<2, [4, 5], 2, 5, 2>

C q4

B q5

q3 C

q2 B

A q1 Q: <1, [2, 3], 1, 7, 1>

<3, φ, 6, 6, 2>

<5, φ, 4, 4, 3> <4, φ, 3, 3, 3>
(b)

Fig. 12. Illustration for generating QS’s. Fig. 13. Illustration for labeling Q.

For this purpose, we will first search Q in the breadth-first fashion, generating a

number (called a breadth-first number) for each node q in Q, denoted as bf(q), which
represents the left-to-right order of siblings in a simple way (see Fig. 13 (a) for illustration).
Then, we use interval(q) to represent an interval covering all the breadth-first numbers of
q’s children. For example, for Q shown in Fig. 13 (a), we have interval(q1) = [2, 3] and
interval(q2) = [4, 5]. In the following, we will use q and bf(q) interchangeably.

Next, we associate each q with a tuple g(q) = <bf(q), interval(q), LeftPos(q), Right-
Pos(q), LevelNum(q)>, as shown in Fig. 13 (b). We say, a q is subsumed by a pair (L, R) if
L ≤ LeftPos(q) and R ≥ RightPos(q). When checking the tree embedding of Q in T ′, we
will associate each generated node v in T ′ with a linked list Av to record what subtrees in
Q can be embedded in T ′[v]. Each entry in Av is a quadruple e = (q, interval, L, R), where
q is a node in Q, interval = [a, b] ⊆ interval(q) (for some a ≤ b), L = LeftPos(a) and R =
RightPos(b). Here, we use a and b to refer to the nodes with the breadth-first numbers a
and b, respectively. Therefore, such a quadruple represents a set of subtrees (in Q[q])
rooted respectively at a, a + 1, …, b (i.e., a set of subtrees respectively rooted at a set of
consecutive breadth-first numbers). See Fig. 14 for illustration.

YANGJUN CHEN AND YIBIN CHEN

12

......

q

a b
...

Fig. 14. Subtrees represented by bf-numbers.

In addition, the following two conditions are satisfied:

(1) For any two entries e1 and e2 in Av, e1.q is not subsumed by (e2.L, e2.R), nor is e2.q sub-

sumed by (e1.L, e1.R). In addition, if e1.q = e2.q, e1.interval ⊄ e2.interval and e2.interval
⊄ e1.interval.

(2) For any two entries e1 and e2 in Av with e1.interval = [a, b] and e2.interval = [a′, b′], if
e1 appears before e2, then RightPost(e1.q) < RightPost(e2.q) or RightPost(e1.q) = Right-
Post(e2.q) but a < a′.

Condition (1) is used to avoid redundancy due to the following lemma.

Lemma 1 Let q be a node in Q. Let [a, b] be an interval. If q is subsumed by (LeftPos(a),
RightPos(b)), then there exists an integer 0 ≤ i ≤ b − a such that bf(q) is equal to a + i or
q is an descendant of a + i.

Proof: The proof is trivial.

Then, by imposing condition (1), Av keeps only quadruples which represent pairwise
non-covered subtrees.

Condition (2) is met if the nodes in Q are checked along their increasing RightPos
values. It is because in such an order the parents of the checked nodes must be non-de-
creasingly sorted by their RightPos values. Since we explore Q bottom-up (note that each
q is sorted increasingly by RightPos values), condition (2) is always satisfied.

See Fig. 15 for a better understanding.

 Av5 : Av4 : Av4 :

e1 q2 [4, 4] 3 3 e1′ q2 [4, 5] 3 4 q1 [2, 2] 2 5

e2 q2 [5, 5] 4 4 e2′ q1 [2, 2] 2 5 q1 [3, 3] 6 6

 e3′ q1 [3, 3] 6 6
 (a) (b) (c)

Fig. 15. Illustration for linked lists associated with nodes in T.

Fig. 15 (a) shows the linked list created for v5 in T ′ shown in Fig. 12 (b) when it is

generated and checked against q3 and q4 in Q shown in Fig. 13 (b). Since both q3 and q4
are leaf nodes, T ′[v5] is able to embed either Q[q3] or Q[q4] and so we have two entries
e1 and e2 in Av5 Note that bf(q3) = 4 and bf(q3) = 5. So we set their intervals to [4, 4] and
[5, 5], respectively. In addition, each of them is a child of q2. Thus, we have e1.q = e2.q =
q2. In Fig. 15 (b), we show the linked list for v4. It contains three entries e1′, e2′ and e3′.
Special attention should be paid to e1′. Its interval is [4, 5], showing that T′[v4] is able to

ORDERED TREE PATTERN QUERY EVALUATION

13

embed both Q[q3] and Q[q4]. In this case, e1′.L is set to 3 and e1′.R to 4. However, since
e1′.q = q2 is subsumed by (e2′.L, e2′.R) = (2, 5), the entry will be removed, and the linked
list is reduced to a data structure shown in Fig. 15 (c).

With the linked lists associated with the nodes in T ′, the embedding of a subtree Q[q]
in T ′[v] can be checked very efficiently. First, we define a simple operation over two in-
tervals [a, b] and [a′, b′], which share the same parent:

[,], if 1, ;
[,] [,]

undefined, otherwise.
a b a a b b b

a b a b
′ ′ ′≤ ≤ + <⎧′ ′Δ = ⎨

⎩

For example, in Av5, we have an entry (q2, [4, 4], 3, 3). In Av6 (which is exactly the
same as Av5), we have an entry (q2, [5, 5], 4, 4). We can merge these two entries to form
another entry (q2, [4, 5], 3, 4), which can be used to facilitate checking whether T ′[v4] em-
beds Q[q2].

The general process to merge two linked list is described below.

1. Let A1 and A2 be two linked list associated with the first two child nodes of a node v in

T ′, which is being checked against q with label(v) = label(q).
2. Scan both A1 and A2 from the beginning to the end. Let e1 (from A1) and e2 (from A2) be

the entries encountered. We will perform the following checkings.
− If RightPos(e2.q) > RightPos(e1.q), e1 ← next(e1).
− If RightPos(e2.q) < RightPos(e1.q), then e2′ ← e2; insert e2′ into A1 just before e1; e2
← next(e2).

− If RightPos(e2.q) = RightPos(e1.q), then we will compare the intervals in e1 and e2. Let
e1.interval = [a, b]. Let e2.interval = [a′, b′].
If a′ > b + 1, then e1 ← next(e1).
If a ≤ a′ ≤ b + 1 and b < b′, then replace e1.interval with [a, b] Δ [a′, b′] in A1;
e1.RightPost ← RightPos(b′); e1 ← next(e1); e2 ← next(e2).
If [a′, b′] ⊆ [a, b], then e2 ← next(e2).
If a′ < a, then e2′ ← e2; insert e2′ into A1 just before e1; e2 ← next(e2).

3. If A1 is exhausted, all the remaining entries in A2 will be appended to the end of A1.

The result of this process is stored in A1, denoted as merge(A1, A2). We also define

merge(A1, …, Ak) = merge(merge(A1, …, Ak-1), Ak),

where A1, …, Ak are the linked lists associated with v’s child nodes: v1, …, vk, respectively.
If in merge(A1, …, Ak) there exists an e such that e.interval = interval(q), T ′[v] embeds
Q[q].

For the merging operation described above, we require that the entries in a linked list
are sorted. That is, all the entries e are in the order of increasing RightPos(e.q) values; and
for those entries with the same RightPos(e.q) value their intervals are ‘from-left-to-right’
ordered. Such an order is obtained by searching Q bottom-up (or say, in the order of in-
creasing RightPos values) when checking a node v in T′ against the nodes in Q. Thus, no
extra effort is needed to get a sorted linked list. Moreover, if the input linked lists are sort-
ed, the output linked lists must also be sorted.

YANGJUN CHEN AND YIBIN CHEN

14

In terms of the above discussion, we give our algorithm for evaluating ordered tree
pattern queries. As with the algorithm matching-tree-construction(), we will generate left-
sibling links to facilitate the computation. However, in the following description, we focus
on the checking of tree embedding and that part of technical details is omitted.

Algorithm tree-embedding(L(Q))
Input: all data streams L(Q).
Output: Sv’s, which show the tree embedding.
begin
1. repeat until each L(q) in L(Q) become empty
2. { identify q such that the first element v of L(q) is of the minimal
3. RightPos value; remove v from L(q); call embedding(v, q);
4. }
end

Algorithm embedding(v, q)
begin
1. generate node v; Av ← φ;
2. let v1, …, vk be the children of v.
3. A ← merge(Av1, …, Avk);
4. for each q ∈ q do { (* nodes in q are sorted. *)
5. if q is a leaf then {Sv ← Sv ∪ {q};}
6. else (* q is an internal node. *)
7. { if there exists e in A such that e.interval = interval(q)
8. then Sv ← Sv ∪ {q}; }
9. }

10. for each q ∈ Sv do {
11. append (q’s parent, [bf(q), bf(q)], q.LeftPos, q.RightPos) to the end of Av; }
12. Av ← merge(Av, A); Scan Av to remove subsumed entries;
13. remove all Avk’s;
14. }
15. }
end

In the above algorithm, the nodes in T ′ is created one by one as done in Algorithm
matching-tree-construction(). But for each node v generated for an element from a L(q),
we will first merge all the linked lists of their children and store the output in a temporary
variable A (see line 3 in Algorithm embedding()). Then, for each q ∈ q, we will check
whether there exists an entry e such that e.interval = interval(q) (see lines 7 and 8). If it is
the case, we will construct an entry for q and append it to the end of the linked list Av (see
lines 10 and 11). The final linked list for v is established by executing line 12. Afterwards,
all the Avk’s (for v’s children) will be removed since they will not be used any more (see
line 13).

In the same way, we will generate Av5 and Av6 as shown in Figs. 16 (b) and (c), re-
spectively. When we create v4 (taken from L(q′) = {v4, v2, v8} with q′ = {q2, q5}), we will
first merge Av5 and Av1 to generate a linked list as shown in Fig. 16 (d). Since the interval in

ORDERED TREE PATTERN QUERY EVALUATION

15

 Av3 : Av5 : Av6 :
e1 q2 [4, 4] 3 3 q2 [4, 4] 3 3 q2 [4, 4] 3 3

e2 q2 [5, 5] 4 4 q2 [5, 5] 4 4 q2 [5, 5] 4 4
 (a) (b) (c)

 Av4 : q2 [4, 4] 3 3

e1 q2 [4, 4] 3 3 q1 [2, 2] 2 5 q2 [5, 5] 4 4

e2 q2 [5, 5] 4 4 q1 [3, 3] 6 6 q1 [2, 2] 2 5

 q1 [3, 3] 6 6
 (d) (e) (f)

Fig. 16. Illustration for linked lists associated with nodes in T.

the first entry in it is equal to interval(q2), we know that T ′[v4] embeds Q[q2]. As described
above, the final linked list for v4 will be a list as shown in Fig. 16 (e). When we generate
v2 (taken from L(q′) = {v4, v2, v8}) we will first merge Av3 and Av4, and get a linked list as
shown in Fig. 17 (f). Since in this linked list we do not have an entry e with e.interval =
interval(q2), we will not construct an entry for q2. But in the linked list shown in Fig. 16 (f),
we already have an entry for q2 (remember that bf(q2) = 2), showing that there must exist a
subtree rooted at one of v2’s descendant, which embeds Q[q2]. In this way, any redundant
work can be avoided. Continuing this process, we will find out that T ′ embeds Q.

The above algorithm can be used only for the case that Q contains no /-edges. In the
presence of both //-edges and /-edges, it should be slightly modified as below.

Let q1, …, qk be the children of q; and among them qi1, …, qij be all the /-children. Let
vl be a child of v and e = <bf(q), [a, b], LeftPos(a), RightPos(b)> be an entry in Avl. If vl is
a /-child of v, e will not need be changed. Otherwise, we will find the first qic such that
bf(qic) = x ≥ a and the last qid such that bf(qid) = y ≤ b; and replace e in Avl with the follow-
ing entries before it takes part in the merging operation:

<bf(q), [a, bf(qic) − 1], LeftPos(a), RightPos(bf(qic) − 1)>,
<bf(q), [bf(qic) + 1, bf(qic+1) − 1], LeftPos(bf(qic) + 1), RightPos(bf(qic+1) − 1)>,
…
<bf(q), [bf(qid) + 1, b], LeftPos(bf(qid) + 1), RightPos(bf(b))>.

It is because in the case that vl is a //-child, we should remove the points bf(qic), …,

bf(qid) from [a, b], as if T ′[vl] is not able to cover Q[qic], …, Q[qid].
Concerning the correctness of the algorithm, we have the following proposition.

Proposition 2 Algorithm tree-embedding() computes the entries in Av’s correctly.

Proof: We prove the proposition by induction on the heights of nodes in T ′. We use h(v)
to represent the height of node v.

Basic Step It is clear that any node v with h(v) = 0 is a leaf node. Then, each entry in Av
corresponds to a leaf node q in Q with label(v) = label(q). Since all those leaf nodes in Q
are checked in the order of increasing RightPos values, the entries in Av must be sorted.

YANGJUN CHEN AND YIBIN CHEN

16

Induction Step Assume that for any node v with h(v) ≤ l, the proposition holds. We will
check any node v with h(v) = l + 1. Let v1, …, vk be the children of v. Then, for each vi (i =
1, …, k), we have h(vi) ≤ l. In terms of the induction hypothesis, each

ivA is correctly con-
structed and sorted. Then, the output of merge(Av1, …, Avk) is sorted. If there exists an e
such that e.interval = interval(q) for some q with label(v) = label(q), an entry for q will be
constructed and appended to the end of Av. Again, since the nodes in Q are checked in the
order of increasing RightPos values, Av must be sorted. So merge(Av, merge(Av1, …, Avk))
is correctly constructed and sorted.

Now we analyze the time complexity of the algorithm. First, we see that for each node
v in T ′, dv merging operations will be conducted, where dv is the outdegree of v. The cost
of a merging operation is bounded by O(leafQ) since the length of each linked list Av asso-
ciated with a node v in T ′ is bounded by O(leafQ) according to the following analysis. Con-
sider two nodes q1 and q2 on a path in Q, if both Q[q1] and Q[q2] can be embedded in T′[v],
Av keeps only one entry for them. If q1 is an ancestor of q2, then Av contains only the entry
for q1 since embedding of Q[q1] in T ′[v] implies the embedding of Q[q2] in T ′[v]. Oth-
erwise, Av keeps only the entry for q2. Obviously, Q can be divided into exactly leafQ
root- to-leaf paths. Furthermore, the merge of two linked lists A1 and A2 takes only
O(max{|A1|, |A2|}) time since both A1 and A2 are sorted lists according to the proof of
Proposition 2. (It works in a way similar to the sort-merge join.) Therefore, the cost for
generating all the linked lists is bounded by

() (| |).v Q Q
v T

O d leaf O T leaf
′∈

′⋅ = ⋅∑

In addition, for each node v taken from a L(q), each q in q will be checked (see line 4
in Algorithm embedding().) This part of checking can be slightly improved as follows. Let
L(q) = {q1, …, qk}. Each qj (j = 1, …, k) is associated with an interval [aj, bj]. Since qj’s are
sorted by RightPos values, we can check A (= merge(Av1, …, Avk)) against q in one scan-
ning to find, for each qj, whether there is an interval in A, which is equal to [aj, bj]. This
process needs only O(|A| + |q|) time. So the total cost of this task is bounded by O(|T ′| ⋅
leafQ) + O(|D| ⋅ |Q|).

In terms of the above analysis, we have the following proposition.

Proposition 3 The time complexity of Algorithm tree-embedding() is bounded by O(|T ′|
⋅ leafQ) + O(|D| ⋅ |Q|).

The space overhead of Algorithm tree-embedding() is in the order of O(leafT ′ ⋅ leafQ).
It is because at any time point during the execution, at most leafT ′ nodes in T ′ are associ-
ated with a linked list (see line 15 in Algorithm tree-embedding()).

In the above discussion, the main algorithm has been described in detail. However,
two issues yet remain to be addressed. That is, the treatment of the wildcards (*) as well as
the output node in Q should be made clear.

In fact, using XB-trees, * is handled in the same way as non-wildcard nodes. As we
will see in the next section, for each q in Q, no matter whether it is a wildcard or not, we
will be looking for only one element in the corresponding XB-tree each time. More impor-
tantly, using drilldown and advance operators [4], any entry in an XB-tree is accessed only

ORDERED TREE PATTERN QUERY EVALUATION

17

once.
As for the output node of Q, we should notice that the set Sv generated for each node

v in T ′ (such that for each q ∈ SvT ′[v] embeds Q[q]) does not serve as the answer to Q. But
in the algorithm we can maintain two additional data structures: Gr and Go. Gr contains all
those document nodes v such that Q[r] can be embedded in T′[v], where r is the root of Q;
and Go contains all the document nodes u such that Q[o] can be embedded in T′[u], where
o is the output node of Q. We can sort Gr and Go such that all nodes are increasingly sorted
by the RightPos values. Then, based on these two data streams, we can create another
subtree T ′′ of T ′ (in a way similar to the generation of a matching subtree), which contains
only those nodes v such that T′[v] embeds Q[r] with label(v) = label(r) or embeds Q[o]
with label(v) = label(o). We call a node v an r-node if T ′[v] contains Q[r] with label(v) =
label(r), or an o-node if T ′[v] embeds Q[o] with label(v) = label(o). Search T ′′. Any node
v, which is an o-node and also a child of some r-node, should be an answer if o is not a
/-child of r. Otherwise an o-node has to be a /-child of some r-node to be an answer.

4. INDEX-BASED ALGORITHM

In the algorithm discussed in the previous section, we need to access all the nodes in
a B(q) for each q ⊂ Q. To improve this, we incorporate the XB-tree [4] into our algorithm.
However, since XB-tree is initially established for checking the unordered tree matching,
some changes have to be made for the purpose of ordered tree matching.

First, we notice that the actual input of our algorithm is B(q)’s (in which the nodes are
sorted by LeftPos values, see section 3.1). Thus, we can construct an XP-tree for each B(q)
in the same way as TwigStackXB [4]. An XB-tree is a variant of B+-tree over a quadruple
sequence. In such an index structure, each entry in a page is a pair a = (LeftPos, RightPos)
(referred to as a bounding segment) such that any entry appearing in the subtree pointed to
by the pointer associated with a is subsumed by a. In addition, all the entries in a page are
sorted by their LeftPos values. As an example, consider a sorted quadruple sequence shown
in Fig. 17 (a), for which we may generate an XB-tree as illustrated in Fig. 17 (b).

(1, 1, 9, 1)
(1, 2, 7, 2)
(1, 3, 3, 3)
(1, 4, 6, 3)
(1, 5, 5, 4)
(1, 8, 8, 2)

(a)

 1, 9 3, 6 5, 8

1, 9 2, 7 3, 3 5, 54, 6

P1

P2 P3 P4

p.parent

8, 8
(b)

Fig. 17. A quadruple sequence and XB-tree over it.

In each page P of an XB-tree, the bounding segments may partially overlap, but their

LeftPos positions are in increasing order. Let a1 and a2 be two consecutive entries. Then
the leftPos value of any entry in the subtree rooted at a1 is smaller than the leftPos value
of a2. For instance, in the XB-tree shown in Fig. 17 (b), the first entry of P1: [1, 9] overlaps
the second entry: [3, 6]. But the leftPos value of any entry in the subtree rooted at [1, 9] is
smaller than 3. Besides, it has two extra data fields: P.parent and P.parentIndex. P.parent

p.parent Index

YANGJUN CHEN AND YIBIN CHEN

18

is a pointer to the parent of P, and P.parentIndex is a number i to indicate that the ith pointer
in P.parent points to P. For instance, in the XB-tree shown in Fig. 17 (b), P3.parentIndex
= 2 since the second pointer in P1 (the parent of P3) points to P3.

Consider an XB-tree constructed for B(q) with q = {q1, …, qk}. For each qj ∈ q (j =
1, …, k), we maintain a pair (P, i), denoted βqj, to indicate that the ith entry in the page P
is currently accessed for qj. Thus, each βqj (j = 1, …, k) corresponds to a different search-
ing of the same XB-tree as if we have a separate copy of that XB-tree over B(qj).

In [4], two operations are defined to navigate an XB-tree, which change the value of
βq.

1. advance(βq) (going up from a page to its parent): If βq = (P, i) does not point to the last
entry of P, i ← i + 1. Otherwise, βq ← (P.parent, P.parentIndex + 1).

2. drilldown(βq) (going down from a page to one of its children): If βq = (P, i) and P is not
a leaf page, βq ← (P′, 1), where P′ is the ith child page of P.

Initially, for each q, βq points to (rootPage, 0), the first entry in the root page. We
finish a traversal of the XB-tree for q when βq = (rootPage, last), where last points to the
last entry in the root page, and we advance it (in this case, we set βq to φ, showing that the
XB-tree over B(q) is exhausted.) As with TwigStackXB, in each step we will determine a q
∈ Q and take an entry from the corresponding XB-tree. But an entry taken from an XB-
tree can be an entry in a non-leaf node, which does not correspond to an element in docu-
ments. So we use the following function to check it:

isPlainValue(βq): returns true if βq is pointing to a leaf node in the corresponding XB-tree.

If βq points to an entry in a non-leaf node, we need to navigate the XB-tree. (The
pruning happens when we advance βq. In this case, the subtree pointed to by the current
entry is skipped over. See below). Otherwise, it points to an entry in a leaf node. The entry
(representing a document node) is then pushed into ST as done in Algorithm stream- trans-
formation(). Besides, each q ∈ Q is associated with an extra linked list, denoted linkq, such
that each entry in it contains a pointer to a node v stored in ST with label(v) = label(q). We
append entries to the end of a linkq one by one as the document nodes are inserted into ST,
as illustrated in Fig. 18 (a). When a node is popped out from ST, the corresponding entry is
removed from the corresponding linkq.

..
.

linkq: … …

βq

βp(q)

q

parent(q)

T: Q:

(a) (b)

Fig. 18. Illustration for advance(βq).

In the index-based version of our main algorithm, each time to determine a q to check,

we call a function getNext(), which returns a query node. In addition, the following three
functions are also used:

ORDERED TREE PATTERN QUERY EVALUATION

19

end(Q): if for each leaf node q of Q βq = φ (i.e., L(q) is exhausted), then returns true; oth-
erwise, false.

currL(βq): returns the LeftPos of the entry pointed to by βq.
currR(βq): returns the RightPos of the entry pointed to by βq.
isRoot(q): if q is the root, return true; otherwise, false.
isLeaf(q): returns true if q is a leaf of Q; otherwise, false.
p(q): returns the parent of q.
l(q): returns δ (q) − 1, where δ(q) is the postorder number of the left-most leaf node in Q[q].

Note that δ(q) − 1 is the largest postorder number to the left of q.

Algorithm XB-tree-matching(XB-trees over B(qi)’s)
Input: XB-trees(qi)’s.
Output: Sv’s, which show the tree embedding.
begin
1. while (¬end(Q)) do
2. { q ← getNext(root-of-Q);
3. if (isPlainValue(βq) then
4. { let v be the node pointed to by βq;
5. while ST is not empty and ST.top is not v’s ancestor do
6. { x ← ST.pop(); Let x = (q′, u);
7. call embedding(u, q′); }
8. ST.push(q, v); advance(βq);
9. }

10. else if (¬isRoot(q) ∧ linkp(q) = φ ∧ currR(βq) < currL(βp(q)))
11. ∨ l(q) ≠ 0 ∧ currL(βq) ≤ currR(βl(q)))
12. then advance(βq) (* not part of a solution *)
13. else drilldown(βq); (* may find a solution *)
14. }
end

In the above algorithm, we distinguish between two cases. If βq is an entry in a leaf
node in the corresponding XB-tree, we will insert it into ST (see lines 3 and 8). Each time
an element is popped out of ST, Algorithm embedding() will be invoked to check a sub-
tree embedding (see lines 6 and 7).

If βq is an entry in a non-leaf node, lines 10-13 will be carried out. If currR(βq) <
currL(βp(q)) (see line 10), we have a situation as illustrated in Fig. 18 (b): for the current
node v pointed to by βq (which matches q, we cannot find an ancestor of v, which matches
q’s parent. In this case, we need to advance βq (see line 12.) If currL(βq) ≤ currR(βl(q)) (see
line 11), the left-to-right ordering is violated and we also need to advance βq. In this way,
a lot of useless access of document nodes can be saved. If it is not the case, we will drill
down the corresponding XB-tree (see line 12) since a solution may be found.

In the following, we discuss getNext() in great detail to see how a q ∈ Q is deter-
mined in each step to take an entry from an XB-tree.

According to [4], each time we determine a q (∈ Q), for which an entry from B(q) is
taken, the following three conditions are checked:

YANGJUN CHEN AND YIBIN CHEN

20

(1) For q, there exists an entry vq in B(q) such that it has a descendant vqi in each of the
streams B(qi) (where qi is a child of q).

(2) Each vqi recursively satisfies (1).
(3) LeftPos(vq) is minimum.

However, since by the ordered tree matching the order of siblings is significant, we
can impose a fourth condition to skip more entries in an XB-tree. For this purpose, for
each q ∈ Q, we establish left-sibling(q) in the same way as described in section 3.1. Then,
we have

(4) If l(q) ≠ φ, vq in B(q) is to the right of the entry pointed to by βl(q).

According to the above conditions, we design our own getNext(), which is a modifi-
cation of the corresponding algorithm discussed in [4]. It is in essence a bottom-up search
of Q, but by a recursive process starting from the root of Q. That is, a q is accessed after
all its children have been visited by recursive calls. The algorithm getNext(q) works as
follows:

(1) Once a q, for which βq is pointing to an entry in a non-leaf node in the corresponding
XB-tree, is encountered, it is immediately returned to XB-tree-matching() (see line 4
in getNext()), by which advance(βq) or drilldown(βq) will be performed (see line 10 in
XB-tree-matching()).

(2) If for a q we cannot find, by performing advance(βq), a v such that for all its children
qiβqi is pointing to an entry which is a descendant of v, and condition (4) is satisfied,
then qmin is returned, where qmin represents the return value of a recursive call getNext(a
child of q) such that βqmin points to an entry with the least LeftPos value. Otherwise, q
returns as the output of getNext(q).

Function getNext(q) (* Initially, q is the root of Q. *)
begin
1. if (isLeaf(q)) then return q;
2. for each child qi of q do
3. { ri ← getNext(qi);
4. if (ri ≠ qi ∨ ¬isPlainValue(βrj)) then return ri;}
5. qmin ← q′′ such that currL(βq′′) = mini{currL(βrj)};
6. qmax ← q′′′ such that currL((βq′′′) = maxi{currL(βrj)};
7. while (currR(βq) < currL(βqmin) ∨ (l(q) ≠ 0 ∧ currL(βq) ≤ currR(βl(q))) do advance(βq);
8. if currL(βq) < currL(βrmax) then return q;
9. else return qmin; }
end

The goal of the above function is to figure out a query node to determine what entry
from data streams will be checked in a next step, which has to satisfy the above conditions
(1)-(4). It is a recursive process to search Q bottom up (see line 3). If for one of q’s chil-
dren qiβqi is pointing to an entry in a non-leaf node in the corresponding XB-tree, it is re-
turned (see line 4). Especially, it goes back through all the recursive calls and returns as
the output of the whole process. It occurs due to the condition ‘ri ≠ qi’ in line 4. Lines 5-9

ORDERED TREE PATTERN QUERY EVALUATION

21

βq

qmin

q

T: Q:

l(q)

βl(q)

βqmin

β qmin
If currR(βq) < currL() ∧ currL(βq) ≤ currR(βl(q)),
we have to advance βq.

Fig. 19. Illustration for advance(βq).

are used to check whether conditions (1) and (4) are satisfied. (See Fig. 19 for illustration
of line 7.) In addition, the recursive call performed in line 3 shows that condition (2) is
met. Since each XB-tree is traversed top-down and the entries in each node are scanned
from left to right, condition (3) must always be satisfied.

The main difference of the modified getNext(q) from the corresponding algorithm
discussed in [4] is in the checking condition: l(q) ≠ 0 ∧ currL(βq) ≤ currR(βl(q)) in line 7,
which enable us to skip over some subtrees in an XB-tree by checking the left-to-right or-
dering.

5. EXPERIMENTS

In this section, we report the test results. We conducted our experiments on a DELL
desktop PC equipped with Pentium(R) 4 CPU 2.80GHz, 0.99GB RAM and 20GB hard
disk. The code was compiled using Microsoft Visual C++ compiler version 6.0, running
standalone.

Tested Methods

In the experiments, we have tested four methods:

− TwigStack (TS for short) [4],
− Twig2Stack (T2S for short) [12],
− PRIX [30],
− XB-tree-embedding (discussed in this paper, TE for short).

The theoretical computational complexities of these methods are summarized in Ta-

ble 1.
The index for PRIX is a trie structure over all the labeled Prüfer sequences, imple-

mented as a B+-tree [30]. The indexes for all the other three methods are XB-trees [4].

Table 1. Time and space complexities.
methods query time runtime space usage

TwigStack O(|D||Q|) O(|D| ⋅ |Q|)
Twig2Stack O(|D| ⋅ |Q|2 + |subTwigResults|) O(|D| ⋅ |Q|)

PRIX O(|D||Q|) O(|D| + |Q|)
TE O(|D| ⋅ |Q| + |T′| ⋅ leafQ) O(leafT′ ⋅ |Q|)

YANGJUN CHEN AND YIBIN CHEN

22

Table 2. Data sets for experimental evaluation.
XMark TreeBank DBLP

1 2 3 4 5
Data size (MB) 82 127 113 228 340 454 568
Nodes (million) 2.43 3.33 1.72 3.33 5.1 6.7 8.33

Max/average depth 36/7.9 6/2.9 12/6.2

Data

The data sets used for the tests are TreeBank data set [36], DBLP data set [36] and a
synthetic XMARK data set [41]. The TreeBank data set is a real data set with a narrow
and deeply recursive structure that includes multiple recursive elements. The DBLP data
set is another real data set with high similarity in structure. It is in fact a wide and shallow
document. The XMark (with scaling factors of 1 to 5) is a well-known benchmark data set,
which is used for scalability analysis. The important parameters of these data sets are
summarized in Table 2.

For all the experiments, the buffer pool size was fixed at 2000 pages. The page size of
8KB was used. For each data set, all the tag names are stored in a single list and then each
tag name is represented by its order number in that list during the evaluation of queries. In
our implementation, each DocId occupies 4 bytes while a number in a Prüfer sequence, a
LeftPos or a RightPos occupies 2 bytes. A levelNum value takes only 1 byte. In addition,
in DBLP, each proceedings, journal volume and a book is considered to be a individual
document, and therefore assigned a DocID.

Test results

In the experiments, we tested altogether 21 queries shown in Tables 3-5.

Table 3. queries for TreeBank data set.
query XPath expression

Q1 //VP[DT]//PRP_DOLLAR
Q2 //S/VP/PP[IN]/NP
Q3 //S/VP//PP[NP/VB]/IN
Q4 //VP[.//PP/IN]//NP/*//JJ
Q5 //S[CC][.//PP]//NP[VBZ][IN]//JJ
Q6 //S[*/PRP]/VP[VBD]
Q7 //S[.//NNP]/VP[.//NP[.//NNP]]

Table 4. Queries for DBLP.
query XPath expression

Q8 //article/authot=“C.J. Codd”
Q9 //inproceedings[author=“Jim Gray”][year=“1990”]

Q10 //inproceedings[key][author=“Jim Gray”][year=“1990”]
Q11 //inproceeding[author][title][.//pages][.//url]
Q12 //articles[author][title][.//volume][.//pages][.//url]/*
Q13 //section[.//page]//year
Q14 //incollection[.//url]//booktitle

ORDERED TREE PATTERN QUERY EVALUATION

23

Table 5. Queries for XMark.
query XPath expression
Q15 /site//open_auction[.//seller/person]/
Q16 /site//open_auction[.//seller/person][.//bidder]/
Q17 /site//open_auction[.//seller/person][.//bidder/increase]/
Q18 /site//open_auction[.//seller/person][.//bidder[increase][.//initial]]/
Q19 /site//open_auction[.//seller/person][.//bidder/increase][.//initial]/*/description/
Q20 //item[description]//mail
Q21 //people//*[homepage]/name

To avoid the frequent use of the axes like following-sibling in the tables, we assume

that the order between the siblings in a tree query follows the left-to-right order in the cor-
responding XPath expression. For example, //inproceedings[key][author] indicates that key
is followed by author.

In Fig. 20 (a), we show the disk I/O of all the methods for TreeBank, which shows
that the I/O cost of PRIX is obviously better than the XB-tree used by the other three
methods. But our method is slightly better than TwigStack and Twig2Stack. It is because by
our method, not only the ancestor-descendant relationship, but the left-to-right order is
also used to skip over entries in XB-trees.

However, due to the high CPU cost of PRIX, our method still outperforms PRIX in
total query process time, as demonstrated in Fig. 20 (b). The reason for this is the multiple
appearance of the same tag names, leading to a huge number of checkings of tree embed-
ding as analyzed in the introduction. In Fig. 21, we show the time for I/O, which demon-
strates that the I/O occupies only a very small fraction of the whole process time.

0

100

200

300

400

Q1 Q2 Q3 Q4 Q5 Q6 Q7

PRIX T2S TE TS

Pa
ge

 n
um

be
rs

Ex
ec

ut
io

n
tim

e
(s

ec
.)

0

6

12

18

24

30

Q1 Q2 Q3 Q4 Q5 Q6 Q7

PRIX T2S TE TS

(a) (b)

Fig. 20. I/O page access and execution time for TreeBank.

I/O
 ti

m
e

(s
ec

.)

0

4

8

12

Q1 Q2 Q3 Q4 Q5 Q6 Q7

PRIX T2S TE TS

Fig. 21. I/O time for TreeBank.

YANGJUN CHEN AND YIBIN CHEN

24

Pa
ge

 n
um

be
rs

0

300

600

900

1200

Q8 Q9 Q10 Q11 Q12 Q13 Q14

PRIX T2S TE TS

Pa
ge

 n
um

be
rs

0

100

200

300

400

500

Q15 Q16 Q17 Q18 Q19 Q20 Q21

PRIX T2S TE TS

(a) (b)
Fig. 22. I/O page access for DBLP and XMark.

In Fig. 22 (a), we show the I/O costs for the DBLP.
From this we can see that for Q8 our method has less disk access than PRIX since

most solutions were clustered in small region of the input stream, allowing ours to quickly
find the relevant pages. But for Q9, ours and PRIX have comparable I/O costs. For Q10,
ours works better. It is because the element key occurred in every document in the DBLP
dataset and not much filtering can be achieved by PRIX. But ours can still skip a lot of
leaf nodes by using the ancestor-descendant as well as left-to-right relationships. Q11 and
Q12 are two quite low selectivity queries. Again, ours and PRIX have comparable I/O costs
for them. Q13 and Q14 are also two quite low selectivity queries. But the tree matchings
occur in different palces in document trees from Q11 and Q12, and no significant difference
between ours and PRIX can be observed. For this group of queries, both TwigStack and
Twig2Stack are generally worse than ours and PRIX. However, the difference is small. In
fact, both the trie structure used by PRIX and the XB-tree used by the other three methods
use the same information to filter data: label equality and the tree structural information.
They have the same filtering power.

In Fig. 22 (b), we show the I/O costs for the XMark (with the scaling factor = 1), for
which PRIX and the XB-tree are comparable.

In Figs. 23 (a) and (b), we show the whole execution times for processing queries
against DBLP and XMark, respectively. From these, we can see that PRIX is much worse
than all the other three methods. In fact, for both the DBLP and the XMark, PRIX exhibits
an exponential time behavior. Although in the DBLP each path in a document tree is short
and possesses no recursive structure, each Prüfer sequence (representing a document tree)
has always multiple appearance of the same tag names. Each may lead to a checking of

0

10

20

30

40

50

Q8 Q9 Q10 Q11 Q12 Q13 Q14

PRIX T2S TE TS

0

1

2

3

4

5

Q15 Q16 Q17 Q18 Q19 Q20 Q21

PRIX T2S TE TS

(a) (b)

Fig. 23. Execution time for DBLP and XMark.

ORDERED TREE PATTERN QUERY EVALUATION

25

tree embedding. But most of them are not successful. The same analysis applies to the
XMark.

In Figs. 24 (a)-(d), we show the scalability experimental results for XMark with dif-
ferent document sizes. We vary the XMark scale factor from 2 to 5. As can be seen, PRIX
and TwigStack grow much faster than ours and Twig2Stack in terms of the document size.
Our method again has the best execution time.

Finally, to observe the impact of XB-trees, we have run our algorithm without in-
dexes for DBLP and recorded the number of page access, shown in Table 6.

25

20

15

10

5

Q15 Q16 Q17 Q18 Q19

Execute time (sec.)

PRIX
T2S
TE
TS

50

40

30

20

10

Q15 Q16 Q17 Q18 Q19

Execute time (sec.)

PRIX
T2S
TE
TS

(a) (b)

75

65

50

35

20

Q15 Q16 Q17 Q18 Q19

Execute time (sec.)

PRIX
T2S
TE
TS

100

80

60

40

20

Q15 Q16 Q17 Q18 Q19

Execute time (sec.)

PRIX
T2S
TE
TS

(c) (d)

Fig. 24. Test results for XMark with different scaling factors.

Table 6. Disk I/O – DBLP.
Query TE without XB TE

Q8 1715 pages 93 pages
Q9 3036 pages 310 pages

Q10 4804 pages 401 pages
Q11 5563 pages 804 pages
Q12 6409 pages 976 pages
Q13 5230 pages 782 pages
Q14 5140 pages 745 pages

From this, we can see that using the XB-tree the I/O costs are effectively reduced. The

tree-embedding algorithm examines every element in the sorted input streams while XB-
tree-embedding uses XB-trees to skip elements in the sorted data streams. Especially, for

YANGJUN CHEN AND YIBIN CHEN

26

the ordered tree embedding, we are able to save a lot of leaf node checking by using ances-
tor-descendant as well as left-to-right relationships during an XB-tree search.

6. RELATED WORK

Besides the strategies for processing the ordered tree pattern queries (which are re-
viewed in the introduction), there is much research on the unordered tree pattern matching.
Nearly all the proposed strategies can roughly be divided into two categories. One is in-
dex-based and the other is for the so-called XML streaming environment. For example, the
methods discussed in [2, 17, 23-26, 32, 42] are typically index-based, by which a docu-
ment is decomposed into a set of binary relationships between pairs of nodes, such as par-
ent-child and ancestor-descendant relations, or into a set of paths. The sizes of interme-
diate relations tend to be very large, even when the input and final result sizes are much
more manageable. As an important improvement, TwigStack was proposed by Bruno et al.
[4], which compresses the intermediate results by the stack encoding, which represents in
linear space a potentially exponential number of answers.

However, TwigStack achieves optimality only for the queries that contain only
//-edges. In the case that a query contains both /-edges and //-edges, some useless path
matchings have to be performed. In the worst case, TwigStack needs O(|D||Q|) time for
doing the merge joins as shown by Chen et al. (see page 287 in [12]). This method is fur-
ther improved by several researchers. In [8], iTwigJoin was discussed, which exploits dif-
ferent data partition strategies. In [24], TJFast accesses only leaf nodes by using extended
Dewey IDs. By both methods, however, the path joins cannot be avoided. The method
Twig2Stack proposed by Chen et al. [12] works in a quite different way. It represents tree
results using the so-called hierarchical stack encoding to avoid any possible useless path
matchings. In [12], it is claimed that Twig2Stack needs only O(|D| ⋅ |Q| + |subTwigResults|)
time for generating paths. But a careful analysis shows that the time complexity for this
task is actually bounded by O(|D| ⋅ |Q|2 + |subTwigResults|). It is because each time a node
is inserted into a stack associated with a node in Q, not only the position of this node in a
tree within that stack has to be determined, but a link from this node to a node in some
other stack has to be constructed, which requires to search all the other stacks in the worst
case. The number of these stacks is |Q| (see Fig. 4 in [12] to know the working process).
The following example helps for explanation.

In Fig. 25 (b), we show the hierarchical stacks associated with the two nodes A and B
of Q with respect to T shown in Fig. 25 (a). In [12], the nodes in a data stream associated
with each node of Q are sorted by their (DocID, RightPos) values. So a1 is visited last.
When it is inserted into HS[A] (hierarchical stack of A), all those stacks in HS[A], which

 T: a1

b1 b2

a2 a3 a4 a5

Q:
A

B

 a1

a2 a3 a4 a5

b1 b2

HS[A]

HS[B]

(a) (b)
Fig. 25. Illustration for hierarchical stacks.

ORDERED TREE PATTERN QUERY EVALUATION

27

are not a descendant of some other stack, will be checked to establish ancestor-descendant
links. In addition, to generate links to some stacks in HS[B], similar checks will also be
performed. This needs O(|Q|) time in the worst case, yielding a O(|D| ⋅ |Q|2) time complex-
ity. The method discussed in [28] improves the stack structure used in Twig2Stack to avoid
storing individual path matches and remove subTwigResults time. But its theoretical time
complexity is still O(|D| ⋅ |Q|2). The method discussed in [20] also needs O(|D| ⋅ |Q|2) time
although some checkings can be saved by using ancestor/descendant relationships (see
Property 1 on page 854). The above problem of Twig2Stack is not removed.

A large amount of work has also been done on unordered tree pattern matching in an
XML streaming environment, such as the methods discussed in [11, 16, 29, 44]. The time
complexity of the method proposed in [11] is bounded by O(ThQd|Q||T| + |Q|2|T|), where Th
is the height of T and Qd is the largest outdegree of a node in Q. Both the methods dis-
cussed in [16, 29] require only O(|Q||T|) time. However, by the method discussed in [29],
extra value joins are needed. The algorithm described in [44] checks whether a document T
embeds a query Q, returning a boolean value. Its time and space complexities are bounded
by O(|Q| ⋅ log|Q| ⋅ r ⋅ logTh) and O(|T| ⋅ |Q| ⋅ log|Q| ⋅ r), respectively, where r is the recur-
sion depth of T, which is defined to be the length of a longest path in T, whose start node
and the end node are of the same label. For all these strategies, the order between siblings
is not considered.

Finally, we point out that the bottom-up tree matching was first proposed in [19]. But
it concerns a very strict tree matching, by which the matching of an edge to a path is not
allowed. In [18], Gottlob et al. identified an XPath fragment called Core XPath, which can
be evaluated in O(|T| ⋅ |Q|) time. Core XPath is slightly more expressive than the tree pat-
tern queries in that it includes axes other than /-edges and //-edges. However, algorithms
in [18] cannot be modified to use index structures since they require scanning XML docu-
ments in multiple passes. In [26], an algorithm for tree homomorphism is discussed. As
with the algorithm proposed in [44], it examines whether a tree contains another and re-
turns a boolean answer. But our algorithms show all the subtrees that are able to embed a
given tree pattern. The node selecting Queries considered in [22] are in fact a kind of ex-
tended containment queries (whether a tree contains a certain node [42]) and cannot be
used for the general purpose of twig joins. In [43], a special kind of tree matching, called
tree homeomorphism, is discussed, which looks for a mapping that maps each edge in Q to
a path in T.

7. CONCLUSION

In this paper, a new algorithms tree-embedding for processing ordered tree pattern
queries is discussed. For the ordered tree pattern queries, not only the parent-child and
ancestor-descendant relationships but also the order of siblings are taken into account.
The time complexities of the algorithm is bounded by O(|D| ⋅ |Q| + |T| ⋅ leafQ) and its space
overhead is by O(leafT ⋅ leafQ), where T stands for a document tree, Q for a tree pattern
and D is a largest data stream associated with a node q of Q, which contains the database
nodes that match the node predicate at q. leafT (leafQ) represents the number of the leaf
nodes of T (resp. Q). The algorithm can also be implemented with the XB-tree index be-
ing used. Our experiments demonstrate that our method is both effective and efficient for
the evaluation of ordered tree pattern queries.

YANGJUN CHEN AND YIBIN CHEN

28

REFERENCES

1. S. Abiteboul, P. Buneman, and D. Suciu, Data on the Web: From Relations to Semis-
tructured Data and XML, Morgan Kaufmann Publisher, Los Altos, USA, 1999.

2. S. A. Aghili, H. G. Li, D. Agrawal, and A. E. Abbadi, “TWIX: Twig structure and
content matching of selective queries using binary labeling,” in Proceedings of the 1st
International Conference on Scalable Information Systems, 2006, pp. _____.

3. S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y. Wu,
“Structural joins: A primitive for efficient XML query pattern matching,” in Proceed-
ings of IEEE International Conference on Data Engineering, 2002, pp. _____.

4. N. Bruno, N. Koudas, and D. Srivastava, “Holistic twig joins: Optimal XML pattern
matching,” in Proceedings of SIGMOD International Conference on Management of
Data, 2002, pp. 310-321.

5. B. Catherine and S. Bird, “Towards a general model of Interlinear text,” in Proceed-
ings of Electronic Metastructure for Endangered Language Data Workshop, 2003, pp.
__________.

6. D. D. Chamberlin, J. Clark, D. Florescu, and M. Stefanescu, “XQuery1.0: An XML
query language,” http:// www.w3.org/TR/query-datamodel/.

7. D. Chamberlin, J. Robie, and D. Florescu, “Quilt: An XML query language for het-
erogeneous data sources,” in Proceedings of the 3rd International Workshop on the
Web and Databases, 2000, pp. __________.

8. T. Chen, J. Lu, and T. W. Ling, “On boosting holism in XML twig pattern matching,”
in Proceedings of SIGMOD, 2005, pp. 455-466.

9. B. Choi, M. Mahoui, and D. Wood, “On the optimality of holistic algorithms for twig
queries,” in Proceedings of International Conference Database and Expert Systems
Applications, 2003, pp. 235-244.

10. C. Chung, J. Min, and K. Shim, “APEX: An adaptive path index for XML data,”
ACM SIGMOD, 2002, pp. _________.

11. Y. Chen, S. B. Davison, and Y. Zheng, “An efficient XPath query processor for XML
streams,” in Proceedings of International Conference on Data Engineering Work-
shops, 2006, pp. __________.

12. S. Chen, H. G. Li, J. Tatemura, W. P. Hsiung, D. Agrawa, and K. S. Canda, “Twig2Stack:
Bottom-up processing of generalized-tree-pattern queries over XML documents,” in
Proceedings of International Conference on Very Large Data Bases, 2006, pp. 283-
294.

13. B. F. Cooper, N. Sample, M. Franklin, A. B. Hialtason, and M. Shadmon, “A fast in-
dex for semistructured data,” in Proceedings of International Conference on Very
Large Data Bases, 2001, pp. 341-350.

14. A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu, “A query language
for XML,” in Proceedings of the 8th World Wide Web Conference, 1999, pp. 77-91.

15. D. Florescu and D. Kossman, “Storing and querying XML data using an RDMBS,”
IEEE Data Engineering Bulletin, Vol. 22, 1999, pp. 27-34.

16. G. Gou and R. Chirkova, “Efficient algorithms for evaluating XPath over streams,” in
Proceedings of SIGMOD, 2007, pp. __________.

17. R. Goldman and J. Widom, “DataGuide: Enable query formulation and optimization
in semistructured databases,” in Proceedings of International Conference on Very

ORDERED TREE PATTERN QUERY EVALUATION

29

Large Data Bases, 1997, pp. 436-445.
18. G. Gottlob, C. Koch, and R. Pichler, “Efficient algorithms for processing XPath que-

ries,” ACM Transactions on Database Systems, Vol. 30, 2005, pp. 444-491.
19. C. M. Hoffmann and M. J. O’Donnell, “Pattern matching in trees,” Journal of ACM,

Vol. 29, 1982, pp. 68-95.
20. Z. Jiang, C. Luo, W. C. Hou, Q. Zhu, and D. Che, “Efficient processing of XML twig

pattern: A novel one-phase holistic solution,” in Proceedings of the 18th International
Conference on Database and Expert Systems Applications, 2007, pp. 87-97.

21. R. Kaushik, P. Bohannon, J. Naughton, and H. Korth, “Covering indexes for branch-
ing path queries,” in Proceedings of ACM SIGMOD, 2002, pp. ________.

22. C. Koch, “Efficient processing of expressive node-selecting queries on XML data in
secondary storage: A tree automata-based approach,” in Proceedings of International
Conference on Very Large Data Bases, 2003, pp. _______.

23. Q. Li and B. Moon, “Indexing and querying XML data for regular path expressions,”
in Proceedings of International Conference on Very Large Data Bases B, 2001, pp.
361-370.

24. J. Lu, T. W. Ling, C. Y. Chan, and T. Chan, “From region encoding to extended dewey:
On efficient processing of XML twig pattern matching,” in Proceedings of Interna-
tional Conference on Very Large Data Bases, 2005, pp. 193-204.

25. J. McHugh and J. Widom, “Query optimization for XML,” in Proceedings of Interna-
tional Conference on Very Large Data Bases, 1999, pp. ________

26. G. Miklau and D. Suciu, “Containment and equivalence of a fragment of XPath,”
Journal of ACM, Vol. 51, 2004, pp. 2-45.

27. K. Müller, “Semi-automatic construction of a question treebank,” in Proceedings of
the 4th International Conference on Language Resources and Evaluation, 2004, pp.
_____.

28. L. Qin, J. X. Yu, and B. Ding, “TwigList: Make twig pattern matching fast,” in Pro-
ceedings of the 12th International Conference on Database Systems for Advanced Ap-
plications, 2007, pp. 850-862.

29. P. Ramanan, “Holistic join for generalized tree patterns,” Information Systems, Vol.
32, 2007, pp. 1018-1036.

30. P. Rao and B. Moon, “Sequencing XML data and query twigs for fast pattern match-
ing,” ACM Transactions on Database Systems, Vol. 31, 2006, pp. 299-345.

31. A. R. Schmidt, F. Waas, M. L. Kersten, D. Florescu, I. Manolescu, M. J. Carey, and R.
Busse, “The XML benchmark project,” Technical Report INS-Ro1o3, Centrum voor
Wiskunde en Informatica, 2001.

32. C. Seo, S. Lee, and H. Kim, “An efficient index technique for XML documents using
RDBMS,” Information and Software Technology, Vol. 45, 2003, pp. 11-22.

33. J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. Dewitt, and J. F. Naughton,
“Relational databases for querying XML documents: Limitations and opportunities,”
in Proceedings of International Conference on Very Large Data Bases, 1999, pp.
__________.

34. University of Washington, “The Tukwila system,” http://data.cs.washington.edu/in-
tegration/tukwila/.

35. University of Wisconsin, “The Niagara system,” http://www.cs.wisc.edu /niagara/.
36. University of Washington, “XML repository,” http://www.cs.washington.edu/research/

YANGJUN CHEN AND YIBIN CHEN

30

xmldatasets.
37. H. Wang, S. Park, W. Fan, and P. S. Yu, “ViST: A dynamic index method for querying

XML data by tree structures,” in Proceedings of SIGMOD International Conference
on Management of Data, 2003, pp. ________.

38. H. Wang and X. Meng, “On the sequencing of tree structures for XML indexing,” in
Proceedings of Conference on Data Engineering, 2005, pp. 372-385.

39. World Wide Web Consortium, XML Path Language (XPath), W3C Recommendation,
2007, http://www.w3.org/TR/xpath20.

40. World Wide Web Consortium, XQuery 1.0: An XML Query Language, W3C Recom-
mendation, Version 1.0, 2007, http://www.w3.org/TR/xquery.

41. “XMARK: The XML-benchmark project,” http://monetdb.cwi.nl/xml, 2002.
42. C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G. Lohman, “On supporting contain-

ment queries in relational database management systems,” in Proceedings of ACM
SIGMOD, 2001, pp. ________.

43. M. Götz, C. Koch, and W. Martens, “Efficient algorithms for the tree homeomorphism
problem,” in Proceedings of International Symposium on Database Programming
Language, 2007, pp. ________.

44. Z. Bar-Yossef, M. Fontoura, and V. Josifovski, “On the memory requirements of XPath
evaluation over XML streams,” Journal of Computer and System Sciences, Vol. 73,
2007, pp. 391-441.

45. R. B. Lyngs, M. Zuker, and C. N. S. Pedersen, “Internal loops in RNA secondary
structure prediction,” in Proceedings of the 3rd annual international conference on
computational molecular biology, 1999, pp. 260-267.

46. Y. Rui, T. S. Huang, and S. Mehrotra, “Constructing table-of-content for videos,” ACM
Multimedia Systems Journal, Special Issue Multimedia Systems on Video Libraries,
Vol. 7, 1999, pp. 359-368.

47. M. Zaki, “Efficiently mining frequent trees in a forest,” in Proceedings of Interna-
tional Conference on Knowledge Discovery in Databases, 2002, pp. ________.

Yangjun Chen (陳____) received his B.S. in Information
System Engineering from the Technical Institute of Changsha,
China, in 1982, and his Diploma and Ph.D. in Computer Science
from the University of Kaiserslautern, Germany, in 1990 and
1995, respectively. From 1995 to 1997, he worked as a Post-
Doctor at the Technical University of Chemnitz-Zwickau, Ger-
many. After that, he worked as a Senior Engineer at the German
National Research Center of Information Technology (GMD) for
more than two years. Since 2000, he has been a Professor in the
Department of Applied Computer Science at the University of

Winnipeg, Canada. His research interests include deductive databases, federated databases,
document databases, constraint satisfaction problem, graph theory and combinatorics. He
has more than 150 publications in these areas.

ORDERED TREE PATTERN QUERY EVALUATION

31

Yibin Chen (陳____) received his B.S. and master degree
from the Department of Electrical and Computer Engineering,
University of Waterloo, and in the Department of Electrical and
Computer Engineering, University of Toronto, Canada, respec-
tively. Now he is a software engineer.

