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INTRODUCTION 
The subset matching problem is a generalization 
of the ordinary string matching problem, by 
which both the pattern and text are sequences of 
sets (of characters). Formally, the text t is a 
string of length n and the pattern p is a string of 
length m. Each text position t[i] and each pattern 
position p[j] is a set of characters (not a single 
character), taken from a certain alphabet Σ (see 
the definition given in [7]). Strings, in which 
each location is a set of characters, will be called 
set-strings to distinguish them from ordinary 
strings. Pattern p is said to match text t at 
position i if p[j] ⊆ t[i + j - 1], for all j (1 ≤ j ≤ m). 
As an example, consider the set-strings t and p 
shown in Fig. 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1(a) shows a matching case, by which we 
have p[j] ⊆ t[i + j - 1] for i = 1, and j = 1, 2, 3; 
while Figure 1(b) illustrates an unmatching case 
since for i = 2 we have p[2] ⊄ t[i + 2 - 1]. 
This problem was defined in [5] and is of 
interest, as it was shown (also in [5] and its 
improved version [7]) that the well-known tree 
pattern matching problem can be linearly 
reduced to this problem. In addition, as shown in 
[8], this problem can also be used to solve 
general string matching and counting matching 
[10, 11], and enables us to design efficient 
algorithms for several geometric pattern 
matching problems. Up to now, the best way for 
solving subset matching is based on the 
construction of superimposed codes (bit strings, 
see [3, 4]) for the characters in Σ and the 
convolution operation of vectors [1]. The 
superimposed codes are generated in such way 
that no bit string (for a character) is contained in 
a boolean sum of k other bit strings, where k is 
the largest size of the sets in both t and p. As 
indicated in [6], such superimposed codes can be 
generated in O(n⋅log2m) time. In addition, by 
decomposing a subset matching into several 
smaller problems (see [5]), the convolution 
operation can also be done in O(n⋅log2m) time by 
using Fourier transformation [1] (if the 
cardinality of Σ is bounded by a constant). 
Therefore, the algorithm discussed in [6] needs 
only O(n⋅log2m) time. 
In this paper, we explore a quite different way to 
solve this problem. The main idea of our 
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algorithm is to transform a subset matching 
problem into another subset matching problem 
by constructing a trie over the text string. In the 
new subset matching problem, t is reduced to a 
different string t’, in which each position is an 
integer (instead of a set of characters); and p is 
changed to another string p’, in which each 
position remains a set (of integers). This 
transformation gives us a chance to use the 
existing technique for string matching to solve 
the problem. Concretely, we will generate a 
suffix tree over t’ and search the suffix tree 
against p’ in a way similar to the traditional 
methods. The algorithm runs in O(n⋅m) time in 
the worst case and in O(n + m⋅nlog1.5) on average.  
The remainder of the paper is organized as 
follows. In Section 2, we discuss our algorithm, 
which is designed based on a transformation of 
subset matching problems. In Section 3, we 
analyze the average time of a trie searching, 
which shows the average cost of our method. In 
Section 4, we discuss an improvement of set-
string transformation. Finally, Section 5 is a 
short conclusion. 

ALGORITHM DESCRIPTION 
Assume that Σ = {1, ..., k}. We construct a 0-1 
matrix T = (aij) for t = t1t2 ... tn such that aij = 1 if 
i ∈ tj and aij = 0 if i ∉ tj (see Fig. 2 for 
illustration.) In the same way, we construct 
another 0-1 matrix P = (bij) for p = p1p2 ... pm. 
 
 
 
 
 
Then, each column in T (P) can be considered as 
a bit string representing a set in t (resp. p). (In 
the following discussion, we use b(ti) (b(pj)) to 
denote the bit string for ti (resp. pj).) 

In a next step, we construct a (compact) trie over 
all b(ti)’s, denoted by trie(T), as illustrated in 
Figure 3(a). 

 
 
 
 
 
 
 
 

In this trie, for each node, its left outgoing edge 
is labeled with a string beginning with 0 and its 
right outgoing edge is labeled with a string 
beginning with 1; and each path from the root to 
a leaf node represents a bit string that is different 
from the others. In addition, each leaf node v in 
trie(T) is associated with a set containing all 
those ti’s that have the same string represented 
by the path from the root to v. Then, t can be 
transformed as follows: 

Number all the leaf nodes of the trie from left 
to right (see Figure 3 for illustration).  

Replace each ti in t with an integer that 
numbers the leaf node, with which a set 
containing ti is associated. 

For example, the text string t shown in Figure 
1(a) will be transformed into a string t’ as shown 
in Figure 3(b), in which each position is an 
integer. For this example, t1 and t4 are replaced 
by 5, t2 by 4, t3 by 3, t5 and t6 by 1, and t7 by 2. 

In order to find all the sets in t, which contain a 
certain pj, we will search trie(T) against b(pj) as 
below. 

(i) Denote the ith position in b(pj) by b(pj)[i]. 

(ii) Let v (in trie(T)) be the node encountered 
and b(pj)[i] be the position to be checked. 
Denote the left and right outgoing edges of v 
by el and er, respectively. We do the 
following checkings: 

- If b(pj)[i] = 1, we will explore the right 
outgoing edge er of v. 

- If b(pj)[i] = 0, we will explore both el and 
er.  

In fact, this definition just corresponds to the 
process of checking whether a set contains 
another as a subset. That is, if b(pj)[i] = 1, we 
compare only the label of er, denoted by l(er), 
with the corresponding substring in b(pj) 
according to the following criteria: if one bit in 
b(pj) is 1, the corresponding bit in l(er) must be 
one; if one bit in b(pj) is 0, it does not matter 
whether the corresponding bit in l(er) is 1 or 0. If 
they match, we move to the right child of v. If 
b(pj)[i] = 0, we will check both l(el) and l(er). 

For example, to find all the ti’s in the text string t 
shown in Figure 1(a), which match p1 in p shown 
in the same figure, we will search the trie against 
b(p1) = 10100. For this, part of the trie will be 
traversed as illustrated by the heavy lines in 
Figure 4(a). 
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This shows that in t there are three sets t1, t2, and 
t4 containing p1. But in t’, t1 and t4 are 
represented by 5, and t2 is represented by 4. So 
we associate {4, 5} with p1 and replace p1 in p 
with {4, 5}. In this way, we will transform p into 
another string p’, in which each position remains 
a set containing some integers that represent all 
those sets in t, which contain the corresponding 
set at the same position in p. (See Figure 4(b) for 
illustration.) Each set in p’ can be represented by 
a bit string of length l, where l is the number of 
different sets (ti’s) in t. If i belongs to the set, the 
ith position is set to 1; otherwise, it is set to 0.   

Formally, the above transformation defines two 
functions as below. 

(1) ft: Sett → I, 

where Sett is the set of all ti’s in t and Ι = {1, ..., 
l}; and ft(ti) = a if a is the number for a leaf node 
in trie(T), with which a set containing ti is 
associated. 

(2) fp: Setp → 2I, 

where Setp is the set of all pj’s in p and 2I  is the 
set containing all the subsets of Ι , i.e., the power 
set of Ι; and ft(pj) = b if b is a set of integers each 
labeling an leaf node in trie(T), which is 
encountered when searching trie(T) against b(pj).   

Obviously, these two functions satisfy the 
following property. 

Lemma 1. Let ti be a set in t and pj be a set in p. 
Assume that ft(ti) = a and fp(pj) = b. Then, we 
have ti ⊇ pj if and only if a ∈ b. 

Proof. It can be directly derived from the above 
definition of the string transformations.    

In a next step, we construct a suffix tree over t’ = 
t1’t2’ ... tn’, the transformed t, using a well-
known algorithm such as the algorithms 
discussed in [12, 13]. We remark that the 
alphabet for t’ is {1, ..., l} (l ≤ 2k} since each ti’ 
∈{1, ..., l}. It is a relatively large. But it is a 
sorted set, which is constructed when we number 

the leaf nodes of the trie for t. Therefore, the 
construction of the suffix tree over t’ requires 
only O(n) time. (More exactly, using 
McCreight’s algorithm [12], we need O(logl⋅n) 
time. logl = log2k = k.  

For example, for the string shown in Figure 3(b), 
we will generate a suffix as shown in Figure 5. 

 

 

 

 

In this tree, each internal node v is associated 
with an integer (denoted as int(v)) to indicate the 
position (in p’) to be checked when searching; 
and each edge is labeled with a substring and all 
the labels along a path (from the root to a leaf 
node) form a suffix in t’, plus $, a special 
symbol, which makes every suffix not a prefix of 
any other. So a leaf node can be considered as a 
pointer to a suffix. In order to find all the 
substrings in t, which match p, we will explore 
the suffix tree for the transformed string t’ 
against the transformed p’ = p1’p2’ ... pm’ as 
follows (note that each pi’ (i ∈{1, ..., m}) is a 
set.) 

(i) Search the suffix tree from the root; 

(ii) Let v be the node encountered and pi’ be the 
set to be checked. 

(iii) Let e1, ..., eq be v’s outgoing edges. Let l(ej) 
= 

1j
l ... 

hj
l (for some h) be the label of ej (1 

≤ j ≤ l). Then, for any ej = (vj, uj) (1 ≤ j ≤ q), 
if 

1j
l  ∈ pi+int(v)-1’, 2j

l  ∈ pi+int(v)’, ..., and 
hj

l  ∈ 
pi+int(v)+h-1’, the subtree rooted at uj will be 
continually explored. Otherwise, the subtree 
will not be searched any more. In addition, 
we notice that the symbol $ is always 
ignored when we check the labels 
associated with the edges in trie(T). 

In the above process, if we can find an edge e = 
(v, u) with l(e) = l1 ... lg ... such that lg is checked 
against pm’ with lg ∈ pm’, any leaf node in the 
subtree rooted at u indicates a substring in t, 
which matches p. 

The following is the formal description of the 
whole process.  

Algorithm Subset-Matching 

begin 

1. Let t = t1t2 ... tn and p = p1p2 ... pm; 

2 
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Figure 4. Trie searching and set-string 
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2. Transform t to t’ = t1’t2’ ... tn’ and p to p’ = p1’ 
... pm’ by using the trie constructed over t; 

3. Construct a suffix tree tsuffix over t’; 

4. Search tsuffix against p’; 

5. for any e = (v, u) in tsuffix with l(e) = l1 ... lg ... 
such that lg is checked against pm’ 

  with lg ∈ pm’ do 

6. {return all the leaf nodes in the subtree rooted 
at u;} 

end 

Example 1. By applying the above algorithm to 
the problem shown in Figure 1(a), trie(T) shown 
in Figure 3(a) will be first generated and t will be 
transformed to t’ as shown in Figure 3(b). Then, 
by searching trie(T) against each pi one by one, 
we will transform p to p’ as shown in Figure 
4(b). The suffix tree for t’ is shown in Figure 5. 
Finally, we will search the suffix tree against p’ 
as shown by the heavy edges in Figure 6. 
 
 
 
 
 
 
 
 
 
 
For this simple example, only one path in the 
suffix tree is explored. But multiple paths may 
be searched in general. 
Proposition 1. Let t = t1t2 ... tn and p = p1p2 ... 
pm. The algorithm Subset-Matching will find all 
ti’s (1≤ i ≤ n - m) such that ti+1ti+2...ti+m-1 matches 
p. 
Proof. Let n1 → n2 ... → nm → nm+1 be a path that 
is visited when searching the trie against p’. Let 
li = l(ni, ni+1) denote the label associated with the 
edge (ni, ni+1) (1≤ i ≤ m). Then, we must have li 
∈ pi’ (1≤ i ≤ m). In terms of Lemma 1, the 
substring in t: ft

-1(l1) ... ft
-1(lm) definitely matches 

fp
-1(p1’) ... fp

-1(pm’) = p1p2 ... pm. We remark that 
all the suffixes represented by the leaf nodes in 
the subtree rooted at nm+1 have l1 ... lm as the 
prefix. So, each of these suffixes corresponds to 
a substring in t, which matches p.    
The time complexity of the algorithm consists of 
four parts: C1, C2, C3, and C4, which are defined 
and estimated below. 

C1 is the time used for constructing the trie for t. 
In the case that Σ is fixed, it needs only O(n) 
time. 
C2 is the time spent on generating p’ for p. Let A 
represent the largest number of the edges visited 
when searching  trie(T) against a b(pi) in p (1 ≤ i 
≤ m). Then, C2 is bounded by O(A⋅m).  
C3 is the cost for constructing the suffix tree over 
t’. It is O(n). 
C4 is the cost for searching the suffix tree against 
p’. It is bounded by O(A’⋅m), where A’ is the 
largest edges explored during the searching of 
the suffix tree. 
Therefore, the whole computation process runs 
in time O(n + A⋅m + A’⋅m). In the worst case, it 
is O(mn). Averagely, however, both A and A’ are 
on the order of O(nlog1.5) as shown in the 
subsequent section. 

ANALYSIS OF A AND A’ 
In this section, we give a simple analysis of the 
average value of A. A precise probabilistic 
analysis is given in Appendix. 
In order to analyze the average cost of A, we 
consider a ‘worse’ case that the trie is not 
compact, i.e., each edge is labeled with a single 
bit (instead of a bit string), which makes the 
analysis easier. In Figure 7(b), we show a non-
compact trie for a set of bit strings shown in 
Figure 7(a). 
 
 
 
 
 
 
For such a non-compact trie T, the searching of 
it against a bit string s = s[1]s[2] ... s[k] is 
performed in a similar way to a compact trie, but 
simpler: 
(i) Let v be the node encountered and s[i] be 

the position to be checked.  
(ii) If s[i] = 1, we move to the right child of v. 
(iii) If s[i] = 0, both the right and left child of v 

will be visited. 

In the following, we use cs(T) to represent the 
expected number of the edges visited when 
searching T against s. In addition, we use s’, s’’, 
s’’’, ... to designate the patterns obtained by 

{ } 
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Since 5 ∈ p1’ = {4, 5}, 
the searching along this edge 
Continues. 

Although 4 ∈ p1’ = {4, 5}, 
3 ∉ p2’ = {4, 5} and therefore 
the searching stops here. 

Since 4 ∈ p2’ = {4, 5} and 3 ∈ p3’ = {2, 3, 4, 5}, the searching shows that 
the prefix of the first suffix of t’ matches p’. 

Figure 6. Illustration for suffix searching
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circularly shifting the bits of s to the left by 1, 2, 
3, ... positions. 
Obviously, if the first bit of s is 0, we have, for 
the expected cost of a random string s, 
 cs(T) = 1 + cs’(T1) + cs’(T2), (1) 
where T1 and T2 represent the two subtrees of 
the root of T. See Figure 8 for illustration. 
 
 
 
 
It is because in this case, the search has to 
proceed in parallel along the two subtrees with s 
changing cyclically to s’. 
If the first bit in s is 1, we have 
 cs(T) = 1 + cs’(T2)  (2) 
since in this case the search proceeds only in T2. 
In order to get the expectation of cs(T), we make 
the following assumption. 
For each ti in t, each element in ti is taken from Σ 
with probability p = 1/2, independently from all 
the other tj’s and all the other elements in ti.  

Under this assumption, T1 and T2 will have 

almost the same size ⎥⎦
⎥

⎢⎣
⎢

2
N , where N is the 

number of the nodes in T. So (1) and (2) can be 
rewritten as follows: 

 cs(N) = 1 + 2cs’( ⎥⎦
⎥

⎢⎣
⎢

2
N ), (3) 

and  

 cs(N) = 1 + cs’( ⎥⎦
⎥

⎢⎣
⎢

2
N ). (4) 

From (3) and (4), we get the following 
recurrence equation: 

 cs(N) = 1 + 
2
3 cs’( ⎥⎦

⎥
⎢⎣
⎢

2
N ). (5) 

Solving the above recursion, we get 
 cs(N) = O(1.5logN) = O(Nlog1.5). (6) 
In terms of (6), we have the following 
proposition. 
Proposition 2. A is on the order of O(nlog1.5). 
Proof. The number of the nodes in trie(T) is 
bounded by O(kn). So the average value of A is 
 O((kn)log1.5) = O(nlog1.5). 
Since only O(nlog1.5) edges are visited on average 
when searching trie(T) against a b(pj) in p, the 
size of the set of all those ti’s that contain pj is on 
the order of O(nlog1.5), and so is A’. 

 

IMPROVEMENTS 
The above process can be significantly 
improved. 
For p, we can also generate a trie over b(pj)’s, 
denoted by trie(P), where P represents the 0-1 
matrix for p, which is constructed in the same 
way as T for t. But for ease of control, we will 
establish non-compact tries for both t and p as 
illustrated in Figure 9. 

 
 
 
 
 
 
 
 
We will search these two tries simultaneously 
with the above containment checking simulated. 

For this purpose, we will maintain a stack, stack, 
in which each entry is of the form {v, u} with v 
∈ trie(T) and u ∈ trie(P). During the process, 
each time we encounter a node v in trie(T) and a 
node u in trie(P), we will manipulate stack as 
below. 

i) Let v1 and v2 be two children of v with edge 
(v, v1) labeled by 0 and edge (v, v2) by 1; and 
u1 and u2 be two children of u with edge (u, 
u1) labeled by 0 and edge (u, u2) by 1; 

ii) Push three pairs {v2, u2}, {v2, u1}, and {v1, 
u1} (in the order specified) into stack. 

iii) If v is a leaf node, put the number associated 
with v into a set associated with u to record 
the fact the sets represented by v contain the 
sets represented by u. 

Below is the formal description of the algorithm. 
In the algorithm, the following two symbols are 
used: 

 num(v) - a number associated with a leaf 
node v in trie(T). 

 matching(u) - a sorted set (of integers) 
associated with a leaf node u in trie(P). Each 
integer in the set represents one or more sets 
in t, which contain the sets represented by u. 

Algorithm p-transformation(trie(T), trie(P)) 

begin 

1. v0 ← root of trie(T); u0 ← root of trie(P); 
2. push(stack, {v0, u0}); 
 (*push (v0, u0) into stack.*) 

0 

1 0 

T1 T2

v If s[i] = 0, move along both 
Edges labeled with 0 and 1. 

Figure 8. Illustration for trie searching 0 1 11
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3. while stack not empty do 
4. {{v, u} ← pop(stack); 
5. if v is a leaf node then 
  matching(u) ← matching(u) ∪ {num(v)}; 
6. else { 
7. let v1 and v2 be two children of v with 

(v, v1) labeled by 0 and (v, v2) by 1; 
8. let u1 and u2 be two children of u with 

(u, u1) labeled by 0 and (u, u2) by 1; 
9. push(stack, {v2, u2}); push(stack, {v2, 

u1}); push(stack, {v1, u1});} 
10.} 
end 

By the above algorithm, each pj in p will be 
transformed to a set of integers. Applying this 
algorithm to the tries shown in Figure 5(a) and 
(b), we will get the same result as shown in 
Figure 4(b). But we search trie(T) against only 
two paths instead of three. In addition, p1 and  p2 
are replaced with the same set {4, 5}. So we 
implement P’ as a pointer sequence with each 
pointer pointing to a set of integers. 

In general, for all those pj’s that share the same 
prefix, the prefix is checked only once, which 
enables us to save much time. 

The worse case time complexity C can be 
analyzed as follows. 

Each pair {v, u} generated during the process, v 
and u must be on the same level in trie(T) and 
trie(P), respectively. Let Nt be he numbers of 
different sets (ti’s) and Np the numbers of 
different sets (pj’s) in p. We have 
 C = ( ) ( )inuminum P

k

i
T ⋅∑

=1
 

  = NT⋅NP
( ) ( )

∑
= ⋅

⋅k

i PT

PT

NN
inuminum

1

 = O(kNt⋅Np), 

where numT(i) (numP(i)) represents the number 
of the nodes on level i in trie(T) (resp. in 
trie(P)). 
Now we analyze the average time of this 
algorithm. 
We simply use T and P to represent trie(T) and 
trie(P), respectively. Denote rootT the root of T 
and rootP the root of P. Let T1 be the left subtree 
of rootT and T2 the right subtree of rootT. Let P1 
be the left subtree of rootP and P2 the right 
subtree of rootP. Then, we have the following 
recurrence equations: 

C(T, P) = 1 + C(T1, P1) + C(T2, P1) + C(T2, P2), 

  (7) 

(*rootP has both the left and right child nodes.*) 

 C(T, P) = 1 + C(T1, P1) + C(T2, P1), (8) 

(*rootP has only the left node.*)   

 C(T, P) = 1 + C(T2, P2), (9) 

(*rootP has only the right child node.*) 

where C(T, P) represents the average number of 
the pairs (v, u) created during the process with v 
∈ T and u ∈ P. 

From the above equations, we get 

   C(n, m) = 1 + 2C( ⎥⎦
⎥

⎢⎣
⎢

2
N , ⎥⎦

⎥
⎢⎣
⎢

2
M ), (10) 

which leads to the following proposition. 

Proposition 3. C(n, m) ≤  nlog1.5mlog1.5. 
Proof. We prove the proposition by induction on 
n and m. 

Basic step. When n = 1 and m = 1, the 
proposition trivially holds. 

Induction step. Assume that the propsotion holds 
for a < n and b < m. That is, we have C(a, b) ≤  
alog1.5blog1.5 for any a < n and any b < m. Then, in 
terms of (10) and the induction hypothesis, we 
have 

 C(n, m) = 1 + 2C( ⎥⎦
⎥

⎢⎣
⎢

2
N , ⎥⎦

⎥
⎢⎣
⎢

2
M ) 

  ≤ (1/(nlog1.5mlog1.5) + 
  1/(2log1.52log1.5))nlog1.5mlog1.5 

  = (1/(nlog1.5mlog1.5) + 
   1/2.25))nlog1.5mlog1.5. 
For n ≥ 2 and m ≥ 2, 1/(nlog1.5mlog1.5) < 1/2.25. So 
C(n, m) ≤  nlog1.5mlog1.5. 
Proposition 3 shows that the average cost the 
algorithm p-transformation is on the order of 
O(nlog1.5mlog1.5). 

Probabilistical Analysis 
In terms of the analysis conducted in Section 3, 
we have the following two recurrences: 
 cs(T) = 1 + cs’(T1) + cs’(T2), (11) 
 cs(T) = 1 + cs’(T2) (12) 
where T1 and T2 represent the two subtrees of 
the root of T. 
Given N (N ≥ 2) random nodes in T, the 
probability that 
 |T1| = q, |T2| = N - q (13) 
can be estimated by the Bernoulli probabilities 
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Let cs, N denote the expected cost of searching a 
trie of size N against s. We have the following 
recurrences 
 if s starts with 0, 

  cs, N = 1 + ∑ ⎟⎟
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⎞
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q
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2 ,  N ≥ 2; (15) 
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q
qsN c

N
',12

1 ,  N ≥ 2. (16) 

Let λi = 1 if ith bit in s is 1, and λi = 2 if ith bit in 
s is 0. The above recurrence can be rewritten as 
follows 

 cs,N = 1 + ∑ ⎟⎟
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12
λ - δN,0 - δN,1, (17) 

where δN,j (j = 0, 1) is equal to 1 if N = j; 
otherwise equal to 0. 
Proposition 4. The exponential generating 
function of the average cost cs, N 
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satisfies the relation 
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Proof. In terms of equation (17), Cs(z) can be 
rewritten as follows 
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In the same way, we will get Cs’(z), Cs’’(z), ..., 
and so on. Concretely, we will have the 
following equations: 

  Cs(z) = λ1ez/2 ( )2'
z

sC  + ez - 1 - z, (21)  (11) 

  Cs’(z) = λ2ez/2 ( )2''
z

sC  + ez - 1 - z  

   ... ... 

  )1( −msC (z)= λmez/2 ( )2
z

sC  + ez - 1 - z. 

These equations can be solved by successive 
transportation. For instance, when we transport 
the expression of Cs’(z) given by the second 
equation in (11), we have 

 Cs(z) = a(z) + λ1ez/2 ( )2
za  +  (22) 

  λ1λ2ez/2
22/ze ( )22''

z
sC . 

where a(z) = ez - 1 - z. 

In a next step, we transport Cs’’’ into the equation 
given in (22). This kind of transformation 
continues until the relation is only on Cs itself. 
Then, we have 
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where k is the number of 1s in s. 

Let α = 2m-k,  β = 1 − m2
1 ,  λ  =  m2

1  and A(z) = 
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  Cs(z) = αeβzCs(λz) + A(z).  (24) 

This equation can be solved by iteration as 
discussed above: 
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Using Taylor formula to expand exp(z) and 
( )( )( )mjhmjhzexp

22
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22
1 11 +−  in Cs(z) given by the 

above sum, and then extract the Taylor 
coefficients, we get 
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where D00(n) = 1 and 

for j > 0 and h > 0, 

 Djh(n) = 1 - (1 - 2-mj-h)n - x2-mj-h(1 - 2-mj-h)n-1. (27) 



We notice that N ≤ min{n, 2k}. So cs,N = O(N0.5) 
≤ O(n0.5). This shows that the average time 
complexity of Algorithm Set-Matching is on the 
order of O(n + m⋅n0.5). 

In the following, we show how to evaluate cs,N.  

First, we define  

 φ(x) = ∑ ∑
−

= ≥

−
1

0 0

)(
21 )(2
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h j
jh

kmj
h nDλλλ L , (x ≥ 0) (28) 

Then, we perform the following computations to 
evaluate φ(x): 

(1) define the Mellin transformation of φ(x) ([8], 
p. 453): 

 φ*(σ) = dxxx 1

0
)( −

∞

∫ σφ . (29) 

(2) derive an expression for φ*(σ), which reveals 
some of its singularities. 

(3) evaluate the reversal Mellin transformation 

 φ(x) = ∫
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−
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i dx σσφ σ
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1  -1 < c < - )1( m
k−  (30) 

The integral (30) is evaluated by using Cauchy’s 
theorem as a sum of residues to the right of the 
vertical line {c + iy | y ∈ ℜ}, where ℜ represents 
the set of all real numbers. This compuation 
method was first proposed in [14] The following 
is just an extended explanation of it. 

Remember that Djh(x) = 1 - (1 - 2-mj-h)x - x2-mj-h(1 - 2-

mj-h)x-1. We rewrite it under the form 

 Djh(x) = 1 - jhxe α− - βjhx jhxe α−  (31) 

with αjh = - log(1 - 2-mj-h) and βjh = 2-mj-h(1 - 2-mj-h)-1. 

Now we consider the following expansion, 
which is valid for small values of x: 

 (- log(1 - x))-σ = x-σ(1 - 2
αx + O(|σ|2x2)). (32) 

Let x = 2-mj-h. Then, we have (by using the above 
expansion) 

 αjh = (- log(1 - 2-mj-h))-(-1) ~ (2mj+h).  (33) 

In addition, for small values 2-mj-h, we also have  

 βjh = 2-mj-h(1 - 2-mj-h)-1 = O(2-mj).  (34) 

Following the classical properties of Mellin 
transformation, we have the following 
proposition. 

Proposition 5. Denote Djh*(σ) the Mellin 
transformation of Djh(x). We have  
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  = - (αjh)-σΓ(σ) − βjh(αjh)-σ−1σΓ(σ) 

provided -1 < Re(σ) < 0, where Γ(σ) is the Euler 
Gamma function.  

Proof. The following formulas are well-known: 
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In terms of these formulas, we have 
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Now we try to evaluate the following two sums: 
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From (33) and (34), we can see that the two 
sums given by (40) are uniformly and absolutely 
convergent when σ is in the following stripe: 

 Stripe: -1 < Re(σ) < - (1 - m
k ). (41) 

Furthermore, in terms of (33) and (34), both 
ωh(σ) and υh(σ) can be approximated by the fol-
lowing sum: 
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When Re(σ) < σ0 = - (1 - m
k ), this series can be 

summed exactly: 
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Thus, φ*(σ) is defined in Stripe and can be 
computed as follows 
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From this, we can observe all the sigularities 
(poles), i.e., σ = 0, at which Γ(σ) is not defined; 
and all those values of σ, at which (1 - 

)( 02 σσ −m ) becomes 0: 

 σj = σ0 + 2log
2

m
ijπ , (j = 0, 1± ,  2± , ...) (45) 

To compute the integral in (21), we consider the 
following integral 

 φN(x) = dxx
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where LN is a rectangular contour oriented 
clockwise as shown in Figure 10. 
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where N is an integer. This contour is of a 
similar type used in ([9], p. 132). 

Let i
Nφ  be the integral along i

NL  (i = 1, 2, 3, 4). 

Then, )(xNφ = 1
Nφ (x) + 2
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Furthermore, we have the following results: 
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On the other hand, )(lim xNN
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∞→
can be evaluated as 

the sum of the residues of the integrand, i.e., 
φ*(σ)x-σ, inside LN. Concretely, we have 
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Within ∞L , φ*(σ) has the following poles: 

 α = 0, and 

 α = σj = σ0 + 2log
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The contribution of the pole α = 0 is O(1); and 
the contribution of α = σ0 is 

σ

σσ
φσσ −

→
− xx)(*)(lim 0

0

  (50) 

= ∑
−

=

Γ+− 1

0
212log

)()1( 0000 2
m

h

h
hmx σσσσ λλλ L . 

Finally, the contribution of each σj (j = 0, 1± ,  
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So we have  

 )(lim xNN
φ

∞→
  (52) 

= ∑
−

=

Γ+− 1

0
2log

)()1( 0000 2
m

h

h
mx σσσσ λλλL + 

∑∑
−

=

−

−∞=

− Γ+−
1

0
21

1

2
2 2)()1)(log(0

m

h

h
hj

j
jm

ij jxexpx σπσ λλλσσ L

 +

∑∑
−

=

+∞

=

− Γ+−
1

0
21

1
2

2 2)()1)(log(0
m

h

h
hj

j
jm

ij jxexpx σπσ λλλσσ L

= ∑
−

=

Γ+− 1

0
2log

)()1( 0000 2
m

h

h
mx σσσσ λλλL . 

From this, we know that  

 Cs,n = O( 0σ−n ) = O( m
k

n −1 ). (53) 
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CONCLUSION 
In this paper, a new algorithm for the subset-
matching problem is proposed. The main idea of 
the algorithm is to represent each set ti in the text 
string t as a single integer a and each set pj in the 
pattern string p as a set b of integers such that a 
∈ b if and only if pj ⊆ ti. This is done by 
constructing a trie structure over t. In this way, 
we transform the original problem into a 
different subset matching problem, which can be 
efficiently solved by generating a suffix tree 
over the new text string that has an integer at 
each position. In the worst case, the algorithm 
runs in O(n + l⋅m) time, where l is the number of 
different sets (ti’s) in t. But its average time 
complexity is O(n + m⋅nlog1.5). 
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