

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

74

Chapter 5
Print ISBN: 978-93-5547-821-4, eBook ISBN: 978-93-5547-822-1

Most Popular Package Design and NP-Hard

Problem

Yangjun Chen a* and Bobin Chen a

DOI:10.9734/bpi/nramcs/v8/3788E

ABSTRACT

Given a set of items, and a set of user preferences, we investigate the problem of

designing a most popular package (or say, a pattern), i.e., a subset of items that

maximizes the number of satisfied users. It is a typical problem of data mining. In this

paper, we address this issue and propose an efficient algorithm for solving the problem

based on a graph structure, called a 𝑝∗-graph, used to represent the preference of a user,

by which a lot of useless checks can be avoided. The time complexity of the algorithm is

bounded by O(𝑛2𝑚3), where 𝑚 is the number of items (or say, attributes) and 𝑛 is the

number of user preferences. Since the problem is essentially 𝑁𝑃-hard, the algorithm

discussed in this chapter in fact provides a proof of 𝑃 = 𝑁𝑃.

CCS Concepts: • Theory of computation → Minimum satisfiability problem.

Keywords: Data mining; single package design; trie; NP-hard; time complexity analysis;

MINSAT.

1 Introduction

Data mining, also known as knowledge discovery in data (KDD), is the process of

uncovering patterns and other valuable information from large data sets [1-3]. As one of

its important problems, the frequent pattern mining [4,5] is to recognize a frequent

pattern, in terms of a given set of transactions with each consisting of some items. By a

frequent pattern we mean a subset of items which are supported (or say, contained) by

most of transactions. In this chapter, we discuss a more challenging problem, the so-

called single package design problem (SPD for short [6,7,8,9]), by which we consider a

set of activities or items 𝐴 = {𝑎1, … , 𝑎𝑚}, like hot spring, riding horse by a travel agency,
referred to as an attribute, an item, or a feature; and a query log Q = {𝑞1, … 𝑞𝑛} with each

𝑞𝑖(𝑖 = 1, … , 𝑛) being a bit string of length 𝑚: 𝑐𝑖1𝑐𝑖2 … 𝑐𝑖𝑚(𝑐𝑖𝑗 ∈ {0,1,∗ }, 𝑗 = 1, … , 𝑚).

Here, 𝑐𝑖𝑗 = 1 indicates that 𝑎𝑗 is selected, and 𝑐𝑖𝑗 = 0 indicates that 𝑎𝑗 is not selected

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

75

while ‘*’ means ‘don’t care’ (i.e., 𝑎𝑗 can be selected or not). Then, a bit tuple 𝑡 (or say a

bit string with each bit corresponding to an activity) is referred to as a package (or say a

truth assignment); and what we want is to ensure that such a package satisfies as many

queries as possible. If a package is with this property, it is called a most popular package.

For example, for the above vacation package, clients give their preferences by specifying

yes, no, or ‘don’t care’ for each activity to form a query log.

Table 1. A query log 𝑄

 queryID Hot spring Ride Glacier Hiking Airline Boating

 𝑞1 1 ∗ 0 ∗ 1 ∗

 𝑞2 1 0 1 ∗ ∗ ∗

 𝑞3 ∗ 0 0 1 1 ∗

 𝑞4 ∗ ∗ 1 ∗ 1 ∗

 𝑞5 ∗ 0 0 ∗ ∗ 0

 𝑞6 ∗ 1 ∗ 0 ∗ 1

The design of a most popular package is to pick up a sub-set of these activities to meet as

many queries’ requiremets as possible.

This problem has been investigated by several researchers [10,9] . In [9], an

approximation algorithm was discussed, by which an SPD problem is reduced to a

MINSAT problem [11] that is an optimization version of the satisfiability [9], by which

we seek to find a truth assignment to minimize the number of satisfied clauses. The

method discussed in [10] is in fact based on the construction of a kind of binary trees,

called signature trees [12-14] for signature files [15,16,17] . Its worst-case time

complexity is bounded by O(𝑚𝑛2𝑚), where 𝑚 is the number of items (or say, attributes)

and 𝑛 is the number of queries.

Our method works quite differently, but based on a compact representation of all those

truth assignments for each query 𝑞, under which 𝑞 evaluates to true. Organizing all such

data structures for all the queries into a trie-like graph 𝐺, an efficient algorithm can be

designed based on a bottom-up search of 𝐺 . The time complexity of the algorithm is

bounded by O(𝑛2𝑚3). As shown in the Appendix, SPD is 𝑁𝑃-hard [18,19,20]. Thus, our

algorithm is in fact a proof of 𝑃 = 𝑁𝑃 [21,22].

The remainder of the chapter is organized as follows. In Section 2, we show a simple

example of the SPD problem. Then, in Section 3, the algorithms for evaluating the SPD is

discussed in great detail. Section 4 is devoted to the time analysis. Finally, we conclude

with a summary in Section 5.

2 An Example of SPD

As an example of SPD, Table 1 shows a query log for a vacation package application. It

contains 𝑛 = 6 queries with 𝑚 = 6 attributes (activities), and each query represents one

of user’s favourites. For instance, the query 𝑞1 = 𝑐11𝑐12 … 𝑐16 = (1,∗ , 0,∗ , 1,∗) in Table 1

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

76

indicates that hot spring and airlines are 𝑞1’s favourites, but glacier is not. Furthermore,

𝑞1 does not care about whether riding, hiking or boating is available or not.

For this small query log, we can find a single package: hot spring, hiking, airline, which

satisfy a maximum subset of queries: 𝑞1, 𝑞3, 𝑞5.

3 Algorithm Description

In this section, we discuss our algorithm. First, we present the main idea of our algorithm

in Section 3.1. Then, in Section 3.2, the algorithm is descussed in great detail. Next, we

discuss how to improve the algorithm in Section 3.3.

3.1 Main idea

Let 𝑄 = {𝑞1, … , 𝑞𝑛} be a query log and 𝐴 = {𝑎1, … , 𝑎𝑚} be the corresponding set of

attributes. For each 𝑞𝑖 = 𝑐𝑖1𝑐𝑖2 … 𝑐𝑖𝑚(𝑐𝑖𝑗 ∈ {0,1,∗ }, 𝑗 = 1, … , 𝑚), we will create another

sequence: 𝑟𝑖 = 𝑑𝑗1
… 𝑑𝑗𝑘

 (𝑘 ≤ 𝑚) , where 𝑑𝑗𝑙
= 𝑎𝑗𝑙

 if 𝑞𝑖[𝑗𝑙] = 1 , or 𝑑𝑗𝑙
= (𝑎𝑗𝑙

,∗) if

𝑞𝑖[𝑗𝑙] = `∗` (𝑙 ∈ {1, … , 𝑘}). If 𝑞𝑖[𝑗𝑙] = 0, 𝑎𝑗𝑙
 will not appear in 𝑟𝑖 at all. Let 𝑝 and 𝑠 be the

numbers of 1s and ‘*’s in 𝑞𝑖, respectively. Then, we have 𝑘 = 𝑝 + 𝑠.

For instance, for 𝑞1 = (1,∗ , 0,∗ , 1,∗) in Table 1 , a sequence:

r1 = hot-spring.(ride,∗). (hiking,∗). airline. (boating,∗)

will be generated. Next, we need to compute the frequency of each attribute appearrance

in all such sequences in 𝑄, by which (a, *) is counted as an appearance of 𝑟. Then, using

𝐹(𝑎) to represent the frequency of any attrubute 𝑎 , we will have 𝐹 (hot-spring) = 5/
6, 𝐹 (ride) = 3/6, 𝐹(glacier) = 3/6, 𝐹(hiking) = 5/6, 𝐹(airline) = 6/6, 𝐹(boating) =
5/6 for Tabel 1.

In terms of the attribute appearance frequencies, we will impose a global ordering over

all attributes such that the most frequent attribute appears first, but with ties broken

arbitrarily. For instance, for 𝑄 shown in Tabel 1, we can specify a global ordering like

this: airline → hot spring → hiking → boating → boating → ride → glacier. In fact, any

ordering of attributes works well, based on which a graph representation of true

assignments can be established. However, ordering attributes according to their

appearance frequencies can greatly improve the efficiency when searching the trie (to be

defined in the next subsection) constructed over all the attribute sequences in a query log.

Following this general ordering, each query in Table 1 can be represented as a sorted

attribute sequense as demonstrated in Table 2 (see the third column).

In Table 2, each sorted attribute sequence (for a query) is augmented with a start symbol

and an end symbol $ for technical convenience.

For our algorithm, we need to introduce a graph structure to represent all those truth

assignments for each attribute sequence (for a 𝑞), called a 𝑝∗ -graph, under which 𝑞

evaluates to true. For this purpose, we first discuss a simpler concept for ease of

explanation.

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

77

In the following, by an attribute sequence, we always mean a sorted attribute sequence.

We will also use word ‘query’ and its attribute sequence interchangeably.

Definition 3.1. (p-graph) Let 𝑞 = 𝑑0𝑑1 … 𝑑𝑘𝑑𝑘+1 be an attribute sequence representing a

query as described above (with 𝑑0 = # and 𝑑𝑘+1 = $). A p-graph over 𝑞 is a directed

graph, in which there is a node for each 𝑑𝑗(𝑗 = 0, … , 𝑘 + 1); and an edge for (𝑑𝑗 , 𝑑𝑗+1)

for each 𝑗 ∈ {1, … , 𝑘}. In addition, there may be an edge from 𝑑𝑗 to 𝑑𝑗+2 for each 𝑗 ∈

{1, … , 𝑘 − 1} if 𝑑𝑗+1 is a pair of the form (a, *), where a is an attribute.

Table 2 . Queried represented as sorted attribute sequences

Query ID Attribute sequences* Sorted attribute sequences

𝑞1
𝑞2
𝑞3
𝑞4
𝑞5
𝑞6

Hs.(R, *).(H, *).A.(B.*).
Hs.G.(H, *).(A, *).(B, *).
(Hs, *).H.A.(B, *).
(Hs, *).(R, *).G.(H, *).A.(B, *).
(Hs, *).(H, *).(A, *).
(Hs, *).R.(G, *).B.

#.A.Hs.(H, *).(B, *).(R, *).$

#.(A, *).Hs.(H, *).(B, *).G.$

#.A.(Hs, *).H.(B, *).$

#.A.(Hs, *).(H, *).(B, *).(R, *).G.$

#.(A, *) (Hs, *).(H, *).$

#.(Hs, *).B.R.(G, *).$

 ∗𝐻𝑠: hot spring, R: ride, G: glacier, H: hiking, A: airline, B: boating

In Fig. 1(a) we show such a 𝑝-graph for 𝑞1 = #.A.Hs. (H,∗). (B,∗). (R,∗). $. Beside a

main path going through all the items in 𝑞1, there are three off-path edges (edges not on

the main path), referred to as spans, corresponding to (H,∗), (B,∗) , and (R,∗) ,

respectively. Each span is represented by the sub-path covered by it. For example, we

will use the sub-path < 𝑣2, 𝑣3, 𝑣4 > to stand for the span connecting 𝑣2 and 𝑣4; <
𝑣3, 𝑣4, 𝑣5 > for the span connecting 𝑣3 and 𝑣5 ; and < 𝑣4, 𝑣5, 𝑣6 > for the span

connecting 𝑣4 and 𝑣6 . By using spans, the meaning of ‘*’s (it is either 0 or 1) is

appropriately represented since along a span we can bypass the corresponding attribute

(then it is not selected) while along an edge on the main path we go through the

corresponging attribute (then it is selected).

Fig. 1. A p-path and a 𝒑 ∗-path

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

78

In fact, what we want is to represent all those truth assignments for 𝑞 in an efficient way,

under which 𝑞 evaluates to true. However, 𝑝-graph fails to do so since when we go

through from a node v to another node 𝑢 through a span, 𝑢 must be selected. If 𝑢

represents a (𝑐,∗) for some attribute name 𝑐 , the meaning of this ‘*’ is not properly

rendered.

For this reason, the concept of 𝑝∗-graph is introduced.

Let 𝑠1 = ⟨𝑣1, … , 𝑣𝑘⟩ and 𝑠2 = ⟨𝑢1, … , 𝑢𝑙⟩ be two spans attached on a same path. We say,

𝑠1 and 𝑠2 are overlapped, if 𝑢1 = 𝑣𝑗 for some 𝑗 ∈ {𝑣1, … , 𝑣𝑘−1}, or if 𝑣1 = 𝑢𝑗′ for some

𝑗′ ∈ {𝑢1, … , 𝑢𝑙−1} . For example, in Fig. 1(a), < 𝑣2, 𝑣3, 𝑣4 > and < 𝑣3, 𝑣4, 𝑣5 > are

overlapped. < 𝑣3𝑣4, 𝑣5 > and < 𝑣4, 𝑣5, 𝑣6 > are also overlapped. But < 𝑣2, 𝑣3, 𝑣4 > and

< 𝑣4, 𝑣5, 𝑣6 > not. Here, we notice that the overlapped spans imply the consecutive

‘don’t cares’, just like ⟨𝑣2, 𝑣3, 𝑣4⟩ and ⟨𝑣3, 𝑣4, 𝑣5⟩, which correspond to two consecutive

‘*’s: (H,∗) and (B,∗). Therefore, the overlapped spans exhibite some kind of transitivity.

That is, if 𝑠1 and 𝑠2 are two overlapped spans, the 𝑠1 ∪ 𝑠2 must be a new, but bigger span.

Applying this operation to all the spans over a 𝑝-path, we will get a ‘transitive closure’ of

overlapped spans. Based on this observation, we give the following definition.

DEfinition 3.2. (𝑝∗-graph) Let 𝑃 be a p-graph. Let 𝑝 be its main path and 𝑆 be the set of

all spans over 𝑝. Denote by 𝑆∗ the ‘transitive closure’ of 𝑆. Then, the 𝑝∗ -graph with

respect to 𝑃 is the union of 𝑝 and 𝑆∗, denoted as 𝑃∗ = 𝑝 ∪ 𝑆∗.

In Fig. 1(b), we show the 𝑝∗ -graph with respect to the 𝑝-graph shown in Fig. 1(a).

Concerning 𝑝∗-graphs, we have the following lemma.

LEMMA 1. Let 𝑃∗ be a p*-graph for an attribute sequence (of some query 𝑞 in 𝑄). Then,

each path from # to $ in 𝑃∗ represents a truth assignment, under which 𝑞 evaluate to true.

Proof. (1) Corresponding to any truth assignment 𝜎, under which 𝑞 evaluates to true,

there is definitely a path from # to $. First, we note that under such a truth assignment

each attribute 𝑎𝑗 with 𝑞[𝑗] = 1 must be selected, but with some ‘don’t cares’ selected or

not. Especially, we may have more than one consecutive ‘don’t cares’ that are not

selected, which are represented by a span that is the union of the corresponding

overlapped spans. Therefore, for 𝜎 we must have a path representing it.

(2) Each path from # to $ represents a truth assignment, under which 𝑞 evaluates to true.

To see this, we observe that each path consists of several edges on the main path and

several spans. Especially, any such path must go through every attribute 𝑎𝑗 with 𝑞[𝑗] = 1

since for each of them there is no span covering it.

3.2 Algorithm

To find a truth assignment to maximize the number of satisfied queries in 𝑄, we will first

construct a trie-like graph 𝐺 over 𝑄, and then search 𝐺 bottom-up to find the answer.

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

79

Let 𝑃1
∗, 𝑃2

∗, … , 𝑃𝑛
∗ be all the 𝑝∗-graphs constructed for all the queries 𝑞1, 𝑞2, … , 𝑞𝑛 in 𝑄,

respectively. Let 𝑝𝑗 and 𝑆𝑗
∗(𝑗 = 1, … , 𝑛) be the main path of 𝑃𝑗

∗ and the transitive closure

over its spans, respectively. We will construct 𝐺 in two phases. In the first phase, we will

establish a trie T, denoted as T = 𝑡𝑟𝑖𝑒(𝑅) over 𝑅 = {𝑝1, … , 𝑝𝑛} as follows.

If |𝑅| = 0, trie(𝑅) is, of course, empty. For |𝑅| = 1, trie(𝑅) is a single node. If |𝑅| >
1, 𝑅 is split into 𝑚 (possibly empty) subsets 𝑅1, 𝑅2, … , 𝑅𝑚 so that each 𝑅𝑖(𝑖 = 1, … , 𝑚)

contains all those sequences with the same first attribute name. The tries: trie(𝑅1) ,

trie(𝑅2), …, trie(𝑅𝑚) are constructed in the same way except that at the 𝑘 th step, the

splitting of sets is based on the 𝑘-attribute (along the global ordering of atttributes). They

are then connected from their respective roots to a single node to create trie(𝑅).

In Fig. 2(a), we show the trie constructed for the sorted attribute sequences shown in

Table 2. In such a trie, special attention should be paid to all the leaf nodes each labeled

with $, representing a query (or a subset of queries) in 𝑄. Each edge in the trie is referred

to as a tree edge.

In the second phase, we will add all 𝑆𝑖
∗(𝑖 = 1, … , 𝑛) to the trie 𝑇 to construct a trie-like

graph 𝐺, as illustrated in Fig. 2(b), in which we show a trie-like graph that is constructed

for all the queries given in Table 1. In this trie-like graph, each span is associated with a

set of numbers used to indicate what queries the span belongs to. For example, the span

< 𝑣2, 𝑣3, 𝑣4 > is associated with three numbers: 2,3,4, indicating that this span belongs to

queries: 𝑞2, 𝑞3 and 𝑞4. But no numbers are associated with any tree edges.

We will search 𝐺 bottom up. First, for each leaf node, we will find all its parents. Then,

all such parent nodes will be categorized into different groups such that the nodes in the

same group will have the same label (attribute name), which enables us to recognizes all

those queries which can be satisfied by a same assignment efficiently. All the groups

containing only a single node will not be further explored. (That is, if a group contains

only one node v, the parent of v will not be checked.) Next, all the nodes with more than

one node will be explored. We repeat this process until we reach a level at which each

group contains only one node. In this way, we will find a set of subgraphs, each rooted at

a certain node v, in which the nodes at the same level must be labeled with the same

attribute name. Then, the path in the trie from the root to v and any path from v to a leaf

node in the subgraph correspond to an assignment satisfying all the queries labeling a leaf

node in it.

See Fig. 3 for illustration.

In Fig. 3, we show the whole bottom-up searching process of the trie-like graph shown in

Fig. 2(b).

- step 1: The leaf nodes of the graph are 𝑣7, 𝑣8, 𝑣10, 𝑣11, 𝑣12, 𝑣17 (see level 1),

representing 6 queries in 𝑄 shown in Table 1, respectively. Their parents are

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣9, 𝑣15 , 𝑣16 (see level 2). Among them, 𝑣6, 𝑣9, 𝑣16 are all

labeled with the same attribute ‘G’ and will be put in a group 𝑔1 while 𝑣5 and 𝑣15

are both labeled with ‘R’ and put in another group 𝑔2. All the other nodes each

are differently labeled and therefore will not be further explored.

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

80

Fig. 2. A trie T and a trie-like graph G

Fig. 3. Illustration for bottom-up search of 𝑮

- step 2: The parents of the nodes in both 𝑔1 and 𝑔2 will be explored. For 𝑔1, they

are 𝑣1, 𝑣2, 𝑣3 , 𝑣4, 𝑣5 and 𝑣15 (see level 3). Among them, both 𝑣5 and 𝑣15 are

labeled with ‘R’, and then put in a group 𝑔11. All the other nodes are differently

labeled and will not be further searched. In the same way, the parents of the nodes

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

81

in 𝑔2 are 𝑣2, 𝑣3, 𝑣4, 𝑣14, but only 𝑣4, 𝑣14 labeled with same ‘B’ and will be put in a

second group 𝑔21.

- step 3: The parents of the nodes in 𝑔11 and 𝑔21 will be further explored. The

parents of the nodes in 𝑔11 are 𝑣2, 𝑣3, 𝑣4 and 𝑣14 (see level 4) and 𝑣4, 𝑣14 have the

same label ‘B’. Thus, they will be put in group 𝑔111. Among the parents of the

nodes in 𝑔21, 𝑣2 and 𝑣13 are with the same ‘Hs’ and will put in a group 𝑔211.

- step 4: We continually explore the parents of the nodes in 𝑔111 and 𝑔211 . The

parents of the nodes in 𝑔111 are 𝑣0, 𝑣2, 𝑣3 and 𝑣13 (see level 5). Since 𝑣2 and 𝑣13

are withe same label ‘Hs’, they will be further explored. But all the parents of the

nodes in 𝑔211 are differently labeled and will not be searched.

- step 5: In this step, we will access the parents of 𝑣2 and 𝑣13. They are 𝑣1 and 𝑣0

(see level 6), differently labeled. The whole process terminates.

We call the graph illustrated in Fig. 3 a layered representation G of G. From this, a

maximum subset of queries satisfying a certain truth assignment (a subset of attributes)

can be efficiently calculated. As mentioned above, each node which is the unique node in

a group will have no parents. We refer to such a node as a s-root, and the subgraph made

up of all nodes reachable from the s-root as a rooted subgraph. For example, the subgraph

made up of the grey-marked nodes in Fig. 3 is one of such subgraphs.

Concerning rooted subgraphs, we have the following lemma.

LEMMA 2. Let G be a trie-like graph constructed for query log Q and G its layered

representation. Let Gv be a rooted subgraph in G, rooted at v. Then, the labels on each

root-to-leaf path in 𝐺𝑣 are exactly the same.

Proof. To prove the lemma, we need to show that the labels of the nodes at a same level

must be the same. But this can be seen from the construction of G.

For instance, in the rooted subgraph mentioned above (rooted at 𝑣4, marked grey at level

3 in Fig. 3), we have two paths: 𝑣4 → 𝑣6 → 𝑣7, and 𝑣4 → 𝑣9 → 𝑣10. Both are with the

same attribute sequence: B.G.$. Here, speciall attention should be paid to the edge 𝑣4 →
𝑣6 , which is associated with a number 4 , indicating that this edge is in fact a span

belonging to 𝑞4 (representing (R,∗)). Then, the attributes {A, Hs, H} represented by the

path from 𝑣0 to 𝑣4 in the trie (shown in Fig. 2(a)) plus {B, G} form a package satisfying

𝑞2 and 𝑞4 . Now we pay attention to another node 𝑣3 at level 2 in Fig. 3 and the

corresponding rooted graph, which contains three edges: 𝑣3 → 𝑣8 (labeled with 1,

indicating that it is a span belonging to 𝑞1, 𝑣3 → 𝑣12 (labeled with 3, indicating that it is a

span belonging to 𝑞3), and 𝑣3 → 𝑣11 (not labeled, indicating that it is a tree edge in the

trie shown in Fig. 2(a)). The attribue subset {H} represented by any path in this rooted

graph plus the attribute subset {A, Hs} represented by the path from the root to 𝑣3 in the

trie (shown in Fig. 2(a)) form a package {A, Hs, H} satisfying 𝑞1, 𝑞3, 𝑞5. Since this is a

maximum subset of queries which can be satifies by a package, {A, Hs, H} is a most

popular package.

The general rule to determine the subset Q of queries satisfied by a subset of attributes

(or say, a package) for a rooted subgraph Gv is as follow:

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

82

- the subset of attribute is: attributes represented by any path in Gv} ∪ { attributes

represented by a path from root to v in the corresponding trie-like graph}

- For any 𝑞𝑖 ∈ Q, there is a path 𝑝 from the root of Gv to a leaf node representing

𝑞𝑖 with one of two conditions satisfied: no edge on 𝑝 is associted with numbers;

or if some edges on 𝑝 are with numbers, then the set of numbers associated with

any such edge on 𝑝 contains 𝑖. (We call this condition the assignment condition.)

In terms of the above discussion, we give the following algorithm. In the algorithm, a

queue 𝑆 is used to explore the layered graph of G. In 𝑆, each entry is a subset of nodes

labeled with a same attribute name.

The algorithm can be divided into two parts. In the first part (lines 2 - 12), we will find

the layered representation G of G. In the second part (line 13), we call subprocedure

findPackage(), by which we check all the rooted subgraphs to find a package such that

the number of satisfied queries is maximized. This is represented by a triplet (𝑢, 𝑠, 𝑓),

corresponding to a rooted subgraph Gu in G. Then, the attributes represented by a path

from the root of the trie-like graph to 𝑢 and the attributes represented by any path in Gu

make up a package that satisfies a maximal subset of queries stored in 𝑓, whose size is 𝑠.

Concerning the correctness of the algorithm, we have the following proposition.

Proposition 1. Let Q be a query log. Let G be a trie-like graph created for Q. Then, the

result produced by SEARCH(G) must be a packages satisfying a maximum subset of

queries.

Proof. By the execution of SEARCH(G), we will first generate the layered reprsentation

G of G. Then, all the rooted subgraphs in G will be checked. By each of them, we will

find a package satisfying a subset of queries, which will be compared with the currently

found largest subset of queries. Only the larger between them is kept. Therefore, the

result produced by SEARCH(G) must be correct.

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

83

3.3 Improvements

The construction of the layered representation G of G can be slightly improved by

removing any possible redundancy. For example, in Fig. 3, nodes 𝑣5 and 𝑣15 at level 3

are completely identical to the nodes 𝑣5 and 𝑣15 at level 2 . Then, the nodes enclosed by

the left square are respectively identical to the nodes enclosed by the right square. Thus,

the parents of 𝑣5 and 𝑣15 at level 2 needn’t be generated. Instead, we will connect the

parents of 𝑣5 and 𝑣15 at level 3 to 𝑣5 and 𝑣15 at level 2. That is, connect 𝑣2, 𝑣3, and 𝑣4 at

level 4 to 𝑣5 at level 2, and 𝑣14 at level 4 to 𝑣15 at level 2, to keep information not lost

(see Fig. 4 for illustration).

In this way, a rooted subgraph may contain multiple subsets of queries, each of which can

be satisfied by a different package. To see this, pay attention to the subgraph rooted at 𝑣0

at level 6 in Fig. 4.

Fig. 4. Illustration for improved 𝑮′

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

84

Not as with Fig. 3, it now contains two rooted subgraphs as shown in Fig. 5. We call a

subgraph like this an extended rooted subgraph.

In Fig. 5(a) and (b) we show the two rooted subgraphs, respectively. We notice that in

Fig. 5(a) the path from 𝑣0 to 𝑣7 does not represent a truth assignment under which 𝑞4

evaulates to true. It is because the the set of numbers {2,5} associated with edge 𝑣0 → 𝑣2

on the path does not contain 4 . But another path from 𝑣0 to 𝑣17 is a truth assignment for

𝑞6 because each edge on the path is a tree edge. A similar analysis applies to Fig. 5(b).

To distinguish among all the subsets of queries satisfied by different truth assignments

represented by an extended rooted sub-graph Gv, we will use a hash function ℎ to create a

value for each path 𝑝 from the root v of Gv to a leaf node representing a certain 𝑞𝑖, which

satisfies the assignment condition. Then, all those 𝑞𝑖’s with the same ℎ(𝑝) will make up a

subset of queries satisfied by a same truth assignment. Let 𝑝1 be the path from 𝑣0 to 𝑣17

in Fig. 5(a). Let 𝑝2 be the path from 𝑣0 to 𝑣8 in Fig. 5(b). We certainly have ℎ(𝑝1) ≠
ℎ(𝑝2). In this way, different subsets of queries satisfied by different truth assignments

can be differentiated from each other.

Fig. 5. Illustration for improved 𝑮′

4 Time Complexity Analysis

The total running time of the algorithm consists of four parts.

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

85

The first part 𝜏1 is the time for computing the frenquencies of attribute appearances in Q.

Since in this process each attribute in a 𝑞𝑖 is accessed only once, 𝜏1 = O(𝑛𝑚).

The second part 𝜏2 is the time for constructing a trie-like graph 𝐺 for 𝑄. This part of time

can be further partitioned into three portions.

- 𝜏21 : Time for sorting attribute sequences for 𝑞𝑖’s. It is obviously bounded by

O(𝑛𝑚log 𝑚).

- 𝜏22 : Time for constructing 𝑝∗-graphs for each of 𝑞𝑖(𝑖 = 1, … , 𝑛). Since for each

attribute sequence a transitive closure over its spans should be first created and

needs O(𝑚2) time, this part of cost is bounded by O(𝑛𝑚2).

- 𝜏23 : Time for merging all 𝑝∗-graphs to form a trie-like graph 𝐺, which is also

bounded by O(𝑛𝑚2)

The third part 𝜏3 is the time for searching 𝐺 to generate its layered representaion. Since in

this process, each edge in 𝐺 is accessed once and the number of all edges is bounded by

O(𝑛𝑚2), we have 𝜏3 = O(𝑛𝑚2).

The fourth part 𝜏4 is the time for checking all the extended rooted subgraphs. Since each

level in the layered representation 𝐺 ′ of 𝐺 has at most O(𝑛𝑚) nodes, we have O(𝑛𝑚2)

nodes in 𝐺 ′ in total. In addition, the number of edges in each extended rooted subgraph is

bounded by O(𝑛𝑚), the cost of this part of computation is bounded by O(𝑛2𝑚3).

Thus, we have the following proposition

Proposition 2. The total running time of our algorithm is bounded by

∑4
𝑖=1 𝜏𝑖 = 𝑂(𝑛𝑚) + (𝑂(𝑛𝑚log 𝑚) + 𝑂(𝑛𝑚2) + 𝑂(𝑛2𝑚3) = 𝑂(𝑛2𝑚3).

5 Conclusion

In this paper, we have presented a new method to solve the single package design (SPD)

problem by representing each query in a query log Q as a compact graph structure, called

𝑝∗-graph. Based on this graph structure, all the queries in 𝑄 can be organized into a trie-

like graph. By searching the trie-like graph bottom-up, a package satisfying a maximum

subset of queries of Q can be found efficiently. The time complexity of the algorithm is

bounded by O(𝑛2𝑚3) , where 𝑛 and 𝑚 are the number of queries and the number of

attributes in Q, respectively. As demonstrated in the Appendix, SPD is in essence a 𝑁𝑃-

hard problem. Hence, the algorithm discussed in this paper is in fact a proof of 𝑃 = 𝑁𝑃.

Competing Interests

Authors have declared that no competing interests exist.

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

86

References

[1] Agrawal R, Imielinski T, Swami A. Mining Association Rules between Sets of

Items in Large Databases, in: Proc. SIGMOD Conf., Washington DC, USA.

1993;207-216.

[2] Resig J, Teredesai A. A Framework for Mining Instant Messaging Services.

Retrieved 16 March 2018.

[3] Savasere A, Omiecinski E, Navathe S. An Efficient Algorithm for Mining

Association Rules in Large Databases, Proc. of the 21st VLDB Conference

Zurich, Swizerland. 1995;432-444.

[4] Available:https://www.jigsawacademy.com/blogs/data-science/frequent-pattern-

mining. Retrieved May 2021.

[5] Han J, Pei J, Yin Y. Mining Frequent Patterns without Candidate Generation,

MOD, Dallas, TX USA, ACM. 2000; 1-12.

[6] Albritton DM, McMullen PR. Optimal product design using a colony of virtual

ants, European Journal of Operational Research. 2007;176(1): 498-520.

[7] Gavish B, Horsky D, Srikanth K. An Approach to the Optimal Positioning of a

New Product, IManagement Science. 1983;29(11):1277-1297.

[8] Gruca TS, Klemz BR. Optimal new product positioning: A genetic algorithm

approach, European Journal of Operational Re-search. 2003;146(3):621-633.

[9] Miah M. Most Popular Package Design, in Proc. Conference for Information

Systems Applied Research, Conisar Proceedings. 2011;1-7.

[10] Chen Y, Shi W. On the Designing of Popular Packages, in Proc. IEEE Conf. on

Internet of Things, Green Computing and Communications, Cyber, Physical and

Social Computing, Smart Data, Blockchain, Computer and Information

Technology, Congress on Cybermatics, Halifax, Canada. 2018;937-944.

[11] Kohli R, Krishnamurti R, Mirchandani P. The Minimum Satisfiability Problem,

SIAM J. Discrete Math. 1994;275-283.

[12] Chen Y. Signature files and signature trees, Information Processing Letters.

2002;82(4):213-221.

[13] Chen Y. On the signature trees and balanced signature trees, In Proc. of 21th

Conference on Data Engineering. 2005;742-753, Tokyo, Japan.

[14] Chen Y, Chen YB. On the Signature Tree Construction and Analysis, IEEE

Transactions on Knowledge and Data Engineering. 2006;18(9):1207-1224.

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

87

[15] Grandi F, Tiberio P, Zezula P. Frame-sliced partitioned parallel signature files, In

Proc. of the 15th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, Copenhagen, Denmark. June 1992; 286 −
297.

[16] Kim JK, Chang JW. A new parallel signature file method for efficient information

retrieval, In Proc. of the 1995 International Conference on Information and

Knowledge Management (CIKM ’95), Baltimore, USA.

[17] Lee DL, Kim YM, Patel G. Efficient signature file methods for text retrieval,

IEEE Transactions on Knowledge and Data Engineering. 1995;7(3):423-435.

[18] Garey MR, Johson DS. Computers and Intractibility: A Guide to the Theory of

NP-Completeness, W. W. Freeman, San Francisco, CA; 1979.

[19] Kesavan V, Kamalakannan R, Sudhakarapandian R, Sivakumar P. Heuristic and

meta-heuristic algorithms for solving medium and large scale sized cellular

manufacturing system 𝑁𝑃-hard problems: A Comprehensive Review, Materials

Today: Proceedings. 2020 Jan 1;21:66-72.

[20] da Silveira LA, Soncco-Álvarez JL, de Lima TA, M Ayala-Rincón M. Parallel

island model genetic algorithms applied in np-hard problems, 2019 IEEE

Congress on Evolutionary Computation (CEC). IEEE. 2019 Jun 10;3262-3269.

[21] Corman TH, Leierson CE, Rivest RL, Stein C. Introduction to Algorithms,

McGraw Hill; 2002.

[22] Johnson MS. Approximation Algorithm for Combinatorial Problems, J. Computer

System Sci. 1974;9:256-278.

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

88

Appendix NP-Hardness of SPD

In this Appendix, we show the NP-hardness of SPD. For this purpose, we view a query

log Q as a logic formula in the disjunctive normal form (𝐷𝑁𝐹):

𝐷 = (𝑐11 ∧ … ∧ 𝑐1𝑗1
) ∨ … ∨ (𝑐𝑚1 ∧ … ∧ 𝑐𝑚𝑗𝑚

)

For example, the query log given in Table 1 can be represented as a formula in 𝐷𝑁𝐹 as

beow:

𝐷 = 𝑞1 ∨ 𝑞2 ∨ 𝑞3 ∨ 𝑞4 ∨ 𝑞5 ∨ 𝑞6

 = (𝑐1 ∧ ¬𝑐3 ∧ 𝑐5) ∨

(𝑐1 ∧ ¬𝑐2 ∧ 𝑐3) ∨

(¬𝑐2 ∧ ¬𝑐3 ∧ 𝑐4 ∧∧5) ∨

(𝑐3 ∧ 𝑐5) ∨

(¬𝑐2 ∧ ¬𝑐3 ∧ ¬𝑐6) ∨

(𝑐2 ∧ ¬𝑐4 ∧ ¬𝑐5 ∧ 𝑐6)

where 𝑐1 stands for hot spring, 𝑐2 for ride, 𝑐3 for glacier, 𝑐4 for hiking, 𝑐5 for airline, and

𝑐6 for boating.

Then, to find a most popular package is to find a truth assignment that maximizes the

number of satisfied conjunctions in 𝐷.

Now consider the negation of 𝐷 :

¬𝐷 = (¬𝑐11 ∨ … ∨ ¬𝑐1𝑗1
) ∧ … ∧ (¬𝑐𝑚1 ∨ … ∨ ¬𝑐𝑚𝑗𝑚

)

It is a formula in 𝐶𝑁𝐹 . To find a truth assignment that maximizes the number of

conjunctions in 𝐷 is equivalent to finding a truth assignment that minimizes the number

of clauses in ¬𝐷, the so-called MINSAT problem [11], which proves to be 𝑁𝑃-hard.

Novel Research Aspects in Mathematical and Computer Science Vol. 8

Most Popular Package Design and NP-Hard Problem

89

Biography of author(s)

Yangjun Chen

Department of Applied Computer Science, University of Winnpeg, Canada.

Research and Academic Experience: He completed his PhD in Computer Science from the University of

Kaiserslautern, Germany, in 1995. He is now a professor in Dept. Applied Computer Science, University of

Winnipeg, Canada.

Research Area: His research area is in Algorithm design, and Databases.

Number of Published Papers: He has about 200 publications in Computer Science and Computer engineering.

Bobin Chen

Department of Applied Computer Science, University of Winnpeg, Canada.

Research and Academic Experience: He completed his bachelor degree in Computer Science at University of

Toronto, Canada, in 2021. He is now a software engineer.

Research Area: His research area is in Software engineering.

Number of Published Papers: He has published 1 paper.

__

© Copyright (2022): Author(s). The licensee is the publisher (B P International).

