
Acta Scientific Computer Sciences.

·

·

·

·

xxx 1

JournalName:ASComputerScienecs 2

ArticleType:Research 3

 4

 5

 Merge Sort Revisited 6

 7

Merge sort is a sorting technique based on the divide-and-conquer technique. With its worst-case time 8
complexity being O(𝑛 log 𝑛), it is one of the most respected algorithms. However, in practice, Quick sort is 9
almost three times faster than it although the worst-case time complexity of Quick sort is bounded by O(𝑛2), 10
much worse than O(𝑛log 𝑛). In this paper, we discuss a new algorithm, which improves the merge sort in 11
two ways: (i) cutting down data movements conducted in the merging processes; and (ii) replacing the 12
recursive calls with a series of improved merging operations. Our experiments show that for the 13
randomly generated input sequences, the performance of our algorithm is comparable to the quick sort. But 14
for the sorted or almost sorted input sequences, or reverse sorted input sequences, our algorithm is nearly 15
5000 times better than it. 16

CCS Concepts: • Theory of computation → Algorithm design and analysis. 17

Additional Key Words and Phrases: sequences, merge sorting, quick sorting. 18

ACM Reference Format: 19
Yangjun Chen and Ruilin Su. 2021. Merge Sort Revisited. Acta Scientific Computer Sciences, Article xxx (August 20
2021), 6 pages. https://doi.org/10.1145/1122445.1122456 21
 22
 23
 24

1 INTRODUCTION 25

Merge sort (sometimes spelled mergesort) is an efficient sorting algorithm that uses a divide-26
and-conquer strategy to order elements in a sequence. Its worst-case time complexity is 27
bounded by O(𝑛log 𝑛), where 𝑛 is the number of elements in the sequence. This running time is 28

better than Quick sort’s, O(𝑛2). However, in practice, the quick sort is normally faster. One reason 29
for this is that Quick sort is an in-place algorithm (by which only quite small extra space is used) 30
and its average running time is bounded by O(𝑛log 𝑛). But the most important reason for this is 31
due to the huge amount of data movements carried out by Merge sort itself when merging 32
subsequences. 33

In this paper, we address this issue and propose a method which is able to cut down the number 34
of data movements of the merge sort by half. Another observation is that the conquer step of 35
Merge sort can further be greatly improved by replacing recursive calls directly with a series of 36
merging operations. 37

As our experiments demonstrate, the running time of our algorithm for randomly generated input 38
sequences is comparable to Quick sort. However, for the sorted or almost sorted input sequences, 39
or reversely sorted input sequences, our algorithm can achieve more than 5000-fold improvements 40
over Quick sort. 41

Since the sorting is almost the most frequently performed operation in the software engineering, 42
we think that these improvements are highly significant. 43

This work is supported by NSERC, Canada, 239074-01 (242523). 44
Authors’ address: Yangjun Chen, y.chen@uwinnipeg.ca; Ruilin Su, su-r@webmail.uwinnipeg.ca, Department of Applied 45
Computer Science, University of Winnpeg, Winnipeg, Manitoba, Canada, R3B 2E9 . 46

https://doi.org/10.1145/1122445.1122456
mailto:su-r@webmail.uwinnipeg.ca

Acta Scientific Computer Sciences

xxx:2 Chen and Su 47

The rest of this paper is organized as follows. In Section 2, we restate Merge sort as a discussion 48
background. Then, in Section 3, we discuss our algorithm. Next, we show the test results in Section 49
4. Finally, a short conclusion is set forth in Section 5. 50

2 DECRIPTION OF MERGE SORTING 51

Merge sort is typically a divide-and-conquer strategy. Given a sequence with 𝑛 elements, the 52
merge sort involves the following three steps: 53

(1) 𝐷𝑖𝑣𝑖𝑑𝑒 the sequence into two subsequences such that one is with n/2 elements, and 54
the other is with 𝑛/2. 55

(2) 𝐶𝑜𝑛𝑞𝑢𝑒𝑟 each subsequence by sorting it. Unless the sequence is sufficiently small, 56
use recursion to do this. 57

(3) 𝐶𝑜𝑚𝑏𝑖𝑛𝑒 the solutions to the subsequences by merging them into a single sorted sequence. 58

The following algorithm implements the above idea. For simplicity, the input of this algorithm 59
is just an array A of numbers to be sorted. 60

Algorithm 1: 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡 (𝐴) 61

Input: 𝐴 - a sequence of elements stored as an array 62
Output : sorted 𝐴 63

1 if |𝐴| = 1 then return 𝐴; 64
2 p := 1; r := |𝐴|; 𝑞 := (𝑝 + 𝑟)/2; 65
3 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡 (𝐴[p .. q]); 66
4 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡 (𝐴[q + 1 .. r]); 67
5 𝑚𝑒𝑟𝑔𝑒(𝐴, 𝑝, 𝑞, 𝑟); 68

In line 1 of the above algorithm, 𝑚𝑒𝑟𝑔𝑒𝑆𝑜𝑟𝑡 (), we first check whether | A| = 1 . If it is the 69

case, return A. Otherwise, the divide step simply computes an index 𝑞 (see line 2) that partitions 𝐴 70

into two subarrays: 𝐴[𝑝 .. 𝑞] containing n/2 elements, and A[𝑞 + 1 .. 𝑟] containing 𝑛/2 71
elements. 72

By the first recursive call, we will sort 𝐴[𝑝 .. 𝑞] (see line 3). By the second recursive call, we will 73
sort 𝐴[𝑞 + 1 .. 𝑟] (see line 4). Then, we will call the merge procedure to create an entirely sorted 74
array 𝐴 (see line 5). 75

In the merge procedure 𝑚𝑒𝑟𝑔𝑒(𝐴, 𝑝, 𝑞, 𝑟) shown below, line 1 computes the length 𝑛1 and 𝑛2 76
of the subarrays 𝐴[𝑝 .. 𝑞] and 𝐴[𝑞 + 1 .. 𝑟], respectively; and initializes index variable 𝑘 to p, which is 77
used to scan 𝐴 from left to right. The for-loop of lines 3-4 copies the subarray 𝐴[𝑝 .. 𝑞] into 𝐿[1 .. 78
𝑛1] while the for-loop of lines 5-6 copies the subarray 𝐴[𝑞 + 1 .. 𝑟] into 𝑅[1 .. 𝑛2]. In the while-loop 79
of lines 7-12, two index variables 𝑖, 𝑗 are used to scan 𝐿 and 𝑅, respectively. Depending on whether 80
L[i] R[j], L[i] or R[j] will be sent to A[k]. When we go out of the while-loop, lines 13-16 will be 81
executed, by which the remaining elements in 𝐿 or in 𝑅 will be copied back into 𝐴, depending on 82
whether i > 𝑛1 or 𝑗 > 𝑛2. 83

3 IMPROVEMENTS 84

In this section, we discuss how to improve the algorithm described in the previous section. First, we 85

discuss a method to reduce data movements conducted in 𝑚𝑒𝑟𝑔𝑒(), which enables us to decrease 86
the running time by more than a half. Then, we change the recursive algorithm to a non-recursive 87
procedure by which the performance can be further improved. 88

Acta Scientific Computer Sciences.

Merge Sorting Revisited xxx:3 89
 90

Algorithm 2: 𝑚𝑒𝑟𝑔𝑒(𝐴, 𝑝, 𝑞, 𝑟) 91

Input: Both 𝐴[𝑝 .. 𝑞] and 𝐴[𝑞 + 1 .. 𝑟] are sorted; but 𝐴 as a whole is not sorted 92
Output : sorted 𝐴 93

1 𝑛1 := 𝑞 - 𝑝 + 1; 𝑛2 := 𝑟 – q; k := p; 94

2 let 𝐿[1 .. 𝑛1] and 𝑅[1 .. 𝑛2] be new arrays; 95

3 for i = 1 to 𝑛1 do 96

4 𝐿[𝑖] := 𝐴[𝑝 + 𝑖 - 1]; 97

5 for j = 1 to 𝑛2 do 98

6 𝑅[𝑗] := 𝐴[𝑞 + 𝑗]; 99

7 while 𝑖 ≤ 𝑛1 and 𝑗 ≤ 𝑛2 do 100
8 if 𝐿 [𝑖] ≤ 𝑅 [𝑗] then 101

9 𝐴[𝑘] := 𝐿 [𝑖]; 𝑖 := 𝑖 + 1; 102

10 else 103

11 𝐴[𝑘] := 𝑅 [𝑗]; 𝑗 := 𝑗 + 1; 104

12 𝑘 := 𝑘 + 1; 105

13 if j > 𝑛2 then 106

14 copy the remaining elements in 𝐿 into 𝐴[𝑝 .. 𝑟] 107

15 else 108

16 copy the remaining elements in 𝑅 into 𝐴[𝑝 .. 𝑟]; 109

 110

- Deduction of data movements 111
We notice that in the procedure 𝑚𝑒𝑟𝑔𝑒() of Merge sort the copying of 𝐴[𝑞 + 1 .. 𝑟] into 𝑅 is not 112

necessary, since we can directly merge 𝐿 and 𝐴[𝑞 + 1 .. 𝑟] and store the merged, but sorted sequence 113
back into 𝐴. 114

Denote by 𝐴′ the sorted version of 𝐴. Denote by 𝐴′(𝑖, 𝑗) a prefix of 𝐴′ which contains the first 𝑖 115
elements from 𝐿 and first 𝑗 elements from 𝐴[𝑞 + 1 .. 𝑟]. Obviously, we can store 𝐴′(𝑖, 𝑗) in 𝐴 itself 116
since after the 𝑗 th element has been inserted into 𝐴′, the first 𝑞 - 𝑝 + 𝑗 + 1 entries in 𝐴 are empty 117
and 𝑞 - 𝑝 + 1 i (thus, 𝑞 - 𝑝 + 𝑗 + 1 i + j). In terms of this simple analysis, we give the following 118
algorithm for merging two sorted subarrays: 𝐿 and 𝐴[𝑞 + 1 .. 𝑟] (see Algorithm 3). 119

The difference of this algorithm from 𝑚𝑒𝑟𝑔𝑒() (Algorithm 2, described in the previous 120
section) mainly consists in: 121

(1) Array 𝑅 is not created. 122
(2) The copying of the remaining part of Array 𝑅 into 𝐴 is not needed in the case that 𝑗 > 𝑛2 123

since 𝑅 itself is replaced by 𝐴[𝑞 + 1 .. 𝑟], and the remaining elements of 𝑅 are now already in 124

𝐴. 125

These two differences enable us to save more than half of the running time of Merge sort. 126

In addition, less space is needed since R is not created at all. 127

- Non-recursive Algorithm 128
Merge Sort can be further improved by replacing its recursive calls with a series of merging 129

operations, by which the recursive execution of the algorithm is simulated. The whole working 130

process can be divided into ⌈log2 (𝑟 - 𝑝 + 1)⌉ phases. In the first phase, we will make ⌈𝑛/2⌉ merging131

Acta Scientific Computer Sciences

xxx:4 Chen and Su 132
 133

Algorithm 3: 𝑚𝑒𝑟𝑔𝑒𝐼𝑚𝑝𝑟 (𝐴, 𝑝, 𝑞, 𝑟) 134

Input: Both 𝐴[𝑝 .. 𝑞] and 𝐴[𝑞 + 1 .. 𝑟] are sorted; but 𝐴 as a whole is not sorted 135
Output : sorted 𝐴 136

1 𝑛1 := 𝑞 - 𝑝 + 1; 𝑛2 := 𝑟 – p + 1; 𝑘 := 𝑝; 137

2 let 𝐿[1 .. 𝑛1] be a new array; 138

3 for i = 1 to 𝑛1 do 139

4 𝐿[𝑖] := 𝐴[𝑝 + 𝑖 - 1]; 140

5 i : = 1 ; 𝑗 := 𝑞 + 1; 141

6 while 𝑖 ≤ 𝑛1 and 𝑗 ≤ 𝑛2 do 142
7 if 𝐿 [𝑖] ≤ 𝐴[𝑗] then 143

8 𝐴[𝑘] := 𝐿 [𝑖]; 𝑖 := 𝑖 + 1; 144

9 else 145

10 𝐴[𝑘] := 𝐴[𝑗]; 𝑗 := 𝑗 + 1; 146

11 𝑘 := 𝑘 + 1; 147

12 if j > 𝑛2 then 148

13 copy the remaining elements in 𝐿 into 𝐴[𝑘 ..𝑟] 149

 150

operations, where 𝑛 = 𝑟 - 𝑝 + 1, with each merging two single-element sequences together. In 151
the second phase, we will make n/4 merging operations with each merging two two-152
element sequences together, and so on. Finally, we will make only one operation to merge 153
two sorted subsequences to form a globally sorted sequence. Between the sorted subsequences, 154

one contains ⌈𝑛/2⌉ elements while the other contains ⌊𝑛/2⌋ elements. 155
 156

Algorithm 4: 𝑚𝑆𝑜𝑟𝑡 (𝐴) 157

Input : 𝐴 - a sequence of elements stored as an array; 158
Output : sorted 𝐴 159

1 if |A| ≤ 1 then return A; 160
2 r := |A|; 161
3 𝑙 := log2 𝑟 ; 162
4 j : = 2; 163

5 for i = 1 to 𝑙 do 164

6 for k = 1 to ⌈r/𝑗 ⌉) do 165

7 𝑠 := ⌊(𝑘 - 1)𝑗 ⌋; 166

8 𝑚𝑒𝑟𝑔𝑒𝐼𝑚𝑝𝑟 (𝐴, 𝑠 + 1, 𝑠 + ⌈𝑗 /2 ⌉, 𝑠 + 𝑗); 167

9 𝑗 := 2𝑗 ; 168
 169

 170
 171

More importantly, by our method, there is no system stack frame overhead, and therefore 172
no stack overflow problem (caused by huge numbers of recursive calls) as by the recursive merge 173
sort and also by the recursive quick sort. Thus, given a certain size of main memory, much 174
longer input sequences can be sorted by our method, as demonstrated by our experiments. 175

4 EXPERIMENTS 176

In our experiments, we have tested altogether 5 different methods: 177

Acta Scientific Computer Sciences.

Merge Sorting Revisited xxx:5 178

 179
TABle 1. Time on sorted input sequences (ms) 180

 181
input size 𝑚𝑠 ims-1 ims-2 𝑞𝑠 r-qs

6,5536 6 1 1 751 518

131,072 13 2 2 3,012 1,044

262,144 28 6 4 12,789 2,088

524,288 54 11 9 49,625 4,176

1,048,576 106 24 19 - 9,728

2,097,152 214 49 41 - 21,489

4,194,304 430 110 97 - 54,763

 182

TABle 2. Time on random input sequences (ms) 183

 184
input size 𝑚𝑠 ims-1 ims-2 𝑞𝑠 r-qs

6,5536 10 4 3 3 5

131,072 19 9 8 7 9

262,144 39 19 17 14 19

524,288 80 38 35 28 31

1,048,576 160 78 72 55 69

2,097,152 320 158 136 110 153

4,194,304 670 324 295 210 312

 185

– Merge sort (ms for short, [2]), 186
– Improved merge sort 1 (ims-1 for short, discussed in this paper), 187
– Improved merge sort 2 (ims-2 for short, discussed in this paper), 188
– Quick sort (qs for short, [3]), and 189
– Random pivot quick sort (r-qs for short, [1]). 190

Among all the above 5 methods, ms is the traditional merge sort described in Section 2. qs is the 191
traditional quick sort, by which a fix element (e.g., the last, the first or the middle element) is 192
chosen as the pivot for each sequence partition while r-qs is one of its variants, by which the pivot 193
for each sequence partition is randomly selected. ims-1 and ims-2 are two of our improvements 194
discussed in Section 3. 195

The code of our two improvements are produced by ourselves while all the other codes are 196
downloaded from the Internet. They are all written in C++ and compiled by GNU g++ compiler 197
version 5.4.0 with compiler option ‘-O2’. All tests run on a Windows 10 machine with a single CPU 198
i7-11800H. The system memory is of 32 GB. 199

In Table 1, we show the running time of all the algorithms on sorted input sequences. From this, 200
we can see that Quick sort is much worse than all the other methods. Especially, it interrupts due 201
to stack overflows even for an input whose size is not so large. Its performance can be somehow 202
improved by randomly choosing pivots for each sequence partition. But it is still orders of magnitude 203
worse than Merge sort. In the opposite, our non-recursive algorithm essentially improves Merge 204
sort and can achieve more than 5000-fold improvements over Quick sort. 205

In Table 2, we show the test results over randomly generated inputs. For large inputs, they clearly 206
show that Merge sort is almost three time slower than Quick sort. But our algorithm is comparable 207
to Quick sort, and even a little bit better than its variant. 208

Acta Scientific Computer Sciences

xxx:6 Chen and Su 209
 210

5 CONCLUSIONS 211

In this paper, a method for sorting is discussed. It improves Merge sort in two ways. First, it cuts 212
down data movements conducted in the merging processes of Merge sort. Second, it replaces 213
the recursion of Merge sort with "iteration", by which the recursive calls are changed to a series 214
of improved merging operations. Our experiments show that for the randomly generated input 215
sequences, the performance of our algorithm is comparable to the quick sort. But for the sorted or 216
almost sorted input sequences, or reverse sorted input sequences, our algorithm is nearly 5000 217
times better than Quick sort. 218

 219

REFERENCES 220

[1] A. Latif, A. Dalhoum, T. Kobbay, A. , Sleit, M. Alfonseca and A. Ortega, Enhancing QuickSort Algorithm using a Dynamic 221
Pivot Selection Technique, Wulfenia 19(10):543-552, Jan. 2012. 222

[2] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, Third edition. 2009. 223
[3] C. A.R. Hoare, Quicksort, The Computer Journal, 5, 10-15, 1962. 224

