
A New Algorithm for Subset Matching Problem

INTRODUCTION
The subset matching problem is a generalization
of the ordinary string matching problem, by
which both the pattern and text are sequences of
sets (of characters). Formally, the text t is a
string of length n and the pattern p is a string of
length m. Each text position t[i] and each pattern
position p[j] is a set of characters (not a single
character), taken from a certain alphabet Σ (see
the definition given in [7]). Strings, in which
each location is a set of characters, will be called
set-strings to distinguish them from ordinary
strings. Pattern p is said to match text t at
position i if p[j] ⊆ t[i + j - 1], for all j (1 ≤ j ≤ m).
As an example, consider the set-strings t and p
shown in Fig. 1.

Figure 1(a) shows a matching case, by which we
have p[j] ⊆ t[i + j - 1] for i = 1, and j = 1, 2, 3;
while Figure 1(b) illustrates an unmatching case
since for i = 2 we have p[2] ⊄ t[i + 2 - 1].
This problem was defined in [5] and is of
interest, as it was shown (also in [5] and its
improved version [7]) that the well-known tree
pattern matching problem can be linearly
reduced to this problem. In addition, as shown in
[8], this problem can also be used to solve
general string matching and counting matching
[10, 11], and enables us to design efficient
algorithms for several geometric pattern
matching problems. Up to now, the best way for
solving subset matching is based on the
construction of superimposed codes (bit strings,
see [3, 4]) for the characters in Σ and the
convolution operation of vectors [1]. The
superimposed codes are generated in such way
that no bit string (for a character) is contained in
a boolean sum of k other bit strings, where k is
the largest size of the sets in both t and p. As
indicated in [6], such superimposed codes can be
generated in O(n⋅log2m) time. In addition, by
decomposing a subset matching into several
smaller problems (see [5]), the convolution
operation can also be done in O(n⋅log2m) time by
using Fourier transformation [1] (if the
cardinality of Σ is bounded by a constant).
Therefore, the algorithm discussed in [6] needs
only O(n⋅log2m) time.
In this paper, we explore a quite different way to
solve this problem. The main idea of our

Abstract: The subset matching problem is to find all occurrences of a pattern string p of
length m in a text string t of length n, where each pattern and text position is a set of
characters drawn from some alphabet Σ. The pattern is said to occur at text position i if the
set p[j] is a subset of the set t[i + j - 1], for all j (1 ≤ j ≤ m). This is a generalization of the
ordinary string matching and can be used for finding matching subtree patterns. In this
paper, we propose a new algorithm that needs O(n⋅m) time in the worst case. But its average
time complexity is O(n + m⋅nlog1.5)

Key words: string matching, tree pattern matching, subset matching, trie, suffix tree,
probabilistic analysis

Yangjun Chen

University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9

a

b

c

a

c

a

b

c

b

c

d

e

d

e c

t t1 t2 t3 t4 t5 t6 t7

a

c

a

c c

p p1 p2 p3

a match
(a)

a

b

c

a

c

a

b

c

b

c

d

e

d

e c

t t1 t2 t3 t4 t5 t6 t7

a

c

a

c c

p p1 p2 p3

not a match
(b)

Figure 1. Example of set match

algorithm is to transform a subset matching
problem into another subset matching problem
by constructing a trie over the text string. In the
new subset matching problem, t is reduced to a
different string t’, in which each position is an
integer (instead of a set of characters); and p is
changed to another string p’, in which each
position remains a set (of integers). This
transformation gives us a chance to use the
existing technique for string matching to solve
the problem. Concretely, we will generate a
suffix tree over t’ and search the suffix tree
against p’ in a way similar to the traditional
methods. The algorithm runs in O(n⋅m) time in
the worst case and in O(n + m⋅nlog1.5) on average.
The remainder of the paper is organized as
follows. In Section 2, we discuss our algorithm,
which is designed based on a transformation of
subset matching problems. In Section 3, we
analyze the average time of a trie searching,
which shows the average cost of our method. In
Section 4, we discuss an improvement of set-
string transformation. Finally, Section 5 is a
short conclusion.

ALGORITHM DESCRIPTION
Assume that Σ = {1, ..., k}. We construct a 0-1
matrix T = (aij) for t = t1t2 ... tn such that aij = 1 if
i ∈ tj and aij = 0 if i ∉ tj (see Fig. 2 for
illustration.) In the same way, we construct
another 0-1 matrix P = (bij) for p = p1p2 ... pm.

Then, each column in T (P) can be considered as
a bit string representing a set in t (resp. p). (In
the following discussion, we use b(ti) (b(pj)) to
denote the bit string for ti (resp. pj).)

In a next step, we construct a (compact) trie over
all b(ti)’s, denoted by trie(T), as illustrated in
Figure 3(a).

In this trie, for each node, its left outgoing edge
is labeled with a string beginning with 0 and its
right outgoing edge is labeled with a string
beginning with 1; and each path from the root to
a leaf node represents a bit string that is different
from the others. In addition, each leaf node v in
trie(T) is associated with a set containing all
those ti’s that have the same string represented
by the path from the root to v. Then, t can be
transformed as follows:

Number all the leaf nodes of the trie from left
to right (see Figure 3 for illustration).

Replace each ti in t with an integer that
numbers the leaf node, with which a set
containing ti is associated.

For example, the text string t shown in Figure
1(a) will be transformed into a string t’ as shown
in Figure 3(b), in which each position is an
integer. For this example, t1 and t4 are replaced
by 5, t2 by 4, t3 by 3, t5 and t6 by 1, and t7 by 2.

In order to find all the sets in t, which contain a
certain pj, we will search trie(T) against b(pj) as
below.

(i) Denote the ith position in b(pj) by b(pj)[i].

(ii) Let v (in trie(T)) be the node encountered
and b(pj)[i] be the position to be checked.
Denote the left and right outgoing edges of v
by el and er, respectively. We do the
following checkings:

- If b(pj)[i] = 1, we will explore the right
outgoing edge er of v.

- If b(pj)[i] = 0, we will explore both el and
er.

In fact, this definition just corresponds to the
process of checking whether a set contains
another as a subset. That is, if b(pj)[i] = 1, we
compare only the label of er, denoted by l(er),
with the corresponding substring in b(pj)
according to the following criteria: if one bit in
b(pj) is 1, the corresponding bit in l(er) must be
one; if one bit in b(pj) is 0, it does not matter
whether the corresponding bit in l(er) is 1 or 0. If
they match, we move to the right child of v. If
b(pj)[i] = 0, we will check both l(el) and l(er).

For example, to find all the ti’s in the text string t
shown in Figure 1(a), which match p1 in p shown
in the same figure, we will search the trie against
b(p1) = 10100. For this, part of the trie will be
traversed as illustrated by the heavy lines in
Figure 4(a).

a
b
c
d
e

1 2 3 4 5 6

1 1 0 1 0 0
1 0 1 1 0 0
1 1 1 1 0 0
0 0 0 0 1 1
0 0 0 0 1 1

Figure 2. A 0-1 matrix for a text string

{t1, t4} {t3}

{t5, t6}

5 4 3

0 1

0 1100 0100 1100

011 100
1 2

{t7}

{t2} (a)

t: t1 t2 t3 t4 t5 t6 t7

t’: 5 4 3 5 1 1 2
⇓ (b)

Figure 3. A trie and set-string transformation

This shows that in t there are three sets t1, t2, and
t4 containing p1. But in t’, t1 and t4 are
represented by 5, and t2 is represented by 4. So
we associate {4, 5} with p1 and replace p1 in p
with {4, 5}. In this way, we will transform p into
another string p’, in which each position remains
a set containing some integers that represent all
those sets in t, which contain the corresponding
set at the same position in p. (See Figure 4(b) for
illustration.) Each set in p’ can be represented by
a bit string of length l, where l is the number of
different sets (ti’s) in t. If i belongs to the set, the
ith position is set to 1; otherwise, it is set to 0.

Formally, the above transformation defines two
functions as below.

(1) ft: Sett → I,

where Sett is the set of all ti’s in t and Ι = {1, ...,
l}; and ft(ti) = a if a is the number for a leaf node
in trie(T), with which a set containing ti is
associated.

(2) fp: Setp → 2I,

where Setp is the set of all pj’s in p and 2I is the
set containing all the subsets of Ι , i.e., the power
set of Ι; and ft(pj) = b if b is a set of integers each
labeling an leaf node in trie(T), which is
encountered when searching trie(T) against b(pj).

Obviously, these two functions satisfy the
following property.

Lemma 1. Let ti be a set in t and pj be a set in p.
Assume that ft(ti) = a and fp(pj) = b. Then, we
have ti ⊇ pj if and only if a ∈ b.

Proof. It can be directly derived from the above
definition of the string transformations.

In a next step, we construct a suffix tree over t’ =
t1’t2’ ... tn’, the transformed t, using a well-
known algorithm such as the algorithms
discussed in [12, 13]. We remark that the
alphabet for t’ is {1, ..., l} (l ≤ 2k} since each ti’
∈{1, ..., l}. It is a relatively large. But it is a
sorted set, which is constructed when we number

the leaf nodes of the trie for t. Therefore, the
construction of the suffix tree over t’ requires
only O(n) time. (More exactly, using
McCreight’s algorithm [12], we need O(logl⋅n)
time. logl = log2k = k.

For example, for the string shown in Figure 3(b),
we will generate a suffix as shown in Figure 5.

In this tree, each internal node v is associated
with an integer (denoted as int(v)) to indicate the
position (in p’) to be checked when searching;
and each edge is labeled with a substring and all
the labels along a path (from the root to a leaf
node) form a suffix in t’, plus $, a special
symbol, which makes every suffix not a prefix of
any other. So a leaf node can be considered as a
pointer to a suffix. In order to find all the
substrings in t, which match p, we will explore
the suffix tree for the transformed string t’
against the transformed p’ = p1’p2’ ... pm’ as
follows (note that each pi’ (i ∈{1, ..., m}) is a
set.)

(i) Search the suffix tree from the root;

(ii) Let v be the node encountered and pi’ be the
set to be checked.

(iii) Let e1, ..., eq be v’s outgoing edges. Let l(ej)
=

1j
l ...

hj
l (for some h) be the label of ej (1

≤ j ≤ l). Then, for any ej = (vj, uj) (1 ≤ j ≤ q),
if

1j
l ∈ pi+int(v)-1’, 2j

l ∈ pi+int(v)’, ..., and
hj

l ∈
pi+int(v)+h-1’, the subtree rooted at uj will be
continually explored. Otherwise, the subtree
will not be searched any more. In addition,
we notice that the symbol $ is always
ignored when we check the labels
associated with the edges in trie(T).

In the above process, if we can find an edge e =
(v, u) with l(e) = l1 ... lg ... such that lg is checked
against pm’ with lg ∈ pm’, any leaf node in the
subtree rooted at u indicates a substring in t,
which matches p.

The following is the formal description of the
whole process.

Algorithm Subset-Matching

begin

1. Let t = t1t2 ... tn and p = p1p2 ... pm;

2
100 {t1, t4} {t3}

{t5, t6}

5 43

0 1

0 1100 0100 1100

011
1

{t7}

{t2} (a)

a

c

a

c c

p’ p1’ p2’ p3’

p p1 p2 p3

(b)

Figure 4. Trie searching and set-string
transformation

2$ 1 5 35112$ 435112$

1

2 2 3 2 7

41 65

435112$ 112$ 12$ 2$

Figure 5. The suffix tree for t’

2. Transform t to t’ = t1’t2’ ... tn’ and p to p’ = p1’
... pm’ by using the trie constructed over t;

3. Construct a suffix tree tsuffix over t’;

4. Search tsuffix against p’;

5. for any e = (v, u) in tsuffix with l(e) = l1 ... lg ...
such that lg is checked against pm’

 with lg ∈ pm’ do

6. {return all the leaf nodes in the subtree rooted
at u;}

end

Example 1. By applying the above algorithm to
the problem shown in Figure 1(a), trie(T) shown
in Figure 3(a) will be first generated and t will be
transformed to t’ as shown in Figure 3(b). Then,
by searching trie(T) against each pi one by one,
we will transform p to p’ as shown in Figure
4(b). The suffix tree for t’ is shown in Figure 5.
Finally, we will search the suffix tree against p’
as shown by the heavy edges in Figure 6.

For this simple example, only one path in the
suffix tree is explored. But multiple paths may
be searched in general.
Proposition 1. Let t = t1t2 ... tn and p = p1p2 ...
pm. The algorithm Subset-Matching will find all
ti’s (1≤ i ≤ n - m) such that ti+1ti+2...ti+m-1 matches
p.
Proof. Let n1 → n2 ... → nm → nm+1 be a path that
is visited when searching the trie against p’. Let
li = l(ni, ni+1) denote the label associated with the
edge (ni, ni+1) (1≤ i ≤ m). Then, we must have li
∈ pi’ (1≤ i ≤ m). In terms of Lemma 1, the
substring in t: ft

-1(l1) ... ft
-1(lm) definitely matches

fp
-1(p1’) ... fp

-1(pm’) = p1p2 ... pm. We remark that
all the suffixes represented by the leaf nodes in
the subtree rooted at nm+1 have l1 ... lm as the
prefix. So, each of these suffixes corresponds to
a substring in t, which matches p.
The time complexity of the algorithm consists of
four parts: C1, C2, C3, and C4, which are defined
and estimated below.

C1 is the time used for constructing the trie for t.
In the case that Σ is fixed, it needs only O(n)
time.
C2 is the time spent on generating p’ for p. Let A
represent the largest number of the edges visited
when searching trie(T) against a b(pi) in p (1 ≤ i
≤ m). Then, C2 is bounded by O(A⋅m).
C3 is the cost for constructing the suffix tree over
t’. It is O(n).
C4 is the cost for searching the suffix tree against
p’. It is bounded by O(A’⋅m), where A’ is the
largest edges explored during the searching of
the suffix tree.
Therefore, the whole computation process runs
in time O(n + A⋅m + A’⋅m). In the worst case, it
is O(mn). Averagely, however, both A and A’ are
on the order of O(nlog1.5) as shown in the
subsequent section.

ANALYSIS OF A AND A’
In this section, we give a simple analysis of the
average value of A. A precise probabilistic
analysis is given in Appendix.
In order to analyze the average cost of A, we
consider a ‘worse’ case that the trie is not
compact, i.e., each edge is labeled with a single
bit (instead of a bit string), which makes the
analysis easier. In Figure 7(b), we show a non-
compact trie for a set of bit strings shown in
Figure 7(a).

For such a non-compact trie T, the searching of
it against a bit string s = s[1]s[2] ... s[k] is
performed in a similar way to a compact trie, but
simpler:
(i) Let v be the node encountered and s[i] be

the position to be checked.
(ii) If s[i] = 1, we move to the right child of v.
(iii) If s[i] = 0, both the right and left child of v

will be visited.

In the following, we use cs(T) to represent the
expected number of the edges visited when
searching T against s. In addition, we use s’, s’’,
s’’’, ... to designate the patterns obtained by

{ }

2$ 15 35112$ 435112$

1

2 23 2 7

4 1 65

435112$ 112$ 12$ 2$

Since 5 ∈ p1’ = {4, 5},
the searching along this edge
Continues.

Although 4 ∈ p1’ = {4, 5},
3 ∉ p2’ = {4, 5} and therefore
the searching stops here.

Since 4 ∈ p2’ = {4, 5} and 3 ∈ p3’ = {2, 3, 4, 5}, the searching shows that
the prefix of the first suffix of t’ matches p’.

Figure 6. Illustration for suffix searching

{t1, t4} {t7}{t3, t5}

0 1

0 1 0

0 1

{t6}{t2}

1

0 1 0 1

{ }

t1: 001
t2: 010
t3: 011
t4: 001
t5: 011
t6: 110
t7: 111

(a) (b)
Figure 7. A non-compact trie

circularly shifting the bits of s to the left by 1, 2,
3, ... positions.
Obviously, if the first bit of s is 0, we have, for
the expected cost of a random string s,
 cs(T) = 1 + cs’(T1) + cs’(T2), (1)
where T1 and T2 represent the two subtrees of
the root of T. See Figure 8 for illustration.

It is because in this case, the search has to
proceed in parallel along the two subtrees with s
changing cyclically to s’.
If the first bit in s is 1, we have
 cs(T) = 1 + cs’(T2) (2)
since in this case the search proceeds only in T2.
In order to get the expectation of cs(T), we make
the following assumption.
For each ti in t, each element in ti is taken from Σ
with probability p = 1/2, independently from all
the other tj’s and all the other elements in ti.

Under this assumption, T1 and T2 will have

almost the same size ⎥⎦
⎥

⎢⎣
⎢

2
N , where N is the

number of the nodes in T. So (1) and (2) can be
rewritten as follows:

 cs(N) = 1 + 2cs’(⎥⎦
⎥

⎢⎣
⎢

2
N), (3)

and

 cs(N) = 1 + cs’(⎥⎦
⎥

⎢⎣
⎢

2
N). (4)

From (3) and (4), we get the following
recurrence equation:

 cs(N) = 1 +
2
3 cs’(⎥⎦

⎥
⎢⎣
⎢

2
N). (5)

Solving the above recursion, we get
 cs(N) = O(1.5logN) = O(Nlog1.5). (6)
In terms of (6), we have the following
proposition.
Proposition 2. A is on the order of O(nlog1.5).
Proof. The number of the nodes in trie(T) is
bounded by O(kn). So the average value of A is
 O((kn)log1.5) = O(nlog1.5).
Since only O(nlog1.5) edges are visited on average
when searching trie(T) against a b(pj) in p, the
size of the set of all those ti’s that contain pj is on
the order of O(nlog1.5), and so is A’.

IMPROVEMENTS
The above process can be significantly
improved.
For p, we can also generate a trie over b(pj)’s,
denoted by trie(P), where P represents the 0-1
matrix for p, which is constructed in the same
way as T for t. But for ease of control, we will
establish non-compact tries for both t and p as
illustrated in Figure 9.

We will search these two tries simultaneously
with the above containment checking simulated.

For this purpose, we will maintain a stack, stack,
in which each entry is of the form {v, u} with v
∈ trie(T) and u ∈ trie(P). During the process,
each time we encounter a node v in trie(T) and a
node u in trie(P), we will manipulate stack as
below.

i) Let v1 and v2 be two children of v with edge
(v, v1) labeled by 0 and edge (v, v2) by 1; and
u1 and u2 be two children of u with edge (u,
u1) labeled by 0 and edge (u, u2) by 1;

ii) Push three pairs {v2, u2}, {v2, u1}, and {v1,
u1} (in the order specified) into stack.

iii) If v is a leaf node, put the number associated
with v into a set associated with u to record
the fact the sets represented by v contain the
sets represented by u.

Below is the formal description of the algorithm.
In the algorithm, the following two symbols are
used:

 num(v) - a number associated with a leaf
node v in trie(T).

 matching(u) - a sorted set (of integers)
associated with a leaf node u in trie(P). Each
integer in the set represents one or more sets
in t, which contain the sets represented by u.

Algorithm p-transformation(trie(T), trie(P))

begin

1. v0 ← root of trie(T); u0 ← root of trie(P);
2. push(stack, {v0, u0});
 (*push (v0, u0) into stack.*)

0

1 0

T1 T2

v If s[i] = 0, move along both
Edges labeled with 0 and 1.

Figure 8. Illustration for trie searching 0 1 11

1

1

0

0

0

0

0

0

0

0

0

0 110

10

{t5, t6} {t7} {t3} {t2} {t1, t4}

0 0

0

1

0

1

0 1

0

{p3} {p1, p2}

(a) (b)
Figure 9. Two non-compact tries

3. while stack not empty do
4. {{v, u} ← pop(stack);
5. if v is a leaf node then
 matching(u) ← matching(u) ∪ {num(v)};
6. else {
7. let v1 and v2 be two children of v with

(v, v1) labeled by 0 and (v, v2) by 1;
8. let u1 and u2 be two children of u with

(u, u1) labeled by 0 and (u, u2) by 1;
9. push(stack, {v2, u2}); push(stack, {v2,

u1}); push(stack, {v1, u1});}
10.}
end

By the above algorithm, each pj in p will be
transformed to a set of integers. Applying this
algorithm to the tries shown in Figure 5(a) and
(b), we will get the same result as shown in
Figure 4(b). But we search trie(T) against only
two paths instead of three. In addition, p1 and p2
are replaced with the same set {4, 5}. So we
implement P’ as a pointer sequence with each
pointer pointing to a set of integers.

In general, for all those pj’s that share the same
prefix, the prefix is checked only once, which
enables us to save much time.

The worse case time complexity C can be
analyzed as follows.

Each pair {v, u} generated during the process, v
and u must be on the same level in trie(T) and
trie(P), respectively. Let Nt be he numbers of
different sets (ti’s) and Np the numbers of
different sets (pj’s) in p. We have
 C = () ()inuminum P

k

i
T ⋅∑

=1

 = NT⋅NP
() ()

∑
= ⋅

⋅k

i PT

PT

NN
inuminum

1

 = O(kNt⋅Np),

where numT(i) (numP(i)) represents the number
of the nodes on level i in trie(T) (resp. in
trie(P)).
Now we analyze the average time of this
algorithm.
We simply use T and P to represent trie(T) and
trie(P), respectively. Denote rootT the root of T
and rootP the root of P. Let T1 be the left subtree
of rootT and T2 the right subtree of rootT. Let P1
be the left subtree of rootP and P2 the right
subtree of rootP. Then, we have the following
recurrence equations:

C(T, P) = 1 + C(T1, P1) + C(T2, P1) + C(T2, P2),

 (7)

(*rootP has both the left and right child nodes.*)

 C(T, P) = 1 + C(T1, P1) + C(T2, P1), (8)

(*rootP has only the left node.*)

 C(T, P) = 1 + C(T2, P2), (9)

(*rootP has only the right child node.*)

where C(T, P) represents the average number of
the pairs (v, u) created during the process with v
∈ T and u ∈ P.

From the above equations, we get

 C(n, m) = 1 + 2C(⎥⎦
⎥

⎢⎣
⎢

2
N , ⎥⎦

⎥
⎢⎣
⎢

2
M), (10)

which leads to the following proposition.

Proposition 3. C(n, m) ≤ nlog1.5mlog1.5.
Proof. We prove the proposition by induction on
n and m.

Basic step. When n = 1 and m = 1, the
proposition trivially holds.

Induction step. Assume that the propsotion holds
for a < n and b < m. That is, we have C(a, b) ≤
alog1.5blog1.5 for any a < n and any b < m. Then, in
terms of (10) and the induction hypothesis, we
have

 C(n, m) = 1 + 2C(⎥⎦
⎥

⎢⎣
⎢

2
N , ⎥⎦

⎥
⎢⎣
⎢

2
M)

 ≤ (1/(nlog1.5mlog1.5) +
 1/(2log1.52log1.5))nlog1.5mlog1.5

 = (1/(nlog1.5mlog1.5) +
 1/2.25))nlog1.5mlog1.5.
For n ≥ 2 and m ≥ 2, 1/(nlog1.5mlog1.5) < 1/2.25. So
C(n, m) ≤ nlog1.5mlog1.5.
Proposition 3 shows that the average cost the
algorithm p-transformation is on the order of
O(nlog1.5mlog1.5).

Probabilistical Analysis
In terms of the analysis conducted in Section 3,
we have the following two recurrences:
 cs(T) = 1 + cs’(T1) + cs’(T2), (11)
 cs(T) = 1 + cs’(T2) (12)
where T1 and T2 represent the two subtrees of
the root of T.
Given N (N ≥ 2) random nodes in T, the
probability that
 |T1| = q, |T2| = N - q (13)
can be estimated by the Bernoulli probabilities

 () () pNp

p
N −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2
1

2
1 = ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
p
N

N2
1 . (14)

Let cs, N denote the expected cost of searching a
trie of size N against s. We have the following
recurrences
 if s starts with 0,

 cs, N = 1 + ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

q
qsN c

N
',12

2 , N ≥ 2; (15)

 if s starts with 1,

 cs, N = 1 + ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

q
qsN c

N
',12

1 , N ≥ 2. (16)

Let λi = 1 if ith bit in s is 1, and λi = 2 if ith bit in
s is 0. The above recurrence can be rewritten as
follows

 cs,N = 1 + ∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

q
qsN c

N
',

1

12
λ - δN,0 - δN,1, (17)

where δN,j (j = 0, 1) is equal to 1 if N = j;
otherwise equal to 0.
Proposition 4. The exponential generating
function of the average cost cs, N

 Cs(z) = ∑
≥0

!,
n

n
z

ns
n

c (18)

satisfies the relation

 Cs(z) = λ1ez/2Cs’ ⎟
⎠

⎞
⎜
⎝

⎛
2
z + ez - 1 - z. (19)

Proof. In terms of equation (17), Cs(z) can be
rewritten as follows

 Cs(z) = () !
0

1,0,,'2
1

11 n
z

n p
nnps

n n
c

p
n

∑ ∑
≥ ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ δδλ (20) (10)

 = ∑
≥0

!
n

n
z n

+ () !,'
0

2
1

1 n
z

ps
p n

n n
c

p
n

∑ ∑
≥

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
λ -

 ∑
≥0

!0,
n

n
z

n
nδ - ∑

≥0
!1,

n
n
z

n
nδ

 = ez + λ1
() ()

()∑∑
≥

−

−

0
!

2/
,'!

2/

n
pn

z
ps

p
p

z pnp

c - 1 - z

 = λ1ez/2 ()2'
z

sC + ez - 1 - z. �

In the same way, we will get Cs’(z), Cs’’(z), ...,
and so on. Concretely, we will have the
following equations:

 Cs(z) = λ1ez/2 ()2'
z

sC + ez - 1 - z, (21) (11)

 Cs’(z) = λ2ez/2 ()2''
z

sC + ez - 1 - z

)1(−msC (z)= λmez/2 ()2
z

sC + ez - 1 - z.

These equations can be solved by successive
transportation. For instance, when we transport
the expression of Cs’(z) given by the second
equation in (11), we have

 Cs(z) = a(z) + λ1ez/2 ()2
za + (22)

 λ1λ2ez/2
22/ze ()22''

z
sC .

where a(z) = ez - 1 - z.

In a next step, we transport Cs’’’ into the equation
given in (22). This kind of transformation
continues until the relation is only on Cs itself.
Then, we have

 Cs(z) = λ1λ2 ... λmexp ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ − mz

2
11 Cs(m

z
2

) + (23)

 ()[] ()()jj
j

zz
m

j
j expzexp

222
1

1

0
21 11 −−−∑

−

=
λλλ L

 = 2m-k exp ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ − mz

2
11 Cs(m

z
2

) +

 ()[] ()()jj
j

zz
m

j
j expzexp

222
1

1

0
21 11 −−−∑

−

=
λλλ L

where k is the number of 1s in s.

Let α = 2m-k, β = 1 − m2
1 , λ = m2

1 and A(z) =

()[] ()()jj
j

zz
m

j
j expzexp

222
1

1

0
21 11 −−−∑

−

=
λλλ L . We have

 Cs(z) = αeβzCs(λz) + A(z). (24)

This equation can be solved by iteration as
discussed above:

 Cs(z) = () ()∑
∞

=
−
−

0
1
1

j

jj zAzexp
j

λβα λ
λ = (25)

() ()()()[]∑∑
−

=

∞

=

− +−−
1

0 2222
1

21
0

11)(2
m

h

z
h

j

kmj
mjhmjhzexpzexpλλλ L

.

Using Taylor formula to expand exp(z) and
()()()mjhmjhzexp

22
1

22
1 11 +− in Cs(z) given by the

above sum, and then extract the Taylor
coefficients, we get

 cs,N = ∑ ∑
−

= ≥

−1

0 0

)(
21)(2

m

h j
jh

kmj
h nDλλλ L , (26)

where D00(n) = 1 and

for j > 0 and h > 0,

 Djh(n) = 1 - (1 - 2-mj-h)n - x2-mj-h(1 - 2-mj-h)n-1. (27)

We notice that N ≤ min{n, 2k}. So cs,N = O(N0.5)
≤ O(n0.5). This shows that the average time
complexity of Algorithm Set-Matching is on the
order of O(n + m⋅n0.5).

In the following, we show how to evaluate cs,N.

First, we define

 φ(x) = ∑ ∑
−

= ≥

−
1

0 0

)(
21)(2

m

h j
jh

kmj
h nDλλλ L , (x ≥ 0) (28)

Then, we perform the following computations to
evaluate φ(x):

(1) define the Mellin transformation of φ(x) ([8],
p. 453):

 φ*(σ) = dxxx 1

0
)(−

∞

∫ σφ . (29)

(2) derive an expression for φ*(σ), which reveals
some of its singularities.

(3) evaluate the reversal Mellin transformation

 φ(x) = ∫
∞+

∞−

−
ic

ic
i dx σσφ σ
π)(*2

1 -1 < c < -)1(m
k− (30)

The integral (30) is evaluated by using Cauchy’s
theorem as a sum of residues to the right of the
vertical line {c + iy | y ∈ ℜ}, where ℜ represents
the set of all real numbers. This compuation
method was first proposed in [14] The following
is just an extended explanation of it.

Remember that Djh(x) = 1 - (1 - 2-mj-h)x - x2-mj-h(1 - 2-

mj-h)x-1. We rewrite it under the form

 Djh(x) = 1 - jhxe α− - βjhx jhxe α− (31)

with αjh = - log(1 - 2-mj-h) and βjh = 2-mj-h(1 - 2-mj-h)-1.

Now we consider the following expansion,
which is valid for small values of x:

 (- log(1 - x))-σ = x-σ(1 - 2
αx + O(|σ|2x2)). (32)

Let x = 2-mj-h. Then, we have (by using the above
expansion)

 αjh = (- log(1 - 2-mj-h))-(-1) ~ (2mj+h). (33)

In addition, for small values 2-mj-h, we also have

 βjh = 2-mj-h(1 - 2-mj-h)-1 = O(2-mj). (34)

Following the classical properties of Mellin
transformation, we have the following
proposition.

Proposition 5. Denote Djh*(σ) the Mellin
transformation of Djh(x). We have

 Djh*(σ) = dxxx 1

0
)(−

∞

∫ σφ (35)

 = - (αjh)-σΓ(σ) − βjh(αjh)-σ−1σΓ(σ)

provided -1 < Re(σ) < 0, where Γ(σ) is the Euler
Gamma function.

Proof. The following formulas are well-known:

 ∫
∞

−− −
0

1)1(dxxe x σ = Γ(σ) -1 < Re(σ) < 0 (36)

 ∫
∞

−−

0

1)(dxxxe x σ = σΓ(σ)-1 < Re(σ) (37)

 ∫
∞

−

0

1)(dxxaxf σ = dxxxfa 1

0
)(−

∞
− ∫ σσ for a > 0 (38)

In terms of these formulas, we have

 Djh*(σ) = dxxxDjh∫
∞

−

0

1)(σ (39)

= ∫
∞

−−−
0

1)1(dxxe jhx σα - ∫
∞

−−

0

1dxxxe jhx
jh

σαβ

= - (αjh)-σΓ(σ) − βjh(αjh)-σ−1σΓ(σ). �

Now we try to evaluate the following two sums:

 ωh(σ) = ∑
≥

−−

0

)()(2
j

jh
kmj σα , (40)

 υh(σ) = 1

0

)()(2
−−

≥

−∑
σ

αβ
j

jhjh
kmj .

From (33) and (34), we can see that the two
sums given by (40) are uniformly and absolutely
convergent when σ is in the following stripe:

 Stripe: -1 < Re(σ) < - (1 - m
k). (41)

Furthermore, in terms of (33) and (34), both
ωh(σ) and υh(σ) can be approximated by the fol-
lowing sum:

 ϖh(σ) = ∑
≥

+−

0

)()2(2
j

hmjkmj σ (42)

When Re(σ) < σ0 = - (1 - m
k), this series can be

summed exactly:

 ϖh(σ) = σ
σ

mkm
h

+−−21
12 . (43)

Thus, φ*(σ) is defined in Stripe and can be
computed as follows

 φ*(σ) = ∫
∞

−

0

1)(dxxx σφ (44)

= ∫ ∑ ∑
∞

−
−

= ≥

−

0

11

0 0

)())(2(dxxxD
m

h j
jh

kmj σλλλL

=- ∑
−

=
Γ+

1

0
21)())()((

m

h
hh σσσυσωλλλ L

= - σ
σλλλσσ mkm

m

h

h
h +−−−

−

=
∑+Γ

21
1

1

0
21 2)1)((L .

From this, we can observe all the sigularities
(poles), i.e., σ = 0, at which Γ(σ) is not defined;
and all those values of σ, at which (1 -

)(02 σσ −m) becomes 0:

 σj = σ0 + 2log
2

m
ijπ , (j = 0, 1± , 2± , ...) (45)

To compute the integral in (21), we consider the
following integral

 φN(x) = dxx
NLi

σ
π σφ −∫)(*2

1 , (46)

where LN is a rectangular contour oriented
clockwise as shown in Figure 10.

 LN = 4321
NNNN LLLL +++ , (47)

 1
NL = { }2log

)12(|| m
Nuiuc π+≤+ ,

 2
NL = { }m

k
m
N vciv 32log

)12(≤≤+ + π ,

 3
NL = { }2log

)12(
3 || m

N
m
k uiu π+≤+ ,

 4
NL = { }m

k
m
N vciv 32log

)12(≤≤− + π ,

where N is an integer. This contour is of a
similar type used in ([9], p. 132).

Let i
Nφ be the integral along i

NL (i = 1, 2, 3, 4).

Then,)(xNφ = 1
Nφ (x) + 2

Nφ (x) + 3
Nφ (x) + 4

Nφ (x).
Furthermore, we have the following results:

)(lim 1 xNN
φ

∞→
 = φ(x),

)(lim 2 xNN
φ

∞→
 = O(1),

∫
∞

−≤ L
mk

N dxx σσφφ |)(*||)(|)3/(3

= O(x-k/(3m)), and

)(lim 4 xNN
φ

∞→
 = O(1).

Thus, we have

)(lim xNN
φ

∞→
 = φ(x) + O(x-k/(3m)). (48)

On the other hand,)(lim xNN
φ

∞→
can be evaluated as

the sum of the residues of the integrand, i.e.,
φ*(σ)x-σ, inside LN. Concretely, we have

)(lim xNN
φ

∞→
 = - ∑

∈

− =
))(*(

),)(*(
σφα

σ ασσφ
Pole

x (49)

 = - σ

σφα ασ
σφασ −

∈ →
∑ − x

Pole
)(*)lim(

))(*(
.

Within ∞L , φ*(σ) has the following poles:

 α = 0, and

 α = σj = σ0 + 2log
2

m
ijπ (j = 0, 1± , 2± , ...)

The contribution of the pole α = 0 is O(1); and
the contribution of α = σ0 is

σ

σσ
φσσ −

→
− xx)(*)(lim 0

0

 (50)

= ∑
−

=

Γ+− 1

0
212log

)()1(0000 2
m

h

h
hmx σσσσ λλλ L .

Finally, the contribution of each σj (j = 0, 1± ,
2± , ...)

 σ

σσ
φσσ −

→
− xx)(*)(lim 0

0

 (51)

= ∑
−

=

− Γ+−
1

0
222

2 00 2)()1)(log(
m

h

h
hjjm

ij xexpx σπσ λλλσσ L .

So we have

)(lim xNN
φ

∞→
 (52)

= ∑
−

=

Γ+− 1

0
2log

)()1(0000 2
m

h

h
mx σσσσ λλλL +

∑∑
−

=

−

−∞=

− Γ+−
1

0
21

1

2
2 2)()1)(log(0

m

h

h
hj

j
jm

ij jxexpx σπσ λλλσσ L

 +

∑∑
−

=

+∞

=

− Γ+−
1

0
21

1
2

2 2)()1)(log(0
m

h

h
hj

j
jm

ij jxexpx σπσ λλλσσ L

= ∑
−

=

Γ+− 1

0
2log

)()1(0000 2
m

h

h
mx σσσσ λλλL .

From this, we know that

 Cs,n = O(0σ−n) = O(m
k

n −1). (53)

Figure 10. The rectangular contour LN

4
NL

3
NL

2
NL

1
NL

v

u

b/3m -1+k/m c -1

CONCLUSION
In this paper, a new algorithm for the subset-
matching problem is proposed. The main idea of
the algorithm is to represent each set ti in the text
string t as a single integer a and each set pj in the
pattern string p as a set b of integers such that a
∈ b if and only if pj ⊆ ti. This is done by
constructing a trie structure over t. In this way,
we transform the original problem into a
different subset matching problem, which can be
efficiently solved by generating a suffix tree
over the new text string that has an integer at
each position. In the worst case, the algorithm
runs in O(n + l⋅m) time, where l is the number of
different sets (ti’s) in t. But its average time
complexity is O(n + m⋅nlog1.5).

REFERENCES

[1] Aho, A.V., Hopcroft, J.E. and Ullman, J.D.,
The Design and Analysis of Computer
Algorithms, Addison-Wesley Publishing
Com., London, 1974.

[2] R.V. Churchill, Operational Mathematics,
McGraw-Hill Book Company, NewYork,
1958.

[3] C. Faloutsos, “Access Methods for Text,”
ACM Computing Surveys, 17(1), 1985, pp.
49-74.

[4] C. Faloutsos, “Signature Files,” in:
Information Retrieval: Data Structures &
Algorithms, edited by W.B. Frakes and R.
Baeza-Yates, Prentice Hall, New Jersey,
1992, pp. 44-65.

[5] R. Cole and R. Hariharan. “Tree pattern
matching and subset matching in
randomized O(n log^3 m) time,”
Proceedings of the Twenty Ninth Annual
Symposium on the Theory of Computing,
1997, 66-75.

[6] R. Cole and R. Hariharan, “Verifying
candidate matches in sparse and wildcard
matching,” in Proc. of the 34th ACM
Symposium on Theory of Computing,
Montreal, QC, Canada, 2002, pp. 592-601.

[7] R. Cole and R. Hariharan, Tree Pattern
Matching to Subset matching in Linear
Time, SIAM J. Comput. Vol.2, No. 4, 2003,
pp. 1056-1066.

[8] P. Indyk, “Deterministic Superimposed
Coding with Applications to Pattern
Matching,” in Proc. 38th Annual
Symposium on Foundations of Computer
Science, Florida, USA, 1997, pp. 127-136.

[9] D.E. Knuth, The Art of Computer
Programming: Sorting and Searching,
Addison-Wesley Pub. London, 1973.

[10] S. Muthukrishan, K. Palem, “Non-standard
Stringology: Algorithms and Complexity,”
in Proc. 26th ACM Symposium on Theory
of Computing, 1994, pp. 770-779.

[11] S. Muthukrishan,, “New Results and Open
Problems Related to Non-Standard
Stringology,” Proc. 6th Annual Symposium
on Combinatorial Pattern Matching, 1995,
pp. 298-317.

[12] E. McCreight, “A space-economical suffix
tree construction algorithm,” J. ACM 23(2),
1976, pp. 262-272.

[13] E. Ukkonen, “Constructing suffix tree on-
line in linear time,” Algorithmica 14(3),
1995, pp. 249-260.

[14] P. Flajolet and C. Puech, Partial match Retrieval
of Multidimentional Data, J. ACM, Vol. 33, No.
2, April 1986, pp. 371-407.

