
a The University of Winnipeg, Canada.

*Corresponding author: E-mail: y.chen@uwinnipeg.ca;

Chapter 9
Print ISBN: 978-81-19217-73-1, eBook ISBN: 978-81-19217-81-6

On the DAG Decomposition into Minimum

Number of Chains

Yangjun Chen

a*
 and Yibin Chen

 a

DOI: 10.9734/bpi/ratmcs/v1/5816E

Abstract

By the DAG decomposition, we mean the decomposition of a directed acyclic graph G

into a minimized set of node-disjoint chains, which cover all the nodes of G. For any two

nodes u and v on a chain, if u is above v then there is a path from u to v in G. In this

paper, we discuss an efficient algorithm for this problem. Its time complexity is bounded

by O(max{, } n2) while the best algorithm for this problem up to now needs O(n3)

time, where n is the number of the nodes of G, and is G’s width, defined to be the size

of a largest node subset U of G such that for every pair of nodes x, y U, there does not

exist a path from x to y or from y to x. is in general much smaller than n. In addition, by

the existing algorithm, (n2) extra space (besides the space for G itself) is required to

maintain the transitive closure of G to do the task while ours needs only O(n) extra

space. This is particularly important for some nowadays applications with massive graphs

including millions and even billions of nodes, like the facebook, twitter, and some other

social networks.

Keywords: Reachability queries; directed graphs; transitive closure; graph

decomposition; chains.

1 Introduction

Directed graph (or digraph) data arise in many fields, especially in contemporary research

on structures of social relationships [1,2]. A graph can be analyzed using either

combinatorial graph-theoretic methods or by matrix representations such as the adjacency

matrix. In the latter case, algebraic methods for analysis are available. In particular, the

spectrum of the matrix associated with an undirected graph can be related to its structural

properties [3,4]. Let G be a directed acyclic graph (a DAG for short). A chain cover of G

is a set C of node-disjoint chains such that it covers all the nodes of G, and for any two

nodes u and v on a chain p C, if u is above v then there is a path from u to v in G. We

discuss an efficient approach for finding a minimized C for G in this study.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

122

(b) (a)

Fig. 2. Illustration for transitive closure and index sequences

a3

a
4

a
1
 a

2

a
5
 a

6

a3

a
1

a
5

a4

a
2

a
6
 (c)

index (1, 1)
Index sequence (1, 1)(2, 2)

(1, 1)
(1, 2)(2, 2)

(1, 3)
(1, 3)

(2, 1)
(1, 2)(2, 1)

(2, 2)
(1, 3)(2, 2)

(2, 3)
(2, 3)

3

3

22

22

12

21

6

5

4

3

2

1

a

a

a

a

a

a

1 2

(b) (a)

Fig. 1. Illustration for DAG decomposition

Fig. 1. Illustration for DAG decomposition

a3

a
4

a
1
 a

2

a
5
 a

6

a3

a
1

a
5

a4

a
2

a
6

a3

a
1

a
5

a4

a
2

a
6
 (c)

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

123

As an example, consider the DAG shown in Fig. 1(a). We can decompose it into a set of

two chains, as shown in Fig. 1(b), which covers all the nodes of G. Fig. 1(c) shows

another possible minimized decomposition.

With the advent of the web technology, the efficient decomposition of a DAG G into a

minimum set of chains becomes very important; especially, for the applications involving

massive graphs such as social networks, for which we may quite often ask whether a

node v is reachable from another node u through a path in G [5,6,7].

A naive method to answer such a query is to precompute the reachability between every

pair of nodes in G(V, E) - in other words, to compute the transitive closure of G, which is

also a directed graph G*(V, E*) with (v, u) E* iff there is a path from v to u in G. (See

Fig. 2(a) for illustration, in which we show the transitive closure of the graph shown in

Fig. 1(a).)

As it is well known, the transitive closure of G can be stored as a boolean matrix M such

that M[i, j] = 1 if there is path from i to j; otherwise, M[i, j] = 0 [8]. Then, a reachability

query can be answered in a constant time. However, this requires O(n2) space for storage,

which makes it impractical for very large graphs, where n = |V|. Another method is to

compute the shortest path from u to v over such a large graph on demand. Therefore, it

needs only O(m) space, but with high query processing cost - O(m) time in the worst

case, where m = |E|. However, if we are able to decompose a DAG into a minimum set of

chains, we can effectively compress a transitive closure without increasing much query

time, as described below.

Let G be a directed graph. If it is cyclic (i.e., it contains cycles), we can first find all the

strongly connected components (SCC) in linear time [9] and then collapse each of them

into a representative node. Clearly, all of the nodes in an SCC are equivalent to its

representative as far as reachability is concerned since each pair of nodes in an SCC are

reachable from each other [10,11]. In this way, we transform G to a DAG. Next, we

decompose the DAG into a minimum set C of node-disjoint chains. (Recall that if a node

u appears above another node v on a chain, there is a path from u to v.) Denote |C| = .

We will then

(1) number each chain and number each node on a chain; and

(2) use a pair (i, j) as an index for the jth node on the ith chain.

Besides, each node u on a chain will be associated with an index sequence of the form: (r,

jr) … (i, ji) … (k, jk) (1 r i k) such that any node v with index (x, y) is a

descendant of u iff there exists (x, jx) in the sequence with y jx. (See Fig. 2(b) for

illustration.) Such index sequences can be created as follows.

First of all, we notice that we can associate each leaf node with an index sequence, which

contains only one index, i.e., the index assigned to it. Clearly, such an index sequence is

trivially sorted and its length is 1 . Let v be a non-leaf node with children v1, ..., vl each

associated with an index sequence Li (1 i l). Assume that |Li| (1 i l) and the

indexes in each Li are sorted according to the first element in each index. We will create

an index sequence L for v, which initially contains only the index assigned to it. Then, we

will merge all Li’s into L one by one. To merge an Li into L, we will scan both L and Li

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

124

from left to right. Let (a1, b1) (from L) and (a2, b2) (from Li) be the index pairs currently

encountered. We will perform the following checkings:

 If a2 > a1, we go to the index next to (a1, b1) (in L) and compare it with (a2, b2) in

a next step.

 If a1 > a2, insert (a2, b2) just before (a1, b1) (in L). Go to the index next to (a2, b2)

(in Li) and compare it with (a1, b1) in a next step.

 If a1 = a2, we will compare b1 and b2. If b1 < b2, nothing will be done. If b2 < b1,

replace b1 (in (a1, b1)) with b2. In both cases, we will go to the indexes next to (a1,

b1) (in L) and (a2, b2) (in Li), respectively.

 We will repeat the above three steps until either L or Li is exhausted. If when L is

exhausted Li still has some remaining elements, append them at the end of L.

Obviously, after all Li’s have been merged into L, the length of L is still bounded by the

number . Denote by dv the outdegree of v. The time spent on this process is then

bounded by O() = O(nm), but the space overhead is only O(n). The query time

remains O(1) if we store the index sequences as a matrix MG, as shown in Fig. 2(c), in

which each entry MG(v, j) is the jth element in the index sequence associated with node v.

So, a node u with index (i, j) is a descendant of node v iff MG(v, i) j. In practise, is in

general much smaller than n. In this sense, G* is effectively compressed based on a

minimized decomposition of G.

The problem to decompose a DAG is also heavily related to another theoretical problem:

the decomposition of partially ordered sets (or posets for short) S = (S, ≻) into a

minimum set of chains, where S is a set of elements and ≻ is a reflexive, transitive, and

antisymmetric relation over the elements. We can represent any poset S as a DAG G,

where each node stands for an element in S and each arc u v for a relation. Obviously,

all the transitive relations in S can be represented by the transitive closure G* of G.

According to Dilworth [12], the size of a minimum decomposition equals the size of a

maximum antichain U, which is a subset of elements such that for each two elements a, c

 U, a ⊁ c and c ⊁ a. Furthermore, by using the Fulkerson’s method [13], a minimum set

of chains can be found in O(n3) time as follows:

i) Construct the transitive closure G* of G representing S = (S, ≻).

ii) Let S = {a1, a2, ..., an}. Construct a bipartite graph GS with bipartite (V1, V2),

where V1 = {x1, x2, ..., xn}, V2 = {y1, y2, ..., yn} and an edge joins xi V1 to yj V2

whenever ai aj G*.

iii) Find a maximal matching M of GS. Then, for any two edges e1, e2 M, if e1 = (xi,

yk) and e2 = (xk, yj), connect e1 to e2 (by identifying yk with xk.)

According to Fulkerson [13], the number of chains constructed as described above is n -

|M|. It must be minimum since in terms of König’s theorem ([14], page 180), the size of a

maximum antichain U of S is also n - |M| and we are not able to place any two elements

in U on a same chain. Thus, we have = |U|, referred to as the width of G (or S).

See Fig. 3 for illustration.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

125

(b) (a) e a b c d

f g h

i j k l

f

i

g

j
C0(i) = {a}
C1(i) = {f}

l
C0(l) = {g}

C1(k) = {g}

h

C0(f) = {a, e} C0(g) = {b, c, d} C0(h) = {d, e}
c e a b d

V2:

V1:

V0:

k

C0(j) = {

C1(j) = {g}

C0(k) = {c}

C0(j) = {a}

Fig. 4. Illustration for DAG stratification

(b) (a)

Fig. 3. Illustration for poset decomposition

x3

x
1

y
5

x4

x
2

y
6

(c)

x
1
 x

2
 x

3
 x

4
 x

5
 x

6

y
1
 y

2
 y

3
 y

4
 y

5
 y

6

x
1
 x

2
 x

3
 x

4
 x

5
 x

6

y
1
 y

2
 y

3
 y

4
 y

5
 y

6

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

126

In Fig. 3(a), we show the bipartite graph constructed for the transitive closure of the

graph shown in Fig. 1(a). Fig. 3(b) shows one possible maximal matchings M of that

bipartite graph, whose size is 4. From M we can establish a set of 2 chains by applying

step (iii) shown above (see Fig. 3(c).) An interested reader could try to construct a

bipartite graph over G, instead of G*. Applying step (iii) above to the corresponding

bipartite graph cannot generate a minimized set of chains.

The dominant cost of the above process is obviously the time and space for constructing

G*. They are bounded by O(n3) and O(n2), respectively [15]. However, using the

algorithm proposed by Hopcroft and Karp [16], M can be found in O(e) time, where e

is the number of the arcs in G*, bounded by O(n2).

In [17], Jagadish discussed an algorithm for finding a minimum set of node-disjoint paths

that cover a directed acyclic graph G by transforming the problem to a min network flow

[18-21,22,23]. Its time complexity is bounded by O(nm). However, a chain is in general

not a path. For any pair of nodes u and v on a chain, we only require that if u appears

above v, there is a path from u to v. So, the number of paths found by the method

discussed in [17] is generally much larger than the minimal number of node-disjoint

chains. However, if we apply the Jagadish’s method to G*, we can get a minimized set of

chains of G. But again, O(n3) time and O(n2) space are required to construct G*.

The method discussed in [21] is also to decompose a DAG into node-disjoint chains. It

runs in O(n2.5) time. However, the decomposition found is not minimum. Our earlier

algorithm [24] works for the same purpose. Its time complexity is bounded by O(k1.5n),

where k is the number of the chains, into which a DAG is decomposed. But in some cases

it fails to find a minimum set of chains since when generating chains, only part of

reachability information is considered. This problem is removed by [25] and [26] both

with the same time complexity O(n2). However, in the method discussed in [25] each

node is associated with a large data structure and requires O(n2) space in the worst case.

By Chen and Chen [26], the generated chains may contain some newly created nodes, but

how to remove such nodes are not discussed at all.

Different from the above strategies, the algorithm discussed in Felsner and Wernisch [27]

is to find a maximum k-chain in a planar point set M N N, where N = {0, 1, ..., n - 1}

and is defined by establishing (i’, j’) ≻ (i, j) iff i’ > i and j’ > j. So M is a special kind of

posets. A k-chain is a subset of M that can be covered by k chains. The time complexity

of this algorithm is bounded by O((n2/k)/logn). The algorithms discussed in Lou and

Sarrafzadeh [28] and Goeman [29] are to find a maximum 2-chain and 1-chain in M,

respectively. [28] needs (nlogn) time while [29] needs only O(pn) time, where p is the

length of the longest chain.

In this paper, we propose an efficient algorithm to find a minimum set of chains for G. It

runs in O(n2) time and in O(n) space while the best algorithm for this problem needs

O(n3) time and O(n2) space.

The remainder of the paper is organized as follows. In Section 2, we discuss an algorithm

to stratify a DAG into different levels and review some concepts related to bipartite

graphs, on which our method is based. Section 3 is devoted to the description of our

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

127

algorithm to decompose a DAG into chains, as well as the analysis of its computational

complexities. In Section 4, we prove the correctness of the algorithm. Finally, a short

conclusion is set forth in Section 5.

2 Graph Stratification and Bipartite Graphs

Our method is based on a DAG stratification strategy and an algorithm for finding a

maximal matching in a bipartite graph. Therefore, the relevant concepts and techniques

should be first reviewed and discussed.

2.1 Stratification of DAGs

We first discuss the DAG stratification.

Definition 1 Let G(V, E) be a DAG. We decompose V into subsets V0, V1, ..., Vh such that

V = V0 V1 ... Vh and each node in Vi has its children appearing only in Vi-1, ..., V0 (i

= 1, ..., h), where h is the height of G, i.e., the length of the longest path in G.

For each node v in Vi, we say, its level is i, denoted level(v) = i. We also use Cj(v) (j < i)

to represent a set of links which start from v to all those v’s children, which appear in Vj.

Therefore, for each v in Vi, there exist i1, ..., ik (il < i, l = 1, ..., k) such that the set of its

children equals Let Vi = {v1, v2, ..., vl}. We use
 (j < i) to

represent Cj(v1) ... Cj(vl).

Such a DAG decomposition can be done in O(m) time by using the following algorithm,

in which we use G1\G2 to stand for a graph obtained by deleting the arcs of G2 from G1;

and G1 G2 for a graph obtained by adding the arcs of G1 and G2 together. In addition,

din(v) and dout(v) represent v’s indegree and v’s outdegree, respectively.

ALGORITHM 1. GraphStra(G)

Begin

1. V0 := all the nodes with no outgoing arcs; i := 0;

2. W := all the nodes that have at least one child in V0;

3. while W do

4. { for each node v in W do

5. { let v1, ..., vk be v’s children appearing in Vi;

6. Ci(v) := {v1, ..., vk}; (*Here, for simplicity, we use vj to represent a link from v

to vj.*)

7. if dout(v) > k then remove v from W;

8. G := G\{v v1, ..., v vk};

9. dout(v) := dout(v) - k;

10. }

11. Vi+1 := W; i := i + 1;

12. W := all the nodes that have at least one child in Vi;

13. }

end

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

128

In the above algorithm, we first determine V0, which contains all those nodes having no

outgoing arcs (see line 1). In the subsequent computation, we determine V1, ..., Vh. In this

process, G is reduced step by step (see line 8), so is dout(v) for any v G (see line 9). In

order to determine Vi (i > 0), we will first find all those nodes that have at least one child

in Vi-1, which are stored in a temporary variable W. For each node v in W (see line 3), we

will then check whether it also has some other children not appearing in Vi-1, which is

done by checking whether dout(v) > k in line 7, where k is the number of v’s children in Vi-

1. If it is the case, it will be removed from W since it cannot belong to Vi. Concerning the

correctness of the algorithm, we have the following proposition.

Proposition 1 Let G0 = G. Denote by Gj the reduced graph after the jth iteration of the

out-most for-loop. Denote by
j
outd (v) the outdegree of v in Gj. Then, any node v in Gj

does not have children appearing in V0 ... Vj-1, where V0 contains all those nodes

having no outgoing arcs, and for any v Vi (i = 1, ..., j - 1)
i
outd (v) = 0 while

1-i
outd (v)

0, ...,
0
outd (v) 0.

Proof. We prove the proposition by induction on j.

Basic step. When j = 1, the proposition trivially holds.

Induction hypothesis. Assume that when j = l, the proposition holds. Then, we have

(1) Gl = G\(
1

0

l

i Gv
i vC), and

(2) l
outd (v) = dout(v) -

1

0

l

i
i vC .

Now we consider the case of j = l + 1. From lines 8 and 9, as well as the induction

hypothesis, we immediately get

(3) Gl+1 = G\(
l

i Gv
i vC

0

), and

(4) 1l
outd (v) = dout(v) -

l

i
i vC

0

.

From (3) and (4), and also from lines 7 and 11, we can see that for any node v Vl+1 we

have
1l

outd (v) = 0 while
 (v) 0, ...,

 (v) 0.

From the proof of Proposition 1, we can see that

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

129

 to check whether a node v in Gj belongs to Vj+1, we need only to check whether

(v) is strictly larger than |Cj(v)| (see line 7), which requires a constant time; and

 G is correctly stratified.

Since each arc is accessed only once in the process, the time complexity of the algorithm

in bounded by O(m).

As an example, consider the graph shown in Fig. 4(a). Applying the above

algorithm to this graph, we will generate a stratification of the nodes as shown in

Fig. 4(b).

In Fig. 4(b), the nodes of the DAG shown in Fig. 4(a) are divided into three levels: V0 =

{a, b, c, d, e}, V1 = {f, g, h}, and V2 = {i, j, k, l}. Associated with each node at each level

is a set of links pointing to its children at different levels. For example, node g in V1 is

associated with three links respectively to nodes b, c, and d in V0, denoted as C0(g) = {b,

c, d}. (For simplicity, we use C0(g) = {b, c, d} to represent three links from g to b, c, and

d, respectively.)

2.2 Concepts of bipartite graphs

Now we restate two concepts from the graph theory which will be used in the subsequent

discussion.

Definition 2 (bipartite graph [14]) An undirected graph B(V, E) is bipartite if the node

set V can be partitioned into two sets T and S in such a way that no two nodes from the

same set are adjacent. We also denote such a graph as B(T, S; E).

For any node v B, neighbor(v) represents a set containing all the nodes connected

to v.

Definition 3 (matching [14]) Let B(V, E) be a bipartite graph. A subset of edges E′ E is

called a matching if no two edges in E′ have a common end node. A matching with the

largest possible number of edges is called a maximal matching, denoted as MB (or simply

M if B is clear from context.)

Let M be a matching of a bipartite graph B(T, S; E). A node v is said to be covered by M,

if some edge of M is incident to v. We will also call an uncovered node free. A path or

cycle is alternating, relative to M, if its edges are alternately in E\M and M. A path is an

augmenting path if it is an alternating path with free origin and terminus. Let v1 ― v2 ―

... ― vk be an alternating path with (vi, vi+1) E\M and (vi+1, vi+2) M (i = 1, 3, ...). By

transferring the edges on the path, we change it to another alternating path with (vi, vi+1)

 M and (vi+1, vi+2) E\M (i = 1, 3, ...). In addition, we will use M(T) and M(S) to

represent all the free nodes in T and S, respectively; and use M(T) for all the covered

nodes in T and M(S) for all the covered nodes in S. Finally, if (u, v) M, we say, u

covers v with respect to M, and vice versa, denoted as M(u) = v, and M(v) = u,

respectively.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

130

In addition, we call an alternating path an -segment if it starts and ends both at a

covered edge, and a -segment if it starts and ends both at a non-covered edge.

Much research on finding a maximal matching in a bipartite graph has been done. The

best algorithm for this task is due to Hopcroft and Karp [16] and runs in O(m) time,

where n = |V| and m = |E|. The algorithm proposed by Alt, Blum, Melhorn and Paul [30]

needs O(n1.5) time. In the case of large m, the latter is better than the former.

3 Algorithm Description

In this section, we describe our algorithm for the DAG decomposition. The main idea

behind it is to construct a series of bipartite graphs for G(V, E) based on the graph

stratification and then find a maximum matching for each of such bipartite graphs using

the Hopcroft-Karp algorithm [16]. All these matchings make up a set of node-disjoint

chains, which, however, may not be minimal. In the following, we first discuss an

example to illustrate this idea in 3.1. Then, in 3.2, we define the so-called virtual nodes,

and show how they can be used to efficiently and effectively reduce the number of node-

disjoint chains. Next, in 3.3, we discuss how the virtual nodes can be resolved (removed)

from created chains to get the final result.

3.1 An example

Example 1 Consider the graph and the corresponding stratification shown in Fig. 4. A

bipartite graph made up of V0 and V1: B(V1, V0; E1) with E1 =
1
0C is shown in Fig. 5(a)

and a possible maximal matching M1 of it is shown in Fig. 5(b).

Another bipartite graph made up of V1 and V2: B(V2, V1; E2) with E2 =
2
1C is shown in

Fig. 5(c) and a possible maximal matching M2 of it is shown in Fig. 5(d).

Combining M1 and M2 by connecting their edges, we will get a set of seven chains,

denoted by M1 M2 and shown in Fig. 6(a). (Note that four of these chains each contain

only a single node.)

However, if we transfer the edges on an alternating path relative to M1: b ― g ― d ― h

― e (see Fig. 6(b), where a solid edge represents an edge belonging to M1 while a dashed

edge to E1\M1); and connect l (or k) to b as illustrated in Fig. 6(c), we will get a set of six

chains as shown in Fig. 6(d). (Note that l and b are on a chain since there exists a path l

― g ― b, which connects l and b.)

The question is how to efficiently find such a possible transformation to reduce the

number of chains.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

131

Fig. 6. Illustration for transferring edges on alternating paths

(b) (a) (c) (d)
f g h

i j k l

e a b c d

g h

e b c d

g h

e b c d

l

f g h

i j k l

e a b c d

Fig. 5. Maximum matchings for bipartite graphs

e a b c d

f g h V1:

V0: e a b c d

M1: f g h

f g h

i j k l V2:

V1:

M2:

f g h

i j k l

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

132

For this purpose, we introduce the concept of virtual nodes, in the next subsection, to

transfer the reachability information and at the same time to maintain the information on

how a transformation can be conducted.

3.2 Chain generation

From the above example, we can see that by simply combining maximal matchings of

bipartite graphs, the number of formed chains may be larger than the minimized number

of chains. To solve this problem, we need to introduce some virtual nodes into the

original graph, which are used to transfer the reachability information from lower levels

to higher levels.

3.2.1 Basic idea: virtual nodes

We will work bottom-up. During the process, some virtual nodes may be added to Vi (i =

1, ..., h - 1) level by level. However, such virtual nodes will be eventually resolved to

obtain the final result.

In the following, we first give a formal definition of virtual nodes. Then, we describe how

a virtual node is established. We start our discussion with the following specification:

V0′ = V0.

Vi′ = Vi {virtual nodes added to Vi} for 1 i h - 1.

Ci =
 {all the new arcs from the nodes in Vi to the virtual nodes added to Vi-1′} for

1 i h - 1.

B(Vi, Vi-1′; Ci) - the bipartite graph containing Vi and Vi-1′.

Mi - a maximal matching of B(Vi, Vi-1′; Ci).

Definition 4 (virtual nodes) Let G(V, E) be a DAG, divided into V0, ..., Vh (i.e., V = V0

... Vh). Let Mi be a maximal matching of B(Vi, Vi-1′; Ci) for i = 1, …, h. For each free

node v in Vi-1′ with respect to Mi, a virtual node v′ created for v is a new node added to Vi

(1 i h - 1), denoted as v = s(v′).

The goal of virtual nodes is to establish the connection between the free nodes (with

respect to a certain maximum matching of a bipartite graph) and the nodes that may be

several levels apart. Therefore, for each virtual node v′ (created for v in Vi-1′ and added to

Vi), a bunch of virtual arcs incident to it should be created. Especially, we distinguish

among four kinds of virtual arcs, which are created in different ways:

alternating arc - If there exist a covered node w Vi-1′ (relative to Mi) such that one of

v’s parents is connected to w through an -segment in B(Vi, Vi-1′; Ci), and u Vj (j > i)

such that one of the two conditions holds:

- u w E, or

- there is a node w′ Vi such that u w′ E and w′ w Ci,

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

133

add u v′ if it has not been created as an inherited or a transitive arc. It is referred to as

an alternating arc of the first kind. We create such an arc to indicate a possibility to make

v covered by transferring the edges on the corresponding alternating path from v to w, and

then connect u and w (see Fig. 6(b) and (c) for illustration.)

In addition, a virtual arc from v′ to s(v′) is generated to record the relationship between v′

and s(v′).

Example 2 Continued with Example 1. Relative to M1 of B(V1, V0; E1) shown in

Fig. 5(b), c and e are two free nodes. Then, two virtual nodes c′ and e′ (for c and e,

respectively) will be created and added to V1. Then, we have V1′ = {f, g, h, c′, e′}. In

addition, eight virtual arcs: i c′, i e′, j c′, j e′, k c′, k e′, l c′, and l e′

will be generated, shown as eight dashed arcs in Fig. 7(a).

Among these virtual arcs, k c′ is an inherited arc since in the original graph we have k

 c (see Fig. 4(a)). But j c′, l c′, and i e′ are three transitive arcs since c is

reachable respectively from j and l through g in V1, and e is reachable from i through f in

V1. (see Fig. 4(a)).

Finally, j e′, k c′ and l c′ are three alternating arcs of the first kind, and i c′ is

an alternating arcs of the second kind. We join j and e′ since there is a node b that is

connected to e’s parent h through an -segment: b ― g ― d ― h (in B(V1, V0, E1), see

Fig. 6(b)) and f is reachable from d in G through a node e (in V1) (see Fig. 4(a).) For the

same reason, we join k and c′, and l and c′.

In Fig. 7(b), we show a possible maximum matching M2 of B(V2, V1′; C2). Combining M2

and M1, we get a set of six chains as shown in Fig. 7(c).

On these chains, the virtual nodes j′ and k′ can be simply removed since they do not have

a parent along the corresponding chains. In order to remove i′, however, we have to

transfer the edges on the alternating path: f ― e ― c ― b ― i and then connect g and f,

obtaining the final chains shown in Fig. 6(d). We can also transfer the edges on c ― b ―

i and then connect g and c to get a different set of six chains.

We will call an arc along a chain a chain arc. From the above example, we can see that

how a virtual node is resolved depends on how it is connected to its parent through a

chain arc. Especially, an alternating arc in fact does not represent a reachability, but

indicates a possibility to connect two nodes by transferring edges along some alternating

path. Thus, we need to label virtual arcs to represent their properties, and at the same time

indicate at what level a virtual node is added. Let v′ be a virtual node. Depending on

whether its source s(v′) is an actual node or a virtual node itself, we label the virtual arcs

incident to v′ in two different ways.

Assume that s(v′) is an actual node in Vi-1. Then, v′ is a virtual node added to Vi and an

virtual arc incident to v′: u v′ with u Vj (j > i) will be labeled as follows:

i) If u v′ is inherited or transitive, its label label(u v′) will be set to 0, indicating

that s(v′) is reachable from u (through a path in G).

ii) If u v′ is an alternating arc, label(u v′) will be set to i, indicating that to

resolve v′ we need to transfer edges along an alternating path in B(Vi, Vi-1′; Ci).

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

134

If s(v′) itself is a virtual node, we need to label u v′ a little bit differently:

iii) If u v′ is inherited, the label for it is set to be the same as label(u s(v′)).

iv) If u v′ is transitive, there must exist w1, ... wk (k 1) in Vi such that w1 s(v′),

..., wk s(v′) Ci and u w1, ..., u wk E. We will label u v′ with min{l1,

..., lk}, where lj = label(wj s(v′)) (j = 1, ..., k).

v) If u v′ is an alternating arc, label(u v′) is set to i (in the same way as (ii)).

In addition, for convenience, all the original arcs in G are considered to be labeled with 0.

In the whole process, we will not only create a set of chain which may contain virtual

nodes, but also a new graph by adding virtual nodes and virtual arcs to G, called a

companion graph of G, denoted as Gc, which will be used for resolution of virtual nodes.

Example 3 Consider the graph shown in Fig. 8(a). This graph can be divided into five

levels as shown in Fig. 8(b).

In Fig. 9(a), we show the bipartite graph B(V1, V0; C1) made up of the first two levels. A

possible maximal matching M1 of it is shown in Fig. 9(b). Relative to M1, c, e and z are

three free nodes in V0. So three virtual nodes c′, e′ and z′ will be created and added to V1.

At the same time, 15 arcs will be created. as shown in Fig. 9(c).

Among them, there are four transitive arcs: t e′, t z′, i e′, i z′; six alternating

arcs of the first kind: j c′, j e′, k c′, k e′, l c′, l e′; and five alternating

arcs of the second kind: t c′, i c′, j z′, k z′, l z′.

We have the transitive arc t e′ since e is reachable from t in G through a node f in V1.

The same claim applies to the other three transitive arcs.

The alternating arc of the first kind: j c′ is created since there is an alternating path c –

x – y – g – b in B(V1, V0; C1) and b is reachable from j in G. In a similar way, we can

analyze all the other five alternating arcs of the first kind. The alternating arc of the

second kind: t c′ is due to the following facts:

- Free node c is on an alternating path P1 = c – x – y – g – b covered by another

alternating path P2 = e – h – d – x – y – g – b, which connects e and b, and

- e is reachable from t in G.

It is possible to transfer the edges on P2 and then connect k (or l) to b to make e covered,

which will, however, prevent c from being covered. But we can connect t to e and leave

the chance for c to be covered along P1. The virtual arc t c′ is created to represent this

possibility.

Thus, V1′ = {c′, e′, z′, g, x, h, f}. B(V2, V1′; C2) is shown in Fig. 9(d). Assume that the

maximal matching M2 found for it is as shown in Fig. 9(e), and M3 for B(V3, V2′; C3) and

M4 for B(V4, V3′; C4) are as shown in Fig. 9(f) and 9(g), respectively. By combining M1,

M2, M3 and M4, we get M1 M2 M3 M4. This plus all the free nodes in V4 make up a

set of eight chains as shown in Fig. 10(a), and one of them contains only a single node.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

135

Fig. 8. A DAG and its stratification

q r s

k l t j

d e z c

V1:

V0:

V4:

V2:

y

o p m n V3:

x h f (b) (a)

e a b y d

f g h

i j k l

m n o p

l

q r s

t

z

i

a

x

c b

g

Fig. 7. Illustration for virtual nodes and chains containing virtual nodes

(b) (a) (c)

V2:

V1’:

k

g f h

j

c’ e’

l i M2: k

g f h

j

c’ e’

l i

e a b c d

k

g f h

j

c’ e’

l i

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

136

(a)

Fig. 9. Illustration for generation of chains

(d)

V1:

V0:

 M1:

M2:

 (b)

V3:

(c)

(e)

(f)

label(i c’) = 1′

label(i e’) = 0

label(i z’) = 0

label(j c’) = 1

label(j e’) = 1
label(j z’) = 1′

label(k c’) = 1

label(k e’) = 1
label(k z’) = 1′

e

a

y

c

d

f

x

h

 z

a

y

c

d

e

f

x

h

 z

V4:

V2:

 V1’:

M1:

f

g

h

m

n

q

r

s

 o

p

l

i

j

k

l

t

c’

e’

z’

x

label(l c’) = 1

label(l e’) = 1
label(l z’) = 1′

label(t c’) = 1′

label(t e’) = 0
label(t z’) = 0

V2:

 V1’:

M1:

f

g

h

i

j

k

l

t

c’

e’

z’

x

f

g

h

i

j

k

l

t

c’

e’

z’

x

b

g

b

g

m

n

o

p

l

i

j

k

l

t

M3:

q

r

s

 o

p

l

M4:

(g)

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

137

Fig. 11. Illustration for alternating graphs

V1:

V0: e a y c d

f x h

z b

g M2:

f g h

i j k l t

x

V2:

V1: f g h

i j k l t

x
(a) (b) (c)

Fig. 10. Illustration for generation of chains

m n o p

l

q r s

f g h

i j k l t

c’ e’ z’ x

a y c d e z b

m n o p

l

q r s

f g h

i j k l t

x

a y c d e z b

m n o p

l

q r s

f g h

i j k l t

x

a y c d e z b
(a) (b) c(j)

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

138

We can simply connect t and z′ since t z′ is a transitive arc. We can also transfer the

edges on P1 and then connect k and b as shown in Fig. 10(b). After that, removing e′ will

leave l and e disconnected, resulting in a set of nine chains. It is not minimum. In

Fig. 10(c), we show a possible decomposition of eight chains. In the next subsection, we

discuss how the problem can be figured out.

3.2.2 General algorithm for chain generation

To solve the above problem, we need to slightly modify the working process. First, we

introduce a new concept.

Definition 5 (alternating graph) Let B(T, S; E) be a bipartite graph. Let M be a matching

of B(T, S; E). The alternating graph B

 with respect to M is a directed graph with the

following sets of nodes and arcs:

 V

 = V(B

) = T S, and

 E

 = E(B

) = {u v | u S, v T, and (u, v) M}

 {v u | u S, v T, and (u, v) E\M}.

In Fig. 11(a), we show the alternating graph 1B

 with respect to M1 for B(V1, V0, C1)

shown in Fig. 9(a). Assume that the maximum matching M2 for B(V2, V1, C2) is

as shown in Fig. 11(b), the corresponding alternating graph is a graph shown in

Fig. 11(c).

Next, we will combine two consecutive alternating graphs iB

 = B

(Vi′, Vi-1′; Ci) and

1iB

 = B

(Vi+1, Vi′; Ci+1), denoted as iB

 1iB

, by connecting each node in Vi+1 to all its

reachable nodes in Vi-1′. In Fig. 12(a), we show 1B

 2B

 for the graph shown in

Fig. 8(a).

What we want is to find a maximum set S of node-disjoint paths in iB

 1iB

, each

starting from a free node u relative to Mi+1 in Vi+1, and ending at a free node v

relative to Mi in Vi-1′, Let P be such a path which can always be divided into two

parts: P′ and P′′ such that P′ contains only the nodes in Vi+1 while P′′ contains

only the nodes in Vi-1′. We will create a virtual node v´ for v, connect it to the last node on

P′, and then transfer the edges on P′. However, for each free node (in Vi-1′) not appearing

on such a path, its virtual node will be added to Vi+1, for which only inherited and

transitive arcs, as well as a new kind of virtual arcs, called supplementary arcs will be

created.

supplementary arc – Let v´ be a virtual node created for v in Vi-1′ and added to Vi+1. If

there exist a free node w Vi-1′ (relative to Mi) and a node u Vj (j > i) such that one of

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

139

v’s parents is connected to w through a -segment in B(Vi′, Vi-1′; Ci), satisfying one of the

following two conditions:

- u w E, or

- there is an alternating path in (Vi′, Vi-1′; Ci), which does not go through any node in

S, but connects w to a node w′ Vi-1′ such that w′ is reachable from u,

add u v′ if it has not been created as an inherited or a transitive arc. label(u v′) is

set to be i, same as an alternating arc incident to a virtual node added to Vi′. We create

such an arc to resolve the conflict among free nodes in the case that they share a same

alternating path P to a certain node. In this case, one free node, for example, node w can

get covered by transferring the edges on P. But some other free node v which shares P

with w may still get covered along P if it is possible to make w covered along a different

alternating path, as demonstrated in the following example concerning shown in

Fig. 11(a), in which we can find a maximum set of two paths: P1 = l b g y x

 d h e and P2 = t z as shown in Fig. 11(b). Then, we add two virtual node e

and z to V1 and a virtual node c to V2. Especially, P1 can be divided into P1 = l and P1

= b g y x d h e; and P2 into P2 = t and P2 = z. So e will be connected

to l according to P1, and z will be connected to t according to P2. Furthermore, c will be

connected to m and q for the following reason:

- there is a free node e in V1 which is connected to c’s parent x through a -segment: x

– d – h – e, and

- e is reachable from both m and q in G.

See Fig. 13(a) for illustration.

In a next step, we will consider V1′, V2′, V3 and determine new virtual nodes to be added

to V2′ and V3, by which any node in V1′, which does not have parents needn’t be

considered. Assume that the maximum matching M2 found for B(V2, V1; C2) is as shown

in Fig. 10(b). With virtual nodes e′ and z′ added, M2 is extended as illustrated in

Fig. 13(b). There is no free node in V1′ relative to M2, and thus no new virtual nodes will

be added to V2′. Finally, we will consider V2′, V3′, V4. Assume that the maximum

matching M3 found for B(V3, V2′; C3) is as shown in Fig. 13(c). Then, c´ is a free node in

V2′ relative to M3. Further, assume that the maximum matching M4 found for B(V4, V3′;

C4) is as shown in Fig. 13(d). A maximum set of node-disjoint paths in shown

contains only one path: P = s p r o q i m c′, which can be divided

into P′ = s p r o q and P′′ = i m c′. So the virtual node c′′ created for c′

will be connected to q, as demonstrated in Fig. 13(e). (We notice that t does not have

parents and therefore no virtual node for it will be generated.) Transferring edges on P′,

we will change M4 to a matching as shown in Fig. 14(a), and the final chains M1 M2

M3 M4 is as shown in Fig. 14.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

140

Fig. 12. Illustration for combined graphs and node-disjoint paths

V2:

V1:

M1:
V1:

V0:

f g h

i j k l t

x

e a y c d

f x h

z b

g

f g h

i j k l t

x

e a y c d

f x h

z b

g

(a) (b)

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

141

Fig. 13. Illustration for generation of virtual nodes

(e)

(a)

V1:

V0:

V4:

V2:

V3:
g

j k l t c′

z′ e′

M2:

n o p

l j k l t c′

M3:

q r s

m n o p

l

M4:

(b)

(c)

(d)

e a b y d

q r s

z c

f g h x

c′

z′

m n o p

l i j k l t

e′

label(l e’) = 1

label(m c’) = 1
label(t z) = 0

label(q c’) = 1

f

i

m

i
e a b y d

q r s

z c

f g h x

c′

z′

m n o p

l i j k l t

e′

c′′

label(q c) = 1

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

142

Fig. 14. Illustration for generation of virtual nodes

V1:

V0:

V4:

V2:

V3:

e a b y d z c

f g h x e′ z′

i j k l t c′

q r s

m n o p

l

c′′

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

143

According to the above discussion, we design a process, denoted as VirtualGen(Vi-1′, Vi′,

Vi+1, Mi), conducting the following task:

1. It takes Vi-1′, Vi′, Vi+1, Mi as the input.

2. Find Mi+1 and form . Find a maximum set of node-disjoint paths in

 , each starting from a free node u relative to Mi+1 in Vi+1, and ending at a free

node v relative to Mi in Vi-1′. For each free node in Vi-1′ appearing on a path in this

set, the created virtual node v is added to Vi′. For each free node in Vi-1′ not

appearing on a path in this set, the created virtual node v is added to Vi+1. Create

virtual arcs as described above.

3. Mi+1 is used as the output of the process.

Based on this process, the general algorithm for the chain generation can be formally

described as below.

ALGORITHM 2. GenChain(stratification of G)

input: a graph stratification.

output: a set of chains which may contain virtual nodes.

begin

1. V0 := V0; V1 := V1;

2. find M1 for B(V1, V0; C1);

3. for i = 1 to h - 1 do

4. {Mi+1 = VirtualGen(Vi-1′, Vi′, Vi+1, Mi); }

5. M := M1 ... Mh;

6. return M;

end

In the above algorithm, special attention should be paid to lines 1 - 2, by which the input

for first call of VirtualGen() is prepared. In the main for-loop, the input for a next call of

VirtualGen() is produced in the execution of the previous call of VirtualGen().

We also notice that at any point in time only the virtual nodes at the current level and the

level just lower than the current are associated with supplementary arcs according to the

following analysis.

Before the execution of VirtualGen(Vi-1′, Vi′, Vi+1, Mi), we may have some virtual nodes

in Vi′, which may be associated with supplementary arcs. During the execution of

VirtualGen(Vi-1′, Vi′, Vi+1, Mi), we may continually add some more virtual nodes to both

Vi′ and Vi+1, and the virtual nodes added to Vi+1 may be incident to supplementary arcs.

However, when executing VirtualGen(Vi′, Vi+1′, Vi+2, Mi+1), any the virtual node in Vi′ will

become covered, or be promoted to Vi+2.

So, the number of virtual arcs maintained in the process is bounded by O(n) since the

number of supplementary arcs incident to a virtual node is bounded by O(n).

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

144

It remains to show how to find a maximal set of node-disjoint paths in iB

 1iB

. For

this purpose, we define a maximum flow problem over iB

 1iB

, (with multiple sources

and sinks) as follows:

 Each free node in Vi+1 in Bi+1 is designated as a source. Each free node in Vi-1′ in

Bi is designated as a sink.

 Each arc u v is associated with a capacity c(u, v) = 1. (If nodes u, v are not

connected, c(u, v) is considered to be 0.)

It is a typical 0-1 network. Finding a maximum flow corresponds to finding a maximum

set of node-disjoint paths.

3.2.3 Computational complexity of chain generation

We now analyze the time complexity of the chain generation. In general, the cost of this

process can be divided into two parts:

- cost1: the time for finding a maximal matching of every B(Vi, Vi-1′; Ci) (i = 1, ..., h;

V0′ = V0); and

- cost2: the time for generating virtual arcs.

We first prove three lemmas to show that for any i h - 1} |Vi′| .

Let M be a maximal matching of a bipartite graph B(V1, V0; E). Let Yi (i = 0, 1) be a

subset of Vi. We denote by M(Yi) (i = 0, 1) a subset of V(i+1)mod2 such that for each v

M(Yi) there exists a node u in Yi with (u, v) M. We further divide M into three (possibly

empty) groups: M[1], M[2], and M[3] = M\(M[1] M[2]) such that

- for each v M[1](V1), there exists at least one alternating path connecting a free node

in M(V0) to v; (remember that M(Vi) stands for all the free nodes in Vi relative to M

while M(Vi) for all the covered nodes in Vi by M. So M[1](Vi) represents all those

nodes in Vi covered by M[1].)

- for each v M[2](V0), there exists at least one alternating path connecting a free

node in M(V1) to v;

- for each v M[3](V0), there exists no alternating path connecting it to any node in

M(V1) M[2](V1); and for each u M[3](V1), there exists no alternating path

connecting it to any node in M(V0) M[1](V0).

Concerning this partition of M, we have the following lemma.

Lemma 1 Any node in M[1](V0) does not connect to any node inM(V1) M[2](V1)

through an alternating path relative to M. Also, any node in M[2](V1) does not connect to

any node in M(V0) M[1](V0) through an alternating path relative to M.

Proof. Let v be a node in M[1](V0). Assume that there is an alternating path P connecting

v to a free node u in M(V1). Then, the path from a free node w in M(V0) to M(v), the

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

145

edge (M(v), v), and P together make up an augmenting path connecting w and u,

contradicting the fact that M is a maximal matching. Therefore, any node in M[1](V0)

does not connect to any node inM(V1). In the same way, we can prove the rest part of

the lemma.

From this lemma, the following lemma can be immediately derived, by which we show

how to find an antichain for a bipartite graph.

Lemma 2 Let M be a maximal matching of a bipartite graph B(V1, V0; E). Then, M(V0)

M M(V1) make up a minimized set of chains of B(V1, V0; E); and M(V0) M(V1)

M[1](V0) M[2](V1) M[3](V0) is one of its antichains.

Proof. It is easy to see that M(V0) M M(V1) is a minimized set of chains of B(V1,

V0; E). It is also easy to see that any node in M[3](V0) is not reachable from any node in

M(V1) M[2](V1). Then, from Lemma 1, we can see that any node in M[1](V0) is not

reachable from M(V1) M[2](V1), and thus any pair of nodes in A = M(V0) M(V1)

M[1](V0) M[2](V1) M[3](V0) are not reachable from each other. Therefore, A is an

antichain. In addition, we have |M(V0) M M(V1))| = |A|. So A is a maximum

antichain.

Lemma 3 Let G(V, E) be a DAG, divided into V0, ..., Vh (i.e., V = V0 ... Vh). Let Mi

be a maxima matching of the bipartite graph B(Vi, Vi-1′; Ci). Vi′ = Vi {virtual nodes

added to Vi} for 1 i h - 1. Then, for any i h - 1}, we have |Vi′|

Proof. First, we notice that |V1′| = |V1| + | 01
VM | = | 12

VM 11
VM 011

VM

 121
VM 031

VM | k. Then, we analyze the size of V2. Obviously, |V2| = |V2|

+ | '12
VM | = |A|, where A = '12

VM 22
VM '112

VM 222
VM

 13 '
2

VM . According to Lemma 2, A is an antichain of G(V2, V1; C2). Let R =

 '12
VM '112

VM 13 '
2

VM . We will distinguish between two cases:

1. R does not contain virtual nodes. Then, A is a set such that any two nods in it do not

connected through a path. Thus, |A|
2. R contains at least a virtual node. In this case, we will replace each virtual node v in R

with s(v) (a free node in V0) and each of those nodes u in R with M1(u) (a node in V0

such that (v, u) M1) which belong to 111
VM and connected to a free node of

V0 relative to M1 (through an alternating path), resulting in a new set R′

with the following properties:

i) Any two nodes in R′ are not connected through a path according to Lemma 1.

ii) Any node w in R′ is not connected to a node in D = 22
VM 222

VM .

Otherwise, if w is a free node of V0 relative to M1 in R′, then its virtual node must be

connected to that node in D. Contradiction. If w is a node in V0 such that w = M1(u)

for some u 111
VM , there must be a free node of V0 relative to M1 in R′, which

is connected to a node in D. Contradiction.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

146

Let R′′ = D R′. It can be seen that R′′ is a set in which any two nodes are connected

through a path. Therefore, |A| = |R′′ |

Repeating the above argument to all Vi′ with i 3, we can prove the lemma.

Based on Lemma 3, the time complexity of the chain generation can be easily estimated.

First, using the Hopcroft and Karp algorithm [18], the time for finding a maximal

matching of B(Vi, Vi-1’; Ci) is bounded by

 O(|'||| 1 ii VV |Ci|).

Therefore, cost1 is bounded by

 O(

k

i
iii CVV

1
1 |||'|||) O(

h

i
iV

1

||) = O(n).

For estimating cost2, we need to compute the costs for creating all the inherited, transitive

and alternating arcs. First, for a virtual node, the cost for generating inherited arcs is a

constant since we can simply promote the corresponding free node from its level to the

level above it and handle it as virtual. (For example, to create a virtual node for a node v

at level i, we can add v to level i + 1. Then create a node containing only a link to v and

leave it at level i, used as a representative of v.).

Secondly, the cost for creating the transitive arcs for all the virtual nodes added to Vi is

obviously bounded by O(|Vi-1′||Vi|n). It is because at most |Vi-1′| virtual nodes can be

added to Vi and the number of all the transitive arcs incident to each of these virtual nodes

is bounded by O(|Vi|n).

So the total cost for creating the transitive arcs is bounded by

h

i
ii nVV

1
1 |||'|

k

i
iVn

1

 = O(n2).

Next, we notice that for generating the alternating arcs incident to the virtual nodes added

to Vi, we need to search B(Vi, Vi-1′; Ci) once for each of them, and the number of the arcs

in B(Vi, Vi-1′; Ci) is bounded by O(|Vi-1′||Vi|) O(|Vi|). In addition, for each free node v

(in Vi-1′), the number of all those nodes z (in Vi-1′) which are connected to v through an

alternating path is bounded by |Vi| since each of such nodes must be covered relative to

Mi. For each z, we need to search at most |Vi| arcs to find all those w in Vi such that w z

 Ci. Moreover, for each w, we have to further find all those nodes u such that u w

E. So the cost for generating all the alternating arcs incident to v is bounded by O(|Vi-1′|

|Vi| + |Vi|
2 + |Vi|n). Therefore, the total cost for creating all the alternating arcs is bounded

by

nVVVV i

h

i
iii

 |||||||'|

1

2
1 = O(2n + n2).

Finally, concerning the global alternating graphs, we have the following important

lemma.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

147

Lemma 5 For each arc e in G

 corresponding to an edge in some maximum matching

found for a bipartite graph, if is followed by another arc e′, then e′ must be an arc which

corresponds to an edge not belonging to any maximum matching. Similarly, any arc

corresponding to an edge not covered by any maximum matching must be followed by an

arc corresponding to a covered edge if any.

Proof. Obviously, for any arc corresponding to an edge within a bipartite graph, the

lemma holds. For any arc which crosses bipartite graphs, it always goes from some Vi in

Vi in B(Vi, Vi-1; Ei) (i = 2, …, h) to a node in some Vj in B(Vj+1, Vj; Ej+1) with j < i – 1. So

it cannot be an arc corresponding to a covered edge, but must be followed by an arc

corresponding to a covered edge.

Corollary 1 For each node v in G

, either there is only one arc emanating from it or only

one arc entering it.

By using Dinic’s algorithm [18] for a maximum flow problem over a 0-1 network with

the property described in Corollary 1, only O(m) time is required, where n and m are

the numbers of the nodes and arcs of the network, respectively. (See pp. 119 – 121 in

[20]) Thus, cost21 is bounded by

O(

h

i
iiiiiiii VVVVVVVV

1
1111 |||'||||'||||'||||'| n).

For estimating cost22, we need to compute the costs for creating all the inherited,

transitive and alternating arcs, as well as supplementary arcs. We remember that when

executing VirtualGen(Vi-1′, Vi′, Vi+1, Mi) some virtual nodes will be added to Vi′ and Vi+1.

Each virtual node added to Vi′ will be connected to a node in Vi+1 (by an inherited,

transitive, or alternating arc), but each virtual node added to Vi+1 will be connected to

some nodes at levels higher than i + 1 by supplementary arcs. In terms of the analysis in

3.2.2, cost22 is bounded by O(n).

In terms of the above analysis, we have the following proposition.

Proposition 2 The time for creating a minimized set of disjoint chains, which may

contain virtual nodes, is bounded by O(2n + n2).

The main space requirement of this process is bounded by O(n) since at any time point,

only for the virtual nodes at the current level and the level lower than the current some

supplementary arcs have to be maintained, and it is obvious that the number of

supplementary arcs incident to a virtual node is at most O(n). Besides, for each virtual

node not appearing at any of these two levels, only one virtual arc is produced. So for

these virtual nodes the used space is also bounded by O(n). In addition to this, all the

bipartite graphs: B(V1, V0; C1), B(V2, V1′; C2), ..., B(Vh, Vh-1′; Ch) have to be kept. Thus,

the total space overhead is bounded by

 O(n +

h

i
ii VV

1
1 |||'|) = O(n).

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

148

3.3 Virtual node resolution

After the chain generation, the next step is to resolve (or say, to remove) virtual nodes

from chains. In the following, we will first discuss the working process in 3.3.1. Then, in

3.3.2, we analyze its computational complexities.

3.3.1 Removing virtual nodes

To remove virtual nodes from chains, we will work top-down along the chains. Two steps

will be carried out:

1. Remove virtual nodes, and at the same time connect some nodes according to the

connectivity represented by them, and

2. Establish new connections between free nodes by transferring edges along

alternating paths within a bipartite graph or cross more than one bipartite graph.

In the first step, we will check virtual nodes level by level, and change Gc to another

graph G containing part of G’s transitive closure, which is necessary to find the final

result. For doing this, the following rules should be followed.

i) Let v be a virtual node in Vi′. If v does not have a parent along the corresponding

chain, it will be simply removed.

ii) If v has a parent u along a chain with label(u v) = 0, remove v and connect u to

s(v). label(u s(v)) is set to 0,

iii) If v has a parent u along a chain with label(u v) = i, connect u to each reachable

node in Vi-1.

See Fig. 15 for illustration.

In Fig. 15(a), we show the resulting graph by removing c′′, by which the parent q of c′′

along the chain will be connected to all those nodes in V0 that are reachable from q since

label(q c′′) = 1. After c′′ is eliminated, c′ becomes a node without a parent along a

chain and is also removed. In Fig. 15(b), e′ and z′ are continually removed from the graph

as shown in Fig. 15(a), by which

- l will be connected to b since label(l e′) = 1 and b is the only node in V0

reachable from l, and

- t will be connected to z since label(t z′) = 0.

In the second step, we need to extend the concept of alternating graphs to include all the

bipartite graphs, called a global alternating graph, and defined below.

Definition 6 (global alternating graph) Let V = V0 ... Vh be the stratification of G(V,

E). A global alternating graph of G, denoted as G

 = 1B

 … iB

 … ,is a

directed graph obtained by separating G into a set of bipartite graphs, by which each

level, except for V0 and Vh, will be stored two times (and will be considered to be

different nodes.) In addition, for each arc u v in G with u Vi and v Vj (j < i), if (u,

v) belongs to Mi, v u is an arc in G

; otherwise, there is an arc from Vi in B(Vi, Vi-1; Ei)

to Vj in B(Vj+1, Vj; Ej+1).

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

149

Fig. 15. Illustration for virtual node resolution in Gc

(a) (b)
e a b y d

q r s

z c

f g h x z′

m n o p

l i j k l t

e′

e a b y d

q r s

z c

f g h x

m n o p

l i j k l t

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

150

Fig. 16. Illustration for virtual node resolution in Gc

(a) (b) e a b y d

q r s

z c

f g h x

m n o p

l

i j k l t

m n o p

l

i j k l t

f g h x

e a b y d

q r s

z c

f g h x

m n o p

l

i j k l t

m n o p

l

i j k l t

f g h x

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

151

Fig. 17. Transform the chains generated by Algorithm GenChain() to the final result

V1:

V0:

V4:

V2:

V3:

e a b y d z c

f g h x e′ z′

i j k l t c′

q r s

m n o p

l

c′′

e a b y d z c

f g h x

i j k l t

q r s

m n o p

l

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

152

In Fig. 16(a), we show such a global alternating graph, which is constructed by separating

G shown in Fig. 15(b) into four bipartite graphs.

We will then find a maximum set of node-disjoint paths with each starting from a node

which is a parent of some virtual node along a chain, and ending at a node which is an

actual free node relative to Mi in Vi-1′ in B(Vi, Vi-1′; Ci) for i = 1, …, h - 1. By transferring

the arcs on these paths, we will get the final result. For example, in Fig. 16(b), we can see

a possible maximum set of three paths in the graph shown in Fig. 16(a): P1 = q a f

 e, P2 = l b g y x c, and P3 = t z. Transferring the arcs on each of

these paths, we will transform the chains created by the algorithm GenChain() to a

minimum set of chains containing no virtual nodes.

 Along P1, we will connect node q to node a, cut off a f on the corresponding

chain, and then connect f to e.

 Along P2, we connect node l to node b, cut off b g, connect g to y, cut off y x,

and connect x to c.

 Along P3, we connect node t to node z.

Fig. 17 demonstrates the final result.

Based on the above discussion, we give the following algorithm.

ALGORITHM 3. RemoveVirtual (Gc)

input: Gc.

output: a set of chains which contain no virtual nodes.

begin

1. remove virtual nodes in Gc top-down level by level to get G;

2. transform G´ to a global alternating graph G

;

3. find a maximum set of node-disjoint paths in G

;
4. let P1, …, Pk be all the found node-disjoint paths;

5. transfer the edges on each Pi to change the chains obtained by

 Algorithm GenChain();

6. return the modified chains;

end

The dominant cost of the above algorithm mainly comprises two parts:

cost3 – the cost for generating G from Gc, and

cost4 – the cost for finding a maximum set of node-disjoint paths in Gc.

cost3 is the same as the cost for generating chains since the construction of G from Gc is

just a reverse process of the chain generation.

cost4 is the cost for finding a maximum flow in a special kind of 0-1 networks, where

either there is only one arc emanating from it or only one arc entering it (see Corollary 1).

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

153

Using Dinic’s algorithm [18] for this problem, only O(e) time is required. (See pp.

119 – 121 in [20])

So we have the following proposition.

Proposition 3 The time complexity of Algorithm RemoveVirtual() is bounded by

O(max{, }n2).

The space overhead of this process is also O(n) since no more space than the chain

generation is used.

4 Correctness

In this subsection, we prove the correctness of our algorithm.

First, we consider the transitive closure G*(V, E*) of G, and make a bipartite graph BG as

follows.

1. For each v V, we produce two nodes xv and yv.

2. For any two nodes u, v V, we will connect xu and yv if u v E*.

Concerning BG, we have the following lemma.

Lemma 6 Let M = {(
1vx ,

1uy), (
2vx ,

2uy), …, (
kvx ,

kuy)} be a maximum matching

of BG. By joining any two edge (
ivx ,

iuy), (
jvx ,

juy) if
iuy and

jvx are identical, we

form a set of chains. These chains plus all the free nodes relative to M make up a

minimum decomposition of G.

Proof. See [12,31,32]. (Also, see pp. 190-191 in [14].)

Proposition 4 The number of the chains generated for a DGA by our algorithm is

minimum.

Proof. We prove the proposition by induction on h.

Initial step. When h = 1, 2, the proposition holds according to Lemma 1 and 2.

Induction step. Assume that for any DAG of height k, the proposition holds. Now we

consider the case when h = k + 1. First, we construct a new graph F from G(V, E) as

below:

1. Stratify G, dividing V into V0, ..., Vh (i.e., V = V0 ... Vh).

2. Find a maximum matching M1 of B(V1, V0; E1). Construct virtual nodes for all the

free nodes in V0, and add them into V1. Add all the virtual arcs as described in 3.2.

Then, remove V0.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

154

So F is of height k. According to the induction hypothesis, our algorithm is able to find a

minimum set of chains of F, which corresponds to a maximum matching MF of BF, a

bipartite graph built over F*.

Let v1, …, vl be all the free nodes in V0, relative to M1; and v1, …, vl be their respective

virtual nodes. According to our algorithm, Gc is constructed by adding B(V1, V0; E1) to

Fc, removing v1, …, vl, and connecting the parents of these virtual nodes to their

respective reachable nodes in V0. Then, in G

 = 1B

 … iB

 … , relative to

the matching (MF\A) M1 in BG, where A = {e| e MF and incident to some vi, i = 1, …,

l}, any augmenting path connects an end node u of some chain for F (after all vi have

been removed) to a free node relative to (MF\A) M1. Transferring the edges on a

maximum set of node-disjoint augmenting paths, we will get a maximum matching for

BG. According to Lemma 6, the number of final chains found by our algorithm is

minimum.

5 Conclusion

In this paper, a new algorithm for finding a minimal decomposition of DAGs is proposed.

The algorithm needs O(n2) time and O(n) space, where n and m are the number of the

nodes and the arcs in a DAG G, respectively; and is the width of G. The main idea of

the algorithm is the concept of virtual nodes and the DAG stratification that generates a

series of bipartite graphs which may contain virtual nodes. By executing Hopcropt-

Karp’s algorithm, we find a maximum matching for each of such bipartite graphs, which

make up a set of node-disjoint chains. A next step is needed to resolve all the virtual

nodes appearing on the chains to get the final result.

We also point out that our algorithm can be easily modified to a 0-1 network flow

algorithm by defining a chain to be a path and accordingly changing the conditions for

creating transitive and alternating arcs.

Competing Interests

Authors have declared that no competing interests exist.

References

[1] Holland PW, Leinhardt S. An exponential family of probability distributions for

directed graphs. Journal of the American Statistical Association. 1981 Mar

1;76(373):33-50.

[2] Ore O. Studies on directed graphs, I. Annals of Mathematics. 1956 May 1;383-

406.

[3] Mezić I, Fonoberov VA, Fonoberova M, Sahai T. Spectral complexity of directed

graphs and application to structural decomposition. Complexity. 2019 Jan 1;2019.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

155

[4] Chung FR. Spectral graph theory. American Mathematical Soc; 1997.

[5] Chen Y, Chen YB. Decomposing DAGs into Spanning Trees: A New Way to

Compress Transitive Closures, in Proc. of Conf. on Data Engineering, IEEE,

2011, pp. 1007 – 1018.

[6] Chen Y, Chen YB, Zhang Y. Evaluation of reachability queries based on

recursive DAG decomposition, accepted by IEEE Transactions on Knowledge

and Data Engineering; Nov. 08, 2022.

[7] Su J, Zhu Q, Wei H, Jeffrey Xu Yu. Reachability querying: Can it be even

faster? IEEE Transactions on Knowledge and Data Engineering. 2017;29(3):683-

697.

[8] Coppersmith D, Winograd S. Matrix multiplication via arithmetic progression.

Journal of Symbolic Computation. 1990;9:251-280.

[9] Tarjan R. Depth-first search and linear graph algorithms. SIAM J. Compt. June

1972;1(2):146 -140.

[10] Gallai T, Milgram AN. Verallgemeinerung eines Graphentheoretischen Satzes

von Reedei. Acta Sci. Math. Hung. 1960;21:429-440.

[11] Lamport L. Time, clocks, and the ordering of events in a distributed system,

Communication of the ACM. July 1978;21(7):95-114.

[12] Dilworth RP. A decomposition theorem for partially ordered sets. Ann. Math.

1950;51:161-166.

[13] Fulkerson DR. Note on Dilworth’s embedding theorem for partially ordered sets.

Proc. Amer. Math. Soc. 1956;7:701-702.

[14] Asratian AS, Denley T, Haggkvist R. Bipartite graphs and their applications.

Cambridge University; 1998.

[15] Warren HS. A modification of Warshall’s algorithm for the transitive closure of

binary relations. Commun. ACM. April 1975;18(4):218 - 220.

[16] Hopcroft JE, Karp RM. An n2.5 algorithm for maximum matching in bipartite

graphs SIAM J. Comput. 1973;2:225-231.

[17] Jagadish HV. A compression technique to materialize transitive closure. ACM

Trans. Database Systems. 1990;15(4):558 - 598.

[18] Dinic EA. Algorithm for solution of a problem of maximum flow in a network

with power estimation. Soviet Mathematics Doklady. 1970;11(5):1277-1280.

https://ieeexplore.ieee.org/author/37086113100
https://ieeexplore.ieee.org/author/37631586300
https://ieeexplore.ieee.org/author/37085396793
https://ieeexplore.ieee.org/author/37085396793

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

156

[19] Karzanov AV. Determining the maximal flow in a network by the method of

preflow. Soviet Math. Dokl. 1974;15:434-437.

[20] Even S. Graph algorithms. Computer Science Press, Inc., Rockville, Maryland;

1979.

[21] Chekuri C, Bender M. An efficient approximation algorithm for minimizing

makespan on uniformly related machines. Journal of Algorithms. 2001;41:212-

224.

[22] Lawler EL. Combinatorial optimization: Neworks and Matroids. Holt, Rinehart,

and Winston, New York; 1976.

[23] Malhotra VM, Kumar MP, Maheshwari SN. An O(|V|3) algorithm for finding

maximum flows in networks, computer science program. Indian Institute of

Technology, Kanpur 208016, India; 1978.

[24] Chen Y, Chen YB. An efficient algorithm for answering graph reachability

queries, in Proc. 24th Int. Conf. on Data Engineering (ICDE 2008), IEEE. April

2008;892-901.

[25] Chen Y, Chen YB. On the decomposition of posets, in Proc. 2nd Int. Conf. on

Computer Science and Service System (CSSS 2012), IEEE, Aug. 11-13, Nanjing,

China. 2012; 1115 - 1119.

[26] Chen Y, Chen YB. On the decomposition of posets into minimized set of node-

disjoint chains. 2013 Int. Conf. on Computer, Networks and Communication

Engineering (ICCNCE 2013), Beijing, China. May 23-24, 2013;131-135.

[27] Felsner S, Wernisch L. Maximum k-chains in planar point sets: combinatorial

structure and algorithms. SIAM J. Comp. 1998;28:192-209.

[28] Lou RD, Sarrafzadeh M. An optimal algorithm for the maximum two-chain

problem. SIAM J. Disc. Math. 1992;5(2):285-304.

[29] Goeman H. Time and space efficient algorithms for decomposing certain patially

ordered sets, PhD thesis, Department of Mathematics-Science, Rheinischen

Friedrich-Wilhelms Universität Bonn, Germany; Dec. 1999.

[30] Alt H, Blum N, Mehlhorn K, Paul M. Computing a maximum cardinality

matching in a bipartite graph in time O(). Information Processing Letters.

1991;37:237 -240.

[31] Perles MA. A proof of Dilworth’s decomposition theorem for partially ordered

sets. Israel J. of Math. 1963;1:105-107.

[32] Tverberg H. On Dilworth’s decomposition theorem for partially ordered sets. J.

Comb. Th. 1967;3:305-306.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

157

APPENDIX – Find node-disjoint paths alternating in

Combined graphs

A.1 Algorithm

In the appendix, we discuss an algorithm for finding a maximal set of node-disjoint paths

in a combined graph G. Its time complexity is bounded by O(e), where n = V(G) and

e = E(G). It is in fact a modified version of Dinic’s algorithm [18], adapted to combined

graphs, in which each path from a virtual node to a free node relative to Mi+1 or relative to

Mi is an alternating path, and for each edge (u, v) Mi+1 Mi, we have dout(u) = din(v) =

1. Therefore, for any three nodes v, v’, and v’’ on a path in G, we have dout(v) = din(v’) =

1, or dout(v’) = din(v’’) = 1. We call this property the alternating property, which enables

us to do the task efficiently by using a dynamical arc-marking mechanism. An arc u v

with dout(u) = din(v) = 1 is called a bridge.

Our algorithm works in multiple phases. In each phase, the arcs in G will be marked or

unmarked. We also call a virtual node in G an origin and a free node a terminus. An

origin is said to be saturated if one of its outgoing arcs is marked; and a terminus is

saturated if one of its incoming arcs is marked.

In the following discussion, we denote G by A.

At the very beginning of the first phase, all the arcs in A are unmarked.

In the kth phase (k 1), a subgraph of A will be explored, which is defined as follows.

Let V0 be the set of all the unsaturated origins (appearing in). Define Vj (j > 0) as follows

[16]:

Ej-1 = { u v E(A) | u Vj-1, v V0 V1 ... Vj-1,

u v is unmarked} v u E(A) | u Vj-1, v V0 V1 ... Vj-1,

 v u is marked},

Vj = {v V(A) | for some u, u v is unmarked and u v Ej-1}

 v V(A) | for some u, v u is marked and v u Ej-1}.

Define j* = min{j | Vj {unsaturated terminus} }.

A(k) is formed with V(A(k)) and E(A(k)) defined below.

If j* = 1, then

 V(A(k)) = V0 (Vj* {unsaturated terminus}),

 E(A(k)) = {u v | u Vj*-1, and v {unsaturated terminus}}.

If j* > 1, then

 V(A(k)) = V0 V1 ... Vj*-1 (Vj* unsaturated terminus

E(A(k)) = E0 E1 ... Ej*-2 {u v | u Ej*-1, and v {unsaturated

terminus}}.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

158

The sets Vj are called levels.

In A(k), a node sequence v1, ..., vj, vj+1, ..., vl is called a complete sequence if the following

conditions are satisfied.

(1) v1 is an origin and vl is a terminus.

(2) For each two consecutive nodes vj, vj+1 (j = 1, ..., l - 1), we have an unmaked arc

vj vj+1 in , or a marked arc vj+1 vj in A(k).

Our algorithm will explore to find a set of node-disjoint complete sequences (i.e., no two

of them share any nodes.) Then, we mark and unmark the arcs along each complete

sequence as follows.

(i) If (vj, vj+1) corresponds to an arc in A(k), mark that arc.

(ii) If (vj+1, vj) corresponds to an arc in A(k), unmark that arc.

Obviously, if for an there exists j such that Vj = and Vi {unsaturated terminus} =

for i < j, we cannot find a complete sequence in it. In this case, we set A(k) to and then

the kth phase is the last phase.

Example 5 Consider a A shown in Fig. 12(a), in which nodes a and b are two origins; and

nodes g and h are two terminus. Initially, all the arcs are not marked. Thus, V0 = {a, b},

V1 = {c, d}, V2 = {e, f}, V3 = {g, h}; and j* = 3. A(1) is the same as A. (Normally, A(1) has

fewer nodes than A.)

Assume that by exploring A(1) (using the algorithm given below), we find a complete

sequence: a, d, f, g. Then, we will mark three arcs (a, d), (d, f), and (f, g), as shown by the

thick arrows in Fig. 12(b). With respect to these marked arcs, a second subgraph (in the

second phase) will be constructed as shwon in Fig. 12(c). In this phase, V0 = {b} (since

node a is saturated), V1 = {d}, V2 = {a} (note that a d is marked), V3 = {c}, V4 = {e},

V5 = {g}, V6 = {f} (note that f g is marked), V7 = {h}; and j* = 7. By exploring , we

will find another complete sequence: b, d, a, c, e, g, f, h, on which all the unmarked arcs

will be marked while all the marked arcs will be unmarked, as shown in Fig. 12(d).

Fig. 12(e) shows all the marked arcs, which make up two node-disjoint paths: a c e

 g and b d f h.

The following algorithm is devised to explore an A(k), in which a stack H is used to store

complete sequences. In addition, for each v in , neighbor(v) represents a set of of nodes:

v1, .., vm such that for each j {1, ..., m} v vj E(A(k)) if v vj is unmarked, or vj v

E(A(k)) if vj v is marked.

Algorithm subgraph-exploring()

begin
1. let v be the first element in V0;

2. push(v, H); mark v ‘accessed’;

3. while H is not empty do {

4. v := top(H); (*the top element of H is assigned to v.*)

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

159

5. while neighbor(v) do {

6. let u be the first element in neighbor(v);

7. if u is accessed then remove u from neighbor(v)

8. else {push(u, H); mark u ‘accessed’; v := u;}

9. }

10. if v is neither in Vj* nor in V0 then pop(H)

11. else {if v is in Vj* then output all the elements in H;

 (*all the elements in H make up a complete sequence.*)

12. remove all elements in H;

13. let v be the next element in V0;

14. push(v, H); mark v;

15. }

`6. }

end

The above algorithm works top-down, searching level by level. In each iteration of the

outer while-loop, a complete sequence is explored (by executing the inner while-loop,

lines 5 - 9) and stored in the stack H. All the found complete sequences are node-disjoint

since any repeated access of a node is blocked by using the mark ‘accessed’ (see lines 2,

7, and 8.)

Based on the above algorithm, the whole process to find a maximal set of node-disjoint

paths is given below.

Algorithm node-disjoint-paths(A)

begin
1. k := 1;

2. construct A(k);

3. while A(k) do {

4. call subgraph-exploring();

5. let P1, ... Pl be all the found complete sequences;

6. for j = 1 to l do

7. { let Pj = v1v2 ... vm;

8. mark vi vi+1 or unmark vi+1 vi (i = 1, ..., m - 1)

 according to (i) and (ii) above;

9. }

10. k := k + 1; construct A(k);

11. }

end

The above algorithm runs in several phases. In each phase, an A(k) is constructed (see line

2, and 10). Then, subgraph-exploring() is invoked to find all node-disjoint complete

sequences. Also, the arcs along each complete sequence will be marked or unmarked (see

line 8). When we meet an A(k) = , the algorithm terminates; and all the marked arcs in A

make up a maximal set of node-disjoint paths.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

160

A.2 Time complexity and correctness

In this subsection, we analyze the time complexity of node-disjoint-paths(A) and prove

its correctness.

A.2.1 Time complexity

Lemma 2 Let , ..., be the levels constructed when establishing . Then, we have jk < jk+1

if (k + 1)th phase is not the last.

Proof. Let v be a node in

. If v

, then, according to the definition of j*, we

must go along a longer path from a node in

 to v than any path from a node in

 to v. If v

, then, to reach v, we must go along a node sequence v1, ...,
 = v

such that there exist at least two consecutive nodes vl, vl+1 (1 < l < jk+1) with vl+1 vl

being marked in the kth phase due to the alternating property. Going from vl to vl+1 means

a detour around. In terms of the definition of j*, jk+1 > jk.

Lemma 3 Let P be a maximal set of node-disjoint paths in A. Let

., ...,

. be the

levels when establishing A(1). Then, j1 |V(A)|/|P|.

Proof. Let be the length of the shortest path in P. Then, we have

 |P| |V(A)| .

Therefore, |V(A)|/|P|. However, j1 . Thus, the lemma follows.

Foe each A(k), we define B(k) as follows.

(1) If u v E(A(k)) is an unmarked arc, then u v E(B(k)).

(2) If u v E(A(k)) is a marked arc, then v u E(B(k)).

We will prove that B(k) also has the alternating property.

Lemma 4 In B(k), for each node v, we have either dout(v) 1 or din(v) 1.

Proof. We prove the lemma by induction on k.

Basis step. When k = 1. The lemma trivially holds.

Induction step. Assume that for k h, the lemma holds. We consider B(h+1). Let v be a

node in B(h+1). If v does not appear in any complete sequences found in A(k). The indegree

and outdegree of v are the same as in B(h). If v appears in a complete sequence found in

A(h), we do the following analysis. Let v1, ..., vi-1, v, vi+1, ..., vl be a complete sequence

found in A(h), on which v appears. Consider vi-1, v, vi+1, we have dout(v) = din(vi+1) = 1, or

dout(vi-1) = din(v) = 1 according to the induction hypothesis. In both cases, neither of vi-1

 v and v vi+1 appear in B(h+1). But in the former case, u v (for some u) and v vi-1

will be added into , as shown by the dashed arrows in Fig. 13(a). Note that in B(h+1) dout(v)

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

161

= din(vi-1) = 1. In the latter case, vi+1 v and v u’ (for some u’). In this case, dout(vi+1) =

din(vi) = 1. See Fig. 13(b) for illustration. Thus, a bridge in is replaced with a different

bridge in B(h+1).

Proposition 3 The time complexity of the algorithm node-disjoint-paths(A) is bounded

by O(|E(A)|).

Proof. Let P be a maximal set of node-disjoint paths in A. If |P| , then the

number of phases is bounded by , and the result follows. If |P| > , we

consider k such that in the kth phase the number of node-disjoint paths is |P| - .
Then, by constructing A(k+1), ..., A(m) (assume that the mth phase is the last), and then

exploring them, we will find the rest node-disjoint paths. Assume that

, ...,

be the levels constructed when establishing . In terms of Lemma 2 and 3, jk+1 |V(A)|/

 = .

In terms of Lemma 1, k must be less than jk+1. Therefore, k . Thus, the time

spent for the first k phase is bounded by O(|E(A)|). Also, the time for finding the

rest node-disjoint paths is bounded by O(|E(A)|). So the total cost is

O(|E(A)|).

A.2.2 Correctness

Lemma 5 Let A(0) = A, A(1), ..., A(k) = be the graphs generated in the different phases

during the execution of Algorithm node-disjoint-paths(A). Then, for each marked arc u

 v in A(i) (i = 1, ..., k - 1), the following conditions are satisfied.

i) If u is not an origin, then there exists a node u’ such that u’ u is marked in A(i).

ii) If v is not a terminus, then there exists a node v’ such that v’ v’ is marked in A(i).

Proof. We prove condition (1) by induction on phases i.

Basic step. When i = 1. The proof is trivial.

Induction step. Assume that the lemma holds for i j. Consider phase j + 1. Let v1, ..., vl

be a complete sequence found in A(j+1). Without loss of generosity, assume that (vg, vg+1)

(1 g < l) corresponds to a marked arc. If (vg-1, vg) corresponds to a marked arc,

condition (i) is proved. Otherwise, there exists a subsequence vh, vh+1, ..., vg such that

each pair (vr+1, vr) corresponds to a marked arc in A(j). According to the induction

hypothesis, if vg is not an origin, there must exist a node v such that (v, vg) corresponds to

a marked arc in A(j). According to the algorithm, (vr+1, vr) will be unmarked, but (v, vg)

remains marked.

In the same way, we can prove condition (ii).

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

162

From the proof of Lemma 5, we can also see that any two paths made up of marked arcs

(from an origin to a terminus) are node-disjoint.

Proposition 4 The number of the node-disjoint paths in A found by node-disjoint-

paths(A) is maximum.

Proof. Let A(0) = A, A(1), ..., A(k) = be the graphs generated in the different phases during

the execution of the algorithm. Let V0,V1, ..., Vj be the levels when creating A(k). Then, Vj

= and Vi {unsaturated terminus} = for i < j. Consider the cut (R,), where V0

V1 ... Vj-1 and = V(A)\(V0 V1 ... Vj-1). Each arc u v with u R and v

 must be marked. Otherwise, Vj . In addition, each two of such arcs are not on a

same path. According to Lemma 5, each of such arcs corresponds to a node-disjoint path

and the number of such arcs is maximum. This completes the proof.

Research and Applications Towards Mathematics and Computer Science Vol. 1

On the DAG Decomposition into Minimum Number of Chains

163

Biography of author(s)

Yangjun Chen

The University of Winnipeg, Canada.

Research and Academic Experience: He got his PhD in Computer Science from the University of Kaiserslautern,

Germany, in 1995. He is now a professor in Dept. Applied Computer Science, University of Winnipeg, Canada.

Research Area: His area of research includes algorithm design and Databases.

Number of Published Papers: He has about 200 publications in Computer Science and Computer engineering.

Yibin Chen

The University of Winnipeg, Canada.

Research and Academic Experience: He has received the BS and master’s degree from the Department of

Electrical and Computer Engineering, University of Waterloo, and the Department of Electrical and Computer

Engineering, University of Toronto, Canada, respectively. Now he is a software engineer.

Research Area: His area of research mainly focused on Software engineering.

Number of Published Papers: He has published 13 research articles in several reputed journals.

__
© Copyright (2023): Author(s). The licensee is the publisher (B P International).

DISCLAIMER

This chapter is an extended version of the article published by the same author(s) in the following journal.

British Journal of Mathematics & Computer Science, 10(6): 1-27, 2015.

Peer-Review History: During review of this manuscript, double blind peer-review policy has been followed. Author(s) of this

manuscript received review comments from a minimum of two peer-reviewers. Author(s) submitted revised manuscript as per the

comments of the peer-reviewers. As per the comments of the peer-reviewers and depending on the quality of the revised manuscript,

the Book editor approved the revised manuscript for final publication.

