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Abstract 

 
By the DAG decomposition, we mean the decomposition of a directed acyclic graph G 

into a minimized set of node-disjoint chains, which cover all the nodes of G. For any two 

nodes u and v on a chain, if u is above v then there is a path from u to v in G. In this 

paper, we discuss an efficient algorithm for this problem. Its time complexity is bounded 

by O(max{,   } n2) while the best algorithm for this problem up to now needs O(n3) 

time, where n is the number of the nodes of G, and  is G’s width, defined to be the size 

of a largest node subset U of G such that for every pair of nodes x, y  U, there does not 

exist a path from x to y or from y to x.  is in general much smaller than n. In addition, by 

the existing algorithm, (n2) extra space (besides the space for G itself) is required to 

maintain the transitive closure of G to do the task while ours needs only O(n) extra 

space. This is particularly important for some nowadays applications with massive graphs 

including millions and even billions of nodes, like the facebook, twitter, and some other 

social networks.   

 

Keywords: Reachability queries; directed graphs; transitive closure; graph 

decomposition; chains. 

 

1 Introduction 

 
Directed graph (or digraph) data arise in many fields, especially in contemporary research 

on structures of social relationships [1,2]. A graph can be analyzed using either 

combinatorial graph-theoretic methods or by matrix representations such as the adjacency 

matrix. In the latter case, algebraic methods for analysis are available. In particular, the 

spectrum of the matrix associated with an undirected graph can be related to its structural 

properties [3,4]. Let G be a directed acyclic graph (a DAG for short). A chain cover of G 

is a set C of node-disjoint chains such that it covers all the nodes of G, and for any two 

nodes u and v on a chain p  C, if u is above v then there is a path from u to v in G. We 

discuss an efficient approach for finding a minimized C for G in this study. 
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Fig. 2. Illustration for transitive closure and index sequences 
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Fig. 1. Illustration for DAG decomposition 
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As an example, consider the DAG shown in Fig. 1(a). We can decompose it into a set of 

two chains, as shown in Fig. 1(b), which covers all the nodes of G. Fig. 1(c) shows 

another possible minimized decomposition. 
 

With the advent of the web technology, the efficient decomposition of a DAG G into a 

minimum set of chains becomes very important; especially, for the applications involving 

massive graphs such as social networks, for which we may quite often ask whether a 

node v is reachable from another node u through a path in G [5,6,7]. 
 

A naive method to answer such a query is to precompute the reachability between every 

pair of nodes in G(V, E) - in other words, to compute the transitive closure of G, which is 

also a directed graph G*(V, E*) with (v, u)  E* iff there is a path from v to u in G. (See 

Fig. 2(a) for illustration, in which we show the transitive closure of the graph shown in 

Fig. 1(a).) 
 

As it is well known, the transitive closure of G can be stored as a boolean matrix M such 

that M[i, j] = 1 if there is path from i to j; otherwise, M[i, j] = 0 [8]. Then, a reachability 

query can be answered in a constant time. However, this requires O(n2) space for storage, 

which makes it impractical for very large graphs, where n = |V|. Another method is to 

compute the shortest path from u to v over such a large graph on demand. Therefore, it 

needs only O(m) space, but with high query processing cost - O(m) time in the worst 

case, where m = |E|. However, if we are able to decompose a DAG into a minimum set of 

chains, we can effectively compress a transitive closure without increasing much query 

time, as described below. 
 

Let G be a directed graph. If it is cyclic (i.e., it contains cycles), we can first find all the 

strongly connected components (SCC) in linear time [9] and then collapse each of them 

into a representative node. Clearly, all of the nodes in an SCC are equivalent to its 

representative as far as reachability is concerned since each pair of nodes in an SCC are 

reachable from each other [10,11]. In this way, we transform G to a DAG. Next, we 

decompose the DAG into a minimum set C of node-disjoint chains. (Recall that if a node 

u appears above another node v on a chain, there is a path from u to v.) Denote |C| = . 

We will then 
 

(1) number each chain and number each node on a chain; and 

(2) use a pair (i, j) as an index for the jth node on the ith chain. 
 

Besides, each node u on a chain will be associated with an index sequence of the form: (r, 

jr) … (i, ji)  … (k, jk) (1  r  i  k  ) such that any node v with index (x, y) is a 

descendant of u iff there exists (x, jx) in the sequence with y  jx. (See Fig. 2(b) for 

illustration.) Such index sequences can be created as follows. 
 

First of all, we notice that we can associate each leaf node with an index sequence, which 

contains only one index, i.e., the index assigned to it. Clearly, such an index sequence is 

trivially sorted and its length is 1  . Let v be a non-leaf node with children v1, ..., vl each 

associated with an index sequence Li (1 i  l). Assume that |Li|   (1 i  l) and the 

indexes in each Li are sorted according to the first element in each index. We will create 

an index sequence L for v, which initially contains only the index assigned to it. Then, we 

will merge all Li’s into L one by one. To merge an Li into L, we will scan both L and Li 
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from left to right. Let (a1, b1) (from L) and (a2, b2) (from Li) be the index pairs currently 

encountered. We will perform the following checkings: 

 If a2 > a1, we go to the index next to (a1, b1) (in L) and compare it with (a2, b2) in 

a next step. 

 If a1 > a2, insert (a2, b2) just before (a1, b1) (in L). Go to the index next to (a2, b2) 

(in Li) and compare it with (a1, b1) in a next step. 

 If a1 = a2, we will compare b1 and b2. If b1 < b2, nothing will be done. If b2 < b1, 

replace b1 (in (a1, b1)) with b2. In both cases, we will go to the indexes next to (a1, 

b1) (in L) and (a2, b2) (in Li), respectively. 

 We will repeat the above three steps until either L or Li is exhausted. If when L is 

exhausted Li still has some remaining elements, append them at the end of L.  

 

Obviously, after all Li’s have been merged into L, the length of L is still bounded by the 

number . Denote by dv the outdegree of v. The time spent on this process is then 

bounded by O(     ) = O(nm), but the space overhead is only O(n). The query time 

remains O(1) if we store the index sequences as a matrix MG, as shown in Fig. 2(c), in 

which each entry MG(v, j) is the jth element in the index sequence associated with node v. 

So, a node u with index (i, j) is a descendant of node v iff MG(v, i)  j. In practise,  is in 

general much smaller than n. In this sense, G* is effectively compressed based on a 

minimized decomposition of G. 

 

The problem to decompose a DAG is also heavily related to another theoretical problem: 

the decomposition of partially ordered sets (or posets for short) S = (S, ≻) into a 

minimum set of chains, where S is a set of elements and ≻ is a reflexive, transitive, and 

antisymmetric relation over the elements. We can represent any poset S as a DAG G, 

where each node stands for an element in S and each arc u  v for a relation. Obviously, 

all the transitive relations in S can be represented by the transitive closure G* of G. 

According to Dilworth [12], the size of a minimum decomposition equals the size of a 

maximum antichain U, which is a subset of elements such that for each two elements a, c 

 U, a ⊁ c and c ⊁ a. Furthermore, by using the Fulkerson’s method [13], a minimum set 

of chains can be found in O(n3) time as follows: 

 

i) Construct the transitive closure G* of G representing S = (S, ≻). 

ii) Let S = {a1, a2, ..., an}. Construct a bipartite graph GS with bipartite (V1, V2), 

where V1 = {x1, x2, ..., xn}, V2 = {y1, y2, ..., yn} and an edge joins xi  V1 to yj  V2 

whenever ai   aj  G*. 

iii) Find a maximal matching M of GS. Then, for any two edges e1, e2  M, if e1 = (xi, 

yk) and e2 = (xk, yj), connect e1 to e2 (by identifying yk with xk.) 

 

According to Fulkerson [13], the number of chains constructed as described above is n - 

|M|. It must be minimum since in terms of König’s theorem ([14], page 180), the size of a 

maximum antichain U of S is also n - |M| and we are not able to place any two elements 

in U on a same chain. Thus, we have  = |U|, referred to as the width of G (or S). 

 

See Fig. 3 for illustration. 
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In Fig. 3(a), we show the bipartite graph constructed for the transitive closure of the 

graph shown in Fig. 1(a). Fig. 3(b) shows one possible maximal matchings M of that 

bipartite graph, whose size is 4. From M we can establish a set of 2 chains by applying 

step (iii) shown above (see Fig. 3(c).) An interested reader could try to construct a 

bipartite graph over G, instead of G*. Applying step (iii) above to the corresponding 

bipartite graph cannot generate a minimized set of chains. 

 

The dominant cost of the above process is obviously the time and space for constructing 

G*. They are bounded by O(n3) and O(n2), respectively [15]. However, using the 

algorithm proposed by Hopcroft and Karp [16], M can be found in O(e  ) time, where e 

is the number of the arcs in G*, bounded by O(n2). 

 

In [17], Jagadish discussed an algorithm for finding a minimum set of node-disjoint paths 

that cover a directed acyclic graph G by transforming the problem to a min network flow 

[18-21,22,23]. Its time complexity is bounded by O(nm). However, a chain is in general 

not a path. For any pair of nodes u and v on a chain, we only require that if u appears 

above v, there is a path from u to v. So, the number of paths found by the method 

discussed in [17] is generally much larger than the minimal number of node-disjoint 

chains. However, if we apply the Jagadish’s method to G*, we can get a minimized set of 

chains of G. But again, O(n3) time and O(n2) space are required to construct G*. 

 

The method discussed in [21] is also to decompose a DAG into node-disjoint chains. It 

runs in O(n2.5) time. However, the decomposition found is not minimum. Our earlier 

algorithm [24] works for the same purpose. Its time complexity is bounded by O(k1.5n), 

where k is the number of the chains, into which a DAG is decomposed. But in some cases 

it fails to find a minimum set of chains since when generating chains, only part of 

reachability information is considered. This problem is removed by [25] and [26] both 

with the same time complexity O(n2). However, in the method discussed in [25] each 

node is associated with a large data structure and requires O(n2) space in the worst case. 

By Chen and Chen [26], the generated chains may contain some newly created nodes, but 

how to remove such nodes are not discussed at all. 

 

Different from the above strategies, the algorithm discussed in Felsner and Wernisch [27] 

is to find a maximum k-chain in a planar point set M  N  N, where N = {0, 1, ..., n - 1} 

and  is defined by establishing (i’, j’) ≻ (i, j) iff i’ > i and j’ > j. So M is a special kind of 

posets. A k-chain is a subset of M that can be covered by k chains. The time complexity 

of this algorithm is bounded by O((n2/k)/logn). The algorithms discussed in Lou and 

Sarrafzadeh [28] and Goeman [29] are to find a maximum 2-chain and 1-chain in M, 

respectively. [28] needs (nlogn) time while [29] needs only O(pn) time, where p is the 

length of the longest chain.  

 

In this paper, we propose an efficient algorithm to find a minimum set of chains for G. It 

runs in O(n2) time and in O(n) space while the best algorithm for this problem needs 

O(n3) time and O(n2) space.  

 

The remainder of the paper is organized as follows. In Section 2, we discuss an algorithm 

to stratify a DAG into different levels and review some concepts related to bipartite 

graphs, on which our method is based. Section 3 is devoted to the description of our 
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algorithm to decompose a DAG into chains, as well as the analysis of its computational 

complexities. In Section 4, we prove the correctness of the algorithm. Finally, a short 

conclusion is set forth in Section 5. 

 

2 Graph Stratification and Bipartite Graphs 

 
Our method is based on a DAG stratification strategy and an algorithm for finding a 

maximal matching in a bipartite graph. Therefore, the relevant concepts and techniques 

should be first reviewed and discussed. 

 

2.1 Stratification of DAGs  

 
We first discuss the DAG stratification. 

 

Definition 1 Let G(V, E) be a DAG. We decompose V into subsets V0, V1, ..., Vh such that 

V = V0  V1  ...  Vh and each node in Vi has its children appearing only in Vi-1, ..., V0 (i 

= 1, ..., h), where h is the height of G, i.e., the length of the longest path in G.   

 

For each node v in Vi, we say, its level is i, denoted level(v) = i. We also use Cj(v) (j < i) 

to represent a set of links which start from v to all those v’s children, which appear in Vj. 

Therefore, for each v in Vi, there exist i1, ..., ik (il < i, l = 1, ..., k) such that the set of its 

children equals         ...        . Let Vi = {v1, v2, ..., vl}. We use   
  (j < i) to 

represent Cj(v1)  ...  Cj(vl). 
 

Such a DAG decomposition can be done in O(m) time by using the following algorithm, 

in which we use G1\G2 to stand for a graph obtained by deleting the arcs of G2 from G1; 

and G1  G2 for a graph obtained by adding the arcs of G1 and G2 together. In addition, 

din(v) and dout(v) represent v’s indegree and v’s outdegree, respectively. 
 

ALGORITHM 1. GraphStra(G) 

Begin 

1. V0 := all the nodes with no outgoing arcs; i := 0; 

2. W := all the nodes that have at least one child in V0; 

3. while W   do 

4. { for each node v in W do 

5.  { let v1, ..., vk be v’s children appearing in Vi; 

6.  Ci(v) := {v1, ..., vk}; (*Here, for simplicity, we use vj to represent a link from v 

to vj.*) 

7.   if dout(v) > k then remove v from W; 

8.   G := G\{v  v1, ..., v  vk}; 

9.   dout(v) := dout(v) - k; 

10.  } 

11.  Vi+1 := W; i := i + 1; 

12.  W := all the nodes that have at least one child in Vi; 

13. } 

end  
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In the above algorithm, we first determine V0, which contains all those nodes having no 

outgoing arcs (see line 1). In the subsequent computation, we determine V1, ..., Vh. In this 

process, G is reduced step by step (see line 8), so is dout(v) for any v  G (see line 9). In 

order to determine Vi (i > 0), we will first find all those nodes that have at least one child 

in Vi-1, which are stored in a temporary variable W. For each node v in W (see line 3), we 

will then check whether it also has some other children not appearing in Vi-1, which is 

done by checking whether dout(v) > k in line 7, where k is the number of v’s children in Vi-

1. If it is the case, it will be removed from W since it cannot belong to Vi. Concerning the 

correctness of the algorithm, we have the following proposition. 

 

Proposition 1 Let G0 = G. Denote by Gj the reduced graph after the jth iteration of the 

out-most for-loop. Denote by 
j
outd (v) the outdegree of v in Gj. Then, any node v in Gj 

does not have children appearing in V0  ...  Vj-1, where V0 contains all those nodes 

having no outgoing arcs, and for any v  Vi (i = 1, ..., j - 1) 
i
outd (v) = 0 while 

1-i
outd (v)  

0, ..., 
0
outd (v)  0. 

 

Proof. We prove the proposition by induction on j. 

 

Basic step. When j = 1, the proposition trivially holds. 

 

Induction hypothesis. Assume that when j = l, the proposition holds. Then, we have 

 

(1) Gl = G\(   
1

0



 








l

i Gv
i vC ), and  

(2) l
outd (v) = dout(v) -  





1

0

l

i
i vC . 

 

Now we consider the case of j = l + 1. From lines 8 and 9, as well as the induction 

hypothesis, we immediately get 

 

(3) Gl+1 = G\(   
l

i Gv
i vC

0 









), and 

(4) 1l
outd (v) = dout(v) -  



l

i
i vC

0

. 

 

From (3) and (4), and also from lines 7 and 11, we can see that for any node v  Vl+1 we 

have 
1l

outd (v) = 0 while     
 (v)  0, ...,     

 (v)  0.   

 

From the proof of Proposition 1, we can see that 
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 to check whether a node v in Gj belongs to Vj+1, we need only to check whether 

    
 

(v) is strictly larger than |Cj(v)| (see line 7), which requires a constant time; and 

 G is correctly stratified. 

 

Since each arc is accessed only once in the process, the time complexity of the algorithm 

in bounded by O(m). 

 

As an example, consider the graph shown in Fig. 4(a). Applying the above                    

algorithm to this graph, we will generate a stratification of the nodes as shown in                 

Fig. 4(b). 

 

In Fig. 4(b), the nodes of the DAG shown in Fig. 4(a) are divided into three levels: V0 = 

{a, b, c, d, e}, V1 = {f, g, h}, and V2 = {i, j, k, l}. Associated with each node at each level 

is a set of links pointing to its children at different levels. For example, node g in V1 is 

associated with three links respectively to nodes b, c, and d in V0, denoted as C0(g) = {b, 

c, d}. (For simplicity, we use C0(g) = {b, c, d} to represent three links from g to b, c, and 

d, respectively.) 

 

2.2 Concepts of bipartite graphs 

 
Now we restate two concepts from the graph theory which will be used in the subsequent 

discussion. 

 

Definition 2 (bipartite graph [14]) An undirected graph B(V, E) is bipartite if the node 

set V can be partitioned into two sets T and S in such a way that no two nodes from the 

same set are adjacent. We also denote such a graph as B(T, S; E).  

 

For any node v  B, neighbor(v) represents a set containing all the nodes connected            

to v. 

 

Definition 3 (matching [14]) Let B(V, E) be a bipartite graph. A subset of edges E′  E is 

called a matching if no two edges in E′ have a common end node. A matching with the 

largest possible number of edges is called a maximal matching, denoted as MB (or simply 

M if B is clear from context.)  

 

Let M be a matching of a bipartite graph B(T, S; E). A node v is said to be covered by M, 

if some edge of M is incident to v. We will also call an uncovered node free. A path or 

cycle is alternating, relative to M, if its edges are alternately in E\M and M. A path is an 

augmenting path if it is an alternating path with free origin and terminus. Let v1 ― v2 ― 

... ― vk be an alternating path with (vi, vi+1)  E\M and (vi+1, vi+2)  M (i = 1, 3, ...). By 

transferring the edges on the path, we change it to another alternating path with (vi, vi+1) 

 M and (vi+1, vi+2)  E\M (i = 1, 3, ...). In addition, we will use M(T) and M(S) to 

represent all the free nodes in T and S, respectively; and use M(T) for all the covered 

nodes in T and M(S) for all the covered nodes in S. Finally, if (u, v)  M, we say, u 

covers v with respect to M, and vice versa, denoted as M(u) = v, and M(v) = u, 

respectively. 
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In addition, we call an alternating path an -segment if it starts and ends both at a 

covered edge, and a -segment if it starts and ends both at a non-covered edge.  

 

Much research on finding a maximal matching in a bipartite graph has been done. The 

best algorithm for this task is due to Hopcroft and Karp [16] and runs in O(  m) time, 

where n = |V| and m = |E|. The algorithm proposed by Alt, Blum, Melhorn and Paul [30] 

needs O(n1.5          ) time. In the case of large m, the latter is better than the former. 

 

3 Algorithm Description 

 
In this section, we describe our algorithm for the DAG decomposition. The main idea 

behind it is to construct a series of bipartite graphs for G(V, E) based on the graph 

stratification and then find a maximum matching for each of such bipartite graphs using 

the Hopcroft-Karp algorithm [16]. All these matchings make up a set of node-disjoint 

chains, which, however, may not be minimal. In the following, we first discuss an 

example to illustrate this idea in 3.1. Then, in 3.2, we define the so-called virtual nodes, 

and show how they can be used to efficiently and effectively reduce the number of node-

disjoint chains. Next, in 3.3, we discuss how the virtual nodes can be resolved (removed) 

from created chains to get the final result. 

 

3.1 An example 

 
Example 1 Consider the graph and the corresponding stratification shown in Fig. 4. A 

bipartite graph made up of V0 and V1: B(V1, V0; E1) with E1 = 
1
0C is shown in Fig. 5(a) 

and a possible maximal matching M1 of it is shown in Fig. 5(b). 

 

Another bipartite graph made up of V1 and V2: B(V2, V1; E2) with E2 = 
2
1C  is shown in 

Fig. 5(c) and a possible maximal matching M2 of it is shown in Fig. 5(d). 

 

Combining M1 and M2 by connecting their edges, we will get a set of seven chains, 

denoted by M1    M2 and shown in Fig. 6(a). (Note that four of these chains each contain 

only a single node.) 

 

However, if we transfer the edges on an alternating path relative to M1: b ― g ― d ― h 

― e (see Fig. 6(b), where a solid edge represents an edge belonging to M1 while a dashed 

edge to E1\M1); and connect l (or k) to b as illustrated in Fig. 6(c), we will get a set of six 

chains as shown in Fig. 6(d). (Note that l and b are on a chain since there exists a path l 

― g ― b, which connects l and b.)  

 

The question is how to efficiently find such a possible transformation to reduce the 

number of chains. 
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Fig. 6. Illustration for transferring edges on alternating paths 
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For this purpose, we introduce the concept of virtual nodes, in the next subsection, to 

transfer the reachability information and at the same time to maintain the information on 

how a transformation can be conducted. 

 

3.2 Chain generation 

 
From the above example, we can see that by simply combining maximal matchings of 

bipartite graphs, the number of formed chains may be larger than the minimized number 

of chains. To solve this problem, we need to introduce some virtual nodes into the 

original graph, which are used to transfer the reachability information from lower levels 

to higher levels. 

 

3.2.1 Basic idea: virtual nodes 

 

We will work bottom-up. During the process, some virtual nodes may be added to Vi (i = 

1, ..., h - 1) level by level. However, such virtual nodes will be eventually resolved to 

obtain the final result. 

 

In the following, we first give a formal definition of virtual nodes. Then, we describe how 

a virtual node is established. We start our discussion with the following specification: 

 

V0′ = V0. 

Vi′ = Vi  {virtual nodes added to Vi} for 1  i  h - 1. 

Ci =     
   {all the new arcs from the nodes in Vi to the virtual nodes added to Vi-1′} for 

1  i  h - 1. 

B(Vi, Vi-1′; Ci) - the bipartite graph containing Vi and Vi-1′. 

Mi - a maximal matching of B(Vi, Vi-1′; Ci). 

 

Definition 4 (virtual nodes) Let G(V, E) be a DAG, divided into V0, ..., Vh (i.e., V = V0  

...  Vh). Let Mi be a maximal matching of B(Vi, Vi-1′; Ci) for i = 1, …, h. For each free 

node v in Vi-1′ with respect to Mi, a virtual node v′ created for v is a new node added to Vi 

(1  i  h - 1), denoted as v = s(v′).  

 

The goal of virtual nodes is to establish the connection between the free nodes (with 

respect to a certain maximum matching of a bipartite graph) and the nodes that may be 

several levels apart. Therefore, for each virtual node v′ (created for v in Vi-1′ and added to 

Vi), a bunch of virtual arcs incident to it should be created. Especially, we distinguish 

among four kinds of virtual arcs, which are created in different ways:  

 

alternating arc - If there exist a covered node w  Vi-1′ (relative to Mi) such that one of 

v’s parents is connected to w through an -segment in B(Vi, Vi-1′; Ci), and u  Vj (j > i) 

such that one of the two conditions holds: 

 

- u  w  E, or 

- there is a node w′  Vi such that u  w′  E and w′  w  Ci, 
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add u  v′ if it has not been created as an inherited or a transitive arc. It is referred to as 

an alternating arc of the first kind. We create such an arc to indicate a possibility to make 

v covered by transferring the edges on the corresponding alternating path from v to w, and 

then connect u and w (see Fig. 6(b) and (c) for illustration.)  
 

In addition, a virtual arc from v′ to s(v′) is generated to record the relationship between v′ 

and s(v′).    
 

Example 2 Continued with Example 1. Relative to M1 of B(V1, V0; E1) shown in          

Fig. 5(b), c and e are two free nodes. Then, two virtual nodes c′ and e′ (for c and e, 

respectively) will be created and added to V1. Then, we have V1′ = {f, g, h, c′, e′}. In 

addition, eight virtual arcs: i  c′, i  e′, j  c′, j  e′, k  c′, k  e′, l  c′, and l  e′ 

will be generated, shown as eight dashed arcs in Fig. 7(a). 

 

Among these virtual arcs, k  c′ is an inherited arc since in the original graph we have k 

 c (see Fig. 4(a)). But j  c′, l  c′,  and i  e′ are three transitive arcs since c is 

reachable respectively from j and l through g in V1, and e is reachable from i through f in 

V1. (see Fig. 4(a)). 
 

Finally, j  e′, k  c′ and l  c′ are three alternating arcs of the first kind, and i  c′  is 

an alternating arcs of the second kind. We join j and e′ since there is a node b that is 

connected to e’s parent h through an -segment: b ― g ― d ― h (in B(V1, V0, E1), see 

Fig. 6(b)) and f is reachable from d in G through a node e (in V1) (see Fig. 4(a).) For the 

same reason, we join k and c′, and l and c′. 

 

In Fig. 7(b), we show a possible maximum matching M2 of B(V2, V1′; C2). Combining M2 

and M1, we get a set of six chains as shown in Fig. 7(c).  
 

On these chains, the virtual nodes j′ and k′ can be simply removed since they do not have 

a parent along the corresponding chains. In order to remove i′, however, we have to 

transfer the edges on the alternating path: f ― e ― c ― b ― i and then connect g and f, 

obtaining the final chains shown in Fig. 6(d). We can also transfer the edges on c ― b ― 

i and then connect g and c to get a different set of six chains. 
 

We will call an arc along a chain a chain arc. From the above example, we can see that 

how a virtual node is resolved depends on how it is connected to its parent through a 

chain arc. Especially, an alternating arc in fact does not represent a reachability, but 

indicates a possibility to connect two nodes by transferring edges along some alternating 

path. Thus, we need to label virtual arcs to represent their properties, and at the same time 

indicate at what level a virtual node is added. Let v′ be a virtual node. Depending on 

whether its source s(v′) is an actual node or a virtual node itself, we label the virtual arcs 

incident to v′ in two different ways. 
 

Assume that s(v′) is an actual node in Vi-1. Then, v′ is a virtual node added to Vi and an 

virtual arc incident to v′: u  v′ with u  Vj (j > i) will be labeled as follows: 
 

i) If u  v′ is inherited or transitive, its label label(u  v′) will be set to 0, indicating 

that s(v′) is reachable from u (through a path in G). 

ii) If u  v′ is an alternating arc, label(u  v′) will be set to i, indicating that to 

resolve v′ we need to transfer edges along an alternating path in B(Vi, Vi-1′; Ci). 
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If s(v′) itself is a virtual node, we need to label u  v′ a little bit differently: 

iii) If u  v′ is inherited, the label for it is set to be the same as label(u  s(v′)). 

iv) If u  v′ is transitive, there must exist w1, ... wk (k  1) in Vi such that w1  s(v′), 

..., wk  s(v′)  Ci and u  w1, ..., u  wk  E. We will label u  v′ with min{l1, 

..., lk}, where lj = label(wj  s(v′)) (j = 1, ..., k). 

v) If u  v′ is an alternating arc, label(u  v′) is set to i (in the same way as (ii)).  

 

In addition, for convenience, all the original arcs in G are considered to be labeled with 0. 

 

In the whole process, we will not only create a set of chain which may contain virtual 

nodes, but also a new graph by adding virtual nodes and virtual arcs to G, called a 

companion graph of G, denoted as Gc, which will be used for resolution of virtual nodes. 

 

Example 3 Consider the graph shown in Fig. 8(a). This graph can be divided into five 

levels as shown in Fig. 8(b). 

 

In Fig. 9(a), we show the bipartite graph B(V1, V0; C1) made up of the first two levels. A 

possible maximal matching M1 of it is shown in Fig. 9(b). Relative to M1, c, e and z are 

three free nodes in V0. So three virtual nodes c′, e′ and z′ will be created and added to V1. 

At the same time, 15 arcs will be created. as shown in Fig. 9(c).  

 

Among them, there are four transitive arcs: t  e′, t  z′,  i  e′, i  z′; six alternating 

arcs of the first kind: j  c′, j  e′,  k  c′, k  e′, l  c′, l  e′; and five alternating 

arcs of the second kind: t  c′, i  c′,  j  z′, k  z′, l  z′. 

 

We have the transitive arc t  e′ since e is reachable from t in G through a node f in V1. 

The same claim applies to the other three transitive arcs.  

 

The alternating arc of the first kind: j  c′ is created since there is an alternating path c – 

x – y – g – b in B(V1, V0; C1) and b is reachable from j in G. In a similar way, we can 

analyze all the other five alternating arcs of the first kind. The alternating arc of the 

second kind: t  c′ is due to the following facts: 

 

- Free node c is on an alternating path P1 = c – x – y – g – b covered by another 

alternating path P2 =  e – h – d – x – y – g – b, which connects e and b, and 

- e is reachable from t in G.    
 

It is possible to transfer the edges on P2 and then connect k (or l) to b to make e covered, 

which will, however, prevent c from being covered. But we can connect t to e and leave 

the chance for c to be covered along P1. The virtual arc t  c′ is created to represent this 

possibility. 
 

Thus, V1′ = {c′, e′, z′, g, x, h, f}. B(V2, V1′; C2) is shown in Fig. 9(d). Assume that the 

maximal matching M2 found for it is as shown in Fig. 9(e), and M3 for B(V3, V2′; C3) and 

M4 for B(V4, V3′; C4) are as shown in Fig. 9(f) and 9(g), respectively. By combining M1, 

M2, M3 and M4, we get M1     M2    M3    M4. This plus all the free nodes in V4 make up a 

set of eight chains as shown in Fig. 10(a), and one of them contains only a single node. 
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Fig. 8. A DAG and its stratification 
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Fig. 7. Illustration for virtual nodes and chains containing virtual nodes 

 

 

 

 

 

 

(b) (a) (c) 

V2: 

V1’: 

k 

g f h 

j 

c’ e’ 

l i M2: k 

g f h 

j 

c’ e’ 

l i 

e a b c d 

k 

g f h 

j 

c’ e’ 

l i 



 

 

 

Research and Applications Towards Mathematics and Computer Science Vol. 1 

On the DAG Decomposition into Minimum Number of Chains 

 

 

 

 
136 

 

 
 

 

(a) 
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Fig. 11. Illustration for alternating graphs 
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We can simply connect t and z′ since t  z′ is a transitive arc. We can also transfer the 

edges on P1 and then connect k and b as shown in Fig. 10(b). After that, removing e′ will 

leave l and e disconnected, resulting in a set of nine chains. It is not minimum. In        

Fig. 10(c), we show a possible decomposition of eight chains. In the next subsection, we 

discuss how the problem can be figured out. 

 

3.2.2 General algorithm for chain generation 

 

To solve the above problem, we need to slightly modify the working process. First, we 

introduce a new concept. 

 

Definition 5 (alternating graph) Let B(T, S; E) be a bipartite graph. Let M be a matching 

of B(T, S; E). The alternating graph B


 with respect to M is a directed graph with the 

following sets of nodes and arcs: 

 

 V


 = V( B


) = T  S, and 

 E


 = E( B


) = {u  v | u  S, v  T, and (u, v)  M}  

  {v  u | u  S, v  T, and (u, v)  E\M}.  

 

In Fig. 11(a), we show the alternating graph 1B


 with respect to M1 for B(V1, V0, C1) 

shown in Fig. 9(a). Assume that the maximum matching M2 for B(V2, V1, C2) is                       

as shown in Fig. 11(b), the corresponding alternating graph is a graph shown in                     

Fig. 11(c). 

 

Next, we will combine two consecutive alternating graphs iB


 = B


(Vi′, Vi-1′; Ci) and 

1iB


 = B


(Vi+1, Vi′; Ci+1), denoted as iB

 1iB


, by connecting each node in Vi+1 to all its 

reachable nodes in Vi-1′. In Fig. 12(a), we show 1B


  2B


 for the graph shown in                    

Fig. 8(a). 

 

What we want is to find a maximum set S of node-disjoint paths in iB


  1iB


, each 

starting from a free node u relative to Mi+1 in Vi+1, and ending at a free node v                    

relative to Mi in Vi-1′, Let P be such a path which can always be divided into two                    

parts: P′ and P′′ such that P′ contains only the nodes in Vi+1 while P′′ contains                        

only the nodes in Vi-1′. We will create a virtual node v´ for v, connect it to the last node on 

P′, and then transfer the edges on P′. However, for each free node (in Vi-1′) not appearing 

on such a path, its virtual node will be added to Vi+1, for which only inherited and 

transitive arcs, as well as a new kind of virtual arcs, called supplementary arcs will be 

created. 

 

supplementary arc – Let v´ be a virtual node created for v in Vi-1′ and added to Vi+1. If 

there exist a free node w  Vi-1′ (relative to Mi) and a node u  Vj (j > i) such that one of 
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v’s parents is connected to w through a -segment in B(Vi′, Vi-1′; Ci), satisfying one of the 

following two conditions: 

 

- u  w  E, or 

- there is an alternating path in    (Vi′, Vi-1′; Ci), which does not go through any node in 

S, but connects w to a node w′  Vi-1′ such that w′ is reachable from u, 

 

add u  v′ if it has not been created as an inherited or a transitive arc. label(u  v′)  is 

set to be i, same as an alternating arc incident to a virtual node added to Vi′. We create 

such an arc to resolve the conflict among free nodes in the case that they share a same 

alternating path P to a certain node. In this case, one free node, for example, node w can 

get covered by transferring the edges on P. But some other free node v which shares P 

with w may still get covered along P if it is possible to make w covered along a different 

alternating path, as demonstrated in the following example concerning            shown in 

Fig. 11(a), in which we can find a maximum set of two paths: P1 = l  b  g  y  x 

 d  h  e and P2 = t  z as shown in Fig. 11(b). Then, we add two virtual node e 

and z to V1 and a virtual node c to V2. Especially, P1 can be divided into P1  = l and P1  

= b  g  y  x  d  h  e; and P2 into P2  = t and P2  = z. So e will be connected 

to l according to P1, and z will be connected to t according to P2. Furthermore, c will be 

connected to m and q for the following reason: 

 

- there is a free node e in V1 which is connected to c’s parent x through a -segment: x 

– d – h – e, and  

- e is reachable from both m and q in G. 

 

See Fig. 13(a) for illustration. 

 

In a next step, we will consider V1′, V2′, V3 and determine new virtual nodes to be added 

to V2′ and V3, by which any node in V1′, which does not have parents needn’t be 

considered. Assume that the maximum matching M2 found for B(V2, V1; C2) is as shown 

in Fig. 10(b). With virtual nodes e′ and z′ added, M2 is extended as illustrated in           

Fig. 13(b). There is no free node in V1′ relative to M2, and thus no new virtual nodes will 

be added to V2′. Finally, we will consider V2′, V3′, V4. Assume that the maximum 

matching M3 found for B(V3, V2′; C3) is as shown in Fig. 13(c). Then, c´ is a free node in 

V2′ relative to M3. Further, assume that the maximum matching M4 found for B(V4, V3′; 

C4) is as shown in Fig. 13(d). A maximum set of node-disjoint paths in            shown 

contains only one path: P = s  p  r  o  q  i  m  c′, which can be divided 

into P′ = s  p  r  o  q and P′′ = i  m  c′. So the virtual node c′′ created for c′ 

will be connected to q, as demonstrated in Fig. 13(e). (We notice that t does not have 

parents and therefore no virtual node for it will be generated.) Transferring edges on P′, 

we will change M4 to a matching as shown in Fig. 14(a), and the final chains M1    M2    

M3    M4 is as shown in Fig. 14. 
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Fig. 12. Illustration for combined graphs and node-disjoint paths 
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Fig. 13. Illustration for generation of virtual nodes 
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Fig. 14. Illustration for generation of virtual nodes 
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According to the above discussion, we design a process, denoted as VirtualGen(Vi-1′, Vi′, 

Vi+1, Mi), conducting the following task: 

 

1. It takes Vi-1′, Vi′, Vi+1, Mi as the input. 

2. Find Mi+1 and form             . Find a maximum set of node-disjoint paths in       

      , each starting from a free node u relative to Mi+1 in Vi+1, and ending at a free 

node v relative to Mi in Vi-1′. For each free node in Vi-1′ appearing on a path in this 

set, the created virtual node v is added to Vi′. For each free node in Vi-1′ not 

appearing on a path in this set, the created virtual node v  is added to Vi+1. Create 

virtual arcs as described above. 

3. Mi+1 is used as the output of the process. 

 

Based on this process, the general algorithm for the chain generation can be formally 

described as below.  

 

ALGORITHM 2. GenChain(stratification of G) 

input: a graph stratification. 

output: a set of chains which may contain virtual nodes. 

begin 

1. V0 := V0; V1 := V1; 

2. find M1 for B(V1, V0; C1); 

3. for i = 1 to h - 1 do 

4. {Mi+1 = VirtualGen(Vi-1′, Vi′, Vi+1, Mi); } 

5. M := M1    ...    Mh; 

6. return M;   

end  

 

In the above algorithm, special attention should be paid to lines 1 - 2, by which the input 

for first call of VirtualGen( ) is prepared. In the main for-loop, the input for a next call of 

VirtualGen( ) is produced in the execution of the previous call of VirtualGen( ).  

 

We also notice that at any point in time only the virtual nodes at the current level and the 

level just lower than the current are associated with supplementary arcs according to the 

following analysis. 

 

Before the execution of VirtualGen(Vi-1′, Vi′, Vi+1, Mi), we may have some virtual nodes 

in Vi′, which may be associated with supplementary arcs. During the execution of 

VirtualGen(Vi-1′, Vi′, Vi+1, Mi), we may continually add some more virtual nodes to both 

Vi′ and Vi+1, and the virtual nodes added to Vi+1 may be incident to supplementary arcs. 

However, when executing VirtualGen(Vi′, Vi+1′, Vi+2, Mi+1), any the virtual node in Vi′ will 

become covered, or be promoted to Vi+2.  

 

So, the number of virtual arcs maintained in the process is bounded by O(n) since the 

number of supplementary arcs incident to a virtual node is bounded by O(n). 
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It remains to show how to find a maximal set of node-disjoint paths in iB

 1iB


. For 

this purpose, we define a maximum flow problem over iB

 1iB


, (with multiple sources 

and sinks) as follows: 

 

 Each free node in Vi+1 in Bi+1 is designated as a source. Each free node in Vi-1′ in 

Bi is designated as a sink. 

 Each arc u  v is associated with a capacity c(u, v) = 1. (If nodes u, v are not 

connected, c(u, v) is considered to be 0.) 

 

It is a typical 0-1 network. Finding a maximum flow corresponds to finding a maximum 

set of node-disjoint paths. 

 

3.2.3 Computational complexity of chain generation 

 

We now analyze the time complexity of the chain generation. In general, the cost of this 

process can be divided into two parts: 

 

- cost1: the time for finding a maximal matching of every B(Vi, Vi-1′; Ci) (i = 1, ..., h; 

V0′ = V0); and 

- cost2: the time for generating virtual arcs.  

 

We first prove three lemmas to show that for any i  h - 1} |Vi′|  . 

 

Let M be a maximal matching of a bipartite graph B(V1, V0; E). Let Yi (i = 0, 1) be a 

subset of Vi. We denote by M(Yi) (i = 0, 1) a subset of V(i+1)mod2 such that for each v  

M(Yi) there exists a node u in Yi with (u, v)  M. We further divide M into three (possibly 

empty) groups: M[1], M[2], and M[3] = M\(M[1]  M[2]) such that 

 

- for each v M[1](V1), there exists at least one alternating path connecting a free node 

in M(V0) to v; (remember that M(Vi) stands for all the free nodes in Vi relative to M 

while M(Vi) for all the covered nodes in Vi by M. So M[1](Vi) represents all those 

nodes in Vi covered by M[1].) 

- for each v  M[2](V0), there exists at least one alternating path connecting a free 

node in M(V1) to v; 

- for each v M[3](V0), there exists no alternating path connecting it to any node in 

M(V1)  M[2](V1); and for each u M[3](V1), there exists no alternating path 

connecting it to any node in M(V0)  M[1](V0). 

 

Concerning this partition of M, we have the following lemma. 

 

Lemma 1 Any node in M[1](V0) does not connect to any node inM(V1)  M[2](V1) 

through an alternating path relative to M. Also, any node in M[2](V1) does not connect to 

any node in M(V0)  M[1](V0) through an alternating path relative to M. 

 

Proof. Let v be a node in M[1](V0). Assume that there is an alternating path P connecting 

v to a free node u in M(V1). Then, the path from a free node w in M(V0) to M(v), the 
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edge (M(v), v), and P together make up an augmenting path connecting w and u, 

contradicting the fact that M is a maximal matching. Therefore, any node in M[1](V0) 

does not connect to any node inM(V1). In the same way, we can prove the rest part of 

the lemma.  
 

From this lemma, the following lemma can be immediately derived, by which we show 

how to find an antichain for a bipartite graph. 
 

Lemma 2 Let M be a maximal matching of a bipartite graph B(V1, V0; E). Then, M(V0) 

M  M(V1) make up a minimized set of chains of B(V1, V0; E); and M(V0) M(V1) 

M[1](V0) M[2](V1)  M[3](V0) is one of its antichains. 
 

Proof. It is easy to see that M(V0) M  M(V1) is a minimized set of chains of B(V1, 

V0; E).  It is also easy to see that any node in M[3](V0) is not reachable from any node in 

M(V1) M[2](V1). Then, from Lemma 1, we can see that any node in M[1](V0) is not 

reachable from M(V1) M[2](V1), and thus any pair of nodes in A = M(V0) M(V1) 

M[1](V0) M[2](V1)  M[3](V0) are not reachable from each other. Therefore, A is an 

antichain. In addition, we have |M(V0) M  M(V1))| = |A|. So A is a maximum 

antichain.  
 

Lemma 3 Let G(V, E) be a DAG, divided into V0, ..., Vh (i.e., V = V0  ...  Vh).  Let Mi 

be a maxima matching of the bipartite graph B(Vi, Vi-1′; Ci). Vi′ = Vi  {virtual nodes 

added to Vi} for 1  i  h - 1. Then, for any i  h - 1}, we have |Vi′|  
 

Proof. First, we notice that |V1′| = |V1| + |  01
VM | = |  12

VM    11
VM     011

VM  

   121
VM     031

VM |  k. Then, we analyze the size of V2. Obviously, |V2| = |V2| 

+ |  '12
VM | = |A|, where A =  '12

VM    22
VM     '112

VM     222
VM   

  13 '
2

VM . According to Lemma 2, A is an antichain of G(V2, V1; C2). Let R = 

 '12
VM     '112

VM     13 '
2

VM . We will distinguish between two cases: 

 

1. R does not contain virtual nodes. Then, A is a set such that any two nods in it do not 

connected through a path. Thus, |A|  
2. R contains at least a virtual node. In this case, we will replace each virtual node v in R 

with s(v) (a free node in V0) and each of those nodes u in R with M1(u) (a node in V0 

such that (v, u)  M1) which belong to   111
VM  and connected to a free node of 

V0 relative to M1 (through an alternating path), resulting in a new set R′ 

with the following properties: 
 

i) Any two nodes in R′ are not connected through a path according to Lemma 1. 

ii) Any node w in R′ is not connected to a node in D =  22
VM     222

VM . 

Otherwise, if w is a free node of V0 relative to M1 in R′, then its virtual node must be 

connected to that node in D. Contradiction. If w is a node in V0 such that w = M1(u) 

for some u    111
VM , there must be a free node of V0 relative to M1 in R′, which 

is connected to a node in D. Contradiction. 
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Let R′′ = D  R′. It can be seen that R′′ is a set in which any two nodes are connected 

through a path. Therefore, |A| = |R′′ |   
 

Repeating the above argument to all Vi′ with i  3, we can prove the lemma.  
 

Based on Lemma 3, the time complexity of the chain generation can be easily estimated. 
 

First, using the Hopcroft and Karp algorithm [18], the time for finding a maximal 

matching of B(Vi, Vi-1’; Ci) is bounded by 

 O( |'||| 1 ii VV |Ci|).  

Therefore, cost1 is bounded by 

 O(  


 
k

i
iii CVV

1
1 |||'||| )  O( 



h

i
iV

1

|| ) = O( n ). 

For estimating cost2, we need to compute the costs for creating all the inherited, transitive 

and alternating arcs. First, for a virtual node, the cost for generating inherited arcs is a 

constant since we can simply promote the corresponding free node from its level to the 

level above it and handle it as virtual. (For example, to create a virtual node for a node v 

at level i, we can add v to level i + 1. Then create a node containing only a link to v and 

leave it at level i, used as a representative of v.). 
 

Secondly, the cost for creating the transitive arcs for all the virtual nodes added to Vi is 

obviously bounded by O(|Vi-1′||Vi|n). It is because at most |Vi-1′| virtual nodes can be 

added to Vi and the number of all the transitive arcs incident to each of these virtual nodes 

is bounded by O(|Vi|n). 
 

So the total cost for creating the transitive arcs is bounded by 
 

 


 
h

i
ii nVV

1
1 |||'|   




k

i
iVn

1

  = O(n2). 

 

Next, we notice that for generating the alternating arcs incident to the virtual nodes added 

to Vi, we need to search B(Vi, Vi-1′; Ci) once for each of them, and the number of the arcs 

in B(Vi, Vi-1′; Ci) is bounded by O(|Vi-1′||Vi|)  O(|Vi|). In addition, for each free node v 

(in Vi-1′), the number of all those nodes z (in Vi-1′) which are connected to v through an 

alternating path is bounded by |Vi| since each of such nodes must be covered relative to 

Mi. For each z, we need to search at most |Vi| arcs to find all those w in Vi such that w  z 

 Ci. Moreover, for each w, we have to further find all those nodes u such that u  w  

E. So the cost for generating all the alternating arcs incident to v is bounded by O(|Vi-1′| 

|Vi| + |Vi|
2 + |Vi|n). Therefore, the total cost for creating all the alternating arcs is bounded 

by 

nVVVV i

h

i
iii 


 |||||||'|

1

2
1 = O(2n + n2). 

 

Finally, concerning the global alternating graphs, we have the following important 

lemma. 
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Lemma 5 For each arc e in G


 corresponding to an edge in some maximum matching 

found for a bipartite graph, if is followed by another arc e′, then e′ must be an arc which 

corresponds to an edge not belonging to any maximum matching. Similarly, any arc 

corresponding to an edge not covered by any maximum matching must be followed by an 

arc corresponding to a covered edge if any.  

 

Proof. Obviously, for any arc corresponding to an edge within a bipartite graph, the 

lemma holds. For any arc which crosses bipartite graphs, it always goes from some Vi in 

Vi in B(Vi, Vi-1; Ei) (i = 2, …, h) to a node in some Vj in B(Vj+1, Vj; Ej+1) with j < i – 1. So 

it cannot be an arc corresponding to a covered edge, but must be followed by an arc 

corresponding to a covered edge.   

Corollary 1 For each node v in G


, either there is only one arc emanating from it or only 

one arc entering it.  

 

By using Dinic’s algorithm [18] for a maximum flow problem over a 0-1 network with 

the property described in Corollary 1, only O(  m) time is required, where n and m are 

the numbers of the nodes and arcs of the network, respectively. (See pp. 119 – 121 in 

[20]) Thus, cost21 is bounded by  

O(  


 
h

i
iiiiiiii VVVVVVVV

1
1111 |||'||||'||||'||||'|   n  ). 

For estimating cost22, we need to compute the costs for creating all the inherited, 

transitive and alternating arcs, as well as supplementary arcs. We remember that when 

executing VirtualGen(Vi-1′, Vi′, Vi+1, Mi) some virtual nodes will be added to Vi′ and Vi+1. 

Each virtual node added to Vi′ will be connected to a node in Vi+1 (by an inherited, 

transitive, or alternating arc), but each virtual node added to Vi+1 will be connected to 

some nodes at levels higher than i + 1 by supplementary arcs. In terms of the analysis in 

3.2.2, cost22 is bounded by O(n). 
 

In terms of the above analysis, we have the following proposition.  
 

Proposition 2 The time for creating a minimized set of disjoint chains, which may 

contain virtual nodes, is bounded by O(2n + n2).  
 

The main space requirement of this process is bounded by O(n) since at any time point, 

only for the virtual nodes at the current level and the level lower than the current some 

supplementary arcs have to be maintained, and it is obvious that the number of 

supplementary arcs incident to a virtual node is at most O(n). Besides, for each virtual 

node not appearing at any of these two levels, only one virtual arc is produced. So for 

these virtual nodes the used space is also bounded by O(n). In addition to this, all the 

bipartite graphs: B(V1, V0; C1), B(V2, V1′; C2), ..., B(Vh, Vh-1′; Ch) have to be kept. Thus, 

the total space overhead is bounded by 

 

 O(n + 


 
h

i
ii VV

1
1 |||'| ) = O(n). 
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3.3 Virtual node resolution 

 
After the chain generation, the next step is to resolve (or say, to remove) virtual nodes 

from chains. In the following, we will first discuss the working process in 3.3.1. Then, in 

3.3.2, we analyze its computational complexities. 

 

3.3.1 Removing virtual nodes 

 

To remove virtual nodes from chains, we will work top-down along the chains. Two steps 

will be carried out: 
 

1. Remove virtual nodes, and at the same time connect some nodes according to the 

connectivity represented by them, and 

2. Establish new connections between free nodes by transferring edges along 

alternating paths within a bipartite graph or cross more than one bipartite graph.    
 

In the first step, we will check virtual nodes level by level, and change Gc to another 

graph G containing part of G’s transitive closure, which is necessary to find the final 

result. For doing this, the following rules should be followed. 
 

i) Let v be a virtual node in Vi′. If v does not have a parent along the corresponding 

chain, it will be simply removed. 

ii) If v has a parent u along a chain with label(u  v) = 0, remove v and connect u to 

s(v). label(u  s(v)) is set to 0, 

iii) If v has a parent u along a chain with label(u  v) = i, connect u to each reachable 

node in Vi-1. 
 

See Fig. 15 for illustration. 
 

In Fig. 15(a), we show the resulting graph by removing c′′, by which the parent q of c′′ 

along the chain will be connected to all those nodes in V0 that are reachable from q since 

label(q  c′′) = 1. After c′′ is eliminated, c′ becomes a node without a parent along a 

chain and is also removed. In Fig. 15(b), e′ and z′ are continually removed from the graph 

as shown in Fig. 15(a), by which 
 

- l will be connected to b since label(l  e′) = 1 and b is the only node in V0 

reachable from l, and 

- t will be connected to z since label(t  z′) = 0. 
 

In the second step, we need to extend the concept of alternating graphs to include all the 

bipartite graphs, called a global alternating graph, and defined below. 
 

Definition 6 (global alternating graph) Let V = V0  ...  Vh be the stratification of G(V, 

E). A global alternating graph of G, denoted as G


 = 1B

 …  iB


  …      ,is a 

directed graph obtained by separating G into a set of bipartite graphs, by which each 

level, except for V0 and Vh, will be stored two times (and will be considered to be 

different nodes.) In addition, for each arc u  v in G with u  Vi and v  Vj (j < i), if (u, 

v) belongs to Mi, v  u is an arc in G


; otherwise, there is an arc from Vi in B(Vi, Vi-1; Ei) 

to Vj in B(Vj+1, Vj; Ej+1).   
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Fig. 15. Illustration for virtual node resolution in Gc 
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Fig. 16. Illustration for virtual node resolution in Gc 
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Fig. 17. Transform the chains generated by Algorithm GenChain( )  to  the final result 
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In Fig. 16(a), we show such a global alternating graph, which is constructed by separating 

G shown in Fig. 15(b) into four bipartite graphs. 

 

We will then find a maximum set of node-disjoint paths with each starting from a node 

which is a parent of some virtual node along a chain, and ending at a node which is an 

actual free node relative to Mi in Vi-1′ in B(Vi, Vi-1′; Ci) for i = 1, …, h - 1.  By transferring 

the arcs on these paths, we will get the final result. For example, in Fig. 16(b), we can see 

a possible maximum set of three paths in the graph shown in Fig. 16(a): P1 = q  a  f 

 e, P2 = l  b  g  y  x  c, and  P3 = t  z. Transferring the arcs on each of 

these paths, we will transform the chains created by the algorithm GenChain( ) to a 

minimum set of chains containing no virtual nodes. 

 

 Along P1, we will connect node q to node a, cut off a  f on the corresponding 

chain, and then connect f to e. 

 Along P2, we connect node l to node b, cut off b  g, connect g to y, cut off y  x, 

and connect x to c. 

 Along P3, we connect node t to node z.  

 

Fig. 17 demonstrates the final result. 

 

Based on the above discussion, we give the following algorithm. 

 

ALGORITHM 3. RemoveVirtual (Gc ) 

input: Gc. 

output: a set of chains which contain no virtual nodes. 

begin 

1. remove virtual nodes in Gc top-down level by level to get G; 

2. transform G´ to a global alternating graph G


; 

3. find a maximum set of node-disjoint paths in G


;  
4. let P1, …, Pk be all the found  node-disjoint paths;    

5. transfer the edges on each Pi to change the chains obtained by 

 Algorithm GenChain( ); 

6. return the modified chains;  

end  

 

The dominant cost of the above algorithm mainly comprises two parts: 

 

cost3 – the cost for generating G from Gc, and 

cost4 – the cost for finding a maximum set of node-disjoint paths in Gc. 
 

cost3 is the same as the cost for generating chains since the construction of G from Gc  is 

just a reverse process of the chain generation. 

 

cost4 is the cost for finding a maximum flow in a special kind of 0-1 networks, where 

either there is only one arc emanating from it or only one arc entering it (see Corollary 1). 
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Using Dinic’s algorithm [18] for this problem, only O(  e) time is required. (See pp. 

119 – 121 in [20]) 

 

So we have the following proposition. 

 

Proposition 3 The time complexity of Algorithm RemoveVirtual( ) is bounded by 

O(max{,   }n2 ).   

 

The space overhead of this process is also O(n) since no more space than the chain 

generation is used. 

 

4 Correctness 

 
In this subsection, we prove the correctness of our algorithm. 

 

First, we consider the transitive closure G*(V, E*) of G, and make a bipartite graph BG as 

follows. 

 

1. For each v  V, we produce two nodes xv and yv. 

2. For any two nodes u, v  V, we will connect xu and yv if u  v  E*. 

 

Concerning BG, we have the following lemma. 

 

Lemma 6 Let M = {(
1vx , 

1uy ), (
2vx , 

2uy ), …, (
kvx , 

kuy )} be a maximum matching 

of BG. By joining any two edge (
ivx , 

iuy ), (
jvx , 

juy ) if 
iuy and 

jvx are identical, we 

form a set of chains. These chains plus all the free nodes relative to M make up a 

minimum decomposition of G.  

 

Proof. See [12,31,32]. (Also, see pp. 190-191 in [14].)  

 

Proposition 4 The number of the chains generated for a DGA by our algorithm is 

minimum. 

 

Proof. We prove the proposition by induction on h. 

 

Initial step. When h = 1, 2, the proposition holds according to Lemma 1 and 2. 

 

Induction step. Assume that for any DAG of height k, the proposition holds. Now we 

consider the case when h = k + 1. First, we construct a new graph F from G(V, E) as 

below: 

 

1. Stratify G, dividing V into V0, ..., Vh (i.e., V = V0  ...  Vh). 

2. Find a maximum matching M1 of B(V1, V0; E1). Construct virtual nodes for all the 

free nodes in V0, and add them into V1. Add all the virtual arcs as described in 3.2. 

Then, remove V0. 
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So F is of height k. According to the induction hypothesis, our algorithm is able to find a 

minimum set of chains of F, which corresponds to a maximum matching MF of BF, a 

bipartite graph built over F*. 

 

Let v1, …, vl be all the free nodes in V0, relative to M1; and v1, …, vl be their respective 

virtual nodes. According to our algorithm, Gc is constructed by adding B(V1, V0; E1) to 

Fc, removing v1, …, vl, and connecting the parents of these virtual nodes to their 

respective reachable nodes in V0. Then, in G


 = 1B

 …  iB


  …     , relative to 

the matching (MF\A)  M1 in BG, where A = {e| e  MF and incident to some vi, i = 1, …, 

l}, any augmenting path connects an end node u of some chain for F (after all vi have 

been removed) to a free node relative to (MF\A)  M1. Transferring the edges on a 

maximum set of node-disjoint augmenting paths, we will get a maximum matching for 

BG. According to Lemma 6, the number of final chains found by our algorithm is 

minimum.  

 

5 Conclusion 

 
In this paper, a new algorithm for finding a minimal decomposition of DAGs is proposed. 

The algorithm needs O(n2) time and O(n) space, where n and m are the number of the 

nodes and the arcs in a DAG G, respectively; and  is the width of G. The main idea of 

the algorithm is the concept of virtual nodes and the DAG stratification that generates a 

series of bipartite graphs which may contain virtual nodes. By executing Hopcropt-

Karp’s algorithm, we find a maximum matching for each of such bipartite graphs, which 

make up a set of node-disjoint chains. A next step is needed to resolve all the virtual 

nodes appearing on the chains to get the final result. 

 

We also point out that our algorithm can be easily modified to a 0-1 network flow 

algorithm by defining a chain to be a path and accordingly changing the conditions for 

creating transitive and alternating arcs. 
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APPENDIX – Find node-disjoint paths alternating in 

Combined graphs 

 
A.1 Algorithm 

 

In the appendix, we discuss an algorithm for finding a maximal set of node-disjoint paths 

in a combined graph G. Its time complexity is bounded by O(e  ), where n = V(G) and 

e = E(G). It is in fact a modified version of Dinic’s algorithm [18], adapted to combined 

graphs, in which each path from a virtual node to a free node relative to Mi+1 or relative to 

Mi is an alternating path, and for each edge (u, v) Mi+1 Mi, we have dout(u) = din(v) = 

1. Therefore, for any three nodes v, v’, and v’’ on a path in G, we have dout(v) = din(v’) = 

1, or dout(v’) = din(v’’) = 1. We call this property the alternating property, which enables 

us to do the task efficiently by using a dynamical arc-marking mechanism. An arc u  v 

with dout(u) = din(v) = 1 is called a bridge. 

 

Our algorithm works in multiple phases. In each phase, the arcs in  G will be marked or 

unmarked. We also call a virtual node in  G an origin and a free node a terminus. An 

origin is said to be saturated if one of its outgoing arcs is marked; and a terminus is 

saturated if one of its incoming arcs is marked. 

 

In the following discussion, we denote  G by A. 

 

At the very beginning of the first phase, all the arcs in A are unmarked. 

 

In the kth phase (k 1), a subgraph  of A will be explored, which is defined as follows. 

 

Let V0 be the set of all the unsaturated origins (appearing in ). Define Vj (j > 0) as follows 

[16]: 

 

Ej-1 = { u  v E(A) | u  Vj-1, v  V0  V1  ... Vj-1, 

u  v is unmarked}  v  u E(A) | u  Vj-1, v  V0  V1  ... Vj-1, 

  v  u is marked}, 

Vj = {v V(A) | for some u, u  v is unmarked and u  v Ej-1}  

 v V(A) | for some u, v  u is marked and v  u Ej-1}. 

 

Define j* = min{j | Vj {unsaturated terminus} }. 

 

A(k) is formed with V(A(k)) and E(A(k)) defined below. 

If j* = 1, then  

 

 V(A(k)) = V0  (Vj* {unsaturated terminus}), 

 E(A(k)) = {u  v | u  Vj*-1, and v {unsaturated terminus}}. 

If j* > 1, then 

 V(A(k)) = V0 V1  ... Vj*-1  (Vj* unsaturated terminus 

E(A(k)) = E0 E1  ... Ej*-2  {u  v | u  Ej*-1, and v {unsaturated 

terminus}}. 
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The sets Vj are called levels.   

 

In A(k), a node sequence v1, ..., vj, vj+1, ..., vl is called a complete sequence if the following 

conditions are satisfied. 

 

(1) v1 is an origin and vl is a terminus. 

(2) For each two consecutive nodes vj, vj+1 (j = 1, ..., l - 1), we have an unmaked arc 

vj  vj+1 in , or a marked arc vj+1  vj in A(k). 

 

Our algorithm will explore  to find a set of node-disjoint complete sequences (i.e., no two 

of them share any nodes.) Then, we mark and unmark the arcs along each complete 

sequence as follows. 

 

(i) If (vj, vj+1) corresponds to an arc in A(k), mark that arc. 

(ii) If (vj+1, vj) corresponds to an arc in A(k), unmark that arc. 

 

Obviously, if for an  there exists j such that Vj  =  and Vi  {unsaturated terminus} =   

for i < j, we cannot find a complete sequence in it. In this case, we set A(k) to  and then 

the kth phase is the last phase.   

 

Example 5 Consider a A shown in Fig. 12(a), in which nodes a and b are two origins; and 

nodes g and h are two terminus. Initially, all the arcs are not marked. Thus, V0 = {a, b}, 

V1 = {c, d}, V2 = {e, f}, V3 = {g, h}; and  j* = 3.  A(1) is the same as A. (Normally, A(1) has 

fewer nodes than A.)  

 

Assume that by exploring A(1) (using the algorithm given below), we find a complete 

sequence: a, d, f, g. Then, we will mark three arcs (a, d), (d, f), and (f, g), as shown by the 

thick arrows in Fig. 12(b). With respect to these marked arcs, a second subgraph  (in the 

second phase) will be constructed as shwon in Fig. 12(c). In this phase, V0 = {b} (since 

node a is saturated), V1 = {d}, V2 = {a} (note that a  d is marked), V3 = {c}, V4 = {e}, 

V5 = {g}, V6 = {f} (note that f  g is marked), V7 = {h}; and j* = 7. By exploring , we 

will find another complete sequence: b, d, a, c, e, g, f, h, on which all the unmarked arcs 

will be marked while all the marked arcs will be unmarked, as shown in Fig. 12(d).     

Fig. 12(e) shows all the marked arcs, which make up two node-disjoint paths: a  c  e 

 g and b  d  f  h.  

 

The following algorithm is devised to explore an A(k), in which a stack H is used to store 

complete sequences. In addition, for each v in , neighbor(v) represents a set of of nodes: 

v1, .., vm such that for each j  {1, ..., m} v  vj E(A(k)) if v  vj is unmarked, or vj  v 

E(A(k)) if vj  v is marked. 

 

Algorithm subgraph-exploring() 

begin 
1. let v be the first element in V0; 

2. push(v, H); mark v ‘accessed’; 

3. while H is not empty do { 

4. v := top(H); (*the top element of H is assigned to v.*) 
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5. while neighbor(v)   do { 

6. let u be the first element in neighbor(v); 

7. if u is accessed then remove u from neighbor(v) 

8. else {push(u, H); mark u ‘accessed’; v := u;} 

9. } 

10. if v is neither in Vj* nor in V0 then pop(H) 

11. else {if v is in Vj* then output all the elements in H; 

  (*all the elements in H make up a complete sequence.*) 

12. remove all elements in H; 

13. let v be the next element in V0; 

14. push(v, H); mark v; 

15. } 

`6. } 

end 

 

The above algorithm works top-down, searching  level by level. In each iteration of the 

outer while-loop, a complete sequence is explored (by executing the inner while-loop, 

lines 5 - 9) and stored in the stack H. All the found complete sequences are node-disjoint 

since any repeated access of a node is blocked by using the mark ‘accessed’ (see lines 2, 

7, and 8.) 

 

Based on the above algorithm, the whole process to find a maximal set of node-disjoint 

paths is given below. 

 

Algorithm node-disjoint-paths(A) 

begin 
1. k := 1; 

2. construct A(k); 

3. while A(k)   do { 

4. call subgraph-exploring(); 

5. let P1, ... Pl be all the found complete sequences; 

6. for j = 1 to l do 

7. { let Pj = v1v2  ... vm; 

8. mark vi  vi+1 or unmark vi+1  vi (i = 1, ..., m - 1) 

 according to (i) and (ii) above; 

9. } 

10. k := k + 1; construct A(k); 

11. }  

end 

 

The above algorithm runs in several phases. In each phase, an A(k)  is constructed (see line 

2, and 10). Then, subgraph-exploring() is invoked to find all node-disjoint complete 

sequences. Also, the arcs along each complete sequence will be marked or unmarked (see 

line 8). When we meet an A(k)  = , the algorithm terminates; and all the marked arcs in A 

make up a maximal set of node-disjoint paths. 
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A.2 Time complexity and correctness 

 

In this subsection, we analyze the time complexity of node-disjoint-paths(A) and prove 

its correctness. 

 

A.2.1 Time complexity 

 

Lemma 2 Let , ...,  be the levels constructed when establishing . Then, we have jk < jk+1 

if (k + 1)th phase is not the last. 

 

Proof. Let v be a node in      

   
. If v     

   
, then, according to the definition of j*, we 

must go along a longer path from a node in   
     

   to v than any path from a node in 

  
   

 to v. If v     
   

, then, to reach v, we must go along a node sequence v1, ...,      
 = v 

such that there exist at least two consecutive nodes vl, vl+1 (1 < l < jk+1) with vl+1  vl 

being marked in the kth phase due to the alternating property. Going from vl to vl+1 means 

a detour around. In terms of the definition of j*, jk+1 > jk.   

      

Lemma 3 Let P be a maximal set of node-disjoint paths in A. Let   
   

., ...,    
   

. be the 

levels when establishing A(1). Then, j1 |V(A)|/|P|. 

 

Proof. Let be the length of the shortest path in P. Then, we have 

 

  |P| |V(A)| . 

 

Therefore,  |V(A)|/|P|. However,  j1 . Thus, the lemma follows.   

   

Foe each A(k), we define B(k) as follows. 

 

(1) If u  v E(A(k)) is an unmarked arc, then u  v E(B(k)). 

(2) If u  v E(A(k)) is a marked arc, then v  u E(B(k)). 

 

We will prove that B(k) also has the alternating property. 

 

Lemma 4 In B(k), for each node v, we have either dout(v) 1 or din(v) 1. 

 

Proof. We prove the lemma by induction on k. 

Basis step. When k = 1. The lemma trivially holds. 

 

Induction step. Assume that for k h, the lemma holds. We consider B(h+1). Let v be a 

node in B(h+1). If v does not appear in any complete sequences found in A(k). The indegree 

and outdegree of v are the same as in B(h). If v appears in a complete sequence found in 

A(h), we do the following analysis. Let v1, ..., vi-1, v, vi+1, ..., vl be a complete sequence 

found in A(h), on which v appears. Consider vi-1, v, vi+1, we have  dout(v) =  din(vi+1) = 1, or 

dout(vi-1) =  din(v) = 1 according to the induction hypothesis. In both cases,  neither of vi-1 

 v and v  vi+1 appear in B(h+1). But in the former case, u  v (for some u) and v  vi-1 

will be added into , as shown by the dashed arrows in Fig. 13(a). Note that in B(h+1) dout(v) 
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= din(vi-1) = 1. In the latter case, vi+1  v and v  u’ (for some u’). In this case, dout(vi+1) =  

din(vi) = 1. See Fig. 13(b) for illustration. Thus, a bridge in is replaced with a different 

bridge in  B(h+1).  

      

Proposition 3 The time complexity of the algorithm node-disjoint-paths(A) is bounded 

by O(       |E(A)|). 

 

Proof. Let P be a maximal set of node-disjoint paths in A. If |P|         , then the 

number of phases is bounded by        , and the result follows. If |P| >        , we 

consider k such that in the kth phase the number of node-disjoint paths is |P| -        . 
Then, by constructing A(k+1), ..., A(m) (assume that the mth phase is the last), and then 

exploring them, we will find the rest  node-disjoint paths. Assume that   
     

, ...,    
     

 

be the levels constructed when establishing . In terms of Lemma 2 and 3, jk+1 |V(A)|/ 

       =        . 
 

In terms of Lemma 1, k must be less than jk+1. Therefore, k        . Thus, the time 

spent for the first k phase is bounded by O(       |E(A)|). Also, the time for finding the 

rest  node-disjoint paths is bounded by O(        |E(A)|). So the total cost is 

O(       |E(A)|).    

 

A.2.2 Correctness 

 

Lemma 5 Let A(0) = A, A(1), ..., A(k) = be the graphs generated in the different phases 

during the execution of Algorithm node-disjoint-paths(A). Then, for each marked arc u 

 v in A(i) (i = 1, ..., k - 1), the following conditions are satisfied. 

 

i) If u is not an origin, then there exists a node u’ such that u’  u is marked in A(i). 

ii) If v is not a terminus, then there exists a node v’ such that v’ v’ is marked in A(i). 

 

Proof. We prove condition (1) by induction on phases i. 

 

Basic step. When i = 1. The proof is trivial. 

 

Induction step. Assume that the lemma holds for i  j. Consider phase j + 1. Let v1, ..., vl 

be a complete sequence found in A(j+1). Without loss of generosity, assume that (vg, vg+1) 

(1 g < l) corresponds to a marked arc. If (vg-1, vg) corresponds to a marked arc, 

condition (i) is proved. Otherwise, there exists a subsequence vh, vh+1, ..., vg such that 

each pair (vr+1, vr) corresponds to a marked arc in A(j). According to the induction 

hypothesis, if vg is not an origin, there must exist a node v such that (v, vg) corresponds to 

a marked arc in A(j). According to the algorithm, (vr+1, vr) will be unmarked, but (v, vg) 

remains marked. 

 

In the same way, we can prove condition (ii).        
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From the proof of Lemma 5, we can also see that any two paths made up of marked arcs 

(from an origin to a terminus) are node-disjoint. 

 

Proposition 4 The number of the node-disjoint paths in A found by node-disjoint-

paths(A) is maximum. 

 

Proof. Let A(0) = A, A(1), ..., A(k) = be the graphs generated in the different phases during 

the execution of the algorithm. Let V0,V1, ..., Vj be the levels when creating A(k). Then, Vj  

=  and Vi {unsaturated terminus} =   for i < j. Consider the cut (R,   ), where V0 

V1  ... Vj-1 and    = V(A)\(V0 V1  ... Vj-1). Each arc u  v with u  R and v 

   must be marked. Otherwise, Vj   . In addition, each two of such arcs are not on a 

same path. According to Lemma 5, each of such arcs corresponds to a node-disjoint path 

and the number of such arcs is maximum. This completes the proof.   
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