Average Time Analysis: Searching a Signature Tree

Yangjun Chen and Yibin Chen

In [1], it is claimed that the average time of searching a sig-

nature tree is on the order of $O(n^{1-\frac{k}{m}})$, where n is the number of signatures in a signature file, m the signature length, and k the number of bits set to 1 in a signature. In this paper, we show how this result is achieved. For this purpose, we evaluate $c_{s,n}$ given by (15) in [1] by using contour integration of complex variabled functions.

First, we define

$$\phi(x) = \sum_{h=0}^{m-1} \lambda_1 \lambda_2 \dots \lambda_h \sum_{j \ge 0} 2^{j(m-k)} D_{jh}(x), (x \ge 0)$$
 (1)

Then, we perform the following computations to evaluate $\phi(x)$:

(1) define the Mellin transformation of $\phi(x)$ ([2], p. 453):

$$\phi^*(\sigma) = \int_0^\infty \phi(x) x^{\sigma - 1} dx . \tag{2}$$

- (2) derive an expression for $\phi^*(\sigma)$, which reveals some of its singularities.
- (3) evaluate the reversal Mellin transformation

$$\phi(x) = \frac{1}{2i\pi} \int_{c-i\infty}^{c+i\infty} \phi^*(\sigma) x^{-\sigma} d\sigma - 1 < c < -\left(1 - \frac{k}{m}\right)$$
 (3)

The integral (3) is evaluated by using Cauchy's theorem as a sum of *residues* to the right of the vertical line $\{c + iy \mid y \in \mathcal{R}\}$, where \mathcal{R} represents the set of all real numbers. This computation method was first proposed in [3]. The following is just an extended explanation of it.

Remember that

$$D_{ih}(x) = 1 - (1 - 2^{-mj-h})^x - x2^{-mj-h}(1 - 2^{-mj-h})^{x-1}$$

We rewrite it under the form

$$D_{ih}(x) = 1 - e^{-x\alpha_{jh}} - \beta_{ih} x e^{-x\alpha_{jh}}$$
 (4)

with
$$\alpha_{jh} = -\log(1 - 2^{-mj-h})$$
 and $\beta_{jh} = 2^{-mj-h}(1 - 2^{-mj-h})^{-1}$.

Now we consider the following expansion, which is valid

The author are with the Department of Applied Computer Science, the University of Winnipeg, winnipeg, Manitoba, Canada R3B 2E9. E-mail: ychen2@uwinnipeg.ca, yibinchen@hotmail.com for small values of x:

$$(-\log(1-x))^{-\sigma} = x^{-\sigma}(1-\frac{x\sigma}{2}+O(|\sigma|^2x^2)).$$
 (5)

Let $x = 2^{-mj-h}$. Then, we have (by using the above expansion)

$$\alpha_{ih} = (-\log(1 - 2^{-mj-h}))^{-(-1)} \sim (2^{mj+h}).$$
 (6)

In addition, for small values 2^{-mj-h} , we also have

$$\beta_{ih} = 2^{-mj-h} (1 - 2^{-mj-h})^{-1} = O(2^{-mj}).$$
 (7)

Following the classical properties of Mellin transformation, we have the following proposition.

Proposition 1. Denote $D_{jh}^*(\sigma)$ the Mellin transformation of $D_{jh}(x)$. We have

$$D_{jh}^{*}(\sigma) = \int_{0}^{\infty} D_{jh}(x) x^{\sigma - 1} dx$$
$$= -(\alpha_{jh})^{-\sigma} \Gamma(\sigma) - \beta_{jh}(\alpha_{jh})^{-\sigma - 1} \sigma \Gamma(\sigma) \qquad (8)$$

provided $-1 < \text{Re}(\sigma) < 0$, where $\Gamma(\sigma)$ is the *Euler Gamma* function.

Proof. The following formulas are well-known:

$$\int_{0}^{\infty} (e^{-x} - 1)x^{\sigma - 1} dx = \Gamma(\sigma) - 1 < \operatorname{Re}(\sigma) < 0$$
 (9)

$$\int_{0}^{\infty} (xe^{-x})x^{\sigma-1}dx = \sigma\Gamma(\sigma) \qquad -1 < \text{Re}(\sigma)$$
 (10)

$$\int_0^\infty f(ax)x^{\sigma-1}dx = a^{-\sigma}\int_0^\infty f(x)x^{\sigma-1}dx \quad \text{for } a > 0 \quad (11)$$

In terms of these formulas, we have

$$D_{jh}^*(\sigma) = \int_0^\infty D_{jh}(x) x^{\sigma - 1} dx \tag{12}$$

$$= \int_0^\infty (1 - e^{-x\alpha_{jh}}) x^{\sigma - 1} dx - \int_0^\infty \beta_{jh} x e^{-x\alpha_{jh}} x^{\sigma - 1} dx$$

$$= - (\alpha_{jh})^{-\sigma} \Gamma(\sigma) - \beta_{jh} (\alpha_{jh})^{-\sigma-1} \sigma \Gamma(\sigma). \qquad \Box$$

Now we try to evaluate the following two sums:

$$\omega_h(\sigma) = \sum_{j \ge 0} 2^{j(m-k)} (\alpha_{jh})^{-\sigma} , \qquad (13)$$

$$\upsilon_h(\sigma) = \sum_{j>0} 2^{j(m-k)} \beta_{jh}(\alpha_{jh})^{-\sigma-1}.$$

From (6) and (7), we can see that the two sums given by (13) are uniformly and absolutely convergent when σ is in the following stripe:

Stripe:
$$-1 < \text{Re}(\sigma) < -(1 - \frac{k}{m}).$$
 (14)

Furthermore, in terms of (6) and (7), both $\omega_h(\sigma)$ and $\upsilon_h(\sigma)$ can be approximated by the following sum:

$$\hat{\omega}_h(\sigma) = \sum_{i>0} 2^{j(m-k)} (2^{mj+h})^{\sigma} \tag{15}$$

When $\operatorname{Re}(\sigma) < \sigma_0 = -(1 - \frac{k}{m})$, this series can be summed exactly:

$$\hat{\omega}_h(\sigma) = 2^h \frac{1}{1 - 2^{m-b+m\sigma}}.$$
 (16)

Thus, $\phi^*(\sigma)$ is defined in *Stripe* and can be computed as follows

$$\phi^{*}(\sigma) = \int_{0}^{\infty} \phi(x) x^{\sigma-1} dx$$

$$= \int_{0}^{\infty} \left(\sum_{h=0}^{m-1} \lambda_{1} \lambda_{2} ... \lambda_{h} \sum_{j \geq 0} 2^{j(m-k)} D_{jh}(x) \right) x^{\sigma-1} dx$$

$$= -\sum_{h=0}^{m-1} \lambda_{1} \lambda_{2} ... \lambda_{h} (\omega_{h}(\sigma) + \sigma \omega_{h}(\sigma)) \Gamma(\sigma)$$

$$= -\Gamma(\sigma) (1 + \sigma) \sum_{k=0}^{m-1} \lambda_{k} \lambda_{k} 2^{k} \frac{1}{1 - 2^{m-b+m\sigma}}.$$
(17)

From this, we can observe all the signlarities (poles), i.e., $\sigma = 0$, at which $\Gamma(\sigma)$ is not defined; and all those values of σ , at which $(1 - 2^{m(\sigma - \sigma_0)})$ becomes 0:

$$\sigma_j = \sigma_0 + \frac{2ij\pi}{m\log 2}, \qquad (j = 0, \pm 1, \pm 2, ...)$$
 (18)

To compute the integral in (21), we consider the following integral

$$\phi_N(x) = \frac{1}{2i\pi} \int_{L_N} \phi^*(\sigma) x^{-\sigma} d\sigma, \qquad (19)$$

where L_N is a rectangular contour oriented clockwise as shown in Fig. 1.

$$L_{N} = \frac{1}{N} + L_{N}^{2} + L_{N}^{3} + L_{N}^{4},$$

$$L_{N}^{1} = \left\{ c + iu | |u| \le \frac{(2N+1)\pi}{m \log 2} \right\},$$

$$L_{N}^{2} = \left\{ v + i \frac{(2N+1)\pi}{m \log 2} \middle| c \le v \le \frac{b}{3m} \right\},$$
(20)

$$L_N^3 = \left\{ \frac{b}{3m} + iu \left| |u| \le \frac{(2N+1)\pi}{m \log 2} \right. \right\},$$

$$L_N^4 = \left\{ v - i \frac{(2N+1)\pi}{m \log 2} \middle| c \le v \le \frac{b}{3m} \right\},\,$$

where N is an integer. This contour is of a similar type used in ([4], p. 132).

Let ϕ_N^i be the integral along L_N^i (i = 1, 2, 3, 4). Then, $\phi_N(x) = \phi_N^1(x) + \phi_N^2(x) + \phi_N^3(x) + \phi_N^4(x)$.

Furthermore, we have the following results:

$$\begin{split} &\lim_{N\to\infty}\phi_N^1(x) = \phi(x)\,,\\ &\lim_{N\to\infty}\phi_N^2(x) = \mathrm{O}(1)\,,\\ &\left|\phi_N^3(x)\right| \leq x^{-k/(3m)} \!\!\int_{L_\infty}\!\! \left|\phi^*(\sigma)\right| d\sigma = \mathrm{O}(x^{-k/(3m)}), \text{ and}\\ &\lim_{N\to\infty}\phi_N^4(x) = \mathrm{O}(1). \end{split}$$

Thus, we have

Fig. 1 The rectangular contour L_N

On the other hand, $\lim_{N\to\infty} \phi_N(x)$ can be evaluated as the sum of the residues of the integrand, i.e., $\phi^*(\sigma)x^{-\sigma}$, inside L_N . Concretely, we have

$$\lim_{N \to \infty} \phi_{N}(x) = -\sum_{\alpha \in \text{Pole}(\phi^{*}(\sigma))} (\phi^{*}(\sigma)x^{-\sigma}, \sigma = \alpha)$$

$$= -\sum_{\alpha \in \text{Pole}(\phi^{*}(\sigma))} \lim_{\sigma \to \alpha} (\sigma - \alpha)\phi^{*}(\sigma)x^{-\sigma} . \tag{22}$$

Within L_{∞} , $\phi^*(\sigma)$ has the following poles:

$$\alpha = \sigma_j = \sigma_0 + \frac{2ij\pi}{m\log 2}$$
 $(j = 0, \pm 1, \pm 2, ...)$

The contribution of the pole $\alpha = 0$ is O(1); and the contribution of $\alpha = \sigma_0$ is

$$\lim_{\sigma \to \sigma_0} (\sigma - \sigma_0) \phi^*(\sigma) x^{-\sigma}$$

 $\alpha = 0$, and

$$= x^{-\sigma_0} \frac{(1+\sigma_0)\Gamma(\sigma_0)}{m\log 2} \sum_{h=0}^{m-1} \lambda_1 \lambda_2 ... \lambda_h 2^{h\sigma_0}.$$
 (23)

Finally, the contribution of each σ_i $(j = \pm 1, \pm 2, ...)$ is

$$\lim_{\sigma \to \sigma_{j}} (\sigma - \sigma_{j}) \phi^{*}(\sigma) x^{-\sigma}$$
 (24)

$$= x^{-\sigma_0} \exp\left(-\frac{2ij\pi}{m}\log_2 x\right) (1+\sigma_j) \Gamma(\sigma_j) \sum_{h=0}^{m-1} \lambda_1 \lambda_2 \dots \lambda_h 2^{h\sigma_j}$$

So we have

$$\lim_{N \to \infty} \phi_{N}(x) = x^{-\sigma_{0}} \frac{(1+\sigma_{0})\Gamma(\sigma_{0})}{m\log 2} \sum_{h=0}^{m-1} \lambda_{1}\lambda_{2}...\lambda_{h} 2^{h\sigma_{0}} + \sum_{h=0}^{m-1} x^{-\sigma_{0}} \exp\left(-\frac{2ij\pi}{m}\log_{2}x\right) (1+\sigma_{j})\Gamma(\sigma_{j}) \sum_{h=0} \lambda_{1}\lambda_{2}...\lambda_{h} 2^{h\sigma_{j}} + \sum_{j=1}^{m-1} x^{-\sigma_{0}} \exp\left(-\frac{2ij\pi}{m}\log_{2}x\right) (1+\sigma_{j})\Gamma(\sigma_{j}) \sum_{h=0}^{m-1} \lambda_{1}\lambda_{2}...\lambda_{h} 2^{h\sigma_{j}} + \sum_{j=1}^{m-1} x^{-\sigma_{0}} \exp\left(-\frac{2ij\pi}{m}\log_{2}x\right) (1+\sigma_{j})\Gamma(\sigma_{j}) \sum_{h=0}^{m-1} \lambda_{1}\lambda_{2}...\lambda_{h} 2^{h\sigma_{j}} + \sum_{h=0}^{m-1} \lambda_{1}\lambda_{2}...\lambda_{h} 2^{h\sigma_{0}}$$

$$= x^{-\sigma_{0}} \frac{(1+\sigma_{0})\Gamma(\sigma_{0})}{m\log 2} \sum_{h=0}^{m-1} \lambda_{1}\lambda_{2}...\lambda_{h} 2^{h\sigma_{0}}.$$
(25)

From this, we know that

$$C_{s,n} = O(n^{-\sigma_0}) = O(n^{1 - \frac{k}{m}}).$$
 (26)

REFERENCES

- [1] Y. Chen and Y. Chen, On the Signature Tree Construction and Analysis, *IEEE Transactions on Knowledge and Data Engineering*, Vol. 18, NO. 9, September 2006.
- [2] R.V. Churchill, *Operational Mathematics*, McGraw-Hill Book Company, New York, 1958.
- [3] P. Flajolet and C. Puech, Partial match Retrieval of Multidimentional Data, *J. ACM*, Vol. 33, No. 2, April 1986, pp. 371-407.
- [4] D.E. Knuth, The Art of Computer Programming: Sorting and Searching, Addison-Wesley Pub. London, 1973.