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By the MAXSAT problem, we are given a set 𝑉 of𝑚 variables and a collection 𝐶 of 𝑛 clauses over 𝑉 . We will

seek a truth assignment to maximize the number of satisfied clauses. This problem is NP-complete even for its

restricted version, the 2-MAXSAT problem by which every clause contains at most 2 literals. In this paper, we

discuss an efficient algorithm to solve this problem. Its worst-case time complexity is bounded by O(𝑛2𝑚4
).

This shows that the 2-MAXSAT problem can be solved in polynomial time. Thus, the paper in fact provides a

proof of NP = 𝑃 .
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1 INTRODUCTION
The satisfiability problem is perhaps one of the most well-studied problems that arise in many

areas of discrete optimization, such as artificial intelligence, mathematical logic, and combinatorial

optimization, just to name a few. Given a set𝑉 of Boolean (true/false) variables and a collection𝐶 of

clauses over𝑉 , or say, a logic formula in CNF (Conjunctive Normal Form), the satisfiability problem

is to determine if there is a truth assignment that satisfies all clauses in 𝐶 [3]. The problem is

NP-complete even when every clause in𝐶 has at most three literals [6]. The maximum satisfiability

(MAXSAT) problem is an optimization version of satisfiabiltiy that seeks a truth assignment to

maximize the number of satisfied clauses [9]. This problem is alsoNP-complete even for its restricted

version, the so-called 2-MAXSAT problem, by which every clause in 𝐶 has at most two literals [7].

Its application can be seen in an extensive biliography [4, 7, 12, 15–18, 20].

Over the past several decades, a lot of research on the MAXSAT has been conducted. Almost

all of them are the approximation methods [1, 5, 9, 11, 19, 21], such as (1-1/𝑒)-approximation,

3/4-approximation[21], as well as the method based on the integer linear programming [10]. The

only algorithms for exact solution are discussed in [22, 23]. The worst-case time complexity of [23]

is bounded by O(𝑏2𝑚), where 𝑏 is the maximum number of the ccurrences of any variable in the

clauses of 𝐶 , while the worst-case time complexity of [22] is bounded by max{O(2𝑚), O*(1.2989𝑛)}.
In both algorithms, the traditional branch-and-bound method is used for solving the satisfiability
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2 Y. Chen

problem, which will search for a solution by letting a variable (or a literal) be 1 or 0. In terms of [8],

any algorithm based on branch-and-bound runs in O*(𝑐𝑚) time with 𝑐 ≥ 2.

In this paper, we discuss a polynomial time algorithm to solve the 2-MAXSAT problem. Its

worst-case time complexity is bounded by O(𝑛2𝑚4
), where 𝑛 and𝑚 are the numbers of clauses and

the number of variables in 𝐶 , respectively. Thus, our algorithm is in fact a proof of 𝑃 = NP.
The main idea behind our algorithm can be summarized as follows.

(1) Given a collection 𝐶 of 𝑛 clauses over a set of variables 𝑉 with each containing at most

2 literals. Construct a formula 𝐷 over another set of variables 𝑈 , but in DNF (Disjunctive
Normal Form), containing 2𝑛 conjunctions with each of them having at most 2 literals such

that there is a truth assignment for 𝑉 that satisfies at least 𝑛* ≤ 𝑛 clauses in 𝐶 if and only if

there is a truth assignment for𝑈 that satisfies at least 𝑛* conjunctions in 𝐷 .

(2) For each 𝐷𝑖 in 𝐷 (𝑖 ∈ {1, ..., 2𝑛}), construct a graph, called a 𝑝*-graph to represent all those

truth assignments 𝜎 of variables such that under 𝜎 𝐷𝑖 evaluates to true.
(3) Organize the 𝑝*-graphs for all 𝐷𝑖 ’s into a trie-like graph 𝐺 . Searching 𝐺 bottom up, we can

find a maximum subset of satisfied conjunctions in polynomial time.

The organization of the rest of this paper is as follow. First, in Section 2, we restate the definition

of the 2-MAXSAT problem and show how to reduce it to a problem that seeks a truth assignment

to maximize the number of satisfied conjunctions in a formula in DNF. Then, we discuss a basic
algorithm in Section 3. Next, in Section 4, how to improve the basic algorithm is discussed. Section

V is devoted to the analysis of the time complexity of the improved algorithm. Finally, a short

conclusion is set forth in Section 5.

2 2-MAXSAT PROBLEM
We will deal solely with Boolean variables (that is, those which are either true or false), which we

will denote by 𝑐1, 𝑐2, etc. A literal is defined as either a variable or the negation of a variable (e.g., 𝑐7,

¬𝑐11 are literals). A literal ¬𝑐𝑖 is true if the variable 𝑐𝑖 is false. A clause is defined as the OR of some

literals, written as (𝑙1 ∨ 𝑙2 ∨ .... ∨ 𝑙𝑘 ) for some 𝑘 , where each 𝑙𝑖 (1 ≤ 𝑖 ≤ 𝑘) is a literal, as illustrated

in ¬𝑐1 ∨ 𝑐11. We say that a Boolean formula is in conjunctive normal form (CNF) if it is presented
as an AND of clauses: 𝐶1 ∧ ... ∧ 𝐶𝑛 (𝑛 ≥ 1). For example, (¬𝑐1 ∨ 𝑐7 ∨ ¬𝑐11) ∧ (𝑐5 ∨ ¬𝑐2 ∨ ¬𝑐3) is in
CNF. In addition, a disjunctive normal form (DNF) is an OR of conjunctions: 𝐷1 ∨ 𝐷2 ∨ ... ∨ 𝐷𝑚 (𝑚

≥ 1). For instance, (𝑐1 ∧ 𝑐2) ∨ (¬𝑐1 ∧ 𝑐11) is in DNF.
Finally, the MAXSAT problem is to find an assignment to the variables of a Boolean formula in

CNF such that the maximum number of clauses are set to true, or are satisfied. Formally:

2-MAXSAT

• Instance: A finite set 𝑉 of variables, a Boolean formula 𝐶 = 𝐶1 ∧ ... ∧ 𝐶𝑛 in CNF over 𝑉 such

that each 𝐶𝑖 has 0 < |𝐶𝑖 | ≤ 2 literals (𝑖 = 1, ..., 𝑛), and a positive integer 𝑛* ≤ 𝑛.

• Question: Is there a truth assignment for 𝑉 that satisfies at least 𝑛* clauses?

In terms of [7], the 2-MAXSAT is NP-complete.

To find a truth assignment 𝜎 such that the number of clauses set to 𝑡𝑟𝑢𝑒 is maximized under

𝜎 , we can try all the possible assignments, and count the satisfied clauses as discussed in [17], by

which bounds are set up to cut short branches. We may also use a heuristic method to find an

approximate solution to the problem as described in [9].

In this paper, we propose a quite different method, by which for𝐶 =𝐶1 ∧ ... ∧𝐶𝑛 , we will consider

another formula 𝐷 in DNF constructed as follows.
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Let𝐶𝑖 = 𝑐𝑖1 ∨ 𝑐𝑖2 be a clause in𝐶 , where 𝑐𝑖1 and 𝑐𝑖2 denote either variables in𝑉 or their negations.

For 𝐶𝑖 , define a variable 𝑥𝑖 . and a pair of conjunctions: 𝐷𝑖1, 𝐷𝑖2, where

𝐷𝑖1 = 𝑐𝑖1 ∧ 𝑥𝑖 ,

𝐷𝑖2 = 𝑐𝑖2 ∧ ¬𝑥𝑖 .

Let 𝐷 = 𝐷11 ∨ 𝐷12 ∨ 𝐷21 ∨ 𝐷22 ∨ ... ∨ 𝐷𝑛1 ∨ 𝐷𝑛2. Then, given an instance of the 2-MAXSAT

problem defined over a variable set 𝑉 and a collection 𝐶 of 𝑛 clauses, we can construct a logic

formula 𝐷 in DNF over the set 𝑉 ∪ 𝑋 in polynomial time, where 𝑋 = {𝑥1, ..., 𝑥𝑛}. 𝐷 has𝑚 = 2𝑛

conjunctions.

Concerning the relationship of 𝐶 and 𝐷 , we have the following proposition.

Proposition 1. Let𝐶 and 𝐷 be a formula in CNF and a formula in DNF defined above, respectively.
No less than 𝑛* clauses in 𝐶 can be satisfied by a truth assignment for 𝑉 if and only if no less than 𝑛*
conjunctions in 𝐷 can be satisfied by some truth assignment for 𝑉 ∪ 𝑋 .

Proof. Consider every pair of conjunctions in 𝐷 : 𝐷𝑖1 = 𝑐𝑖1 ∧ 𝑥𝑖 and 𝐷𝑖2 = 𝑐𝑖2 ∧ ¬𝑥𝑖 (𝑖 ∈ {1, ...,
𝑛}). Clearly, under any truth assignment for the variables in 𝑉 ∪ 𝑋 , at most one of 𝐷𝑖1 and 𝐷𝑖2 can

be satisfied. If 𝑥𝑖 = true, we have 𝐷𝑖1 = 𝑐𝑖1 and 𝐷𝑖2 = false. If 𝑥𝑖 = false, we have 𝐷𝑖2 = 𝑐𝑖2 and 𝐷𝑖1 =

false.
"⇒" Suppose there exists a truth assignment 𝜎 for 𝐶 that satisfies 𝑝 ≥ 𝑛* clauses in 𝐶 . Without

loss of generality, assume that the 𝑝 clauses are 𝐶1, 𝐶2, ..., 𝐶𝑝 .

Then, similar to Theorem 1 of [12], we can find a truth assignment 𝜎̃ for 𝐷 , satisfying the

following condition:

For each𝐶 𝑗 = 𝑐 𝑗1 ∨ 𝑐 𝑗2 ( 𝑗 = 1, ..., 𝑝), if 𝑐 𝑗1 is true and 𝑐 𝑗2 is false under 𝜎 , (1) set both 𝑐 𝑗1 and 𝑥 𝑗 to
true for 𝜎̃ . If 𝑐 𝑗1 is false and 𝑐 𝑗2 is true under 𝜎 , (2) set 𝑐 𝑗2 to true, but 𝑥 𝑗 to false for 𝜎̃ . If both 𝑐 𝑗1
and 𝑐 𝑗2 are true, do (1) or (2) arbitrarily.

Obviously, we have at least 𝑛* conjunctions in 𝐷 satisfied under 𝜎̃ .

"⇐" We now suppose that a truth assignment 𝜎̃ for 𝐷 with 𝑞 ≥ 𝑛* conjunctions in 𝐷 satisfied.

Again, assume that those 𝑞 conjunctions are 𝐷1𝑏1 , 𝐷2𝑏2 , ..., 𝐷𝑞𝑏𝑞 , where each 𝑏 𝑗 ( 𝑗 = 1, ..., 𝑞) is 1 or 2.

Then, we can find a truth assignment 𝜎 for 𝐶 , satisfying the following condition:

For each 𝐷 𝑗𝑏 𝑗
( 𝑗 = 1, ..., 𝑞), if 𝑏 𝑗 = 1, set 𝑐 𝑗1 to true for 𝜎 ; if 𝑏 𝑗 = 2, set 𝑐 𝑗2 to true for 𝜎 .

Clearly, under 𝜎 , we have at lease 𝑛* clauses in 𝐶 satisfied.

The above discussion shows that the proposition holds. □

Proposition 1 demonstrates that the 2-MAXSAT problem can be transformed, in polynomial

time, to a problem to find a maximum number of conjunctions in a logic formula in DNF.
As an example, consider the following logic formula in CNF:

𝐶 = 𝐶1 ∧𝐶2 ∧𝐶3

= (𝑐1 ∨ 𝑐2) ∧ (𝑐2 ∨ ¬𝑐3) ∧ (𝑐3 ∨ ¬𝑐1)
(1)

Under the truth assignment 𝜎 = {𝑐1 = 1, 𝑐2 = 1, 𝑐3 = 1}, 𝐶 evaluates to true, i.e., 𝐶𝑖 = 1 for 𝑖 = 1, 2,

3. Thus, 𝑛* = 3.

For 𝐶 , we will generate another formula 𝐷 , but in DNF, according to the above discussion:

𝐷 = 𝐷11 ∨ 𝐷12 ∨ 𝐷21 ∨ 𝐷22 ∨ 𝐷31 ∨ 𝐷32

= (𝑐1 ∧ 𝑐4) ∨ (𝑐2 ∧ ¬𝑐4)∨
(𝑐2 ∧ 𝑐5) ∨ (¬𝑐3 ∧ ¬𝑐5)∨
(𝑐3 ∧ 𝑐6) ∨ (¬𝑐1 ∧ ¬𝑐6).

(2)

According to Proposition 1, 𝐷 should also have at least 𝑛* = 3 conjunctions which evaluates to

true under some truth assignment. In the opposite, if 𝐷 has at least 3 satisfied conjunctions under a
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4 Y. Chen

truth assignment, then 𝐶 should have at least three clauses satisfied by some truth assignment, too.

In fact, it can be seen that under the truth assignment 𝜎̃ = {𝑐1 = 1, 𝑐2 = 1, 𝑐3 = 1, 𝑐4 = 1, 𝑐5 = 1, 𝑐6 =

1}, 𝐷 has three satisfied conjunctions: 𝐷11, 𝐷21, and 𝐷31, from which the three satisfied clauses in

𝐶 can be immediately determined.

In the following, we will discuss a polynomial time algorithm to find a maximum set of satisfied

conjunctions in any logic formular in DNF, not only restricted to the case that each conjunction

contains up to 2 conjuncts.

3 ALGORITHM DESCRIPTION
In this section, we discuss our algorithm. First, we present the main idea in Section 3.1. Then, in

Section 3.2, a recursive algorithm for solving the problem is described in great detail. The running

time of the algorithm will be analyzed in the next section.

3.1 Main idea
To develop an efficient algorithm to find a truth assignment that maximizes the number of satisfied

conjunctions in formula 𝐷 = 𝐷1 ∨ ..., ∨ 𝐷𝑛 , where each 𝐷𝑖 (𝑖 = 1, ..., 𝑛) is a conjunction of variables

𝑐 (∈ 𝑉 ), we need to represent each 𝐷𝑖 as a sequence of variables (referred to as a variable sequence).

For this purpose, we introduce a new notation:

(𝑐 𝑗 , *) = 𝑐 𝑗 ∨ ¬𝑐 𝑗 = true,

which will be inserted into 𝐷𝑖 to represent any missing variable 𝑐 𝑗 ∈ 𝐷𝑖 (i.e., 𝑐 𝑗 ∈ 𝑉 , but not

appearing in 𝐷𝑖 ). Obviously, the truth value of each 𝐷𝑖 remains unchanged.

In this way, the above 𝐷 can be rewritten as a new formula in DNF as follows:

𝐷 = 𝐷1 ∨ 𝐷2 ∨ 𝐷3 ∨ 𝐷4 ∨ 𝐷5 ∨ 𝐷6

= (𝑐1 ∧ (𝑐2, ∗) ∧ (𝑐3, ∗) ∧ 𝑐4 ∧ (𝑐5, ∗) ∧ (𝑐6, ∗))∨
((𝑐1, ∗) ∧ 𝑐2 ∧ (𝑐3, ∗) ∧ ¬𝑐4 ∧ (𝑐5, ∗) ∧ (𝑐6, ∗))∨
((𝑐1, ∗) ∧ 𝑐2 ∧ (𝑐3, ∗) ∧ (𝑐4, ∗) ∧ 𝑐5 ∧ (𝑐6, ∗))∨
((𝑐1, ∗) ∧ (𝑐2, ∗) ∧ ¬𝑐3 ∧ (𝑐4, ∗) ∧ ¬𝑐5 ∧ (𝑐6, ∗))∨
((𝑐1, ∗) ∧ (𝑐2, ∗) ∧ 𝑐3 ∧ (𝑐4, ∗) ∧ (𝑐5, ∗) ∧ 𝑐6)∨
(¬𝑐1 ∧ (𝑐2, ∗) ∧ (𝑐3, ∗) ∧ (𝑐4, ∗) ∧ (𝑐5, ∗) ∧ ¬𝑐6)

(3)

Doing this enables us to represent each𝐷𝑖 as a variable sequence, but with all the negative literals

being removed. It is because if the variable in a negative literal is set to true, the corresponding
conjunction must be false.

See Table 1 for illustration.

Table 1. Conjunctions represented as sorted variable sequences.

conjunction variable sequences sorted variable sequences

𝐷1 𝑐1.(𝑐2, *).(𝑐3, *).𝑐4.(𝑐5, ∗).(𝑐6, *) #.(𝑐2, *).(𝑐3, *).𝑐1.𝑐4.(𝑐5, ∗).(𝑐6, *).$
𝐷2 (𝑐1, *).𝑐2.𝑐3.(𝑐5, *).(𝑐6, *) #.𝑐2.𝑐3.(𝑐1, *).(𝑐5, *).(𝑐6, *).$

𝐷3 (𝑐1, *).𝑐2.(𝑐3, *).𝑐4.𝑐5.(𝑐6, *) #.𝑐2.(𝑐3, *).(𝑐1, *).𝑐4.𝑐5.(𝑐6, *).$

𝐷4 (𝑐1, *).(𝑐2, *).(𝑐4, *).(𝑐6, *) #.(𝑐2, *).(𝑐1, *).(𝑐4, *).(𝑐6, *).$

𝐷5 (𝑐1, *).(𝑐2, *).𝑐3.(𝑐4, *).(𝑐5, *).𝑐6 #.(𝑐2, *).𝑐3.(𝑐1, *).(𝑐4, *).(𝑐5, *).𝑐6.$

𝐷6 (𝑐2, *).(𝑐3, *).(𝑐4, *).(𝑐5, *) #.(𝑐2, *).(𝑐3, *).(𝑐4, *).(𝑐5, *).$

First, we pay attention to the variable sequence for𝐷2 (the second sequence in the second column

of Table 1), in which the negative literal ¬𝑐4 (in 𝐷2) is elimilated. In the same way, you can check

all the other variable sequences.
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Now it is easy for us to compute the appearance frequencies of different variables in the variable

sequences, by which each (𝑐 , *) is counted as a single appearance of 𝑐 while any negative literals

are not considered, as illustrated in Table 2, in which we show the appearance frequencies of all

the variables in the above 𝐷 .

Table 2. Appearance frequencies of variables.

variables 𝑐1 𝑐2 𝑐3 𝑐4 𝑐5 𝑐6

appearance frequencies 5/6 6/6 5/6 5/6 5/6 5/6

According to the variable appearance frequencies, we will impose a global ordering over all

variables in 𝐷 such that the most frequent variables appear first, but with ties broken arbitrarily.

For instance, for the 𝐷 shown above, we can specify a global ordering like this: 𝑐2 → 𝑐3 → 𝑐1 → 𝑐4
→ 𝑐5 → 𝑐6.

Following this general ordering, each conjunction 𝐷𝑖 in 𝐷 can be represented as a sorted variable

sequense as illustrated in the third column of Table 1, where the variables in a sequence are ordered

in terms of their appearance frequencies such that more frequent variables appear before less

frequent ones. In addition, a start symbol # and an end symbol $ are used as sentinals for technical
convenience. In fact, any global ordering of variables works well (i.e., you can specify any global

ordering of variables), based on which a graph representation of assignments can be established.

However, ordering variables according to their appearance frequencies can greatly improve the

efficiency when searching the trie (to be defined in the next subsection) constructed over all the

variable sequences for conjunctions in 𝐷 .

Later on, by a variable sequence, we always mean a sorted variable sequence. Also, we will use

𝐷𝑖 and the variable sequence for 𝐷𝑖 interchangeably without causing any confusion.

In addition, for our algorithm, we need to introduce a graph structure to represent all those truth

assignments for each 𝐷𝑖 (𝑖 = 1, ..., 𝑛) (called a 𝑝*-graph), under which 𝐷𝑖 evaluates to true. In the

following, however, we first define a simple concept of 𝑝-graphs for ease of explanation.

Definition 1. (𝑝-graph) Let 𝛼 = 𝑐0𝑐1 ... 𝑐𝑘𝑐𝑘+1 be an variable sequence representing a 𝐷𝑖 in 𝐷 as

described above (with 𝑐0 = # and 𝑐𝑘+1 = $). A 𝑝-graph over 𝛼 is a directed graph, in which there is

a node for each 𝑐 𝑗 ( 𝑗 = 0, ..., 𝑘 + 1); and an edge for (𝑐 𝑗 , 𝑐 𝑗+1) for each 𝑗 ∈ {0, 1, ..., 𝑘}. In addition,

there may be an edge from 𝑐 𝑗 to 𝑐 𝑗+2 for each 𝑗 ∈ {0, ..., 𝑘 - 1} if 𝑐 𝑗+1 is a pair of the form (𝑐 , *),

where 𝑐 is a variable name.

In Fig. 1(a), we show such a 𝑝-graph for 𝐷1 = #.(𝑐2, *).(𝑐3, *).𝑐1.𝑐4.(𝑐5, *).(𝑐6, *).$. Beside a main

path going through all the variables in 𝐷1, there are four off-path edges (edges not on the main

path), referred to as spans attached to the main path, corresponding to (𝑐2, *), (𝑐3, *), (𝑐5, *), and (𝑐6,

*), respectively. Each span is represented by the subpath covered by it. For example, we will use the

subpath <𝑣0, 𝑣1, 𝑣2> (subpath going three nodes: 𝑣0, 𝑣1, 𝑣2) to stand for the span connecting 𝑣0 and

𝑣2; <𝑣1, 𝑣2, 𝑣3> for the span connecting 𝑣2 and 𝑣3; <𝑣4, 𝑣5, 𝑣6> for the span connecting 𝑣4 and 𝑣6,

and <𝑣5, 𝑣6, 𝑣7> for the span connecting 𝑣6 and 𝑣7. By using spans, the meaning of ‘*’s (it is either 0

or 1) is appropriately represented since along a span we can bypass the corresponding variable

(then its value is set to 0) while along an edge on the main path we go through the corresponding

variable (then its value is set to 1).

In fact, what we want is to represent all those truth assignments for each 𝐷𝑖 (𝑖 = 1, ..., 𝑛) in an

efficient way, under which 𝐷𝑖 evaluates to true. However, 𝑝-graphs fail to do so since when we

go through from a node 𝑣 to another node 𝑢 through a span, 𝑢 must be selected. If 𝑢 represents a

(𝑐 , *) for some variable name 𝑐 , the meaning of this ‘*’ is not properly rendered. It is because (𝑐 , *)

indicates that 𝑐 is optional, but going through a span from 𝑣 to (𝑐 , *) makes 𝑐 always selected. So,

the notation (𝑐 , *), which is used to indicate that 𝑐 is optional, is not correctly implemented.
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Fig. 1. A 𝑝-path and a 𝑝∗-path.

For this reason, we introduce another concept, 𝑝*-graphs, described as below.

Let 𝑠1 = <𝑣1, ..., 𝑣𝑘> and 𝑠2 = <𝑢1, ..., 𝑢𝑙> be two spans attached onto a same path. We say, 𝑠1 and

𝑠2 are overlapped, if 𝑢1 = 𝑣 𝑗 for some 𝑗 ∈ {1, ..., 𝑘 - 1}, or if 𝑣1 = 𝑢 𝑗 ′ for some 𝑗 ′ ∈ {1, ..., 𝑙 - 1}. For
example, in Fig. 1(a), <𝑣0, 𝑣1, 𝑣2> and <𝑣1, 𝑣2, 𝑣3> are overlapped. <𝑣4 𝑣5, 𝑣6> and <𝑣5, 𝑣6, 𝑣7> are

also overlapped.

Here, we notice that if we had one more span, <𝑣3, 𝑣4, 𝑣5>, for example, it would be connected

to <𝑣1, 𝑣2, 𝑣3>, but not overlapped with <𝑣1, 𝑣2, 𝑣3>. Being aware of this difference is important

since the overlapped spans imply the consecutive ‘*’s, just like <𝑣1, 𝑣1, 𝑣2> and <𝑣1, 𝑣2, 𝑣3>, which

correspond to two consecutive ‘*’s: (𝑐2, *) and (𝑐3, *). Therefore, the overlapped spans exhibit some

kind of transitivity. That is, if 𝑠1 and 𝑠2 are two overlapped spans, the 𝑠1 ∪ 𝑠2 must be a new, but

bigger span. Applying this operation to all the spans over a 𝑝-path, we will get a ’transitive closure’
of overlapped spans. Based on this observation, we give the following definition.

Definition 2. (𝑝*-graph) Let 𝑃 be a 𝑝-graph. Let 𝑝 be its main path and 𝑆 be the set of all spans

over 𝑝 . Denote by 𝑆* the ‘transitive closure’ of 𝑆 . Then, the 𝑝*-graph with respect to 𝑃 is the union

of 𝑝 and 𝑆*, denoted as 𝑃* = 𝑝 ∪ 𝑆*.

In Fig. 1(b), we show the 𝑝*-graph with respect to the 𝑝-graph shown in Fig. 1(a). Concerning

𝑝*-graphs, we have the following lemma.

Lemma 1. Let 𝑃* be a 𝑝*-graph for a conjunction 𝐷𝑖 (represented as a variable sequence) in 𝐷 . Then,
any path from # to $ in 𝑃* represents a truth assignment, under which 𝐷𝑖 evaluate to true.

Proof. (1) Corresponding to any truth assignment 𝜎 , under which 𝐷𝑖 evaluates to 𝑡𝑟𝑢𝑒 , there

is definitely a path from # to $ in 𝑝*-path. First, we note that under such a truth assignment each

variable in a positive literal must be set to 1, but with some ‘*’s set to 1 or 0. Especially, we may

, Vol. xx, No. x, Article . Publication date: November .



Solving the 2-MAXSAT Problem in Polynomial Time: a Proof of P = NP 7

have more than one consecutive ‘*’s that are set 0, which are represented by a span that is the

union of the corresponding overlapped spans. Therefore, for 𝜎 we must have a path representing it.

(2) Each path from # to $ represents a truth assignment, under which 𝐷𝑖 evaluates to true. To
see this, we observe that each path consists of several edges on the main path and several spans.

Especially, any such path must go through every variable in a positive literal since for each of them

there is no span covering it. But each span stands for a ‘*’ or more than one successive ‘*’s. □

3.2 Algorithm
To find a truth assignment to maximize the number of satisfied 𝐷 ′

𝑗 s in 𝐷 , we will first construct a

trie-like structure 𝐺 over 𝐷 , and then search 𝐺 bottom-up to find answers.

Let 𝑃1*, 𝑃2*, ..., 𝑃𝑛* be all the 𝑝*-graphs constructed for all 𝐷 𝑗 ’s in 𝐷 , respectively. Let 𝑝 𝑗 and 𝑆 𝑗 *

( 𝑗 = 1, ..., 𝑛) be the main path of 𝑃 𝑗 * and the transitive closure over its spans, respectively. We will

construct 𝐺 in two steps.

In the first step, we will establish a trie [14], denoted as𝑇 = 𝑡𝑟𝑖𝑒(𝑅) over 𝑅 = {𝑝1, ..., 𝑝𝑛} as follows.
If |𝑅 | = 0, 𝑡𝑟𝑖𝑒(𝑅) is, of course, empty. For |𝑅 | = 1, 𝑡𝑟𝑖𝑒(𝑅) is a single node. If |𝑅 | > 1, 𝑅 is split into

𝑟 (possibly empty) subsets 𝑅1, 𝑅2, . . . , 𝑅𝑟 so that each 𝑅𝑖 (𝑖 = 1, . . . , 𝑟 ) contains all those sequences

with the same first variable name. The tries: 𝑡𝑟𝑖𝑒 (𝑅1), 𝑡𝑟𝑖𝑒 (𝑅2), . . . , 𝑡𝑟𝑖𝑒 (𝑅𝑟 ) are constructed in the

same way except that at the 𝑘th step, the splitting of sets is based on the 𝑘th variable name (along

the global ordering of variables). They are then connected from their respective roots to a single

node to create 𝑡𝑟𝑖𝑒(𝑅).

In Fig. 2, we show the trie constructed for the variable sequences given in the third column of

Table 1. In such a trie, special attention should be paid to all the leaf nodes each labeled with $,

representing a conjunction (or a subset of conjunctions), which can be satisfied under the truth

assignment represented by the corresponding main path. For example, the subset {𝐷1, 𝐷3, 𝐷5}
associated with 𝑣7 is satisfiable under the truth assignment represented by the path from 𝑣0 to 𝑣7.

Such a path is also called a tree path.

The advantage of tries is to cluster common parts of variable sequences together to avoid possible

repeated checking. (Then, this is the main reason why we sort variable sequences according to their

appearance frequencies.) More importantly, this idea can also be applied to the variable subsequences

(as will be seen later), over which some dynamical tries can be recursively constructed, leading to a

polynomial-time algorithm for solving the problem.

Each node 𝑣 in the trie stands for a variable 𝑐 , referred to as the label of 𝑣 and denodeted as 𝑙 (𝑣) =

𝑐; and each edge 𝑒 is referred to as a tree edge, labeled with a set of integers representing all the

variable sequences going through 𝑒 , denoted as 𝑠 (𝑒). For example, 𝑠 (𝑣0, 𝑣1) = {1, 2, 3, 4, 5, 6}. It is
because all the variable sequences given in Table 1 need to pass through this edge to reach their

respective leaf nodes. In the same way, you can check all the other labels associated with tree edges.

In regard to the tree paths, we have the following lemma.

Lemma 2. Let𝑇 be a trie created over all the variable sequences in 𝐷 . Let 𝑝 = 𝑣0
𝑠1−→ 𝑣1 ...

𝑠𝑘−→ 𝑣𝑘 be a
root-to-leaf path in 𝑇 . Let 𝐷 ′ be the subset of conjunctions associated with 𝑣𝑘 . Then, 𝑅 = 𝑠1 ∩ ... ∩ 𝑠𝑘 ∩
𝐷 ′ is satisfiable by the truth assignment represented by 𝑝 .

Finally, we will associate each node 𝑣 in the trie 𝑇 with a pair of numbers (pre, post) to speed up

recognizing ancestor/descendant relationships of nodes in 𝑇 , where pre is the order number of 𝑣

when searching 𝑇 in preorder and post is the order number of 𝑣 when searching 𝑇 in postorder.

These two numbers can be used to characterize the ancestor/descendant relationships in 𝑇 as

follows.
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4
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1,3,5

1,3,5
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Fig. 2. A trie and tree encoding.

- Let 𝑣 and 𝑣 ′ be two nodes in 𝑇 . Then, 𝑣 ′ is a descendant of 𝑣 iff pre(𝑣 ′) > pre(𝑣) and post(𝑣 ′) <
post(𝑣).

For the proof of this property of any tree, see Exercise 2.3.2-20 in [13].

For instance, by checking the label associated with 𝑣2 against the label for 𝑣9 in Fig. 2, we see

that 𝑣2 is an ancestor of 𝑣9 in terms of this property. Specifically, 𝑣2’s label is (3, 12) and 𝑣9’s label is

(10, 6), and we have 3 < 10 and 12 > 6. We also see that since the pairs associated with 𝑣14 and 𝑣6 do

not satisfy the property, 𝑣14 must not be an ancestor of 𝑣6 and vice versa.
In the second step, we will add all 𝑆𝑖* (𝑖 = 1, ..., 𝑛) to the trie 𝑇 to construct a trie-like graph 𝐺 ,

as illustrated in Fig. 3. This trie-like graph is constructed for all the variable sequences given in

Table 1, in which each span is associated with a set of numbers used to indicate what variable

sequences the span belongs to. For example, the span <𝑣0, 𝑣1, 𝑣2> (in Fig. 3) is associated with

three numbers: 1, 5, 6, indicating that the span belongs to 3 conjunctions: 𝐷1, 𝐷5, and 𝐷6. In Fig. 3,

however, the labels for all tree edges are not shown for a clear illustration.

In addition, each 𝑝*-graph itself is considered to be a simple trie-like graph.

Concerning the paths in a trie-like graph, we have a lemma similar to Lemma 2.

Lemma 3. Let𝐺 be a trie-like graph created over all the variable sequences in 𝐷 . Let 𝑝 = 𝑣0
𝑠1−→ 𝑣1 ...

𝑠𝑘−→ 𝑣𝑘 be a root-to-leaf path in 𝐺 , where some edges can be spans. Let 𝐷 ′ be the subset of conjunctions
associated with 𝑣𝑘 . Then, 𝑅 = 𝑠1 ∩ ... ∩ 𝑠𝑘 ∩ 𝐷 ′ is satisfiable by the truth assignment represented by 𝑝 .

From Fig. 3, we can see that although the number of truth assignments for 𝐷 is exponential, they

can be represented by a graph with polynomial numbers of nodes and edges. In fact, in a single

𝑝*-graph, the number of edges is bounded by O(𝑚2
). Thus, a trie-like graph over 𝑛 𝑝*-graphs has at

most O(𝑛𝑚2
) edges.
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Fig. 3. A trie-like graph 𝐺 .

In a next step, we will search 𝐺 bottom-up level by level to seek all the possible largest subsets

of conjunctions which can be satisfied by a certain truth assignment.

First of all, we call each node in𝑇 with more than one child a branching node. For instance, node
𝑣3 with two children 𝑣4 and 𝑣8 in 𝐺 shown in Fig. 3 is a branching node. For the same reason, 𝑣2
and 𝑣1 are another two branching nodes. Note that 𝑣0 is not a branching node since it has only one

child in 𝑇 (although it has more than one child in 𝐺 .)

Around the branching node, we have two very important concepts defined below.

Definition 3. (reachable subsets through spans) Let 𝑣 be a branching node. Let 𝑢 be a node on

the tree path (in 𝑇 ) from root to 𝑣 (not including 𝑣 itself). A reachable subset of 𝑢 through spans

are all those nodes with a same label 𝑐 in different subgraphs in 𝐺[𝑣] (subgraph of 𝐺 rooted at 𝑣)

and reachable from 𝑢 through a span, denoted as RS𝑣,𝑢𝑠 [𝑐], where 𝑠 is a set containing all the labels

associated with the corresponding spans.

For RS𝑣,𝑢𝑠 [𝑐], node 𝑢 is also called its anchor node while any node in RS𝑣,𝑢𝑠 [𝑐] is called a reachable
node of 𝑢.

For instance, for node 𝑣2 in Fig. 3, which is on the tree path from root to 𝑣3 (a branching node),
we have two RSs with respect to 𝑣3:

- RS𝑣3,𝑣2{2,5}[𝑐5] = {𝑣5, 𝑣8},

- RS𝑣3,𝑣2{2,5}[𝑐6] = {𝑣6, 𝑣9}.
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We have RS𝑣3,𝑣2{2,5}[𝑐5] due to two spans 𝑣2
5−→ 𝑣5 and 𝑣2

2−→ 𝑣8 going out of 𝑣2, respectively reaching

𝑣5 and 𝑣8 on two different 𝑝*-graphs in 𝐺[𝑣3] with 𝑙(𝑣5) = 𝑙(𝑣8) = ‘𝑐5’. We have RS𝑣3,𝑣2{2,5}[𝑐6] due to

another two spans going out of 𝑣2: 𝑣2
5−→ 𝑣6 and 𝑣2

2−→ 𝑣9 with 𝑙 (𝑣6) = 𝑙 (𝑣9) = ‘𝑐6’.

Hence, 𝑣2 is not only the anchor node of {𝑣5, 𝑣8}, but also the anchor node of {𝑣6, 𝑣9}.
In general, we are interested only in those RSs with |RS| ≥ 2 since any RS with |RS| = 1 only leads

us to a leaf node in 𝑇 , and no larger subsets of conjunctions can be found. In fact, going through

a span with the corresponding |RS| = 1, we cannot get any new answers. So, in the subsequent

discussion, by an RS, we mean an RS with |RS| ≥ 2.

The definition of this concept for a branching node 𝑣 itself is a little bit different from any other

node on the tree path (from root to 𝑣). Specifically, each of its RSs is defined to be a subset of nodes

reachable from a span or from a tree edge. So, for 𝑣3 we have:

- RS𝑣3,𝑣3{2,5}[𝑐5] = {𝑣5, 𝑣8},

- RS𝑣3,𝑣3{2,5}[𝑐6] = {𝑣6, 𝑣9},

respectively due to span 𝑣3
5−→ 𝑣5 and tree edge 𝑣3 → 𝑣8 going out of 𝑣3 with 𝑙(𝑣6) = 𝑙(𝑣8) = ‘𝑐5’;

and two spans 𝑣3
5−→ 𝑣6 and 𝑣3

2−→ 𝑣9 going out of 𝑣3 with 𝑙 (𝑣6) = 𝑙 (𝑣8) = ‘𝑐6’. Here, we notice that the

label for the tree edge 𝑣3 → 𝑣8 is 2 since this tree edge belongs to 𝐷2 (see Fig. 2).

Concerning RSs, we have the following lemma, which is important for the construction of trie-like

subgraphs.

Lemma 4. Let 𝑣 be a branching node in𝐺 . Let 𝑢 be an ancestor of 𝑢′ on the tree path from root to 𝑣 .
If both 𝑅𝑆𝑣,𝑢𝑠 [𝑐] and 𝑅𝑆𝑣,𝑢

′
𝑠 [𝑐] exist for a certain label 𝑐 , then we have 𝑅𝑆𝑣,𝑢𝑠 [𝑐] ⊆ 𝑅𝑆

𝑣,𝑢′
𝑠 [𝑐].

Proof. Let 𝑃* = 𝑝 ∪ 𝑆* be a 𝑝*-graph merged into 𝐺 . Assume that in 𝑃* we have a span from a

node 𝑢 to some other node𝑤 . Then, for any descedant 𝑢′
of 𝑢 on the subpath from the child of 𝑢 to

the grandparent of𝑤 , we must have a span from 𝑢′
to𝑤 due to the transitivity of spans. Assume

that 𝑙 (𝑤) = 𝑐 . We can immediately see that 𝑅𝑆
𝑣,𝑢
𝑠 [𝑐] ⊆ 𝑅𝑆

𝑣,𝑢′
𝑠 [𝑐]. □

If 𝑅𝑆
𝑣,𝑢
𝑠 [𝑐] ⊂ 𝑅𝑆

𝑣,𝑢′
𝑠 [𝑐], we say, 𝑅𝑆𝑣,𝑢

′
𝑠 [𝑐] is larger than 𝑅𝑆

𝑣,𝑢
𝑠 [𝑐].

Based on the concept of reachable subsets through spans, we are able to define another more

important concept, upper boundaries, given below.

Definition 4. (upper boundaries) Let 𝑣 be a branching node. Let 𝑣1, 𝑣2, ..., 𝑣𝑘 be all the nodes on

the path from root to 𝑣 . An upper boundary (denoted as upBounds) with respect to 𝑣 is a largest

subset of nodes {𝑢1, 𝑢2, ..., 𝑢𝑓 } (𝑓 > 1) with the following properties satisfied:

(1) Each 𝑢𝑔 (1 ≤ 𝑔 ≤ 𝑓 ) appears in some RS𝑣,𝑣𝑖𝑠 [𝑐] (1 ≤ 𝑖 ≤ 𝑘), where 𝑐 is a label and |RS𝑣,𝑣𝑖𝑠 [𝑐]| > 1.

(2) For any two nodes𝑢𝑔 ,𝑢𝑔′ (𝑔 ≠𝑔′), they are not related by the ancestor/descendant relationship.

Fig. 4 gives an intuitive illustration of this concept.

As a concrete example, consider 𝑣5 and 𝑣8 in Fig. 3. They make up an upBound with respect to 𝑣3
(a branching node), based on which we will construct a trie-like graph over two subgraphs, rooted

at 𝑣5 and 𝑣8, respectively. This can be done in a way similar to the construction of 𝐺 over all the

initial 𝑝*-graphs (which then hints a recursive process to do the task). Here, we remark that 𝑣4 is

not included since it is not invlved in any RS with respect to 𝑣3 with |RS| ≥ 2. In fact, the truth

assignment with 𝑣4 being set to true satisfies only the conjunctions associated with leaf node 𝑣10.

This has already been determined when the initial trie is built up in the first step.

Mainly, the following operations will be carried out when encountering a branching node 𝑣 .
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upBound

Fig. 4. Illustration for upBounds.

• Calculate all RSs with respect 𝑣 .

• Calculate the upBound in terms of RSs.
• Make a recursive call of the algorithm on a subgraph which is constructed over all the

𝑝*-subgraphs each rooted at a node on the corresponding upBound.

See the following example for illustration.

Example 1. When checking the branching node 𝑣3 in the bottom-up search process, we will calculate
all the reachable subsets through spans with respect to 𝑣3 as described above: RS

𝑣3,𝑣2
{2,5} [𝑐5] = {𝑣5, 𝑣8},

RS𝑣3,𝑣2{2,5} [𝑐6] = {𝑣6, 𝑣9}, RS𝑣3,𝑣3{2,5} [𝑐5] = {𝑣5, 𝑣8}, and RS𝑣3,𝑣3{2,5} [𝑐6] = {𝑣6, 𝑣9}. In terms of these reachable
subsets through spans, we will get the corresponding upBound {𝑣5, 𝑣8}. Node 𝑣4 (above the upBound)
will not be involved in the recursive execution of the algorithm.

Concretely, when we make a recursive call of the algorithm, applied to two subgraphs: 𝐺1 -

rooted at 𝑣5, and 𝐺2 - rooted at 𝑣8 (see Fig. 5(a)), we will first construct a trie-like graph as shown

in Fig. 5(b). It is in fact a single path, where 𝑣5−8 stands for the merging of 𝑣5 and 𝑣8, 𝑣6−9 for the
merging of 𝑣6 and 𝑣9, and 𝑣7−10 for the merging of 𝑣7 and 𝑣10.
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Fig. 5. Illustration for construction of trie-like subgraphs.

In addition, for technical convenience, we will add the corresponding branching node (𝑣3) to the

trie as a virtual root, and a new edge 𝑣3
2,5−−→ 𝑣5−8 as a virtual edge. See Fig. 5(c). Here, the virtual
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root, as well as the virtual edge, is added to keep the connection of the trie-like subgraph to the

tree path from the root to this branching node in 𝑇 , which will greatly facilitate the trace of truth

assignments for the corresponding satisfied conjunctions. Particularly, the label of a virtual edge 𝑣

→ 𝑢 is set to be the label for the largest 𝑅𝑆
𝑣,𝑤
𝑠 , where𝑤 is an anchor node of 𝑢. If there are more

than one largest RSs, choose any one of them. For example, the label for the virtual edge shown in

Fig. 5(c) is set to be {2, 5}. This is the label for RS𝑣3,𝑣2{2,5} [𝑐5] (one of the two relevant RSs: RS𝑣3,𝑣2{2,5} [𝑐5]
and RS𝑣3,𝑣3{2,5} [𝑐5]. Both of them are of the same size.) In this way, the trace of the truth assignment

for a subset of satisfied conjunctions can be very easily performed.

Now, searching the path from 𝑣7−10 to 𝑣5−8 in Fig. 5(c) bottom-up, going through the virtual node

𝑣3 to find the corresponding anchor node 𝑣2, and then searching the path from 𝑣2 to 𝑣0 in 𝑇 (see

Fig. 3), we will figure out a path:

𝑣0 → 𝑣1 → 𝑣2
2,5−−→ 𝑣5−8 → 𝑣6−9 → 𝑣7−10,

representing a truth assignment {𝑐1 = 0, 𝑐2 = 1, 𝑐3 = 1, 𝑐4 = 0, 𝑐5 = 1, 𝑐6 = 1}, satisfying {𝐷2, 𝐷5}.
Here, we notice that the subset associated with the unique leaf node of the path is {𝐷2, 𝐷5}, instead
of {𝐷1, 𝐷2, 𝐷3, 𝐷5}. It is because the label associated with the virtual edge 𝑣2 → 𝑣5−8 is {2, 5}
(which represent two spans: 𝑣2

5−→ 𝑣5, 𝑣2
2−→ 𝑣8 covering the branching node 𝑣3), by which 𝐷1 and 𝐷3

are filtered out from {𝐷1, 𝐷2, 𝐷3, 𝐷5}.
We remember that when generating the trie 𝑇 over the main paths of the 𝑝*-graphs created for

the variable sequences shown in Table 1, we have already found a (largest) subset of conjunctions

{𝐷1, 𝐷3, 𝐷5}, which can be satisfied by a truth assignment represented by the corresponding

main path. This is larger than {𝐷2, 𝐷5}. Therefore, {𝐷2, 𝐷5} should not be kept around and this

part of computation is in fact useless. To avoid this kind of futile work, we can simply perform a

pre-checking: if the number of 𝑝*-subgraphs, over which the recursive call of the algorithm will

be invoked, is smaller than the size of a satisfiable subset of conjunctions already obtained, the

recursive call of the algorithm should not be conducted.

In terms of the above discussion, we come up with a recursive algorithm shown below, in which

a data structure 𝑅 is used to accommodate the result, represented as a set of triplets of the form:

<𝛼 , 𝛽 , 𝛾>,

where 𝛼 stands for a subset of conjunctions, 𝛽 for a truth assignment satisfying the conjunctions in

𝛼 , and 𝛾 is the size of 𝛼 . Initially, 𝑅 = ∅.

Algorithm 1: 2-MAXSAT(𝐶)
Input :a logic formula 𝐶 in CNF with each clause in 𝐶 containing at most two literals.

Output :a largest subset of clauses satisfying a certain truth assignment.

1 transform 𝐶 to another formula 𝐷 in DNF;
2 let 𝐷 = 𝐷1 ∨ ... ∨ 𝐷𝑛 ;

3 for 𝑖 = 1 to 𝑛 do
4 construct a 𝑝*-graph 𝑃∗

𝑖 for 𝐷𝑖 ;

5 construct a trie-like graph 𝐺 over 𝑃∗
1
, ..., 𝑃∗

𝑛 ;

6 𝑅 := SEARCH(𝐺);
7 return the result calculated in terms of 𝑅;

The input of 2-MAXSAT( ) is a formula 𝐶 in CNF. First, we transform it to another formula 𝐷 in

DNF (see line 1). Then, for each 𝐷𝑖 in 𝐷 , we will create its 𝑝*-graph 𝑃∗
𝑖 (see lines 4). Next, we will
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Solving the 2-MAXSAT Problem in Polynomial Time: a Proof of P = NP 13

contruct a trie-like graph𝐺 over all 𝑃∗
𝑖 ’s (see line 5). In the last step, we call SEARCH(𝐺) to produce

the result (see line 6).

Algorithm 2: SEARCH(𝐺)
Input :a trie-like subgraphs 𝐺 .
Output :a largest subset of conjunctions satisfying a certain truth assignment.

1 if 𝐺 is a single 𝑝*-graph then
2 𝑅′

:= subset associated with the leaf node;

3 𝑅 := merge(𝑅, 𝑅′
);

4 return 𝑅;

5 for each leaf node 𝑣 in 𝐺 do
6 let 𝑅′

be the subset associated with 𝑣 ;

7 𝑅 := merge(𝑅, 𝑅′
);

8 let 𝑣1, 𝑣2, ..., 𝑣𝑘 be all branching nodes in postorder;

9 for 𝑖 = 1 to 𝑘 do
10 let 𝑃 be the tree path from root to 𝑣𝑖 ;
11 for each 𝑢 on 𝑃 do
12 calculate RSs of 𝑢 with respect to 𝑣

13 create the corresponding upBound 𝐿;

14 construct a trie-like graph 𝐷 over the subgraphs each rooted at a node on 𝐿;

15 𝐷 ′
:= {𝑣} ∪ 𝐷 ;

16 𝑅′
:= SEARCH(𝐷 ′

);

17 𝑅 := merge(𝑅, 𝑅′
);

18 return 𝑅;

The input of SEARCH( ) is a trie-like subgraph 𝐺 . First, we will check whether 𝐺 is a single

𝑝*-graph. If it is the case, we must have found a largest subset of conjunctions associated with the

leaf node, satisfiable by a certain truth assignment (see lines 1 - 4).

Otherwise, we will search 𝐺 bottom up to find all the branching nodes in 𝐺 . But before that,

each subset of conjunctions associated with a leaf node will be first merged into 𝑅 (see line 5 - 7).

For each branching node 𝑣 encountered, we will check all the nodes 𝑢 on the tree path from root
to 𝑣 and compute their RSs (see lines 8 - 12), based on which we then compute the corresponding

upBound with respect to 𝑣 (see line 13). According to the upBound 𝐿, a trie-like graph 𝐷 will be

created over a set of subgraphs each rooted at a node on 𝐿 (see line 14). Then, 𝑣 will be added

to 𝐷 as its root (see line 15). Here, we notice that 𝐷 ′
= {𝑣} ∪ 𝐷 is a simplified representation of

an operation, by which we add not only 𝑣 , but also the corresponding virtual edges to 𝐷 . Next, a

recursive call of the algorithm is made over 𝐷 ′
(see linee 16). Finally, the result of the recursive call

of the algorithm will be merged into the global answer (see line 17).

Here, the merge operation used in line 3, 7, 17 is defined as below.

Let 𝑅 = {𝑟1, ..., 𝑟𝑡 } for some 𝑡 ≥ 0 with each 𝑟𝑖 = <𝛼𝑖 , 𝛽𝑖 , 𝛾𝑖>. We have 𝛾1 = 𝛾2 = ... = 𝛾𝑡 . Let 𝑅
′
=

{𝑟 ′
1
, ..., 𝑟 ′𝑠 } for some 𝑠 ≥ 0 with each 𝑟 ′𝑖 = <𝛼 ′

𝑖 , 𝛽
′
𝑖 , 𝛾

′
𝑖 >. We have 𝛾 ′

1
= 𝛾 ′

2
= ... = 𝛾 ′𝑠 . By merge(𝑅, 𝑅′

), we

will do the following checks.

• If 𝛾1 < 𝛾
′
1
, 𝑅 := 𝑅′

.

, Vol. xx, No. x, Article . Publication date: November .
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• If 𝛾1 > 𝛾
′
1
, 𝑅 remains unchanged.

• If 𝛾1 = 𝛾
′
1
, 𝑅 := 𝑅 ∪ 𝑅′

.

For simplicity, the heuristic discussed above is not incorporated into the algorithm. But it can be

easily extended with this operation included.

Besides, to find a truth assignment satisfying a subset of conjunctions, we need to trace a path

which may contain several spans, each corresponding to a recursive call of SEARCH( ).
We will represent a recursive call by a pair <𝑣 , 𝐿>, where 𝑣 is a branching node in𝐺 , and 𝐿 is the

upBound with respect to 𝑣 , over which a recursive call of RESEARCH( ) is invoked.
Then, a chain of recursive calls can be described as below:

<𝑣1, 𝐿1>→ <𝑣2, 𝐿2>→ ... → <𝑣𝑘 , 𝐿𝑘>,

where 𝑣1 is a branching node in 𝐺0 = 𝐺 , 𝑣𝑖 (𝑖 = 2, ..., 𝑘) is a branching node in 𝐺𝑖−1, the trie-like
subgraph created by executing <𝑣1−1, 𝐿𝑖−1>, and 𝐿𝑖 is the upBound with respect to 𝑣𝑖 in 𝐺𝑖−1.
Denote by𝑤𝑘 a leaf node in 𝐺𝑘 . Assume that 𝐷 ′

is the subset of conjunctions associated with

𝑤𝑘 . We will trace a path consisting of the following subpaths and spans, satisfying a largest subset

of 𝐷 ′
.

- 𝑝𝑖 : treepaths from a child 𝑢𝑖 of 𝑣𝑖 to𝑤𝑖 in 𝐺𝑖 (𝑖 = 𝑘 , ..., 1), where𝑤𝑖 is the anchor node of 𝑢𝑖+1
for 𝑖 = 𝑘 - 1, ..., 0;

- 𝑒𝑖 : spans connecting𝑤𝑖−1 and 𝑢𝑖 (𝑖 = 𝑘 , ..., 1);

- 𝑝0: a treepath from the root of 𝐺 to𝑤0.

See Fig. 6 for illustration.

G1

w3

G2

G3

v1

v3

u3

w2

u2

u1

w1

Fig. 6. Illustration for tracing truth assignments for satisfied conjunctions.

In Fig. 6, we show a chain of three recursivel calls:
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<𝑣1, 𝐿1>→ <𝑣2, 𝐿2>→ <𝑣3, 𝐿3>.

Here, we assume that 𝑣1 is a branching node in 𝐺 . By executing <𝑣1, 𝐿1>, we will create 𝐺1.

Further, assume that 𝑣2 is a branching node in𝐺1. Then, by executing <𝑣2, 𝐿2>, we will generate𝐺2.

Next, assume that 𝑣3 is a branching node in 𝐺2. We will create 𝐺3 by executing <𝑣3, 𝐿3>. We also

assume that𝑤3 is a leaf node in 𝐺3, associated with a subset 𝐷 ′
of conjunctions.

Then, the path shown in Fig. 6 consists of three treepaths from 𝑢𝑖 to𝑤𝑖 for 𝑖 = 1, 2, 3, and three

spans from𝑤𝑖 to 𝑢𝑖+1 for 𝑖 = 0, 1, 2, and a tree path from the root of 𝐺 to𝑤0.

This path represents a truth assignment satisfying 𝑠 ∩ 𝐷 ′
, where 𝑠 is the intersection of all the

edge labels on 𝑝 . (𝑠 can be changed to the intersection of all the labels associated with the virtual

edges on 𝑝 since the intersection of all the tree edge labels is equal to or contains 𝐷 ′
, as indicated

by Lemma 3).

Example 2. When applying SEARCH( ) to the 𝑝*-graphs shown in Fig. 3, we will encounter three
branching nodes: 𝑣3, 𝑣2, and 𝑣1.

• Intially, when creating𝑇 , each subset of conjunctions associatedwith a leaf node 𝑣 is satisfiable

by a certain truth assignment represented by the corresponding main path (from root to 𝑣).
Especially, {𝐷1, 𝐷2, 𝐷5} associated with 𝑣10 (see Fig. 2) is a largest subset of conjunctions,

which can be satisfied by a certain truth assignment: 𝑐1 = 1, 𝑐2 = 1, 𝑐3 = 1, 𝑐4 = 1, 𝑐5 = 1, 𝑐6 = 1.

• Checking 𝑣3. As shown in Example 1, by this checking, we will find a subset of conjunction

{𝐷2, 𝐷5} satisfied by a truth assignment {𝑐1 = 0, 𝑐2 = 1, 𝑐3 = 1, 𝑐4 = 0, 𝑐5 = 1, 𝑐6 = 1}, smaller

than {𝐷1, 𝐷2, 𝐷5}. Thus, this result will not be kept around.
• Checking 𝑣2. When we encounter this branching node, we will make a second recursive

call of SEARCH( ) applied to a trie-like subgraph constructed over two subgraphs in 𝐺[𝑣2]

(respectively rooted at 𝑣3 and 𝑣11), as shown in Fig. 7.

D1

v6

v7

v2

v4

c3

c4

$

D6

v11

v12

v13

c4

c5

$

v5

c5

c6

D3 D5

v9

v10

$

v8
c5

c6

D2

1

1,5

1,3

2

6

v3

c1

2

upBound with respect
to v2

Fig. 7. Two subgraphs in 𝐺[𝑣2] and an upBound.

First, with respect to 𝑣2, we will calculate all the relevant reachable subsets through spans for

all the nodes on the tree path from root to 𝑣2 in 𝐺 . Altogether we have five reachable subsets

through spans. Among them, associated with 𝑣1 (on the tree path from root to 𝑣2 in Fig. 3),

we have
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- RS𝑣2,𝑣1{3,6}[𝑐4] = {𝑣4, 𝑣11},

due to the following two spans (see Fig. 3):

- {𝑣1
3−→ 𝑣4, 𝑣1

6−→ 𝑣11}.

Associated with 𝑣2 (the branching node itself) have we the following four reachable subsets

through spans:

- RS𝑣2,𝑣2{3,5,6}[𝑐4] = {𝑣4, 𝑣11},

- RS𝑣2,𝑣2{2,5,6}[𝑐5] = {𝑣5, 𝑣8, 𝑣12},

- RS𝑣2,𝑣2{2,5}[𝑐6] = {𝑣6, 𝑣9},

- RS𝑣2,𝑣2{2,6}[$] = {𝑣10, 𝑣13},

respectively due to four groups of spans shown below (see Fig. 3):

- {𝑣2
3,5−−→ 𝑣4, 𝑣2

6−→ 𝑣11},
- {𝑣2

5−→ 𝑣5, 𝑣2
2−→ 𝑣8, 𝑣2

6−→ 𝑣12},
- {𝑣2

5−→ 𝑣6, 𝑣2
2−→ 𝑣9},

- {𝑣2
2−→ 𝑣10, 𝑣2

6−→ 𝑣13}.

Then, in terms of these reachable subsets through spans, we can recognize the corresponding

upper boundary {𝑣4, 𝑣8, 𝑣11} (which is illustrated as a thick line in Fig. 7). Next, we will determine

over what subgraphs a trie-like graph should be constructed, over which the algorithm will be

recursively executed.

In Fig. 8, we show the trie-like graph built over the three 𝑝*-subgraphs (rooted respectively at 𝑣4,

𝑣8, 𝑣11 on the upBound shown in Fig. 7), in which 𝑣4−11 stands for the merging of 𝑣4 and 𝑣11, and

𝑣5−12 for the merging of 𝑣5 and 𝑣12. Again, the branching node 𝑣2 is involved as the virtual root of

this trie-like subgraph. The virtual edge 𝑣2
3,5,6−−−→ 𝑣4−11 is labeled with {3, 5, 6} since it stands for a

span (from 𝑣2 to 𝑣4) labeled with {3, 5}, and a tree edge (from 𝑣2 to 𝑣11) labeled with {6} in Fig. 3.

The virtual edge 𝑣2
2−→ 𝑣8 is labeled with {2} since it represents a span (from 𝑣2 to 𝑣8) labeled with

{2}. In addition, all the spans going out of 𝑣2 in the original graph are kept around (see Fig. 3).

By the corresponding recursive call of SEARCH( ), this graph will be constructed and then

searched bottom up, by which we will encounter the first branching nodes: 𝑣5−12. Then, a next
recursive call of the algorithm will be conducted, generating an upBound {𝑣7, 𝑣13}, as shown in

Fig. 9(a). Similar to the above discussion, we will construct the corresponding trie-like subgraph,

which is just a single merged node 𝑣7−13 as shown in Fig. 9(b). Adding the corresponding virtual root

𝑣5−12, and virtual edge 𝑣5−12
1,3,6−−−→ 𝑣7−13 (representing a span 𝑣5−12

1,3−−→ 𝑣7 and a tree edge 𝑣5−12
6−→

𝑣13), we will get a path as shown in Fig. 9(c), by which we will find a largest subset of conjunctions

{𝐷3, 𝐷6}, satifiable by a certain truth assignment: 𝑐1 = 0, 𝑐2 = 1, 𝑐3 = 1, 𝑐4 = 1, 𝑐5 = 1, 𝑐1 = 0. This

truth assignment can be figured by tracing the corresponding path:
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Fig. 8. A trie-like graph.

𝑣0 → 𝑣1 → 𝑣2
3,5,6−−−→ 𝑣4−11 → 𝑣5−12

1,3,6−−−→ 𝑣7−13.

Special attention should be paid to the leaf node of the path shown in Fig. 9(c). It is associated

with {𝐷3, 𝐷6}, instead of {𝐷1, 𝐷3, 𝐷5, 𝐷6}. It is because the intersection of all the labels associated

with the virtual edges is {3, 5, 6} ∩ {1, 3, 6} = {3, 6} and 𝐷1, 𝐷5 should be removed.

D6

v13

c5

v7 $

D3 D5

$

1,3,6

upBound
v7-13 $

D6

v7-13 $

D3 D6

(a) (b) (c)

D1 D3 D5D1

Fig. 9. Illustration for construction of a trie-like subgraph.

Continuing the search of the graph shown in Fig. 8, we will encounter its second branching node

𝑣2 , by which another set of RSs will be created:

- RS𝑣2,𝑣1{3,6} = {𝑣4−11}

(due to the span 𝑣1
3,6−−→ 𝑣4−11, which corresponds to two spans in Fig. 3: 𝑣1

3−→ 𝑣4 and 𝑣1
6−→ 𝑣11),

- RS𝑣2,𝑣2{2,5,6}[𝑐5] = {𝑣5−12, 𝑣8}

(due to the span 𝑣2
5,6−−→ 𝑣5−12 and the tree edge 𝑣2

2−→ 𝑣8 in Fig. 8),

- RS𝑣2𝑣2{2,5}[𝑐6] = {𝑣6, 𝑣9}

(due to the spans 𝑣2
5−→ 𝑣6 and 𝑣2

2−→ 𝑣9 in Fig. 8).

Since |RS𝑣2,𝑣1{3,6} | = 1, it will not be further considered in the subsequent computation.

However, in terms of RS𝑣2,𝑣2{2,5,6}[𝑐5] and RS𝑣2,𝑣2{2,5}[𝑐6], we will construct an upBound {𝑣5−12, 𝑣8} (see
Fig. 8), and create a trie-like graph as shown in Fig. 10(a). Add the virtual node and the vitual edge
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as shown in Fig. 10(b), where the label associated with the virtual edge is set to be the same as for

RS𝑣2,𝑣2{2,5,6}[𝑐5]. The only branching node in this graph is 𝑣5−12−8. With respect to 𝑣5−12−8, 𝑣2 has two

RSs in terms of two spans respectively to two nodes (𝑣6−9 and 𝑣7−10) in this subgraph (see Fig. 10(c).

Also see Fig. 8 to know how these two spans are created):

- RS𝑣5−12−8,𝑣2{2,5} [𝑐6] = {𝑣6−9}

(due to the span 𝑣2
2,5−−→ 𝑣6−9 in Fig. 10(c)),

- RS𝑣5−12−8,𝑣2{2} [$] = {𝑣7−10}

(due to the span 𝑣2
2−→ 𝑣7−10 in Fig. 10(c)).

Both of these RSs are of size 1. Therefore, they will simply be ignored.

For 𝑣5−12−8 itself, we have the following RS:

- RS𝑣5−12−8,𝑣5−12−8{1,2,3,6} [$] = {𝑣7−10, 𝑣13}.
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Fig. 10. Illustration for recursive execution of algorithm.

According to this RS, we will construct the corresponding trie-like graph, as shown in Fig. 10(d),

in which the virtual node is 𝑣5−12−8 and the label of the virtual edge is {1, 2, 3, 6}. By tracing the

corresponding path:

𝑣0 → 𝑣1 → 𝑣2
2,5,6−−−→ 𝑣5−12−8

1,2,3,6−−−−→ 𝑣7−10−13.

we will get a truth assignment: 𝑐1 = 0, 𝑐2 = 1, 𝑐3 = 1, 𝑐4 = 0, 𝑐5 = 1, 𝑐6 = 0, satisfying a subset

{𝐷2, 𝐷6}. It is because {2, 5, 6} ∩ {1, 2, 3, 6} = {2, 6} and 𝐷1, 𝐷3 𝐷5 are filtered out from the subset

associated with the leaf node in Fig, 10(d).

After we have returned back reversely along the chain of the recursive calls described above, we

will continually explore 𝐺 and encounter the last branching node 𝑣1 in 𝐺 (see Fig. 3), which will be

handled in a way similar to 𝑣3 and 𝑣2.
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Concerning the correctness of Algorithm 2, we have the following proposition.

Proposition 2. Let 𝐺 be a trie-like graph established over a logic formula in DNF. Applying
SEARCH( ) to𝐺 , we will get a maximum subset of conjunctions satisfying a certain truth assignment.

Proof. To prove the proposition, we first show that any subset of conjunctions found by the

algorithm must be satisfied by a same truth assignment. This can be observed by the definition of

RSs and the corresponding upBounds.

We then need to show that any subset of conjunctions satisfiable by a certain truth assignment

can be found by the algorithm. For this purpose, consider a subset of conjunctions 𝐷 ′
= {𝐷1, ...,

𝐷𝑟 } (𝑟 > 1) which can be satisfied by a truth assignment represented by a path 𝑃 . We will prove by

induction on the number 𝑛𝑠 of spans on 𝑃 that our algorithm is able to find 𝑃 .

Basic step. When 𝑛𝑠 = 0, 𝑃 must be a tree path in𝑇 and the claim holds. When 𝑛𝑠 = 1, the unique

span on 𝑃 must cover a branching node𝑤 of Case 1 in 𝐺 . Let 𝑢
𝑠−→ 𝑣 be such a span. Denote by 𝑃 ′

the tree path from root to 𝑢 in 𝑇 . Then, by a recursive call of SEARCH( ) over the trie-like subgraph
constructed with respect to𝑤 we can find a sub-path 𝑃 ′′

; and 𝑃 must be equal to the concantenation

of 𝑃 ′
, the span 𝑢

𝑠−→ 𝑣 , and 𝑃 ′′
.

Induction step. Assume that when 𝑛𝑠 = 𝑘 , the algorithm can find 𝑃 .

Now, assume that 𝑃 contains 𝑘 + 1 spans 𝑠1, 𝑠2, ..., 𝑠𝑘 , 𝑠𝑘+1. They must corresponds to a chain of

𝑘 + 1 nested recursive calls of SEARCH( ). Denote by 𝐺𝑖 the trie-like subgraph created by the (𝑖 -

1)th recursive call, where 𝐺0 = 𝐺 . Let 𝑢
𝑠−→ 𝑣 be the first span on 𝑃 . Denote by 𝑃 ′

the sub-path from

the root of 𝑇 to 𝑢, and by 𝑃 ′′
the sub-path of 𝑃 from 𝑣 to the last node of 𝑃 . Denote by 𝐷 𝑗\𝑃 ′

the

conjunction obtained by removing variables on 𝑃 ′
from 𝐷 𝑗 ( 𝑗 = 1, ..., 𝑟 ). Let 𝐷 ′′

= { 𝐷1\𝑃 ′
, ..., 𝐷𝑟\𝑃 ′}.

Then, the truth assignment represented by 𝑃 ′′
satisfies 𝐷 ′′

. According to the induction hypothesis,

𝑃 ′′
can be found by executing SEARCH( ). Therefore, 𝑃 can also be found by SEARCH( ). To see this,

observe the first recursive call of SEARCH( ) made when we encounter the first branching node

in 𝐺 ′
, by which we will find 𝑃 ′′

satisfying 𝐷 ′′
. Then, the concantenation of 𝑃 ′

and 𝑃 ′′
definitely

satisfies 𝐷 ′
. This completes the proof. □

However, during the execution of SEARCH( ), for different branching nodes, the same RSs can be

repeatedly produced, leading to some kinds of redundancy. See Fig. 11(a) for illustration.

In this figure, special attention should be paid to𝑤 and𝑤 ′
. They are two branching nodes in 𝐺 .

With respect to𝑤 and𝑤 ′
, their ancestor 𝑢 will have two identical RSs:

RS𝑤,𝑢
𝑠 [C] = RS𝑤

′,𝑢
𝑠 [C] = {𝑣1, 𝑣2}.

Thus, during the execution of SEARCH( ), the same trie-like subgraph will be created two times:

one is for RS𝑤,𝑢
𝑠 [C] and another is for RS𝑤

′,𝑢
𝑠 [C], but with the same result to be produced.

Fortunately, this kind of redundancy can be simply removed in two ways.

In the first way, we create RSs only for those nodes appearing on part of a tree path, i.e.,

the segment between the current branching node and the lowest ancestor branching node in 𝑇 .

Even though we may lose some answers in this way, one of the maximum satisfiable subsets of

conjunctions can always be found. See Fig. 11(b) for illustration. In this case, the RS of𝑢 with respect

to𝑤 is different from the RS with respect to𝑤 ′
. However, when checking𝑤 , RS𝑤,𝑢

𝑠 [C] will not be

computed since 𝑢 is beyond the segment between𝑤 and𝑤 ′
. Therefore, the corresponding result

will not be generated. However, RS𝑤
′,𝑢

𝑠 [C] must cover RS𝑤,𝑢
𝑠 [C], implying a larger (or same-sized)

subset of conjunctions which can be satisfied by a certain truth assignment.

The second way is more general to avoid any repeated recursive call on the same trie-like

subgraphs. We can examine, by each recursive call, whether the input subgraph has been checked

before. If it is the case, the corresponding recursive call will be suppressed. This obviously does not
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Fig. 11. Illustration for redundancy.

impact the correctness of the algorithm since a recursive call on a same subgraph will find only the

same satisfiable subset of conjunctions (but with possible different assignments of variables since

the trie-like subgraph may be reached through different spans). For this purpose, we will maintain

a hash array with each entry used to store the result obtained by a recursive call on a certain

trie-like subgraph. Specifically, for each recursive call <𝑣 , 𝐿> (this notation was first introduced

before Example 2 to describe the chains of recursive calls), we will store the result in the address

hash(𝐿). Thus, to examine whether an input subgraph has been checked before, we need only a

constant time.

4 TIME COMPLEXITY ANALYSIS
The total running time of the algorithm consists of three parts.

The first part 𝜏1 is the time for computing the frenquencies of variable appearances in 𝐷 . Since

in this process each variable in a 𝐷𝑖 is accessed only once, 𝜏1 = O(𝑛𝑚).

The second part 𝜏2 is the time for constructing a trie-like graph𝐺 for 𝐷 . This part of time can be

further partitioned into three portions.

• 𝜏21: The time for sorting variable sequences for 𝐷𝑖 ’s. It is obviously bounded by O(𝑛𝑚log2 𝑚).

• 𝜏22: The time for constructing 𝑝*-graphs for each 𝐷𝑖 (𝑖 = 1, ..., 𝑛). Since for each variable

sequence a transitive closure over its spans should be first created and needs O(𝑚2
) time, this

part of cost is bounded by O(𝑛𝑚2
).

• 𝜏23: The time for merging all 𝑝*-graphs to form a trie-like graph 𝐺 . This part is also bounded

by O(𝑛𝑚2
).

The third part 𝜏3 is the time for searching 𝐺 to find a maximum subset of conjunctions satisfied

by a certain truth assignment. It is a recursive procedure.

First, we notice that in all the generated trie-like subgraphs, the number of all the branching

nodes is bounded by O(𝑛𝑚). But each branching node may be involved in at most O(𝑚) recursive

calls (see the analysis given below) and for each recursive call at most O(𝑛𝑚2
) time can be required to

create the corresponding trie-like subgraph. Thus, the worst-case time complexity of the algorithm

is bounded by O(𝑛2𝑚4
).
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However, we need to make clear that each branching node can be involved at most in O(𝑚)

recursive calls. For this, we have the following analysis.

Consider a trie-like graph 𝐺 shown in Fig. 12(a), in which𝑤 is a branching node. With respect

to𝑤 , we will have the following three RSs:

- RS𝑤,𝑢
𝑠′ [C] = {𝑣1, 𝑣2},

- RS𝑤,𝑢
𝑠′′ [D] = {𝑣3, 𝑣5, 𝑣6},

- RS𝑤,𝑢
𝑠′′′ [E] = {𝑣4, 𝑣7, 𝑣8, 𝑣9},

where 𝑠′, 𝑠′′ and 𝑠′′′ are three label sets for the three RSs, respectively.

(b)

C

(a)

C

w

u

v1 v2
D

v3

D D
v5 v6

E

v7

E E
v8 v9

E
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Fig. 12. Illustration for recursive construction of trie-like subgraphs.

According to these RSs, we will construct a trie-like subgraph𝐺 ′
as shown in Fig. 12(b) and a

recursive call of SEARCH( ) will be carried out. It is the first recursive call, in which𝑤 is involved.

During this recursive execution of SEARCH( ),𝑤 will then be involved in a second recursive call,

but on a smaller trie-like subgraph 𝐺 ′′
, whose height is one level lower than 𝐺 ′

(see Fig. 12(c)).

During the second recursive call, 𝑤 will be involved in a third recursive call. For this time, the

height of the corresponding trie-like subgraph is further reduced as demonstrated in Fig. 12(d).

Together with the method discussed in the previous section to avoid repeated recursive calls on

of a same trie-like subgraph, the above analysis shows that any branching node can be involved in

at most𝑚 recursive calls of SEARCH( ). In general, we have the following proposition.

Proposition 3. Let𝐺 be a trie-like graph and𝑤 be a branching node of Cae 1 in the corresponding
layered graph. Then,𝑤 can be involved in at most𝑚 recursive calls of SEARCH( ) (Algorithm 3) in the
whole working process.

Proof. Let {𝑣1, 𝑣2, ..., 𝑣𝑘 } (𝑘 ≥ 2) be a largest group of nodes appearing on the upBound 𝐿 with

respect to𝑤 satisfying the following three properties:

• Each 𝑣𝑖 (𝑖 = 1. ..., 𝑘) has no ancestor appearing on 𝐿.

• 𝑙 (𝑣1) = 𝑙 (𝑣2) = ... = 𝑙 (𝑣𝑘 ).

• There is not any other node 𝑢 with 𝑙 (𝑢) = 𝑙 (𝑣1), which is a descendant of any node on 𝐿.
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Then, in the trie-like subgraph 𝐺 ′
constructed for 𝐿, all the nodes in this group will be merged

into a single node. The same claim applys to any other largest group of nodes on 𝐿 satisfying

the above three properties. Thus, in a next recursive call of SEARCH( ) involving𝑤 , the trie-like

subgraph 𝐺 ′′
to be constructed must be at least one level lower than𝐺 ′

since when constructing a

trie-like subgraph any RSwith |RS| = 1 will not be considered. Because the height of𝐺 is bounded by

𝑚 and any trie-like subgraph is constructed only once (using the method discussed in the previous

section to avoid multiple recursive calls on a same trie-like subgraph), the proposition holds. □

Proposition 4. Let𝐺 be a trie-like graph over a formula in DNF containing 𝑛 conjunctions with𝑚
variables. The time complexity of Algorithm SEARCH(𝐺) is bounded by O(𝑛2𝑚4).

Proof. From Proposition 3, we can see that in the whole working process at most O(𝑛𝑚) ×𝑚

trie-like subgraphs can be generated. Thus, at most O(𝑛𝑚) ×𝑚 recursive calls can be carried out

since any repeated recursive call on a same trie-like subgraph can be simply and effectively avoided.

Therefore, the time complexity of SEARCH(𝐺) is bounded by O(𝑛𝑚) ×𝑚 × O(𝑛𝑚2
) = O(𝑛2𝑚4

). □

5 CONCLUSIONS
In this paper, we have presented a new method to solve the 2-MAXSAT problem. The worst-case

time complexity of the algorithm is bounded by O(𝑛2𝑚4
), where 𝑛 and 𝑚 are respectively the

numbers of clauses and variables of a logic formula 𝐶 (over a set 𝑉 of variables) in CNF with each

clause containing at most 2 literals. The main idea behind this is to construct a different formula

𝐷 (over a set 𝑈 of variables) in DNF, according to 𝐶 , with the property that for a given integer

𝑛* ≤ 𝑛 𝐶 has at least 𝑛* clauses satisfied by a truth assignment for 𝑉 if and only if 𝐷 has least 𝑛*

conjunctions satisfied by a truth assignment for𝑈 . To find a truth assignment that maximizes the

number of satisfied conjunctions in 𝐷 , a graph structure, called 𝑝*-graph, is introduced to represent

each conjunction in 𝐷 . In this way, all the conjunctions in 𝐷 can be represented as a trie-like graph

𝐺 . Searching 𝐺 bottom up in a recursive way, we can find the answer efficiently.
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