
Advances in Science, Technology and Engineering Systems Journal
Vol. 9, No. 4, 60-72 (2024)

www.astesj.com
ASTES Journal
ISSN: 2415-6698

On Mining Most Popular Packages
Yangjun Chen*, Bobin Chen

Department of Applied Computer Science, University of Winnpeg, Manitoba, R3B 2E9, Canada

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 22 April, 2024
Revised: 11 June, 2024
Accepted: 31 July, 2024
Online: 07 August, 2024

Keywords:
Data Mining
Most popular packages
NP-complete
Priority-first tree search
Tries
Trie-like graphs

In this paper, we will discuss two algorithms to solve the so-called package design problem, by
which a set of queries (referred to as a query log) is represented by a collection of bit strings
with each indicating the favourite activities or items of customers. For such a query log, we
are required to design a package of activities (or items) so that as many customers as possible
can be satisfied. It is a typical problem of data mining. For this problem, the existing algorithm
requires at least O(n2m) time, where m is the number of activities (or items) and n is the number
of queries. We try to improve this time complexity. The main idea of our first algorithm is to
use a new tree search strategy to explore the query log. Its average time complexity is bounded
by O(nm2 + m2m/2). By our second algorithm, all query bit strings are organized into a graph,
called a trie-like graph. Searching such a graph bottom-up, we can find a most popular package
in O(n2m3(log2 nm)log2 nm) time. Both of them work much better than any existing strategy for
this problem.

1. Introduction

Frequent pattern mining plays an important role in mining associa-
tions [1, 2, 3, 4], which are quite useful for decision making. For
instance, for the supermarket management, the association rules are
used to decide, how to place merchandise on shelves, what to put
on sale, as well as how to design coupons to increase the profit, etc.

In general, by the frequent pattern mining [5, 6, 7, 8], we are
required to find a frequent pattern, which is in fact a subset of items
supported (or say, contained) by most of transactions. Here, by a
transaction, we mean a set of attributes or items.

In this paper, we study a more challenging problem, the so-
called single package design problem (SPD for short [2, 3, 9, 10]),
defined below:

• A set of attributes (items, or activities):

A = {a1, ..., am},

• A query log:

Q = {q1, . . . qn},

where each qi = ci1ci2 . . . cim with each ci j ∈ {0, 1, *} (i = 1,
. . . , n, j = 1, . . . , m).

• In qi, whether a j is chosen, depends on the value of ci j. That
is, if ci j = 1, a j is selected; if ci j = 0, a j is not selected;
otherwise, ci j = ‘*’ means ‘don’t care’.

Our purpose is to find a bit string τ = τ1 ... τm that satisfies as
many queries q′is in Q as possible. We say, τ satisfies a qi = ci1ci2 . . .
cim if for each j (1 ≤ j ≤ m) the following conditions are satisfied:

ci j = 1→ τ j = 1,
ci j = 0→ τ j = 0,
ci j = ‘*’→ τ j = 1 or 0.
A τ is referred to as a package. If it is able to satisfy a maximum

subset of queries, we call it a most popular package. For instance,
for the above vacation package, a query in a log can be created
by specifying yes, no, or ‘don’t care’ for each activity by a client.
Then, the design of a most popular package is essentially to decide
a subset of such activities to satisfy as many queries’ requirements
(normally according to a questionnaire) as possible. It is a kind of
extension to mining association rules in data mining [5], but more
general and therefore more useful in practice.

This problem has been investigated by several researchers
[9, 10]. The method discussed in [10] is an approximation algorithm,
based on the reduction of SPD to MINSAT [11], by which we seek
to find a truth assignment of variables in a logic formula (in con-
junctive normal form) to minimize the number of satisfied clauses.
This is an optimization version of the satisfiability problem [12].
In [9], a kind of binary trees, called signature trees [13, 14, 15] for
signature files [16, 17, 18, 19, 20], is contructed to represent query
logs. Its worst-case time complexity is bounded by O(n2m).

In this paper, we address this issue and discuss two different
algorithms to solve the problem. By the first method, we will con-

*Corresponding Author: Department of Applied Computer Science, University of Winnpeg, Manitoba, Canada, R3B 2E9 & y.chen@uwinnipeg.ca

www.astesj.com
https://dx.doi.org/10.25046/aj090407

60

http://www.astesj.com
mailto:y.chen@uwinnipeg.ca
https://www.astesj.com
https://dx.doi.org/10.25046/aj090407

Y. Chen et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 60-72 (2024)

struct a binary tree over a query log in a way similar to [9], but
establishing a kind of heuristics to cut off futile branches. Its aver-
age time complexity is bounded by O(nm2 + m2m/2). The second
algorithm is based on a compact representation of the query log, by
which all the query bit strings are organized into a trie-like graph
G. Searching G bottom-up recursively, we can find a most popular
package in O(n2m3(log2 nm)log2 nm) time.

The remainder of the paper is organized as follows. First, we
show a simple example of the SPD problem in Section 2. Then,
Section 3 is devoted to the discussion of our first algorithm for
solving the SPD problem, as well as its time complexity analysis.
Next, in Section 4, we discuss our second algorithm in great detail.
Finally, we conclude with a summery and a brief discussion on the
future work in Section 5.

2. An example of SPD

In this section, we consider a simple SPD shown in Table 1, which
contains a query log with n = 6 queries, and m = 6 attributes (ac-
tivities), created based on a questionnaire on customers’ favourites.
For example, the query q6 = a11a12 . . . a16 = (*, 1, *, 0, *, 1) in
Table 1 shows that ride and boating are q6’s favourites, but hike is
not. In addition, q6 does not care about whether hot spring, glacier
or airline is available or not.

Table 1: A query log Q

query hot ride glacier hike airline boat-
spring ing

q1 1 * 0 * 1 *
q2 1 0 1 * * *
q3 * 0 0 1 1 *
q4 0 * 1 * 1 *
q5 * 0 0 * * 0
q6 * 1 * 0 * 1

For this small query log, a most popular package can be found,
which contains three items: hot spring, hiking, airline, and is able
to satisfy a maximum subset of queries: q1, q3, q5.

3. The First Algorithm

In this section, we discuss our first algorithm. First, in Section
3.1, we give a basic algorithm to provide a discussion background.
Then, we describe this algorithm in great detail in Section 3.2. The
analysis of the average running time is conducted in Section 3.3.

3.1. Basic algorithm

We first describe a basic algorithm to facilitate the subsequent dis-
cussion, which is in fact an extension of an algorithm discussed in
[15]. The main idea behind it is the construction of a binary tree
T over a query log Q. The algorithm works in two steps. In the
first step, a signature-tree-like structure is built up, referred to as a

search-tree. Then, in the second step, the search-tree is explored to
find a most popular package.

Given a set of attributes: A = {a1, a2, . . . , am} and a query log: Q
= {q1, . . . , qn} over A. Denote by qi[j] the value of the jth attribute
a j in qi (i = 1, . . . , m). Then, the binary tree T can be constructed
as follows.

1. First, for the whole Q, create root of T . j := 1.

2. For each leaf node v of the current T , denote by sv the subset
of queries represented by v. For query qi (∈ sv), if qi[1] = ‘0’,
we put qi into the left branch. If qi[1] = ‘1’, it is put into the
right branch. However, if qi[1] = ‘*’, we will put it in both
left and right branches, showing a quite different behavior
from a traditional signature tree construction [15].

3. j := j + 1. If j ¿ m, stop; otherwise, go to (2).

For example, for the query log given in Table 1, we will con-
struct a binary search tree as shown in Fig. 1.

v
0

v
11

v
22

v
23

v
34 v

35
v
36

v
37

v
10

v
20

v
21

v
30

v
31

v
32

v
33

v
44

v
45

v
46

v
47

v
40

v
41

v
42

v
43

v
54

v
55

v
56

v
57

v
50

v
51 v

52
v
53

v
58

v
59

v
64

v
65

v
66

v
67

v
60

v
61 v

62
v
63

v
68

v
69

s0 = {q1, q2, q3, q4, q5, q6} s11 = {q3, q4, q5, q6}s01 = {q1, q2, q5, q6}

10

0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1 0 1

s22 = {q3, q4, q5} s23 = {q4, q6}s20 = {q1, q2, q3, q5} s21 = {q1, q5}

s30 = {q3, q5} s31 = {q4} s32 = {q6} s33 = {q4, q6} s34 = {q1, q3, q5}

s35 = {q2} s36 = {q1, q6} s37 = {q6}

s40 = {q1} s42 = {q4, q6}s41 = {q4, q5} s43 = {q4} s44 = {q1, q5}

s45 = {q1, q3, q5} s47 = {q1}s46 = {q1, q6}

s53 = {q4, q6} s54 = {q3} s55 = {q1, q5}s50 = {q3} s52 = {q6}s51 = {q3, q5}

s57 = {q1, q3, q5}s56 = {q5} s59 = {q1}s58 = {q1}

s63 = {q4, q6} s64 = {q1, q3}s61 = {q3} s62 = {q4}s60 = {q3, q5}

s65 = {q1} s66 = {q1, q3, q5} s67 = {q1, q3} s68 = {q1} s69 = {q1, q6}

hot spring

ride

glacier

hike

airlines

boating

Figure 1: A search tree.

In Fig. 1, we use su to represent the subset of queries associated
with u. In terms of the corresponding attribute a, su is decomposed
into two subsets: su(a) and su(¬a), where for each q ∈ su(a) we have
q[a] = 1 and for each q′ ∈ su(¬a) q′[a] = 0. In general, su(¬a) is
represented by u’s left child while su(a) is represented by u’s right
child.

www.astesj.com 61

http://www.astesj.com

Y. Chen et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 60-72 (2024)

For example, the subset of queries associated with v11 is s11 =

{q3, q4, q5, q6}. According to attribute ‘ride’, s11 is split into two
subsets respectively associated with its two children (v22 and v23):
s22 = {q3, q4, q5} and s23 = {q4, q6}. In addition, we can also see that
among all the leaf nodes the subset s66 (= {q1, q3, q5}) associated
with v66 is of the largest size. Then, the labels along the path from
the root to it spell out a string 100110, representing a most popular
package: {hot spring, hiking, airlines}.

The computational complexity of this process can be analyzed
as follows.

First, we notice that in the worst case an search-tree can have
O(2m) nodes. Since each node is associated with a subset of queries,
we need O(n) time to determine its two children. So, the time for
constructing such a tree is bounded by O(n2m). The space require-
ment can be slightly improved by keeping only part of the search
tree in the working process. That is, we need only to maintain the
bottom frontier (i.e., the last nodes on each path at any time point
during the construction of T .) For example, nodes v40, v41, v31, and
v21 (see the dashed lines in Fig. 1) make up a bottom frontier at a
certain time point. At this point, only these nodes are kept around.
However, for each node v on a bottom frontier, we need to keep the
bit string along the path from root to v to facilitate the recognition
of the corresponding best package. In the worst case, the space
overhead is still bounded by O(n2m).

3.2. Algorithm based on priority-first search

The basic algorithm described in the previous section can be greatly
improved by defining a partial order over the nodes in the search
tree T to cut off futile paths. For this purpose, we will associate a
key with each node v in T , which is made up of two values: <|sv|,
lv>, where |sv| is the subset of queries associated with v and lv is the
level of v. (Here, we note that the level of the root is 0, the level of
the root’s children is 1, and so on.) In general, we say that a pair
<|sv|, lv> is larger than another pair <|su|, lu> if one of the following
two conditions is satisfied:

• |sv| > |su|, or

• |sv| = |su|, but lv ¿ lu.

In terms of this partial order, we define a max-priority queue H
for maintaining the nodes of T to control the tree search, with the
following two operations supported:

• extractMax(H) removes and returns the node of H with the
largest pair.

• insert(H, v) inserts the node v into the queue H, which is
equivalent to the operation H := H ∪ {v}.

In addition, we utilize a kind of heuristics for efficiency, by
which each time we expand a node v, the next attribute a chosen
among the remaining attributes should satisfy the following condi-
tions:

1. |sv(a)| - |sv(¬a)| is maximized.

2. In the case that more than one attributes satisfy condition (1),
choose a from them such that the number of queries q in sv

with q[a] = ‘*’ being minimized (the tie is broken arbitrarily.)

Using the above heuristics, we can avoid as many useless
branches as possible.

By using the priority queue, the exploration of T is not a DFS
(depth-first search) any more. That is, the search along a current path
can be cut off, but continued along a different path, which may lead
to a solution quickly (based on an estimation made according to the
pairs associated with the nodes.) This is because by extractMax(H)
we always choose a node with the largest possibility leading to a
most popular package.

Algorithm 1: PRIORTY-SEARCH(Q, A)
Input :a query log Q.
Output :a most popular package P.
the pair for root is set to be <|Q|, 0>; i := 0;
inset(H, root); (*root represents the whole Q.*)
while i ≤ m do

v := extractMax(H); (*recall that the pair associated
with v is <|sv|, lv>.*)

if i = m then
return the package represented by the path from

root to v;
recognize a next attribute a from A according to
heuristics;

generate left child vl of v, representing sv(¬a);
create left child vr of v, representing sv(a);
the pair of vl is set to be <|sv(¬a)|, l + 1>;
the pair of vr is set to be <|sv(a)|, l + 1>;
insert(H, vl); insert(H, vr);
i := lv + 1;

The procedure is given in Algorithm 1. This is in fact a tree
search controled by using a priority queue, instead of a stack. First,
the root is inserted into the priority queue H and its key (a pair of
values) is set to be <|Q|, 0>. Then, we will go into a while-loop,
in each iteration of which we will extract a node v from the pri-
ority queue H with the largest key value (line 4), that is, with the
largest number of queries represented by v and at the same time on
the deepest level (among all the nodes in H). Then, the subset of
queries represented by v will be split (see lines 7 and 8) according
to a next attribute chosen in terms of the heuristics described above
(line 7). Next, two children of v, denoted respectively as vl and vr,
will be created (see lines 8 and 9). and their keys are calculated
(lines 10 and 11). In line 12, these two children are inserted into H.
Finally, we notice that i is used to record the level of the currently
encountered node. Thus, when i = m, we must get a most popular
package.

The following example helps for illustration.

Example 1. 1 In this example, we show the first three steps of
computation when applying the algorithm PRIORITY-SEARCH()
to the query log given in Table 1. For simplicity, we show only the
nodes in both H and T for each step. In addition, the priority queue
is essentially a max-heap structure [21], represented as a binary
tree.

In the first step, (see Fig. 2(a)), the root (v0) of T is inserted
into H, whose pair is <6, 0>. It is because the root represents the
whole query log Q which contains 6 queries and is at level 0. Then,
in terms of attribute glacier (selected according to the heuristics), Q

www.astesj.com 62

http://www.astesj.com

Y. Chen et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 60-72 (2024)

is split into two subsets (which may not be disjoint due to possible
‘*’ symbols in queries), which are stored as v0’s two child nodes:
v10 and v11 with sv10 = {q1, q3, q5, q6} and sv11 = {q2, q4, q6}. Then,
v10 with pair <4, 1> and v11 with <3, 1> will be inserted into H.

v
0

v
10

v
11

0 1 glacier

step 1:

v
0 (6, 0)

S - priority queue: T - search tree:

v
0

v
10

v
11

0 1 glacier
step 2: v

10(4, 1)

s0 = {q1, q2, q3, q4, q5, q6} s10 = {q1, q3, q5, q6}

s11 = {q2, q4, q6}

v
11(3, 1)

v
20

v
21

0 1 ride

s20 = {q1, q3, q5} s21 = {q1, q5}

v
0

v
10

v
11

0 1 glacier
step 3: v

20(3, 2)

v
11(3, 1)

v
20

v
21

0 1 ride

s30 = {q1, q5} s31 = {q1, q3, q5}

v
21(2, 2)

v
30

v
31

0 1 hot
spring

(a)

(b)

(c)

Figure 2: A sample trace.

In the second step (see Fig. 2(b)), v10 with pair <4, 1> will be
extracted from H. This time, in terms of the heuristics, the selected
attribute is ride, and sv10 will accordingly be further divided into
two subsets, represented by its two children: v20 with sv20 = {q1, q3,
q5} and v21 with sv21 = {q1, q5}. Their pairs are respectively <3, 2>
and <2, 2>.

In the third step (see Fig. 2(c)), v20 with pair <3, 2> will be
taken out from H. According to the selected attribute hot spring,
sv20 will be divided into two subsets, represented respectively by its
two children: v30 with sv30 = {q1, q5} and v31 with sv31 = {q1, q3, q5}.

The last step of the computation is illustrated in Fig. 3, where
special attention should be paid to node v60, which is associated
with a subset of queries: {q1, q3, q5}, larger than any subset in the
current priority queue H. Then, it must be one of the largest sub-
set of queries which can be found since along each path the sizes
of subsets of queries must be non-increasingly ordered. Now, by
checking the labels along the path from the root to v60, we can easily
recognize all the attributes satisfying the queries in this subset. They
are {hot spring, hiking, airline}. Since {q1, q3, q5} is a maximum
subset of satisfiable queries, this subset of attributes must ba a most
popular package.

v
0

v
10

v
11

0 1 glacier

v
11(3, 1)

v
30(2, 3)

v
20

v
21

0 1 ride

s40 = {q3, q5}

s41 = {q1, q3, q5}

v
40 (2, 4)

v
30

v
31

0 1 hot
spring

v
50(2, 5) v

61(2, 6)

v
40

v
41

0 1

v
50

v
51

0 1

v
60

v
61

0 1

hike

airline

boating

s50 = {q1, q5}

s51 = {q1, q3, q5}

s60 = {q1, q3, q5}

s61 = {q1, q3}

S - priority queue: T - search tree

Figure 3: A sample trace.

By this example, a very important property of T can be observed.
That is, along each path, the sizes of subsets of queries (represented
by the nodes) never increase since the subset of queries represented
by a node must be part of the subset represented by its parent. Based
on this property, we can easily prove the following proposition.

Proposition 1. Let Q be a query log. Then, the subset of attributes
found in Q by applying the algorithm PRIORITY-SEARCH() to Q
must be a most popular package.

Proof. Let v be the last node created (along a certain path). Then,
the pair associated with v will have the following properties:

• lv = m, and

• |sv| is the largest among all the nodes in the current H.

Since the sizes of subsets of queries never increase along each
path in T , sv must be a maximum subset of queries which can be
satisfied by a certain group of attributes. One such a group can be
simply determined by the labels on the path from root to v. This
completes the proof. □

The computation shown in Example 1 is super efficient. Instead
of searching a binary tree of size O(2m) (as illustrated in Fig. 1), the
algorithm PRIORITY-SEARCH() only explores a single root-to-leaf
path, i.e., the path represented by dashed edges in Fig. 3). However,
in general, we may still need to create all the nodes in a complete
binary tree in the worst case.

Then, we may ask an interesting question: how many nodes
need to be generated on average?

In the next subsection, we answer this question by giving a
probabilistic analysis of the algorithm.

3.3. Average time complexity

From Fig. 2 and 3, we can see that for each internal node encoun-
tered, both of its child nodes will be created. However, only for
some of them, both of their children will be explored. For all the
others, only one of their children is further explored. For ease of
explanation, we call the former 2-nodes while the latter 1-nodes.

www.astesj.com 63

http://www.astesj.com

Y. Chen et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 60-72 (2024)

We also assume that in T each level corresponds to an attribute.
Let a = a1a2 . . . am be an attribute sequence, along which the tree
T is expanded level-by-level. For instance, in the tree shown in Fig.
3 the nodes are explored along an attribute sequence: glacier – ride
– hot spring – hiking – airline - boating. For simplicity, we will use
a′, a′′, a′′′ . . . to designate the strings obtained by circularly shift
the attributes of a. That is,

a′ = a2 . . . ama1,
a′′ = a3 . . . ama2a1,
.
a(m) = a = a1a2 . . . am.
In addition, we will use ℵa(T) to represent the number of nodes

created when applying PRIORITY-SEARCH() to Q, along a path
from top to bottom.

ℵa(T) = 1 + ℵa′ (T1) + ℵa′ (T2) (1)

where T1 and T2 represent the left and right subtree of root, respec-
tively.

However, if the root of T is a 1-node, we have

ℵa(T) = 1 + ℵa′ (T1) or ℵa(T) = 1 + ℵa′ (T2) (2)

depending on whether svl ≥ svr or svl < svr , where vl and vr stand
for the left and right child of the root.

Now we consider the probability that |T1| = p and |T2| = ℵ – p,
where ℵ is the number of all nodes in T . This can be estimated by
the Bernouli probabilities:(

ℵ

p

)(
1
2

)p(1
2

)ℵ−p

=
1
2ℵ

(
ℵ

p

)
(3)

Let ca,ℵ denote the expected number of nodes created during the
execution of PRIORITY-SEARCH() against Q. In terms of (1), (2)
and (3), we have the following recurrences for ℵ ≥ 2:

if root is 2-node, ca,ℵ = 1 +
2
2ℵ
Σp

(
ℵ

p

)
ca′,p (4)

if root is 1-node, ca,ℵ = 1 +
1
2ℵ
Σp

(
ℵ

p

)
ca′,p (5)

Let γ1 = 1 if root is a 1-node, and γ1 = 2 if root is a 2-node.
Then, (4) and (5) can be rewritten as follows:

ca,ℵ = 1 +
γ1

2ℵ
Σp

(
ℵ

p

)
ca′,p − δℵ,0 − δℵ,1 (6)

where δℵ, j (j = 0, 1) is equal to 1 if ℵ = j; otherwise, equal to 0.
To solve this recursive equation, we consider the following expo-

nential generating function of the average number of nodes searched
during the execution of PRIORITY-SEARCH().

Ca(z) = Σℵ≥0ca,ℵ
zℵ

2ℵ
(0 ≤ z ≤ 1) (7)

In the following, we will show that the generating function
satisfies a relation given below:

Ca(z) = γ1ez/2Ca′ (
z
2

) + ez − 1 − z. (8)

In terms of (6), we rewrite Ca(z) as follows:

Ca(z) = Σℵ≥0(1 + γ1(1
2)ℵΣp

(
ℵ

p

)
− δℵ,0 − δℵ,1) zℵ

2ℵ

= Σℵ≥0
zℵ
2ℵ + Σpγ1(1

2)ℵΣℵ≥
(
ℵ

p

)
ca′,ℵ

zℵ
2ℵ

−Σℵ≥0δℵ,0
zℵ
2ℵ − Σℵ≥0δℵ,1

zℵ
2ℵ

≤ 2 + γ1Σp
(z/2)p

2p Σℵ≥0ca′,p
(z/2)ℵ−p

2ℵ−p − 1 − z

= γ1ez/2Ca′ (z
2) + ez − 1 − z.

(9)

Next, we need to compute Ca′(z), Ca′′(z), . . . , Ca(m−1) (z). To this
end, we define γi for i ≥ 2 as follows:

• γi = 1, if all the nodes at level i are 1-nodes.

• 1 < γi ≤ 2, if at least one node at level i is a 2-node.

Concretely, γi is calculated as below:

γi =
2 × num(2-nodes at level i) + num(1-nodes at level i)

num(nodes at level i)
(10)

where num(node at level i) represents the number of nodes at level i.
In the same way as above, we can get the following equations:

Ca(z) = γ1ez/2Ca′ (z
2) + ez − 1 − z,

Ca′ (z) = γ2ez/2Ca′′ (z
2) + ez − 1 − z,

......

Ca(m−1) (z) = γmez/2Ca(z
2) + ez − 1 − z,

(11)

These equations can be solved by successive transportation, as
done in [22]. For example, when transporting the expression of
Ca′ (z) given by the second equation in (11), we will get

Ca(z) = b(z) + γ1ez/2b(
z
2

) + γ1γ2ez/2ez/22
Ca′′ (

z
22), (12)

where b(z) = ez - 1 - z.
In a next step, we transport Ca′′ into the equation given in (12).

Especially, this equation can be successively transformed this way
until the relation is only on Ca(z) itself. (Here, we assume that in
this process a is circularly shifted.) Doing this, we will eventually
get

Ca(z) = γ1...γmexp[z(1 − 1
2m)]Ca(z

2m)+

Σm−1
j=1 γ1...γmexp[z(1 − 1

2 j)](exp(z
2 j) − 1 − z

2 j)

≤ 2m−kexp[z(1 − 1
2m)]Ca(z

2m)

+Σm−1
j=1 γ1...γmexp[z(1 − 1

2 j)](exp(z
2 j) − 1 − z

2 j)

(13)

where k is the number of all those levels each containing only 1-
nodes.

Let α = 2m−k, β = 1 - 1
2m , and

B(z) = Σm−1
j=0 γ1γ2 ... γmexp[z(1 − 1

2 j)](exp(z
2 j − 1 − z

2 j).

We have

www.astesj.com 64

http://www.astesj.com

Y. Chen et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 60-72 (2024)

Ca(z) = αeβzCa(γz) + B(z). (14)

Solving the equation in a way similar to the above, we get

Ca(z) = Σ∞j=0α
jexp(β 1−γ j

1−γ z)B(γ jz)

= Σ∞j=02 j(m−k)Σh=0zm−1γ1γ2...γh[exp(z)

−exp(z(1 − 1
2h2m j))(1 + z

2h2m j)]

(15)

Finally, using the Taylor formula to expand exp(z) and
exp(z(1− 1

2h2m j))(1+ z
2h2m j) in the above equation, and then extracting

the Taylor coefficients, we get

Ca,ℵ = Σ
m−1
h=0 γ1γ2...γhΣ j≥02 j(m−k)D jh(ℵ) (16)

where D00(ℵ) = 1 and for j > 0 or h > 0,

D jh(ℵ) = 1 − (1 − 2−m j−h)ℵ

−ℵ2−m j−h(1 − 2−m j−h)ℵ−1.
(17)

Ca,ℵ can be estimated by using the Mellin transform [23] for
summation of series, as done in [22]. According to [22], Ca,ℵ ∼

ℵ1−k/m. If k/m ≥ 1/2, Ca,ℵ is bounded by O(ℵ0.5).
It can also be seen that the priority queue can have up to O(2m/2)

nodes on average. Therefore, the running time of extractMax() and
insert() each is bounded by log 2m/2 = m/2. Thus, the average
cost for generating nodes during the process should be bounded by
O(mℵ0.5) ≤ O(m2m/2). In addition, the whole cost for selecting an
attribute to split sv for each internal node v into its two child nodes:
svl and svr is bounded by O(nm2) since the cost for splitting all the
nodes at a level is bounded by O(nm) and the height of T is at most
O(m). Here, vl and vr represent the left and right child nodes of v,
respectively.

So we have the following proposition.

Proposition 2. Let n = |Q| and m be the number of at-
tributes in Q. Then, the average time complexity of Algorithm
PRIORITY-SEARCH(Q) is bounded by O(nm2 + m2m/2).

4. The Second Algorithm

In this section, we discuss our second algorithm. First, we describe
the main idea of this algorithm in Section 4.1. Then, in Section
4.2, we discuss the algorithm in great detail. Next, we analyze the
algorithm’s time complexity in Section 4.3.

4.1. Main idea

Let Q = {q1, ..., qn} be a query log and A = {a1, ..., am} be the
corresponding set of attributes. For each qi = ci1ci2 . . . cim (ci j ∈ {0,
1, *}, j = 1, . . . , m), we will create another sequence: ri = d j1 ... d jk
(k ≤ m), where d jl = a jl if ci jl = qi[jl] = 1, or d jl = (a jl , *) if ci jl =

qi[jl] = * (l ∈ {1, ..., k}). If ci jl = qi[jl] = 0, the corresponding a jl
will not appear in ri at all. Let s and t be the numbers of 1s and *s
in qi, respectively. We can then see that k = s + t.

For example, for q1 = (1, *, 0, *, 1, *) in Table 1, we will create
a sequence shown below:

r1 = hot-spring. (ride, ∗). (hiking, ∗).airline.(boating, ∗).

Next, we will order all the attributes in Q such that the most fre-
quent attribute appears first, but with ties broken arbitrarily. When
doing so, (a, *) is counted as an appearance of a. For example,
according to the appearance frequencies of attributes in Q (see
Table 2), we can define a global ordering for all the attributes in Q
as below:

A→ Hs→ H → B→ R→ G,

where A stands for airline, Hs for hot spring, H for hiking, B for
boating, R for ride, and G for glacier.

Following this general ordering, we can represent each query in
Table 1 as a sorted attribute sequense as demonstrated in Table 3 (in
this table, the second column shows all the attribute sequences while
the third column shows their sorted versions). In the following, by
an attribute sequence, we always mean a sorted attribute sequence.

In addition, each sorted query sequence in Table 3 is augmented
with a start symbol # and an end symbol $, which are used as
sentinels for technical convenience.

Finally, for each query sequence q, we will generate a directed
graph G such that each path from the root to a leaf in G represents
a package satisfying q. For this purpose, we first discuss a simpler
concept.

Definition 4.1. (p-graph) Let q = a0a1 ... akak+1 be an attribute
sequence representing a query as described above, where a0 = #,
ak+1 = $, and each ai (1 ≤ i ≤ k) is an attribute or a pair of the form
(a, *); A p-graph over q is a directed graph, in which there is a node
for each a j (j = 0, ..., k + 1); and an edge for (a j, a j+1) for each j ∈
{0, ..., k}. In addition, there may be an edge from a j to a j+2 for each
j ∈ {0, ..., k - 1} if a j+1 is a pair (a, *), where a is an attribute.

As an example, consider the p-graph for q1 = #.A.Hs.(H, *).(B,
*).(R, *).$, shown in Fig. 4(a). In this graph, besides a main path
going through all the attributes in q1, we also have three off-line
spans, respectively corresponding to three pairs: (H, *), (B, *), and
(R, *). Each of them represents an option. For example, going
through the span for (H, *) indicates that ‘H’ is not selected while
going through ’H’ along the main path indicates that ’H’ is selected.

In the following, we will represent a span by the sub-path (of
the main path) covered by it. Then, the above three spans can be
represented as follows:

(H, *) - <v2, v3, v4>

(B, *) - <v3, v4, v5>

(R, *) - <v4, v5, v6>.
Here, each sub-path p is simply represented by a set of contigu-

ous nodes <vi1 , ..., vi j> (j ≥ 3) which p goes through. Then, for the
graph shown in Fig. 4, <v2, v3, v4> stands for a sub-path from v2
to v4, <v3, v4, v5> for a sub-path from v3 to v5, and <v4, v5, v6> for
a sub-path from v4 to v6.

www.astesj.com 65

http://www.astesj.com

Y. Chen et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 60-72 (2024)

Table 2: Appearance frequencies of attributes.

attributes Hs R G H A B
appearance frequencies 5/6 6/6 5/6 5/6 5/6 5/6

Table 3: Queries represented as sorted attribute sequences.

query ID attribute sequences* sorted attribute sequences
q1 Hs.(R, *).(H, *).A.(B, *). #.A.Hs.(H, *).(B, *).(R, *).$
q2 Hs.G.(H, *).(A, *).(B, *). #.(A, *).Hs.(H, *).(B, *).G.$
q3 (Hs, *).H.A.(B, *). #.A.(Hs, *).H.(B, *).$
q4 (R, *).G.(H, *).A.(B, *). #.A.(H, *).(B, *).(R, *).G.$
q5 (Hs, *).(H, *).(A, *). #.(A, *).(Hs, *).(H, *).$
q6 (Hs, *).R.(G, *).(A, *).B. #.(A, *).(Hs, *).B.R.(G, *).$

*Hs: hot spring, R: ride, G: glacier, H: hiking, A: airline, B: boating.

#

A

Hs

H

B

R

$

#

A

Hs

H

B

R

$(a) (b)

v0

v1

v2

v3

v4

v5

v6

v0

v1

v2

v3

v4

v5

v6

,

Figure 4: A p-path and a p∗-path.

In fact, what we want is to represent each packages for a query
q as a root-to-leaf path in such a graph. However, p-graph fails for
this purpose. It is because when we go through from a certain node
v to another node u through a span, u must be selected. If u itself
represents a (c, *) for some variable name c, the meaning of this
‘*’ is not properly rendered. It is because (c, *) indicates that c is
optional, but going through a span from v to (c, *) makes c always
selected. So, (c, *) is not well interpreted.

For this reason, we will introduce another concept, the so-called
p*-graph, to solve this problem.

Let w1 = <x1, ..., xk> and w2 = <y1, ..., yl> be two spans in a
same p-graph. We say, w1 and w2 are overlapped, if one of the two
following conditions is satisfied:

• y1 = x j for some x j ∈ {x2, ..., xk−1}, or

• x1 = y j′ for some y j′ ∈ {y2, ..., yl−1}

For example, in Fig. 4(a), <v3, v4, v5> (for (B, *)) are over-
lapped with both <v2, v3, v4> (for (H, *)) and <v4, v5, v6> (for
(R, *)). But <v2, v3, v4> and <v4, v5, v6> are only connected, not
overlapped. Being aware of this difference is important since the
ovetlapped spans correspond to consecutive *’s while the connected
overspans not. More important, the overlapped spans are transitive.
That is, if w1 and w2 are two overlapped spans, the w1 ∪ w2 must

be a new, but bigger span. Applying this union operation to all the
overlapped spans in a p-graph, we will get their ’transitive closure’.
Based on this discussion, we can now define graph G mentioned
above.

Definition 4.2. (p*-graph) Let p be the main path in a p-graph P
and W be the set of all spans in P. Denote by W* the ’transitive
closure’ of W. Then, the p*-graph G with respect to P is defined to
be the union of p and W*, denoted as G = p ∪ W*.

See Fig. 4(b) for illustration, in which we show the p*-graph
G of the p-graph P shown in Fig. 4(a). From this, we can see that
each root-to-leaf path in G represents a package satisfying q1.

In general, in regard to p*-graphs, we can prove the following
important property.

Lemma 1. Let P* be a p*-graph for a query (attribute sequence) q
in Q. Then, each path from # to $ in P* represents a package, under
which q is satisfied.

Proof. (1) Corresponding to any package σ, under which q is satis-
fied, there is definitely a path from # to $. First, we note that under
such a package each attribute a j with q[j] = 1 must be selected,
but with some don’t cares it is selected or not. Especially, we may
have more than one consecutive don’t cares that are not selected,
which are represented by a span equal to the union of the corre-
sponding overlapped spans. Therefore, for σ we must have a path
representing it.

(2) Each path from # to $ represents a package, under which q is
satisfied. To see this, we observe that each path consists of several
edges on the main path and several spans. Especially, any such path
must go through every attribute a j with q[j] = 1 since for each of
them there is no span covering it. But each span stands for a ’*’ or
more than one successive ’*’s. □

4.2. Algorithm based on trie-like graph search

In this subsection, we discuss how to find a packaget that maxi-
mizes the number of satisfied queries in Q. To this end, we will
first construct a trie-like structure G over Q, and design a recursive
algorithm to search G bottom-up to get results.

Let G1, G2, ..., Gn be all the p*-graphs constructed for all the
queries qi (i = 1, ..., n) in Q, respectively. Denote by p j and W j*
(j = 1, ..., n) the main path of G j and the corresponding transitive
closure of spans. We will build up G in two steps. In the first step,

www.astesj.com 66

http://www.astesj.com

Y. Chen et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 60-72 (2024)

we will establish a trie, denoted as T = trie(R) over R = {p1, ..., pn}

as follows.
If |R| = 0, trie(R) is, of course, empty. For |R| = 1, trie(R) is a

single node. If |R| > 1, R is split into m (possibly empty) subsets
R1, R2, . . . , Rm so that each Ri (i = 1, . . . , m) contains all those
sequences with the same first attribute name. The tries: trie(R1),
trie(R2), . . . , trie(Rm) are constructed in the same way except that at
the kth step, the splitting of sets is based on the kth attribute (along
the global ordering of attributes). They are then connected from
their respective roots to a single node to create trie(R).

In Fig. 5(a), we show the trie constructed for the attribute
sequences shown in the third column of Table 2. In such a trie,
special attention should be paid to all the leaf nodes each labeled
with $, representing a query (or a subset of queries). Each edge in
the trie is referred to as a tree edge.

The advantage of tries is to cluster common parts of attribute
sequences together to avoid possible repeated checking. (Then, this
is the main reason why we sort attribute sequences according to their
appearance frequencies.) Especially, this idea can also be applied
to the attribute subsequences (as will be seen later), over which
some dynamical tries can be recursively constructed, leading to an
efficient algorithm.

In the following discussion, the attribute c associated with a
node v is referred to as the label of v, denoted as l(v) = c.

In addition, we will associate each node v in the trie T with a pair
of numbers (pre, post) to speed up recognizing ancestor/descendant
relationships of nodes in T , where pre is the order number of v
when searching T in preorder and post is the order number of v
when searching T in postorder.

These two numbers can be used to check the ancestor/descendant
relationships in T as follows.

- Let v and v′ be two nodes in T . Then, v′ is a descendant of v
iff pre(v′) > pre(v) and post(v′) < post(v).

For the proof of this property of any tree, see Exercise 2.3.2-20
in [24].

For instance, by checking the label associated with v3 against
the label for v12 in Fig. 5(a), we get to know that v3 is an ancestor
of v12 in terms of this property. Particularly, v3’s label is (3, 9) and
v12’s label is (11, 6), and we have 3 < 11 and 9 > 6. We also see
that since the pairs associated with v14 and v6 do not satisfy this
property, v14 must not be an ancestor of v6 and vice versa.

In the second step, we will add all Wi* (i = 1, ..., n) to the trie
T to construct a trie-like graph G, as illustrated in Fig. 5(b). This
trie-like graph is in fact constructed for all the attribute sequences
given in Table 2. In this trie-like graph, each span is associated with
a set of numbers used to indicate what queries the span belongs to.
For example, the span <v2, v3, v4> is associated with three numbers:
3, 5, 6, indicating that the span belongs to 3 queries: q3, q5 and q6.
In the same way, the labels for tree edges can also be determined.
However, for simplicity, the tree edge labels are not shown in Fig.
5(b).

From Fig. 5(b), we can see that although the number of satisfy-
ing packages for queries in Q is exponential, they can be represented
by a graph with polynomial numbers of nodes and edges. In fact, in

a single p*-graph, the number of edges is bounded by O(n2). Thus,
a trie-like graph over m p*-graphs has at most O(n2m) edges.

In a next step, we will search G bottom-up level by level to seek
all the possible largest subsets of queries which can be satisfied by
a certain package.

First of all, we call a node in T with more than one child a
branching node. For instance, node v1 with two children v2 and v13
in G shown in Fig. 5(a) is a branching node. For the same reason,
v3, v4, and v5 are another three branching nodes.

Node v0 is not a branching node since it has one child in T
(although it has more than one child in G.)

Around the branching node, we have two very important con-
cepts defined below.

Definition 4.3. (reachable subsets through spans) Let v be a branch-
ing node. Let u be a node on the tree path from root to v in G (not
including v itself). A reachable subset of u through spans are all
those nodes with a same label c in different subgraphs in G[v] (the
subgraph rooted at v) and reachable from u through a span, denoted
as RSv,u

s [c], where s is a set containing all the labels associated with
the corresponding spans.

For RSv,u
s [c], node u is called its anchor node.

For instance, v3 in Fig. 5(a) is a branching node (which has two
children v4 and v11 in T). With respect to v3, node v2 on the tree
path from root to v3, has a reachable subset:

- RSv3,v2
{1,5} [$] = {v8, v12},

We have this RS (reachable subset) due to two spans v2
1
−→ v8

and v2
5
−→ v12 going out of v2, respectively reaching v5 and v8 on two

different p*-graphs in G[v3] with l(v5) = l(v12) = ‘$’. Then, v2 is
the anchor node of {v8, v12}.

In general, we are interested only in those RS’s with |RS| ≥ 2
(since any RS with |RS| = 1 only leads us to a leaf node in T and
no larger subsets of queries can be found.) So, in the subsequent
discussion, by an RS, we always mean an RS with |RS| ≥ 2.

The definition of this concept for a branching node v itself is a
little bit different from any other node on the tree path (from root to
v). Specifically, each of its RSs is defined to be a subset of nodes
reachable from a span or from a tree edge. So for v3 we have:

- RSv3,v3
{1,3,5}[$] = {v8, v11, v11},

due to two spans v3
1
−→ v8 and v3

3
−→ v11, and a tree edge v3 →

v12, all going out of v3 with l(v8) = l(v11) = l(v12) = ‘$’. Then, v3 is
the anchor node of {v8, v11, v11}.

Based on the concept of reachable subsets through spans, we are
able to define another more important concept, upper boundaries.
This is introduced to recognize all those p*-subgraphs around a
branching node, over which a trie-like subgraph needs to be con-
structed to find some more subsets of queries satisfiable by a certain
package.

Definition 4.4. (upper boundaries) Let v be a branching node. Let
v1, v2, ..., vk be all the nodes on the tree path from root to v. An upper
boundary (denoted as upBounds) with respect to v is a largest subset
of nodes {u1, u2, ..., u f } with the following properties satisfied:

1. Each ug (1 ≤ g ≤ f) appears in some RSvi [c] (1 ≤ i ≤ k), where
c is a label.

www.astesj.com 67

http://www.astesj.com

Y. Chen et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 60-72 (2024)

(b)

#

A

Hs

H

B

R

H

B

R

$

$

G

$$

$

G

$

q1

q6

q5

q2

q3

q4

G

v0

v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

v12

v11

v13

v14

v15

v16

v17

(a)

#

A

Hs

H

B

R

H

B

R

$

$

G

$$

$

G

$

q1

q6

q5

q2

q3

q2

G

v0

v6

v7

v1

v2

v3

v4

v5

v8

v9

v10

v12

v11

v13

v14

v15

v16

v17

3,5,6

1

3
11

1

2

2

5

5

5

4

3

2

(0, 17)

(1, 16)

(2, 10)

(3, 9)

(4, 7)

(5, 3)

(6, 1)

(7, 0)

(8, 2)

(9, 5)

(10, 4)

(11, 6)

(12, 8)

(13, 15)

(14, 14)

(15, 13)

(16, 12)

(17, 11)

4

4

1,2,3

1

4

4

4

6

6

5,6

1

Figure 5: A trie and a trie-like graph.

2. For any two nodes ug, ug′ (g , g′), they are not related by the
ancestor/descendant relationship.

Fig. 6 gives an intuitive illustration of this concept.

upBound

Figure 6: Illustration for upBounds.

As a concrete example, condider branching node v4 in 5(b).
With repect to v4, we have

- RSv4,v3
{1,3} [$] = {v8, v11},

- RSv4,v4
{1,2} [G] = {v6, v9},

Since all the nodes in these two RSs (v8, v6, v9, and v11) are not
related by ancstor/descendant relationsh, they make up an upBound
with respect to v4 (a branching node), as illustrated in 7(a).

Then, we will construct a trie-like graph over all the four p*-
subgraphs, each starting from a node on the upBound. See Fig. 7(b)
for illustration, where v6−9 stands for the merging v6 and v9, v7−10
for the merging v7 and v10, and v8−11 for the merging v8 and v11.

Obviously, this can be done by a recursive call of the algorithm
itself.

In addition, for technical convenience, we will add the corre-
sponding branching node (v4) to the trie as a virtual root, and v4 →

v6−9 and v3 → v8−11 as two virtual edges, each associated with the
corresponding RSs to facilitate the search of all those packages satis-
fying corresponding queries. This is because to find such packages
we need to travel through this branching node to the root of T . See
Fig. 9(c) for illustration.

(a)

(c)

$

q6

$

v6
G

v7

$
v8

$

v9
G

v10

$
v11

q1

q2

q3

upBound:

$

G

q2,q6

q1,q3

v6-9

v7-10

v8-11

v4
B

$

$

G

q2,q6

q1,q3

v6-9

v7-10

v8-11

(b)

Figure 7: Illustration for upBounds and recursive contruction of trie-like subgraphs.

Specifically, the following operations will be carried out when
encountering a branching node v.

• Calculate all RSs with respect v.

• Calculate the upBound in terms of RSs.

• Make a recursive call of the algorithm over all the subgraphs
within G[v] each rooted at a node on the corresponding up-
Bound.

In terms of the above discussion, we design a recursive algo-
rithm to do the task, in which R is used to accommodate the result,
represented as a set of triplets of the form:
<α, β, γ>,

where α stands for a subset of conjunctions, β for a truth assignment
satisfying the conjunctions in α, and γ is the size of α. Initially, R =
∅.

www.astesj.com 68

http://www.astesj.com

Y. Chen et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 60-72 (2024)

Algorithm 2: popularPack(Q)
Input :a query log Q.
Output :a most polular package.
let Q = {q1, ..., qn};
for i = 1 to n do

construct a p*-graph P∗i for qi;
construct a trie-like graph G over P∗1, ..., P∗n;
return SEARCH(G, ∅);

The input of popularPack() is a query log Q = {q1, ..., qn}. First,
we will build up a p*-graph for each qi (i = 1, ..., n), over which a
trie-like graph G will be constructed (see lines 2 - 4). Then, we call
a recursive algorithm SEARCH() to produce the result (see line 5),
which is a set of triplets of the form <α, β, γ> with the same largest
γ value. Thus, each β is a popular package.

Algorithm 3: SEARCH(G, R)
Input :a trie-like subgraphs G.
Output :a largest subset of conjunctions satisfying a certain

truth assignment.
if G is a single p*-graph then

R′ := subset associated with the leaf node;
R := merge(R, R′);
return R;

for each leaf node v in G do
let R′ be the subset associated with v;
R := merge(R, R′);

let v1, v2, ..., vk be all branching nodes in postorder;
for i = 1 to k do

let P be the tree path from root to vi;
for each u on P do

calculate RSs of u with respect to vi;
create the corresponding upBound L;
construct a trie-like subgraph D over all those

subgraphs each rooted at a node on L;
D′ := {vi} ∪ D;
R′ := SEARCH(D′, R);
R := merge(R, R′);

return R;

SEARCH() works recurcively. Its input is a pair: a trie-like
subgraph G′ and a set R′ of triplets <α, β, γ> found up to now.
Initially, G′ = G and R = ∅.

First, we check whether G is a single p*-graph. If it is the case,
we must have found a largest subset of queries associated with the
leaf node, satisfiable by a certain package. This subset should be
merged into R (see lines 1 - 4).

Otherwise, we will search G bottom up to find all the branching
nodes in G. But before that, each subset of queries associated with
a leaf node in R will be first merged into R (see line 5 - 7).

For each branching node v encountered, we will check all the
nodes u on the tree path from root to v and compute their RSs (reach-
able subsets through spans, see lines 8 - 12), based on which we
then compute the corresponding upBound with respect to v (see line
13). According to the upBound L, a trie-like graph D will be created
over a set of subgraphs each rooted at a node on L (see line 14).
Next, v will be added to D as its root (see line 15). Here, we notice
that D′ := {v} ∪ D is a simplified representation of an operation, by
which we add not only v, but also the corresponding edges to D.

Next, a recursive call of the algorithm is made over D′ (see linee
16). Finally, the result of the recursive call of the algorithm will be
merged into the global answer (see line 17).

Here, the merge operation used in line 3, 7, 17 is defined as
below.

Let R = {r1, ..., rt} for some t ≥ 0 with each ri = <αi, βi, γi>.
We have γ1 = γ2 = ... = γt. Let R′ = {r′1, ..., r′s} for some s ≥ 0 with
each r′i = <α

′
i , β
′
i , γ
′
i>. We have γ′1 = γ

′
2 = ... = γ′s. By merge(R, R′),

we will do the following checks.

• If γ1 < γ
′
1, R := R′.

• If γ1 > γ
′
1, R remains unchanged.

• If γ1 = γ
′
1, R := R ∪ R′.

In the above algorithm, how to figure out β in a triple <α, β, γ>
is not specified. For this, however, some more operations should be
performed. Specifically, we need to trace each chain of recursive
calls of SEARCH() for this task.

Let SEARCH(G0, R0)→ SEARCH(G1, R1)→ ... SEARCH(Gk,
Rk) be a consecutive recursive call process during the execution of
SEARCH(), where G0 = G, R0 = ∅, and Gi is a trie-like subgraph
constructed around a branching node in Gi−1 and Ri is the result
obtained just before SEARCH(Gi, Ri) is invoked (i = 1, ..., k).

Assume that during the execution of SEARCH(Gk, Rk) no fur-
ther recursive call is conducted. Then, Rk can be a single p*-graph,
or a trie-like subgraph, for which no RSs with |RS| ¿ 1 for any branch-
ing node can be found. Denote by r j the root of G j and by v j the
branching node around which SEARCH(G j+1, R j+1) is invoked (j =
0, ..., k - 1). Denote by T j the trie in G j.

Then, the labels on all the paths from r j in T j for j ∈ {1, ... k}
(connected by using the corresponding anchor nodes) consist of β in
the corresponding triple <α, β, γ> with α being a subset of queries
associated with a leaf node in Gk. As an example, consider the the
trie-like subfraph G′ shown in Fig. 7(c) again. In the execution, we
will have a chains of recursive calls as below.

SEARCH(G, ...) → SEARCH(G′, ...)

Along this chain, we will find two query subset Q1 = {q2, q6}

(associated with leaf node v7−10) and Q2 = {q1, q3} (associated with
leaf node v7−10). To find the package for Q1, we will trace the path

in G′ bottom from v7−10 to v6−10, the reverse edge v6−9
1,2
−−→ v4 (rec-

ognized according to RSv4,v4
{1,2} [G]), and then the path from v4 → to v0

in G. Since {1, 2} does not contain 6, q6 should be removed from
Q1. The package is {A, Hs, H, B, G}. In the same way, we can find
the package {A, Hs, H, B} for Q2 = {q1, q3}.

The following example helps for illustrating the whole working
process.

Example 2. When applying SEARCH() to the p*-graphs con-
structed for all the attribute sequences given in Table 1, we will
first construct a trie-like graph G shown in Fig. 5(b). Searching G
bottom up, we will encounter four branching nodes: v5, v4, v3 and
v1.

For each branching node, a recursive call of SEARCH() will be
carried out. But we show here only the recursive call around v1 for
simplicity. With respect to v1, we have only one RS with |RS| > 1:

www.astesj.com 69

http://www.astesj.com

Y. Chen et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 60-72 (2024)

(b)

H

B

R

H

B

R

$

$

G

$$

$

G

$

q1

q6

q5

q2

q3

q4

G

v3

v4

v5

v6

v7

v8

v9

v10

v12

v11

v13

v14

v15

v16

v17

(a)

1

3
11

4

3

2
4

4

1

6

1

H

B

R

$

G

$$

$

G

$

q1

q4,q6

q5

q2

q3

v3-13

v4-14

v5-15

v6-16

v7-17

v8

v9

v10

v12

v11

1

3
11,4 3

2

1,4

6

4

G

$

q2,q4,q6

v6-16-9

v7-17-10

$

q1,q3,q5

v8-11-12

H

v3-13

(c)

Figure 8: Illustration for Example 2.

- RSv1,v1
{1,3,4,5}[H] = {v3, v13},

Due to span v1
3,5,6
−−−→ v3 and tree edge v1 → v13.

Therefore, the corresponding upBound is {v3, v13}. Then, a new
trie-like subgraphs (see Fig. 8(b)) will be constructed by merging
two subgraphs shown in Fig. 8(a).

In Fig. 8(b), the node v3−13 represents a merging of two nodes
v3 and v13 in Fig. 8(a). All the other merging nodes v4−14, v5−15,
v6−16, and v7−17 are created in the same way.

When applying SEARCH() to this new trie-like subgraph, we
will check all its branching nodes v5−15, v4−14, and v3−13 in turn.
Especially, with respect to v3−13, we have

- RSv3−13,v3−13
{3,4} [G] = {v6−16, v9},

- RSv3−13,v3−13
{1,3,5} [$] = {v8, v11, v12},

According to these RSs, we will contruct a trie-like subgraph as
shown in Fig. 8(c). From this subgraph, we can find another two
query subsets {q2, q4, q6} and {q1, q3, q5}, respectively satisfiable by
two packages {A, H, G} and {A, Hs, H}.

In the execution of SEARCH(), much redundancy may be con-
ducted, but can be easily removed. See Fig. 9(a) for illustration.

(b)

C

(a)

C

w

w'

u

v1

v2
C

C

w

w'

u

v1

v2

C

v3

Figure 9: Illustration for redundancy.

In this figure, w and w′ are two branching nodes. With respect
to w and w′, node u will have the same RSs. That is, we have

RSw,u
s [C] = RSw′,u

s [C] = {v1, v2}.

Then, in the execution of SEARCH(), the corresponding trie-
like subgraph will be created two times, but with the same result
produced.

However, this kind of redundancy can be simply removed in two
ways.

In the first method, we can examine, by each recursive call,
whether the input subgraph has been checked before. If it is the
case, the corresponding recursive call will be suppressed.

In the second method, we create RSs only for those nodes appear-
ing on the segment (on a tree path) between the current branching
node and the lowest ancestor branching node in T . In this way, we
may lose some answers. But the most popular package can always
be found. See Fig. 9(b) for illustration. In this case, the RS of u with
respect to w is different from the RS with respect to w′. However,
when we check the branching node w, RSw,u

s [C] will not be com-
puted and therefore the corresponding result will not be generated.
But RSw′,u

s [C] must cover RSw,u
s [C]. Therefore, a package satisfying

a larger, or a same-sized subset of queries will definitely be found.

4.3. Time complexity analysis

The total running time of the algorithm consists of three parts.
The first part, denoted as τ‘, is the time for computing the fren-

quencies of attribute appearances in Q. Since in this process each
attribut in a qi is accessed only once, τ1 = O(nm).

The second part, denoted as τ2, is the time for constructing a
trie-like graph G for Q. This part of time can be further partitioned
into three portions.

• τ21: The time for sorting attribute sequences for qi’s. It is
obviously bounded by O(nmlog2 m).

• τ22: The time for constructing p*-graphs for each qi (i = 1,
..., n). Since for each variable sequence a transitive closure
over its spans should be first created and needs O(m2) time,
this part of cost is bounded by O(nm2).

• τ23: The time for merging all p*-graphs to form a trie-like
graph G, which is also bounded by O(nm2).

The third part, denoted as τ3, is the time for searching G to
find a maximum subset of conjunctions satisfied by a certain truth
assignment. It is a recursive procedure. To analyze its running

www.astesj.com 70

http://www.astesj.com

Y. Chen et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 60-72 (2024)

time, therefore, a recursive equation should established. Let l = nm.
Assume that the average outdegree of a node in T is d. Then the
average time complexity of τ4 can be characterized by the following
recurrence:

Γ(l) =

O(1), if l ≤ a constant,∑⌈logd l⌉

i=1 diΓ(l
di) + O(l2m), otherwise.

(18)

Here, in the above recursive equation, O(l2m) is the cost for
generating all the reachable subsets of a node through spans and
upper boundries, together with the cost for generating local trie-like
subgraphs for each recursive call of the algorithm. We notice that
the size of all the RSs together is bounded by the number of spans
in G, which is O(lm).

From (4), we can get the following inequality:

Γ(l) ≤ d · logd l · Γ(
l
d

) + O(l2m). (19)

Solving this inequality, we will get

Γ(l) ≤ d · logd l · Γ(l
d) + O(l2m)

≤ d2(logd l)(logd
l
d)Γ(l

d2) + (logd l) l2m + l2m

≤

≤ d⌈logl
d⌉(logd l) (logd(l

d)) ... (logd
l

d⌈logl
d ⌉

)

+ l2m((logd l)(logd(l
d)) ... (logd

l

d⌈logl
d ⌉

) + ... + logd l + 1)

≤ O(l(logd l)logd l + O(l2m(logd l)logd l)

∼ O(l2m (logd l)logd l).

(20)

Thus, the value for τ3 is Γ(l) ∼ O(l2m (logd l)logd l).

From the above analysis, we have the following proposition.

Proposition 3. The average running time of our algorithm is
bounded by

Σ4
i=1τi = O(nm) + (O(nm log2 m) + 2 × O(nm2))

+ O(l2m (logd l)logd l)

= O(n2m3(logd nm)logd nm).

(21)

But we remark that if the average outdegree of a node in T is
< 2, we can use a brute-force method to find the answer in poly-
nomial time. Hence, we claim that the worst case time complexity
is bounded by O(l2m(log2 l)log2 l) since (logd l)logd l decreases as d
increases.

5. Conclusions

In this paper, we have discussed two new method to solve the prob-
lem to find a most popular package in terms of a given questionnaire.

The first method is based on a kind of tree search, but with the pri-
ority queue structure being utilized to control the tree exploration.
Together with a powerful heuristics, this approach enables us to cut
off a lot of futile branches and find an answer as early as possible in
the tree search process. The average time complexity is bounded by
O(nm2 + m2m/2), where n = |Q| and m is the number of attributes
in the query log |Q|. The main idea behind the second method is
to construct a graph structure, called p*-graph. In this way, all the
queries in Q can be represented as a trie-like graph. Searching G
bottom up, we can find the answer efficiently. the average time
complexity of the algorithm is bounded by O(n2m3(log2 nm)log2 nm).

As a future work, we will make a detailed analysis of the impact
of the heuristics discussed in Section 4.2 to avoid any repeated
recursive calls. If it is the case, the number of recursive calls for
each branching node will be bounded by O(m) since the height of
the trie-like graph G is bounded by O(m). Thus, the worst-case
time complexity of our algorithm should be bounded by O(n2m4).
It is because we have at most O(nm) branching nodes, and for
each recursive call we need O(nm2) time to construct a dynamical
trie. So, the total running time will be O(nm) × O(m) × O(nm2) =
O(n2m4).

Conflict of Interest The authors declare no conflict of interest.

References

[1] R. Agrawal, T. Imieliński, A. Swami, “Mining association rules between sets
of items in large databases,” in Proceedings of the 1993 ACM SIGMOD In-
ternational Conference on Management of Data, 207–216, Association for
Computing Machinery, 1993, doi:10.1145/170035.170072.

[2] B. Gavish, D. Horsky, K. Srikanth, “An Approach to the Optimal Posi-
tioning of a New Product,” Management Science, 29, 1277–1297, 1983,
doi:10.1287/mnsc.29.11.1277.

[3] T. S. Gruca, B. R. Klemz, “Optimal new product positioning: A genetic algo-
rithm approach,” European Journal of Operational Research, 146, 621–633,
2003, doi:https://doi.org/10.1016/S0377-2217(02)00349-1.

[4] J. Resig, A. Teredesai, “A framework for mining instant messaging services,”
in In Proceedings of the 2004 SIAM DM Conference, 2004.

[5] J. Han, J. Pei, Y. Yin, “Mining frequent patterns without candidate generation,”
SIGMOD Rec., 29, 1–12, 2000, doi:10.1145/335191.335372.

[6] M. Miah, G. Das, V. Hristidis, H. Mannila, “Standing Out in a Crowd: Selecting
Attributes for Maximum Visibility,” in 2008 IEEE 24th International Confer-
ence on Data Engineering, 356–365, 2008, doi:10.1109/ICDE.2008.4497444.

[7] J. C.-W. Lin, Y. Li, P. Fournier-Viger, Y. Djenouri, L. S.-L. Wang, “Min-
ing High-Utility Sequential Patterns from Big Datasets,” in 2019 IEEE
International Conference on Big Data (Big Data), 2674–2680, 2019,
doi:10.1109/BigData47090.2019.9005996.

[8] A. Tonon, F. Vandin, “gRosSo: mining statistically robust patterns from a
sequence of datasets,” Knowledge and Information Systems, 64, 2329–2359,
2022, doi:10.1007/s10115-022-01689-2.

[9] Y. Chen, W. Shi, “On the Designing of Popular Packages,” in 2018 IEEE
International Conference on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data (SmartData), 937–944,
2018, doi:10.1109/Cybermatics 2018.2018.00180.

[10] M. Miah, “Most popular package design,” in 4th Conference on Information
Systems Applied Research, 2011.

www.astesj.com 71

https://doi.org/10.1145/170035.170072
https://doi.org/10.1287/mnsc.29.11.1277
https://doi.org/https://doi.org/10.1016/S0377-2217(02)00349-1
https://doi.org/10.1145/335191.335372
https://doi.org/10.1109/ICDE.2008.4497444
https://doi.org/10.1109/BigData47090.2019.9005996
https://doi.org/10.1007/s10115-022-01689-2
https://doi.org/10.1109/Cybermatics_2018.2018.00180
http://www.astesj.com

Y. Chen et al., / Advances in Science, Technology and Engineering Systems Journal Vol. 9, No. 4, 60-72 (2024)

[11] R. Kohli, R. Krishnamurti, P. Mirchandani, “The Minimum Satisfiabil-
ity Problem,” SIAM Journal on Discrete Mathematics, 7, 275–283, 1994,
doi:10.1137/S0895480191220836.

[12] S. A. Cook, The Complexity of Theorem-Proving Procedures, 143–152, Asso-
ciation for Computing Machinery, 1st edition, 2023.

[13] Y. Chen, “Signature files and signature trees,” Information Processing Letters,
82, 213–221, 2002, doi:https://doi.org/10.1016/S0020-0190(01)00266-6.

[14] Y. Chen, “On the signature trees and balanced signature trees,” in 21st In-
ternational Conference on Data Engineering (ICDE’05), 742–753, 2005,
doi:10.1109/ICDE.2005.99.

[15] Y. Chen, Y. Chen, “On the Signature Tree Construction and Analysis,” IEEE
Transactions on Knowledge and Data Engineering, 18, 1207–1224, 2006,
doi:10.1109/TKDE.2006.146.

[16] F. Grandi, P. Tiberio, P. Zezula, “Frame-sliced partitioned parallel signature
files,” in Proceedings of the 15th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, 286–287, Association
for Computing Machinery, 1992, doi:10.1145/133160.133211.

[17] D. L. Lee, Y. M. Kim, G. Patel, “Efficient signature file methods for text re-
trieval,” IEEE Transactions on Knowledge and Data Engineering, 7, 423–435,
1995, doi:10.1109/69.390248.

[18] D. L. Lee, C.-W. Leng, “Partitioned signature files: design issues and
performance evaluation,” ACM Trans. Inf. Syst., 7, 158–180, 1989,
doi:10.1145/65935.65937.

[19] Z. Lin, C. Faloutsos, “Frame-sliced signature files,” IEEE Transactions on
Knowledge and Data Engineering, 4, 281–289, 1992, doi:10.1109/69.142018.

[20] E. Tousidou, P. Bozanis, Y. Manolopoulos, “Signature-based structures for
objects with set-valued attributes,” Information Systems, 27, 93–121, 2002,
doi:https://doi.org/10.1016/S0306-4379(01)00047-3.

[21] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algo-
rithms, MIT press, 2022.

[22] P. Flajolet, C. Puech, “Partial match retrieval of multidimensional data,” J.
ACM, 33, 371–407, 1986, doi:10.1145/5383.5453.

[23] L. Debnath, D. Bhatta, Integral transforms and their applications, Chapman
and Hall/CRC, 2016.

[24] E. K. Donald, “The art of computer programming,” Sorting and searching, 3, 4,
1999.

Copyright: This article is an open access article distributed under
the terms and conditions of the Creative Commons Attribution (CC
BY-SA) license (https://creativecommons.org/licenses/
by-sa/4.0/).

www.astesj.com 72

https://doi.org/10.1137/S0895480191220836
https://doi.org/https://doi.org/10.1016/S0020-0190(01)00266-6
https://doi.org/10.1109/ICDE.2005.99
https://doi.org/10.1109/TKDE.2006.146
https://doi.org/10.1145/133160.133211
https://doi.org/10.1109/69.390248
https://doi.org/10.1145/65935.65937
https://doi.org/10.1109/69.142018
https://doi.org/https://doi.org/10.1016/S0306-4379(01)00047-3
https://doi.org/10.1145/5383.5453
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
http://www.astesj.com

	 Introduction
	An example of SPD
	The First Algorithm
	Basic algorithm
	Algorithm based on priority-first search
	Average time complexity

	The Second Algorithm
	Main idea
	Algorithm based on trie-like graph search
	Time complexity analysis

	Conclusions

