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ABSTRACT 
 

Given a set of items, and a set of user preferences, we investigate the problem of 

designing a most popular package (or say, a pattern), i.e., a subset of items that 

maximizes the number of satisfied users. It is a typical problem of data mining. In this 

paper, we address this issue and propose an efficient algorithm for solving the problem 

based on a graph structure, called a 𝑝∗-graph, used to represent the preference of a user, 

by which a lot of useless checks can be avoided. The time complexity of the algorithm is 

bounded by O(𝑛2𝑚3), where 𝑚 is the number of items (or say, attributes) and 𝑛 is the 

number of user preferences. Since the problem is essentially 𝑁𝑃-hard, the algorithm 

discussed in this chapter in fact provides a proof of 𝑃 = 𝑁𝑃. 

CCS Concepts: • Theory of computation → Minimum satisfiability problem. 

 

Keywords: Data mining; single package design; trie; NP-hard; time complexity analysis; 

MINSAT. 

 

1 Introduction 

 
Data mining, also known as knowledge discovery in data (KDD), is the process of 

uncovering patterns and other valuable information from large data sets [1-3]. As one of 

its important problems, the frequent pattern mining [4,5]  is to recognize a frequent 

pattern, in terms of a given set of transactions with each consisting of some items. By a 

frequent pattern we mean a subset of items which are supported (or say, contained) by 

most of transactions. In this chapter, we discuss a more challenging problem, the so-

called single package design problem (SPD for short [6,7,8,9]), by which we consider a 

set of activities or items 𝐴 = {𝑎1, … , 𝑎𝑚}, like hot spring, riding horse by a travel agency, 
referred to as an attribute, an item, or a feature; and a query log Q = {𝑞1, … 𝑞𝑛} with each 

𝑞𝑖(𝑖 = 1, … , 𝑛) being a bit string of length 𝑚: 𝑐𝑖1𝑐𝑖2 … 𝑐𝑖𝑚(𝑐𝑖𝑗 ∈ {0,1,∗ }, 𝑗 = 1, … , 𝑚). 

Here, 𝑐𝑖𝑗 = 1 indicates that 𝑎𝑗  is selected, and 𝑐𝑖𝑗 = 0 indicates that 𝑎𝑗  is not selected 
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while ‘*’ means ‘don’t care’ (i.e., 𝑎𝑗  can be selected or not). Then, a bit tuple 𝑡 (or say a 

bit string with each bit corresponding to an activity) is referred to as a package (or say a 

truth assignment); and what we want is to ensure that such a package satisfies as many 

queries as possible. If a package is with this property, it is called a most popular package. 

For example, for the above vacation package, clients give their preferences by specifying 

yes, no, or ‘don’t care’ for each activity to form a query log. 

 

Table 1. A query log 𝑄 
 

 queryID   Hot spring   Ride   Glacier   Hiking   Airline   Boating  

 𝑞1   1   ∗   0    ∗   1    ∗  

 𝑞2   1   0   1    ∗    ∗    ∗  

 𝑞3    ∗   0   0   1   1    ∗  

 𝑞4    ∗    ∗   1    ∗   1    ∗  

 𝑞5    ∗   0   0    ∗    ∗   0  

 𝑞6    ∗   1   ∗   0    ∗   1  

 

The design of a most popular package is to pick up a sub-set of these activities to meet as 

many queries’ requiremets as possible. 

 

This problem has been investigated by several researchers [10,9] . In [9], an 

approximation algorithm was discussed, by which an SPD problem is reduced to a 

MINSAT problem [11] that is an optimization version of the satisfiability [9], by which 

we seek to find a truth assignment to minimize the number of satisfied clauses. The 

method discussed in [10] is in fact based on the construction of a kind of binary trees, 

called signature trees [12-14] for signature files [15,16,17] . Its worst-case time 

complexity is bounded by O(𝑚𝑛2𝑚), where 𝑚 is the number of items (or say, attributes) 

and 𝑛 is the number of queries. 

 

Our method works quite differently, but based on a compact representation of all those 

truth assignments for each query 𝑞, under which 𝑞 evaluates to true. Organizing all such 

data structures for all the queries into a trie-like graph 𝐺, an efficient algorithm can be 

designed based on a bottom-up search of 𝐺 . The time complexity of the algorithm is 

bounded by O(𝑛2𝑚3). As shown in the Appendix, SPD is 𝑁𝑃-hard [18,19,20]. Thus, our 

algorithm is in fact a proof of 𝑃 = 𝑁𝑃 [21,22]. 

 

The remainder of the chapter is organized as follows. In Section 2, we show a simple 

example of the SPD problem. Then, in Section 3, the algorithms for evaluating the SPD is 

discussed in great detail. Section 4 is devoted to the time analysis. Finally, we conclude 

with a summary in Section 5. 
 

2 An Example of SPD 

 
As an example of SPD, Table 1 shows a query log for a vacation package application. It 

contains 𝑛 = 6 queries with 𝑚 = 6 attributes (activities), and each query represents one 

of user’s favourites. For instance, the query 𝑞1 = 𝑐11𝑐12 … 𝑐16 = (1,∗ , 0,∗ , 1,∗ ) in Table 1 



 
 
 
 
 

Novel Research Aspects in Mathematical and Computer Science Vol. 8 

Most Popular Package Design and NP-Hard Problem 

 
 

76 

indicates that hot spring and airlines are 𝑞1’s favourites, but glacier is not. Furthermore, 

𝑞1 does not care about whether riding, hiking or boating is available or not. 

For this small query log, we can find a single package: hot spring, hiking, airline, which 

satisfy a maximum subset of queries: 𝑞1, 𝑞3, 𝑞5. 

 

3 Algorithm Description 

 
In this section, we discuss our algorithm. First, we present the main idea of our algorithm 

in Section 3.1. Then, in Section 3.2, the algorithm is descussed in great detail. Next, we 

discuss how to improve the algorithm in Section 3.3. 

 

3.1 Main idea 

 
Let 𝑄 = {𝑞1, … , 𝑞𝑛}  be a query log  and 𝐴 = {𝑎1, … , 𝑎𝑚}  be the corresponding set of 

attributes. For each 𝑞𝑖 = 𝑐𝑖1𝑐𝑖2 … 𝑐𝑖𝑚(𝑐𝑖𝑗 ∈ {0,1,∗ }, 𝑗 = 1, … , 𝑚), we will create another 

sequence: 𝑟𝑖 = 𝑑𝑗1
… 𝑑𝑗𝑘

 (𝑘 ≤ 𝑚) , where 𝑑𝑗𝑙
= 𝑎𝑗𝑙

 if 𝑞𝑖[𝑗𝑙] = 1 , or 𝑑𝑗𝑙
= (𝑎𝑗𝑙

,∗ )  if 

𝑞𝑖[𝑗𝑙] = `∗` (𝑙 ∈ {1, … , 𝑘}). If 𝑞𝑖[𝑗𝑙] = 0, 𝑎𝑗𝑙
 will not appear in 𝑟𝑖 at all. Let 𝑝 and 𝑠 be the 

numbers of 1s and ‘*’s in 𝑞𝑖, respectively. Then, we have 𝑘 = 𝑝 + 𝑠. 
 

For instance, for 𝑞1 = (1,∗ , 0,∗ , 1,∗ ) in Table 1 , a sequence: 

r1 = hot-spring.(ride,∗). (hiking,∗). airline. (boating,∗)  

will be generated. Next, we need to compute the frequency of each attribute appearrance 

in all such sequences in 𝑄, by which (a, *) is counted as an appearance of 𝑟. Then, using 

𝐹(𝑎) to represent the frequency of any attrubute 𝑎 , we will have 𝐹 (hot-spring) = 5/
6, 𝐹 (ride ) = 3/6, 𝐹(glacier) = 3/6, 𝐹(hiking) = 5/6, 𝐹(airline) = 6/6, 𝐹(boating) =
5/6 for Tabel 1. 

In terms of the attribute appearance frequencies, we will impose a global ordering over 

all attributes such that the most frequent attribute appears first, but with ties broken 

arbitrarily. For instance, for 𝑄 shown in Tabel 1, we can specify a global ordering like 

this: airline → hot spring → hiking → boating → boating → ride → glacier. In fact, any 

ordering of attributes works well, based on which a graph representation of true 

assignments can be established. However, ordering attributes according to their 

appearance frequencies can greatly improve the efficiency when searching the trie (to be 

defined in the next subsection) constructed over all the attribute sequences in a query log. 

Following this general ordering, each query in Table 1 can be represented as a sorted 

attribute sequense as demonstrated in Table 2 (see the third column). 

 

In Table 2, each sorted attribute sequence (for a query) is augmented with a start symbol 

# and an end symbol $ for technical convenience. 

 

For our algorithm, we need to introduce a graph structure to represent all those truth 

assignments for each attribute sequence (for a 𝑞  ), called a 𝑝∗ -graph, under which 𝑞 

evaluates to true. For this purpose, we first discuss a simpler concept for ease of 

explanation. 
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In the following, by an attribute sequence, we always mean a sorted attribute sequence. 

We will also use word ‘query’ and its attribute sequence interchangeably. 

 

Definition 3.1. (p-graph) Let 𝑞 = 𝑑0𝑑1 … 𝑑𝑘𝑑𝑘+1 be an attribute sequence representing a 

query as described above (with 𝑑0 = # and 𝑑𝑘+1 = $ ). A p-graph over 𝑞 is a directed 

graph, in which there is a node for each 𝑑𝑗(𝑗 = 0, … , 𝑘 + 1); and an edge for (𝑑𝑗 , 𝑑𝑗+1) 

for each 𝑗 ∈ {1, … , 𝑘}. In addition, there may be an edge from 𝑑𝑗  to 𝑑𝑗+2  for each 𝑗 ∈

{1, … , 𝑘 − 1} if 𝑑𝑗+1 is a pair of the form (a, *), where a is an attribute. 

 

Table 2 . Queried represented as sorted attribute sequences 

 

Query ID Attribute sequences* Sorted attribute sequences 

𝑞1 
𝑞2  
𝑞3 
𝑞4 
𝑞5 
𝑞6  

Hs.(R, *).(H, *).A.(B.*).  
Hs.G.(H, *).(A, *).(B, *).  
(Hs, *).H.A.(B, *).  
(Hs, *).(R, *).G.(H, *).A.(B, *).  
(Hs, *).(H, *).(A, *).  
(Hs, *).R.(G, *).B.  

#.A.Hs.(H, *).(B, *).(R, *).$ 

#.(A, *).Hs.(H, *).(B, *).G.$ 

#.A.(Hs, *).H.(B, *).$ 

#.A.(Hs, *).(H, *).(B, *).(R, *).G.$ 

#.(A, *) (Hs, *).(H, *).$ 

#.(Hs, *).B.R.(G, *).$ 

 ∗𝐻𝑠: hot spring, R: ride, G: glacier, H: hiking, A: airline, B: boating 

 

In Fig. 1(a) we show such a 𝑝-graph for 𝑞1 = #.A.Hs. (H,∗ ). (B,∗ ). (R,∗ ). $. Beside a 

main path going through all the items in 𝑞1, there are three off-path edges (edges not on 

the main path), referred to as spans, corresponding to (H,∗ ), (B,∗ ) , and (R,∗ ) , 

respectively. Each span is represented by the sub-path covered by it. For example, we 

will use the sub-path < 𝑣2, 𝑣3, 𝑣4 >  to stand for the span connecting 𝑣2  and 𝑣4; <
𝑣3, 𝑣4, 𝑣5 >  for the span connecting 𝑣3  and 𝑣5 ; and < 𝑣4, 𝑣5, 𝑣6 >  for the span 

connecting 𝑣4  and 𝑣6 . By using spans, the meaning of ‘*’s (it is either 0 or 1 ) is 

appropriately represented since along a span we can bypass the corresponding attribute 

(then it is not selected) while along an edge on the main path we go through the 

corresponging attribute (then it is selected). 
 

 
 

Fig. 1. A p-path and a 𝒑 ∗-path 
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In fact, what we want is to represent all those truth assignments for 𝑞 in an efficient way, 

under which 𝑞  evaluates to true. However, 𝑝-graph fails to do so since when we go 

through from a node v to another node 𝑢  through a span, 𝑢  must be selected. If 𝑢 

represents a (𝑐,∗ ) for some attribute name 𝑐 , the meaning of this ‘*’ is not properly 

rendered. 

 

For this reason, the concept of 𝑝∗-graph is introduced. 

 

Let 𝑠1 = ⟨𝑣1, … , 𝑣𝑘⟩ and 𝑠2 = ⟨𝑢1, … , 𝑢𝑙⟩ be two spans attached on a same path. We say, 

𝑠1 and 𝑠2 are overlapped, if 𝑢1 = 𝑣𝑗  for some 𝑗 ∈ {𝑣1, … , 𝑣𝑘−1}, or if 𝑣1 = 𝑢𝑗′  for some 

𝑗′ ∈ {𝑢1, … , 𝑢𝑙−1} . For example, in Fig. 1(a), < 𝑣2, 𝑣3, 𝑣4 >  and < 𝑣3, 𝑣4, 𝑣5 >  are 

overlapped. < 𝑣3𝑣4, 𝑣5 > and < 𝑣4, 𝑣5, 𝑣6 > are also overlapped. But < 𝑣2, 𝑣3, 𝑣4 > and 

< 𝑣4, 𝑣5, 𝑣6 >  not. Here, we notice that the overlapped spans imply the consecutive 

‘don’t cares’, just like ⟨𝑣2, 𝑣3, 𝑣4⟩ and ⟨𝑣3, 𝑣4, 𝑣5⟩, which correspond to two consecutive 

‘*’s:  (H,∗ ) and (B,∗ ). Therefore, the overlapped spans exhibite some kind of transitivity. 

That is, if 𝑠1 and 𝑠2 are two overlapped spans, the 𝑠1 ∪ 𝑠2 must be a new, but bigger span. 

Applying this operation to all the spans over a 𝑝-path, we will get a ‘transitive closure’ of 

overlapped spans. Based on this observation, we give the following definition. 

 

DEfinition 3.2. ( 𝑝∗-graph) Let 𝑃 be a p-graph. Let 𝑝 be its main path and 𝑆 be the set of 

all spans over 𝑝. Denote by 𝑆∗  the ‘transitive closure’ of 𝑆. Then, the 𝑝∗ -graph with 

respect to 𝑃 is the union of 𝑝 and 𝑆∗, denoted as 𝑃∗ = 𝑝 ∪ 𝑆∗. 

 

In Fig. 1(b), we show the 𝑝∗ -graph with respect to the 𝑝-graph shown in Fig. 1(a). 

Concerning 𝑝∗-graphs, we have the following lemma. 

 

LEMMA 1. Let 𝑃∗ be a p*-graph for an attribute sequence (of some query 𝑞 in 𝑄 ). Then, 

each path from # to $ in 𝑃∗ represents a truth assignment, under which 𝑞 evaluate to true. 

 

Proof. (1) Corresponding to any truth assignment 𝜎, under which 𝑞 evaluates to true, 

there is definitely a path from # to $. First, we note that under such a truth assignment 

each attribute 𝑎𝑗  with 𝑞[𝑗] = 1 must be selected, but with some ‘don’t cares’ selected or 

not. Especially, we may have more than one consecutive ‘don’t cares’ that are not 

selected, which are represented by a span that is the union of the corresponding 

overlapped spans. Therefore, for 𝜎 we must have a path representing it. 

 

(2) Each path from # to $ represents a truth assignment, under which 𝑞 evaluates to true. 

To see this, we observe that each path consists of several edges on the main path and 

several spans. Especially, any such path must go through every attribute 𝑎𝑗  with 𝑞[𝑗] = 1 

since for each of them there is no span covering it. 

 

3.2 Algorithm 

 
To find a truth assignment to maximize the number of satisfied queries in 𝑄, we will first 

construct a trie-like graph 𝐺 over 𝑄, and then search 𝐺 bottom-up to find the answer. 
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Let 𝑃1
∗, 𝑃2

∗, … , 𝑃𝑛
∗ be all the 𝑝∗-graphs constructed for all the queries 𝑞1, 𝑞2, … , 𝑞𝑛 in 𝑄, 

respectively. Let 𝑝𝑗 and 𝑆𝑗
∗(𝑗 = 1, … , 𝑛) be the main path of 𝑃𝑗

∗ and the transitive closure 

over its spans, respectively. We will construct 𝐺 in two phases. In the first phase, we will 

establish a trie T, denoted as T = 𝑡𝑟𝑖𝑒(𝑅) over 𝑅 = {𝑝1, … , 𝑝𝑛} as follows. 

 

If |𝑅| = 0, trie(𝑅) is, of course, empty. For |𝑅| = 1, trie(𝑅) is a single node. If |𝑅| >
1, 𝑅 is split into 𝑚 (possibly empty) subsets 𝑅1, 𝑅2, … , 𝑅𝑚 so that each 𝑅𝑖(𝑖 = 1, … , 𝑚) 

contains all those sequences with the same first attribute name. The tries: trie(𝑅1) , 

trie(𝑅2), …, trie(𝑅𝑚) are constructed in the same way except that at the 𝑘 th step, the 

splitting of sets is based on the 𝑘-attribute (along the global ordering of atttributes). They 

are then connected from their respective roots to a single node to create trie(𝑅). 

 

In Fig. 2(a), we show the trie constructed for the sorted attribute sequences shown in 

Table 2. In such a trie, special attention should be paid to all the leaf nodes each labeled 

with $, representing a query (or a subset of queries) in 𝑄. Each edge in the trie is referred 

to as a tree edge. 

 

In the second phase, we will add all 𝑆𝑖
∗(𝑖 = 1, … , 𝑛) to the trie 𝑇 to construct a trie-like 

graph 𝐺, as illustrated in Fig. 2(b), in which we show a trie-like graph that is constructed 

for all the queries given in Table 1. In this trie-like graph, each span is associated with a 

set of numbers used to indicate what queries the span belongs to. For example, the span 

< 𝑣2, 𝑣3, 𝑣4 > is associated with three numbers: 2,3,4, indicating that this span belongs to 

queries: 𝑞2, 𝑞3 and 𝑞4. But no numbers are associated with any tree edges. 

 

We will search 𝐺 bottom up. First, for each leaf node, we will find all its parents. Then, 

all such parent nodes will be categorized into different groups such that the nodes in the 

same group will have the same label (attribute name), which enables us to recognizes all 

those queries which can be satisfied by a same assignment efficiently. All the groups 

containing only a single node will not be further explored. (That is, if a group contains 

only one node v, the parent of v will not be checked.) Next, all the nodes with more than 

one node will be explored. We repeat this process until we reach a level at which each 

group contains only one node. In this way, we will find a set of subgraphs, each rooted at 

a certain node v, in which the nodes at the same level must be labeled with the same 

attribute name. Then, the path in the trie from the root to v and any path from v to a leaf 

node in the subgraph correspond to an assignment satisfying all the queries labeling a leaf 

node in it. 

 

See Fig. 3 for illustration. 

 

In Fig. 3, we show the whole bottom-up searching process of the trie-like graph shown in 

Fig. 2(b). 

 

- step 1: The leaf nodes of the graph are 𝑣7, 𝑣8, 𝑣10, 𝑣11, 𝑣12, 𝑣17  (see level 1), 

representing 6 queries in 𝑄  shown in Table 1, respectively. Their parents are 

𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣9, 𝑣15 , 𝑣16  (see level 2). Among them, 𝑣6, 𝑣9, 𝑣16  are all 

labeled with the same attribute ‘G’ and will be put in a group 𝑔1 while 𝑣5 and 𝑣15 

are both labeled with ‘R’ and put in another group 𝑔2. All the other nodes each 

are differently labeled and therefore will not be further explored. 
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Fig. 2. A trie T and a trie-like graph G 

 

 
 

Fig. 3. Illustration for bottom-up search of 𝑮 

 

- step 2: The parents of the nodes in both 𝑔1 and 𝑔2 will be explored. For 𝑔1, they 

are 𝑣1, 𝑣2, 𝑣3 , 𝑣4, 𝑣5  and 𝑣15  (see level 3). Among them, both 𝑣5  and 𝑣15  are 

labeled with ‘R’, and then put in a group 𝑔11. All the other nodes are differently 

labeled and will not be further searched. In the same way, the parents of the nodes 
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in 𝑔2 are 𝑣2, 𝑣3, 𝑣4, 𝑣14, but only 𝑣4, 𝑣14 labeled with same ‘B’ and will be put in a 

second group 𝑔21. 

- step 3: The parents of the nodes in 𝑔11  and 𝑔21  will be further explored. The 

parents of the nodes in 𝑔11 are 𝑣2, 𝑣3, 𝑣4 and 𝑣14 (see level 4) and 𝑣4, 𝑣14 have the 

same label ‘B’. Thus, they will be put in group 𝑔111. Among the parents of the 

nodes in 𝑔21, 𝑣2 and 𝑣13 are with the same ‘Hs’ and will put in a group 𝑔211. 

- step 4: We continually explore the parents of the nodes in 𝑔111 and 𝑔211 . The 

parents of the nodes in 𝑔111 are 𝑣0, 𝑣2, 𝑣3 and 𝑣13 (see level 5). Since 𝑣2 and 𝑣13 

are withe same label ‘Hs’, they will be further explored. But all the parents of the 

nodes in 𝑔211 are differently labeled and will not be searched. 

- step 5: In this step, we will access the parents of 𝑣2 and 𝑣13. They are 𝑣1 and 𝑣0 

(see level 6), differently labeled. The whole process terminates. 

 

We call the graph illustrated in Fig. 3 a layered representation G of G. From this, a 

maximum subset of queries satisfying a certain truth assignment (a subset of attributes) 

can be efficiently calculated. As mentioned above, each node which is the unique node in 

a group will have no parents. We refer to such a node as a s-root, and the subgraph made 

up of all nodes reachable from the s-root as a rooted subgraph. For example, the subgraph 

made up of the grey-marked nodes in Fig. 3 is one of such subgraphs. 

 

Concerning rooted subgraphs, we have the following lemma. 

 

LEMMA 2. Let G be a trie-like graph constructed for query log Q and G its layered 

representation. Let Gv be a rooted subgraph in G, rooted at v. Then, the labels on each 

root-to-leaf path in 𝐺𝑣 are exactly the same. 

 

Proof. To prove the lemma, we need to show that the labels of the nodes at a same level 

must be the same. But this can be seen from the construction of G. 
 

For instance, in the rooted subgraph mentioned above (rooted at 𝑣4, marked grey at level 

3 in Fig. 3), we have two paths: 𝑣4 → 𝑣6 → 𝑣7, and 𝑣4 → 𝑣9 → 𝑣10. Both are with the 

same attribute sequence: B.G.$. Here, speciall attention should be paid to the edge 𝑣4 →
𝑣6 , which is associated with a number 4 , indicating that this edge is in fact a span 

belonging to 𝑞4 (representing (R,∗ ) ). Then, the attributes {A, Hs, H} represented by the 

path from 𝑣0 to 𝑣4 in the trie (shown in Fig. 2(a)) plus {B, G} form a package satisfying 

𝑞2  and 𝑞4 . Now we pay attention to another node 𝑣3  at level 2 in Fig. 3 and the 

corresponding rooted graph, which contains three edges: 𝑣3 → 𝑣8  (labeled with 1, 

indicating that it is a span belonging to 𝑞1, 𝑣3 → 𝑣12 (labeled with 3, indicating that it is a 

span belonging to 𝑞3), and 𝑣3 → 𝑣11 (not labeled, indicating that it is a tree edge in the 

trie shown in Fig. 2(a)). The attribue subset {H} represented by any path in this rooted 

graph plus the attribute subset {A, Hs} represented by the path from the root to 𝑣3 in the 

trie (shown in Fig. 2(a)) form a package {A, Hs, H} satisfying 𝑞1, 𝑞3, 𝑞5. Since this is a 

maximum subset of queries which can be satifies by a package, {A, Hs, H} is a most 

popular package. 
 

The general rule to determine the subset Q of queries satisfied by a subset of attributes 

(or say, a package) for a rooted subgraph Gv is as follow: 
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- the subset of attribute is: attributes represented by any path in Gv} ∪ { attributes 

represented by a path from root to v in the corresponding trie-like graph} 

- For any 𝑞𝑖 ∈ Q, there is a path 𝑝 from the root of Gv to a leaf node representing 

𝑞𝑖 with one of two conditions satisfied: no edge on 𝑝 is associted with numbers; 

or if some edges on 𝑝 are with numbers, then the set of numbers associated with 

any such edge on 𝑝 contains 𝑖. (We call this condition the assignment condition.)  

 

In terms of the above discussion, we give the following algorithm. In the algorithm, a 

queue 𝑆 is used to explore the layered graph of G. In 𝑆, each entry is a subset of nodes 

labeled with a same attribute name. 

 

 
 

The algorithm can be divided into two parts. In the first part (lines 2 - 12), we will find 

the layered representation G of G. In the second part (line 13), we call subprocedure 

findPackage( ), by which we check all the rooted subgraphs to find a package such that 

the number of satisfied queries is maximized. This is represented by a triplet (𝑢, 𝑠, 𝑓), 

corresponding to a rooted subgraph Gu in G. Then, the attributes represented by a path 

from the root of the trie-like graph to 𝑢 and the attributes represented by any path in Gu 

make up a package that satisfies a maximal subset of queries stored in 𝑓, whose size is 𝑠. 

 

Concerning the correctness of the algorithm, we have the following proposition. 

 

Proposition 1. Let Q be a query log. Let G be a trie-like graph created for Q. Then, the 

result produced by SEARCH(G) must be a packages satisfying a maximum subset of 

queries. 

 

Proof. By the execution of SEARCH(G), we will first generate the layered reprsentation 

G of G. Then, all the rooted subgraphs in G will be checked. By each of them, we will 

find a package satisfying a subset of queries, which will be compared with the currently 

found largest subset of queries. Only the larger between them is kept. Therefore, the 

result produced by SEARCH(G) must be correct. 
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3.3 Improvements 

 
The construction of the layered representation G of G can be slightly improved by 

removing any possible redundancy. For example, in Fig. 3, nodes 𝑣5 and 𝑣15 at level 3 

are completely identical to the nodes 𝑣5 and 𝑣15 at level 2 . Then, the nodes enclosed by 

the left square are respectively identical to the nodes enclosed by the right square. Thus, 

the parents of 𝑣5 and 𝑣15 at level 2 needn’t be generated. Instead, we will connect the 

parents of 𝑣5 and 𝑣15 at level 3 to 𝑣5 and 𝑣15 at level 2. That is, connect 𝑣2, 𝑣3, and 𝑣4 at 

level 4 to 𝑣5 at level 2, and 𝑣14 at level 4 to 𝑣15 at level 2, to keep information not lost 

(see Fig. 4 for illustration). 

 

In this way, a rooted subgraph may contain multiple subsets of queries, each of which can 

be satisfied by a different package. To see this, pay attention to the subgraph rooted at 𝑣0 

at level 6 in Fig. 4. 

 

 
 

 
 

Fig. 4. Illustration for improved 𝑮′ 
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Not as with Fig. 3, it now contains two rooted subgraphs as shown in Fig. 5. We call a 

subgraph like this an extended rooted subgraph. 

 

In Fig. 5(a) and (b) we show the two rooted subgraphs, respectively. We notice that in 

Fig. 5(a) the path from 𝑣0 to 𝑣7 does not represent a truth assignment under which 𝑞4 

evaulates to true. It is because the the set of numbers {2,5} associated with edge 𝑣0 → 𝑣2 

on the path does not contain 4 . But another path from 𝑣0 to 𝑣17 is a truth assignment for 

𝑞6 because each edge on the path is a tree edge. A similar analysis applies to Fig. 5( b). 

 

To distinguish among all the subsets of queries satisfied by different truth assignments 

represented by an extended rooted sub-graph Gv, we will use a hash function ℎ to create a 

value for each path 𝑝 from the root  v of Gv to a leaf node representing a certain 𝑞𝑖, which 

satisfies the assignment condition. Then, all those 𝑞𝑖’s with the same ℎ(𝑝) will make up a 

subset of queries satisfied by a same truth assignment. Let 𝑝1 be the path from 𝑣0 to 𝑣17 

in Fig. 5(a). Let 𝑝2 be the path from 𝑣0 to 𝑣8  in Fig. 5(b). We certainly have ℎ(𝑝1) ≠
ℎ(𝑝2). In this way, different subsets of queries satisfied by different truth assignments 

can be differentiated from each other.  

 

 
 

Fig. 5. Illustration for improved 𝑮′ 

 

4 Time Complexity Analysis 

 
The total running time of the algorithm consists of four parts. 
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The first part 𝜏1 is the time for computing the frenquencies of attribute appearances in Q. 

Since in this process each attribute in a 𝑞𝑖 is accessed only once, 𝜏1 = O(𝑛𝑚). 

 

The second part 𝜏2 is the time for constructing a trie-like graph 𝐺 for 𝑄. This part of time 

can be further partitioned into three portions. 

 

- 𝜏21  : Time for sorting attribute sequences for 𝑞𝑖’s. It is obviously bounded by 

O(𝑛𝑚log 𝑚). 

- 𝜏22 : Time for constructing 𝑝∗-graphs for each of 𝑞𝑖(𝑖 = 1, … , 𝑛). Since for each 

attribute sequence a transitive closure over its spans should be first created and 

needs O(𝑚2) time, this part of cost is bounded by O(𝑛𝑚2). 

- 𝜏23 : Time for merging all 𝑝∗-graphs to form a trie-like graph 𝐺, which is also 

bounded by O(𝑛𝑚2) 

 

The third part 𝜏3 is the time for searching 𝐺 to generate its layered representaion. Since in 

this process, each edge in 𝐺 is accessed once and the number of all edges is bounded by 

O(𝑛𝑚2), we have 𝜏3 = O(𝑛𝑚2). 

 

The fourth part 𝜏4 is the time for checking all the extended rooted subgraphs. Since each 

level in the layered representation 𝐺 ′ of 𝐺 has at most O(𝑛𝑚) nodes, we have O(𝑛𝑚2) 

nodes in 𝐺 ′ in total. In addition, the number of edges in each extended rooted subgraph is 

bounded by O(𝑛𝑚), the cost of this part of computation is bounded by O(𝑛2𝑚3). 

 

Thus, we have the following proposition 

 

Proposition 2. The total running time of our algorithm is bounded by 

 

∑4
𝑖=1 𝜏𝑖 = 𝑂(𝑛𝑚) + (𝑂(𝑛𝑚log 𝑚) + 𝑂(𝑛𝑚2) + 𝑂(𝑛2𝑚3) = 𝑂(𝑛2𝑚3).  

 

5 Conclusion 

 
In this paper, we have presented a new method to solve the single package design (SPD) 

problem by representing each query in a query log Q as a compact graph structure, called 

𝑝∗-graph. Based on this graph structure, all the queries in 𝑄 can be organized into a trie-

like graph. By searching the trie-like graph bottom-up, a package satisfying a maximum 

subset of queries of Q can be found efficiently. The time complexity of the algorithm is 

bounded by O(𝑛2𝑚3) , where 𝑛  and 𝑚  are the number of queries and the number of 

attributes in Q, respectively. As demonstrated in the Appendix, SPD is in essence a 𝑁𝑃-

hard problem. Hence, the algorithm discussed in this paper is in fact a proof of 𝑃 = 𝑁𝑃. 
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Appendix  NP-Hardness of SPD 
 

In this Appendix, we show the NP-hardness of SPD. For this purpose, we view a query 

log Q as a logic formula in the disjunctive normal form (𝐷𝑁𝐹): 

 

𝐷 = (𝑐11 ∧ … ∧ 𝑐1𝑗1
) ∨ … ∨ (𝑐𝑚1 ∧ … ∧ 𝑐𝑚𝑗𝑚

)  

 

For example, the query log given in Table 1 can be represented as a formula in 𝐷𝑁𝐹 as 

beow: 

 
𝐷 = 𝑞1 ∨ 𝑞2 ∨ 𝑞3 ∨ 𝑞4 ∨ 𝑞5 ∨ 𝑞6

    = (𝑐1 ∧ ¬𝑐3 ∧ 𝑐5) ∨

(𝑐1 ∧ ¬𝑐2 ∧ 𝑐3) ∨

(¬𝑐2 ∧ ¬𝑐3 ∧ 𝑐4 ∧∧5) ∨

(𝑐3 ∧ 𝑐5) ∨

(¬𝑐2 ∧ ¬𝑐3 ∧ ¬𝑐6) ∨

(𝑐2 ∧ ¬𝑐4 ∧ ¬𝑐5 ∧ 𝑐6)

  

 

where 𝑐1 stands for hot spring, 𝑐2 for ride, 𝑐3 for glacier, 𝑐4 for hiking, 𝑐5 for airline, and 

𝑐6 for boating. 

 

Then, to find a most popular package is to find a truth assignment that maximizes the 

number of satisfied conjunctions in 𝐷. 

 

Now consider the negation of 𝐷 : 

 

¬𝐷 = (¬𝑐11 ∨ … ∨ ¬𝑐1𝑗1
) ∧ … ∧ (¬𝑐𝑚1 ∨ … ∨ ¬𝑐𝑚𝑗𝑚

)  

 

It is a formula in 𝐶𝑁𝐹 . To find a truth assignment that maximizes the number of 

conjunctions in 𝐷 is equivalent to finding a truth assignment that minimizes the number 

of clauses in ¬𝐷, the so-called MINSAT problem [11], which proves to be 𝑁𝑃-hard. 
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