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A key problem in providing enterprise-wide information is the integration of databases
that have been independently developed.  A major requirement is to accommodate heterogene-
ity and at the same time preserve the autonomy of component databases.  This article addresses
this problem and presents a strategy to integrate heterogeneous OO schemas.  As compared to
the existing methodologies, this approach integrates local schemas into a deduction-like global
schema.  In this way, more semantic relationships of component schemas can be captured, and
more complete integration can be obtained.  In addition, an efficient algorithm is proposed
which can do the integration almost automatically, based on the correspondence assertions
supplied by designers.  This algorithm is efficient in the sense that the characteristics of asser-
tions are utilized to avoid useless matchings.
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1. INTRODUCTION

With the advent of applications involving increased cooperation among systems, the
development of methods for integrating the pre-existing databases has become important.
The design of such global database systems must allow unified access to diverse and possi-
bly heterogeneous database systems without subjecting them to conversion or major modi-
fications [4, 7, 11, 18, 33].  One important step in integrating heterogeneous systems is to
build a global schema from local ones, which is usually done in two phases: schema trans-
formation and schema integration [1, 30].  By means of schema transformation, a local
schema is transformed into an abstract one, e.g., an object-oriented schema [24, 25].  Then,
all the local object-oriented schemas are integrated into a global one, thereby removing
semantic conflicts caused by different perceptions of the same real world concepts.

To eliminate semantic conflicts among the component databases, a set of correspon-
dence assertions for declaring their semantic relationships has to be constructed by DBAs
or by users. Normally, four set relationships between object classes, equivalence, inclusion,
intersection, and exclusion, are defined so as to provide knowledge about correspondences
that exist among the local schemas [35].

In this article, we will introduce a new assertion, the so-called derivation assertion,
to accommodate more heterogeneities, which can not be treated using the existing method-
ologies (see [2, 10, 13, 22, 27, 35]).  As an example, consider two local object-oriented
schemas, S1 and S2.  Assume that S1 contains two classes, parent and brother, and that S2

contains one class, uncle.  A derivation assertion of the form S1(parent, brother) → S2

(uncle) can specify their corresponding semantic relationship clearly, which can not be
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established otherwise.  We claim that this kind of assertion is necessary for the following
reason.  Imagine a query concerning uncle, submitted to the integrated schema from S1 and
S2.  If the above assertion is not specified, the query evaluation will not take schema S1 into
account; thus, the answers to the query will not be correctly computed in the sense of
cooperations.  Some more complicated examples will be given later to show that derivation
assertions can always be used to handle intricate semantic relationships.

Recently, the problem of schema integration has been addressed extensively.  In [35],
the four semantic assertions mentioned above were used to declare semantic conflicts be-
tween two heterogeneous schemas.  In addition, attention was paid to the path correspon-
dence problem there.  However, no formal method has been developed for this situation.  In
[13], another kind of path correspondences was introduced, with which more difficult se-
mantic conflicts (like S1(Salary.Person) ~ S2(Salary.Salesmen.Person), indicating that Sal-
ary of Person from S1 and Salary of Salesmen from S2 are identical) can be tackled.  However,
no derivation relationships can be dealt with in this way, either.  In fact, such a path corre-
spondence can be declared using a combination of equivalence and inclusion.  That is, we
can declare S1(Person) ⊇ S2(Salesmen), thereby specifying that the attribute Salary of Per-
son is equivalent to Salary of Salesmen.  In [22], a hyperrelation approach was proposed,
with which different attributes of relevant concepts (belonging to different local schemas)
can be connected together.  Similarly, no derivation problem is considered in this method.
In [26], a formal method to describe schema equivalence was developed.  It distinguishes
between “unconditional” equivalence and the “conditional” equivalence, and also can not
be used to declare the derivation relationship.  A similar approach was described in [15],
where the notion of a database “context” is used to specify conditionally equivalent concepts.
In the other methods, such as those proposed in [2, 10, 27], derivation correspondence is
not mentioned at all.

To integrate relevant concepts connected by derivation assertions, however, the de-
ductive approach should be employed, and a mechanism to do inferences should be devel-
oped to support such more complete global schemas.  For this purpose, we simplify the data
model proposed in [16] by replacing the concept of “object constructors” with that of “ag-
gregation functions”, which is well-defined, extends predicate calculus and enriches the
object-oriented model with deduction abilities.  In this way, an object-oriented global schema
can be equipped with an inference mechanism to capture more semantics.  (More importantly,
this concept can be easily implemented on the “Ontos” system [28] by using its aggregation
functions.  “Ontos” does not support the concept of object constructors; our system is built
on “Ontos”.)  As we will see later, the path problem proposed in [34, 35] can also be
handled formally in our framework.  In addition, autonomy is not violated since the “vir-
tual” inferences (more exactely, rule evaluation; see Appendix B) are performed only at an
abstract level and no extra requirements are placed on the local databases.

On the other hand, the integration algorithm has not been studied extensively in pre-
vious work concerning federated databases.  Although several approaches [33, 35] have
been suggested, in terms of the given assertions, to integrate local schemas automatically,
no effort has been made to optimize this process.  That is, no analysis of correspondence
assertions has been done to minimize redundant operations by using their characteristics.
Furthermore, in [33, 35], only equivalence and inclusion assertions were considered by an
integration process; ways to deal with the other kinds of assertions were not considered.  In
addition, approaches to integrating aggregation links as well as is-a links (paths) have not
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been fully addressed up to now.  In fact, these problems are not trivial, and some attention
should be paid to them.  To this end, we present a new algorithm for perfoming integration
almost automatically while taking the assertion characteristics and link integrations into
account to achieve high performance.

The remainder of this article is organized as follows.  Section 2 introduces the data
model used in our system.  In section 3, our system architecture is briefly outlined.  Section
4 discusses the assertion set, through which the semantic correspondences between local
schemas can be defined.  In section 5, we give our integration principles.  Section 6 is
devoted to a integration algorithm.  Finally, conclusions are set forth in section 7.

2. OBJECT MODEL

As discussed in the introduction, we need a powerful data model to represent inte-
grated schemas.  One way to do this is to accommodate deduction with complex objects and
object identities so that local databases can be integrated more fully into a deduction-like
object-oriented schema.  In the following, we will present an object model with well-de-
fined semantics that equips complex objects with a deduction capability.  This object model
is used to represent the integrated information in our system.

In fact, our model is a modification of those proposed in [16, 23].  First, in our model,
the object identifiers can be referenced only through aggregation functions, rather than as
attribute values as suggested in [16].  In addition, we implement the concept of object
constructors developed in [16] as a combination of aggregation functions in a natural way.
Further, due to the above modification, a rule in our model is simply a clause of the first-
order logic [20], and no extra complexity is assumed, as compared with the object
constructors.  On the other hand, the aggregation function is supported in the “Ontos”
system [28], which is used as our platform.

In our model, a schema is defined as a set of classes C.  The type of a class C in C,
denoted by type(C), is defined as:

type(C) = <a1:type1, ..., al:typel, Agg1 with cc1, ..., Aggk with cck>,

where ai represents an attribute name, typei ∈ {boolean, integer, real, character, string, date}
∪ type(C) and Aggj represents an aggregation function: type(C) → type(C') (C, C' ∈ C).
Further, each aggregation function may be associated with a cardinality constraint ccj ∈
{[1:1], [1:n], [m:1], [m:n]} ( j = 1, ..., k).  For instance, a class Article may be of the type:
type(Article) = <title: string, author_name: string, Published_in: Proceedings with [m:1]>,
where ‘Published_in: Proceedings’ represents an aggregation function (aggregation
relationship) Article → Proceedings, specifying the semantic relationship between domain
class Article and range class Proceedings.

Accordingly, an object (instance) of C is represented as a term (called the complex O-
term):

<o : Ca1:v1, ..., al:vl, agg1, ..., aggk>,
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where o is the object identifier, C is its class, ai’s are attribute names, vj’s are the corre-
sponding values and each aggj represents an instance of Aggj.  For example, an instance of
class Article may be of the form: <id_1: Articletitle: ‘improving path-consistence algorithm’,
author_name: ‘John’, Published_in(.) with [m:1]>, where Published-in(.) takes ‘id_1’ as
the input and returns a value, say ‘AI_Tool_91’, an object identifier of the class called
Proceedings, which can be used to visit the corresponding object.  In addition, when we
refer to an object without considering its attribute values, we simply write <o : C> instead
of <o : Ca1:v1, ..., al:vl, agg1, ..., aggk> for convenience.

The classes in an object database are organized into an inheritance hierarchy.  We say
that a class C is a subclass of another class C', denoted <C: C'> (or is_a(C, C')) and called
the typing O-term, iff {< o : C>} ⊆ {<o' : C'>}, where {<o : C>}  ({< o' : C'>}) represents all
the instances belonging to class C (C').  For example, <student: person> and <faculty:
employee> are two types of O-terms.

As for the O-terms (complex O-terms and typing O-terms), we can define derivation
relations in a standard way, as implicitly universally quantified statements of the form: γ1 &
γ2 ...& γl ⇐ τ1 &  τ2 ...& τk, where both γi’s and τk’s are O-terms or normal predicates of the
first-order logic.  (Notice that an O-term can be regarded as a higher order predicate, in
which variables for class names and attribute names are allowed).  For example, the rule <o1

: Empl  e_name: x, work_in: o2 Dept> ⇐ <o2 : Deptd_name: y, manager: o1 Empl>
states that department managers work in the department they manage.  Here, Empl and Dept
are classes, o1 and o2 are object variables and work_in and manager are two aggregation
functions.  Universal quantifiers over o1 and o2 are omitted.  As another example, consider
the so-called ‘interesting pair’ problem, which was first addressed in [23] and was further
discussed in [16].  The problem is to find the pairs employee-manager such that the
employee’s department’s manager’s name coincides with the employee’s name, which can
be represented (using our method) as follows:

pair(o1, manager(o2)) ⇐ <o1 : Emple_name: x, work_in: o2 Dept>, manager(o2).
e_name = x.

As we can see, this rule is much simpler than that presented in [16], and the semantic ambi-
guity of [23] is also eliminated.

Alternatively, the first rule above may be written in the following form:

<o1 : Emple_name: x, work_in: y> ⇐ <o2 : Deptd_name: y, manager: x>,}

if work_in and manager are defined as attribute names.
In addition, in a derivation rule, we allow variables for object identifiers, class names,

attribute names or aggregation function names appearing in an O-term.  In this way, more
complicated semantic relationships can be declared.  In particular, for integrating schemas
of heterogeneous local databases, such a rule can be used to specify complicated schematic
discrepancies where an attribute value in one database appears as an attribute name or as a
class name in another database (which will be discussed in sections 4 and 5.)

Lastly, we note that here the multi-valued attributes are not considered here for the
sake of simplicity.  However, it is not difficult to extend the model to accommodate the
relevent concepts.
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3. SYSTEM ARCHITECTURE

Before we present our principles for doing schema integration, we will present our
system architecture, which consists of three-layers, FSM-client, FSM and FSM-agents, as
shown in Fig. 1.

Fig. 1. System architecture.

FSM-client

FSM-agent

FSM

nFSM-client1

Here, FSM represents the “Federated System Manager”.  The task of the FSM-client
layer is application management, providing a suite of application tools which enable users
and DBAs to access the system.  The FSM layer is responsible for merging potentially
conflicting local databases and defining global schemas.  In addition, centralized manage-
ment is supported in this layer.  The FSM-agents layer corresponds to local system manage-
ment and addresses all the issues w.r.t. schema translations and exports as well as local
transaction and query processing.

With this architecture, each local schema is first transformed into an object-oriented
one to remove model conflicts, so that a component database can be integrated into a coop-
eration more easily (see [6]).  However, the data residing in a local database should not be
translated, but rather be referenced.  Therefore, a datum (in some local database) needs to
be uniquely identified in a federated environment.  In our system, if a relation is translated
into a class, then each of its tuples (of some relation) will be assigned an OID so that the
transformed schema will behave just like an object-oriented one.  This assignment can be
done as follows.

Each component database in our system is installed in some FSM-agent and must be
registered in the FSM.  Then, if we number the tuples of a relation in the normal way, the
OIDs for tuples will be in the following form:

<FSM-agent name>.<database system name>.<database name>.<relation name>.
<integer>,

where “.” denotes string concatenation.  For example, FSM-agent1.informix.PatientDB.
patient-records.5 is a legal OID for the fifth tuple of the relation “patient-records” in a
database called “PatientDB.”  Accordingly, each attribute value will be implicitly prefixed
with a string of the form

<FSM-agent name>.<database system name>.<database name>.<relation name>.
<attribute name>.
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Based on such a mechanism, a series of data mappings for each one attribute A of the
integrated schema can be constructed, denoted FDB B

A

i , , (i = 1, 2), with each being used for
value correspondences of attribute A and attribute B from the local database DBi.  An FDB B

A

i ,

may be a simple string “default”, indicating that all actual values of B form a subset of A; a
set of triples of the form (a, b; χ), representing that a of A corresponds to b of B to degree
χ ∈ [0, 1] (where χ is used to support the fuzzy set concept; see [5] for a detailed discussion);
or a simple function of the form y = f(x) (such as y = 2.54⋅x), where y and x are variables
ranging over the domains of A and B, respectively.  In the following, for simplicity, we will
not discuss data conflicts and will assume that for each pair of classes considered, the
relevant data mappings will be established manually and can be accessed by the corre-
sponding methods defined in the root-class (or called the meta-class, pre-defined in the
system) for any integrated classes.  Corresponding to the above three kinds of data mappings,
three accessing methods will be implemented.  In addition, additional methods may be
associated with the integrated classes manually to establish special value correspondences.
Such correspondences can not be made otherwise (see [19]).

In this article, we will discuss only the process of integrating two local object-ori-
ented databases.  For the integration of more than two local databases, we adopt a simple
“accumulation” strategy as shown in Fig. 2(a), where each Si stands for a local database
schema and each ISj for an integrated schema of its two child nodes.  However, an integra-
tion process like that shown in Fig. 2(b) is allowed.

Fig. 2. Integration process.

IS 1

1S S 2 S 3

IS 2

IS 3

IS 1

1S S 2

S 3

IS 2

(a) (b)

Using the former strategy, we integrate a single schema into the existing integrated
schema at each step.  Using the latter, we first contruct a set of integrated schemas by
integrating some pairs of local schemas such that all the participating local schemas are
considered.  Then, for the integrated schemas, we repeat this process until a global schema
is generated.

4. ASSERTION SET FOR INTEGRATION

In this section, we will discuss assertions and their classifications.

4.1 Assertion Classification

Assertions for classes
[35] proposed simple and uniform correspondence assertions for the declaration of

semantic, descriptive, structural, naming and data correspondences and conflicts.  These
assertions allow one to declare how the schemas are related but not how to integrate them.
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Concretely, four semantic correspondences between two classes were defined in [35], based
on the real-world states (RWS) of object classes. They are equivalence (≡), inclusion (⊇ or
⊆), disjunction (∅) and intersection (∩).  Equivalence between two classes means that their
extensions (populations) hold the same number of occurrences and that we should be able
to relate these occurrences in some way (e.g., with their object identifiers).  Borrowing
terminology from [13], a correspondence assertion can be informally described as follows:

S1 ∑ A  ∫ S2 ∑ B, iff RWS(A) = RWS(B) always holds,
S1 ∑ A  Õ S2 ∑ B, iff RWS(A) Õ RWS(B) always holds,
S1 ∑ A  « S2 ∑ B, iff RWS(A) « RWS(B) π f holds sometimes,
S1 ∑ A  ∆ S2 ∑ B, iff RWS(A) « RWS(B) = f always holds,

For example, assuming that person, book, faculty and man are four classes from S1, and that
human, publication, student, and woman are another four classes from S2, the following four
assertions can be established to declare their semantic correspondences, respectively:
S1•person ≡ S2•human, S1•book ⊆ S2•publication, S1•faculty ∩ S2•student, S1•man ∅
S2•woman.

Observation reveals that the above four assertions are not powerful enough to specify
all the semantic relationships of local databases.  As mentioned in the introduction of this
article, an extra assertion, derivation (→), has to be introduced to capture more semantic
conflicts, which can be informally described as follows.  Let A1, A2, ..., An be class names
from S1 and let B be those from S2.  A derivation assertion has the following form:

S1(A1, A2, ..., An) → S2•B, iff  P(RWS(A1), RWS(A2), ..., RWS(An)) ∧ “some constraints”
holds ⇒ RWS(B),

where P is a predicate representing that RWS(A1), RWS(A2), ..., and RWS(An) exist simulta-
neously and “⇒” represents the logical implication.  The intuition of this assertion is that
each occurrence of B can be derived by some operations over a combination of occurrences
of A1, A2, ..., and An.  Here, “some constraints” refers to such operations.  At a very abstract
level, such a constraint can not be specified.  But with the help of the declaration of at-
tribute relationships and aggregation function correspondence (see below), we can estab-
lish it exactly.  For example, assume that Book is a class of the type: type(Book) = <ISBN:
string, title: string, author: <name: string, birthday: date>> from S1, and that Author is a
class of the type: type(Author) = <name: string, birthday: date, book: <ISBN: string, title:
string>> from S2.  We can construct their semantic correspondence using two derivation
assertions: S1•Book → S2•Author and S2•Author → S1•Book.  At the same time, through a
further specification w.r.t. attributes or aggregation functions, these two derivation asser-
tions can be declared more exactly using an attribute correspondence, like S1•Book•ISBN ≡
S2•Author•book•ISBN.

Assertions for attributes, aggregation functions and values
In our system, a second group of correspondence assertions is defined for attributes,

such as composed-into (α(x)), more-specific-than (β) and those used for classes (i.e., ≡, ⊇
or ⊆, ∩, and ∅).  Here, α(x) indicates that the relevant attributes can be combined into a
new attribute x, and β is used to declare that one of the two attributes provides more spe-
cific information than the other.  For example, if city and street-number are two attributes
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belonging, respectively, to two classes being integrated, then city α(address) street-number
states that city and street-number can be combined into a new attribute called address.  To
explain ‘more-specific-than’, assume that category is an attribute of class restaurant-1, and
that cuisine is an attribute of restaurant-2.  Then, cuisine may contain more specific infor-
mation than category (e.g., the value ‘Milan’ of cuisine is more specific than the value
‘Italian’ of category).  Therefore, the cuisine β category shows this semantic relationship.
In addition, we may associate a predicate of the form att τ Cont with an inclusion (⊇ or ⊆)
to provide more semantic information, where att stands for an attribute, Cont represents a
constant and τ ∈ { =, <, ≤, >, ≥, ≠}.  For example, if type(stock) = <time: date, stock-name:
string, price: integer> and type(stock-in-March-April) = <stock-name: string, price-in-March:
integer, price-in-April: integer> are two classes belonging to local databases S1 and S2,
respectively, then we can use the following two assertions to specify the corresponding
semantic relationships:

S1 ∑ stock-in-March-April ∑ price-in-March Õ S2 ∑ stock ∑ price with time = ‘March’
S1 ∑ stock-in-March-April ∑ price-in-April Õ S2 ∑ stock ∑ price with time = ‘April ’.

Further, for two classes being integrated, the semantic correspondence among their
aggregation functions also has to be specified.  To this end, a third group of assertions is
utilized, which contains reverse (ℵ), equivalence (≡), inclusion (⊇ or ⊆), disjunction (∅)
and intersection (∩), where fℵg represents that g is a reverse function of f.  For example,
the aggregation function spouse appearing in the class man is the reverse of the spouse
function appearing in the class woman.  The other assertions are used for the set relation-
ships of the aggregation function’s ranges.

In some cases, it is necessary to specify the value correspondence of attributes in the
same database.  For this purpose, we use ‘=’ and ‘≠’ for single-valued attributes and ‘∈’,
‘⊇’, ‘ ∩’, ‘ ∅’ and ‘=’ for multi-valued attributes.  For example, if S1(parent, brother) → S2

(uncle) is declared as a class correspondence, then we need to further specify the relation-
ship between attribute values to show how parent and brother can be connected together to
form an uncle concept.  In this case, if Pssn# and brothers are two attributes belonging to
parent and brother, respectively, then parent•Pssn# ∈ brother•brothers should be estab-
lished in the complete description of the assertion w.r.t. parent, brother and uncle. (We will
discuss it in the next subsection in more detail.)

Last, due to the fact that in a complex object class an attribute itself may have the type
of some other class, the correspondences between elements in different levels of two classes
have to be considered.  For example, assume that Book is a class of the type: type(Book) =
<ISBN: string, title: string, author: <name: string, birthday: date>> from S1, and that Au-
thor is a class of the type: type(Author) = <name: string, birthday: date, book: <ISBN:
string, title: string>> from S2.  Then, it is desirable to allow a correspondence of the form
S1•Book ≡ S2•Author•book (or S2•Author ≡ S1•Book•author) to specify some of their se-
mantic relationships exactly.

We summarize all the assertions in the following Table 1, Table 2 and Table 3.

4.2 Specifying an Assertion

The discussion given in the previous subsection motivates the following definition.
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Table 1. Assertions for
classer.

∫ equivalence

Õ,   inclusion

« intersection

∆ exclusion

Æ derivation

Table 2. Assertion for
attributes.

∫ equivalence

Õ,   inclusion

« intersection

∆ exclusion

a(x) composed-into

b more-specified-than

Table 3. Assertions for
aggregation functions.

∫ equivalence

Õ,   inclusion

« intersection

∆ exclusion

¿ reverse

Definition 4.1 A path w.r.t. a class C is a sequence of the form C•ai•aij•aijk ...•b, where ai is
an attribute name of C, aij  is an attribute name of type(ai) (if type(ai) ∈ type(C), i.e., ai itself
is a class), ..., aij...hl is an attribute name of type(aij...h) (if type(aij...h) ∈ type(C)), ... and b is of
the form aij...hl...s or “aij...hl...s.”  If the path is of the form C•ai•aij•aijk ...•aij...hl...s, then the at-
tribute values (or the aggregation function’s range) of C•ai•aij•aijk ...•aij...hl...s are represented.
Otherwise, the path is of the form C•ai•aij•aijk ...•“a ij...hl...s,” used to refer to the attribute
name (or the aggregation function name) aij...hl...s itself.

The following example helps to illustrate this concept.

Example 1. Consider the above Book (from S1) and Author (from S2) classes.  The paths
Book•author•birthday and Author•book•“ title” refer to the attribute values of birthday (in
the class Book from S1) and the string “title” (in the class Author from S2), respectively.

Based on the above discussion, a correspondence assertion (θ ::= ≡⊇∅∩→)
between a class A from schema S1 and a class B from S2 can be described as shown in Fig. 3,
including four kinds of correspondences value correspondence of  attributes in S1, value
correspondence of  attributes in S2, attribute correspondence between S1 and S2, and
agg_function correspondence between S1 and S2.

Note that in Fig. 3, not only can the attribute and agg_function correspondences
between two local schemas be declared (through “attribute correspondence” and
“agg_function correspondence”, respectively), but the value correspondences between two
attributes in the same schema can also be specified (through “value correspondence of
attributes in Si”, i = 1, 2; see also Example 3 for illustration).

S1(A2, A2, ..., An) q S2 ∑  B

value correspondence  of attributes in S1:
ºº

pathik d pathjl

ºº
value correspondence  of attributes in S2:

ºº where d::==|π|Œ| |∆|«,
attribute correspodence:           g::=a|b|∫|∆|«,

ºº           l::=¿|∫| |∆|« and
S1 ∑ pathms g S2 ∑ pathBt with P1, ..., Pg           Pj (j=1,...,g) are the predicates of the

agg_function correspondence:    form: att t Cont.

S1 ∑ pathuv l S2 ∑ pathBw

Fig. 3. Description of derivation assertion.
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Example 2. In Fig. 4, four correspondence assertions are shown, each specifying a differ-
ent semantic relationship.  Such assertions may be given by users or by DBAs.

S1 ∑ person ∫ S2 ∑ human                                                                    S1 ∑ book Õ S2 ∑ publication

   attribute correspondence:                                                                    attribute correspondence:

  S1 ∑ person ∑ ssn# ∫ S2 ∑ human ∑ ssn#    S1 ∑ book ∑ ISBN ∫ S2 ∑ publication  ∑ ISBN

  S1 ∑ person ∑ full_name ∫ S2 ∑ human ∑ name    S1 ∑ book ∑ title ∫ S2 ∑ publication  ∑ title

  S1 ∑ person ∑ city a(address) S2 ∑ human ∑ street-number    S1 ∑ book ∑ auther Õ S2 ∑ publication  ∑ contributor

  S1 ∑ person ∑ interests   S2 ∑ human ∑ hobby                              agg_function correspondence:

   S1 ∑ book ∑ published_by ∫ S2  ∑ publication ∑ published_by

S1 ∑ faculty « S2 ∑ student S1 ∑ man ∆ S2 ∑ woman

attribute correspondence: attribute correspondence:

S1 ∑ faculty ∑ fssn# ∫ S2 ∑ student ∑ ssn# S1 ∑ man ∑ ssn# ∫ S2 ∑ woman  ∑ ssn#

S1 ∑ faculty ∑ name ∫ S2 ∑ student ∑ name S1 ∑ man ∑ name ∫ S2 ∑ woman  ∑ name

S1 ∑ faculty ∑ income « S2 ∑ student ∑ study_support S1 ∑ man ∑ occupation ∫ S2 ∑ woman  ∑ occupation

agg_function correspondence: agg_function correspondence:

S1 ∑ faculty ∑ work_in ∫ S2  ∑ student ∑ work_in S1 ∑ man ∑ spouse ¿ S2  ∑ woman ∑ spouse

With the assertion show in Fig. 4(a), we can indicate that the class person from S1 is
equivalent to the class human from S2.   Three more assertions shown in Figs. 4(b), 4(c) and
4(d) help to explain the usage of “⊆”, “ ∩” and “∅”, respectively.

In the following, we will show three further examples to demonstrate how the deriva-
tion assertion can be used to specify complicated semantic relationships.

Example 3. Consider the following two schemas for genealogical applications.

                              (a)                         (b)

Fig. 4. Examples of correspondence assertions.

                              (c)                         (d)

In the Fig. 5, Pssn#, Bssn# and Ussn# are attributes for social security numbers.  The
existing methodologies, such as those proposed in [9, 12, 13, 17, 19, 30, 35], fail to declare
the semantic relationship among parent, brother (from S1) and uncle (from S2).  Using the
derivation assertion, however, we can specify the correspondence among them as follows:

S1(parent, brother) Æ  S2 ∑ uncle
value correspondence of attributes in S1:

parent ∑ Pssn# Œ brother ∑ brothers
value correspondence of attributes in S2: no constraints

Fig. 5. Two simplified data schemas.

S:1S :2person

Pssn#

children

parent brother
Bssn#
brothers

human

uncle Ussn#

niece_nephew
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attribute correspodence:

S1 ∑ brother ∑ Bssn# ∫ S2 ∑ uncle ∑ Ussn#
S1 ∑ parent ∑ children   S2 ∑ uncle ∑ niece_nephew

Note that in the above assertion, more complicated semantics are associated with “S1(parent,
brother) → S2(uncle)”.  That is, through the value correspondence of the attribute in S1:
parent•Pssn# ∈ brother•brothers as well as the attribute correspondences S1•brother•Bssn#
≡ S2•uncle•Ussn# and S1•parent•children ⊇ S2•uncle•niece_nephew, the following seman-
tic relationship can be declared:

parent(x, y), brother(z, y) → uncle(x, z),

where parent(x, y) indicates that y is the parent of x, brother(z, y) indicates that y is the
brother of z and uncle(x, z) indicates that z is the uncle of x.

Example 4. As another example, we consider the Book and Author classes again.  In [35], a
path correspondence assertion as shown in Fig. 6(a) was be defined to specify the corre-
sponding semantic relationship.  Then, for integration purposes, [35] provided a “path inte-
gration rule” to integrate these two semantically equivalent paths.  The shortcoming of this
method is that no formal method can be developed to represent the integration results.

In contrast, using our method, this path equivalence can be represented as two deriva-
tion assertions as shown in Figs. 6(b) and (c).  Then, based on these two assertions, two
inference rules can be exactly constructed, each for an assertion as shown in section 5.  In
this way, the relevant semantics can be formally established.  Furthermore, such rules can be
created automatically using our integration principles and integration algorithms, which we
will present in the next section.

S1 (Book-author) ∫ S2(Author-book)

S1 ∑ Book Æ S2 ∑ Author S2 ∑ Author Æ S1 ∑ Book

value correspondence of attributes in S1: no constraints value correspondence of attributes in S1: no constraints

value correspondence of attributes in S2: no constraints value correspondence of attributes in S2: no constraints

attribute correspodence: attribute correspodence:

S1 ∑ Book ∑ ISBN ∫ S2 ∑ Author ∑ book ∑ ISBN S2 ∑ Author ∑ name ∫ S1 ∑ Book ∑ author ∑ name

S1 ∑ Book ∑ title ∫ S2 ∑ Author ∑ book ∑ title S2 ∑ Author ∑ birthday ∫ S1 ∑ Book ∑ author ∑ birthday

Example 5. As a third example of derivation assertion, we consider an extreme situation to
show how derivation assertions can be used to specify the semantic correspondence when
the so-called schema conflict exists [14].  Examine the following two local schemas:

S1: type (car1) = <time: string, car-name: string, price: integer>,
S2: type (car2) = <time: string, car-name1: integer, ..., car-namen: integer>.

        (a)

                            (b)                                                                                                                            (c)

Fig. 6. Path equivalence and the corresponding derivation assertions.
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In S1, there is a single class, with one instance per month and car, storing the actual price at
that time.  In S2, there is a single class, with one instance per month, and one attribute per
car, named using the car name and storing its price.  The semantic correspondence between
them can be established as shown in Fig. 7. (Note that the goal of this example is to show an
extreme case in a spectrum of semantic conflicts, which can be declared by establishing
derivation rules.)

S1 ∑ car1Æ S2 ∑ car2 S2 ∑ car2 Æ S1 ∑ car1

value correspondence of attributes in S1: no constraints value correspondence of attributes in S2: no constraints

value correspondence of attributes in S2: no constraints value correspondence of attributes in S1: no constraints

attribute correspodence: attribute correspodence:

S1 ∑ car1 ∑ time ∫ S2 ∑ car2 ∑ time   S2 ∑ car2 ∑ time ∫ S1 ∑ car1 ∑ time

S1 ∑ car1 ∑ car-name « S2 ∑ car2 ∑ {‘ car-name1’,...,‘car-namen’}     S2 ∑ car2 ∑ car-name1 Õ S1 ∑ car1 ∑ price

S1 ∑ car1 ∑ price « 
i

n

=1
U (S2 ∑ car2 ∑ car-namei)             with S1 ∑ car1 ∑ car-name = car-name1

                    ... ...

                                 (a)      S2 ∑ car2 ∑ car-namen Õ S1 ∑ car1 ∑ price

                  with S1 ∑ car1 ∑ car-name = car-namen

Fig. 7. Derivation assertions.

                                                   (b)

5. INTEGRATION STRATEGIES

Using our object model, we can integrate any two local (object-oriented) databases
based on an assertion set given manually.  As we will see in Section 6, this integration
process can be done almost automatically by executing our integration algorithm with all
types of assertions involved.

Once the correspondence assertions between local databases have been stated, inte-
gration can be done based on a series of integration principles.  In this section, we will
discuss these principles in detail.

To simplify our exposition, we assume two default strategies.  The first one is that, if
for a class, no equivalence assertion is defined, we make a copy of it in the integrated
schema, and the relationships with the other integrated classes are built in terms of the
corresponding local ones.  The second default strategy is that, if no assertion for a pair of
attributes is specified, we regard them as being semantically disjointed.  Such attributes
should be simply accumulated into the corresponding integrated class.  Furthermore, we
use IS(Si•A) (resp., IS(Si•B•a)) to denote the integrated version of class A (resp., attribute a
of some class B) of the local schema Si.  Thus, if S1•A ≡ S2•B, then IS(S1•A) = IS(S2•B) =
equivalence-class (S1•A, S2•Β), denoted as ISAB.  Similarly, for any two equivalent attributes
(aggregation functions) IS(S1•A•a) (IS(S1•A•f)) and IS(S2•B•b) (IS(S2•B•g)), we use ISab

(ISfg) to denote their integrated version.  Further, we use S to represent the integrated schema
and value_set(att) for the largest non-null subset of the domain of the attribute att w.r.t. the
current database state.  Finally, “/” represents the set difference operation.

(1) Integration principle for equivalence assertions.
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Based on the above notations, the first principle can be defined as follows.

if  S1 ∑ A ∫ S2 ∑ B then
{ insert (ISAB, S);

for  each attribute pair (a, b) with a in A and b in B do
{ switch aqb {

case awb with w Œ {∫,  , Õ}: insert (ISab, ISAB);
value_set (ISab): = value_set (S1 ∑ A ∑ a) » value_set (S2 ∑ B ∑ b);
break;

case a « b: insert (a_, ISAB); value_set (a_): = value_set (S1 ∑ A ∑ a)/
value_set (S2 ∑ B ∑ b); } (*“/” represents set difference*)
insert (b_, ISAB); value_set(b_): = value_set (S2 ∑ B ∑ b)/value_set

(S1  ∑ A ∑ a);};
insert (a_b, ISAB); value_set(a_b): = value_set (S1 ∑ A ∑ a)«value_set

(S2  ∑ B ∑ b);};
break;

case a ∆ b: insert (IS( S1 ∑ A ∑ a), ISAB); insert (IS (S2 ∑ B ∑ b), ISAB);
value_set (IS(S1 ∑ A ∑ a)): = value_set (S1 ∑ A ∑ a);
value_set (IS(S2 ∑ B ∑ b)): = value_set (S2 ∑ B ∑ b);
break;

case a a (z)b: insert (z, ISAB); value_set(z): = cancatenation (A ∑ a, B∑b);
break;

case a b b: insert (IS(S1 ∑ A ∑ a), ISAB); value_set(IS (S1 ∑ A ∑ a)): =
value_set (a);
break;}}

for  each aggregation function pair (f, g) with f in A and g in B do
{ switch f q g {

case f ¿ g: insert (IS(S1 ∑ A ∑ f), ISAB) with the corresponding local cc’s;
insert (IS(S2 ∑ B ∑ g), ISAB) with the corresponding local cc’s;
break;

case f w g with w Œ { ∫,  , «}: let C be the range class of A ∑ f; let D be
the range class of B ∑ g; if C ∫ D or C « D then insert (ISfg, ISAB) and
construct its cardinality constraint (cc) based on the integration prin-
ciple for is-a and aggregation links (see principle 6);
break;

case f ∆ g: insert (IS(S1 ∑ A ∑ f), ISAB) with the corresponding local cc’s;
insert (IS(S2 ∑ B ∑ g), ISAB) with the corresponding local cc’s;
break;}}}

where a_, b_, and a_b represent three newly created attributes for the integrated class, and
where cancatenation(A•a, B•b) is a function defined as follows:

cancatenation x y

x y oi A oi B oi oi

x oi a y oi b

Null

( , ) ;

.

=
⋅ ∈ ∈ =

⋅ = ⋅






if there exist  and  such that 

(in terms of data mapping),   =   and 

otherwise

1 2 1 2

1 2
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In addition, in the description for the aggregation function integration, the corre-
sponding strategies are not specified in detail, but will be treated using Principle 6.

Using this statement, we can integrate two equivalent classes into one.  In this way,
all the relevant attributes and aggregation functions can be handled in terms of the “attribute
and aggregation function correspondence” given in the corresponding assertion.

Example 6. Consider the assertions shown in Fig. 4(a).  Let “person” be chosen to stand for
ISperson,human, “ssn#” for ISpssn#,hssn#, “name” for ISfull_name,name and “interests” for ISinterests,hobby,
respectively.  Then, the integrated version of S1(person) and S2(human) should be of the
following type:

type(person) = <ssn#: string, name: string, interests: {string}, address: strings con-
nected with ⋅>,

where interests is a multi-valued attribute, {string} represents a set of strings and “address”
is a new attribute name constructed in terms of “S1•person•city α(address) S2•human•street-
number” given in assertion Fig. 4(a).

(2) Integration principle for inclusion assertions.

For the inclusion relationship, a simple integration principle can be defined as follows:

if  S1•A ⊆ S2•B then insert is_a(IS(A), IS(B)) into S.

Additionally, in order to avoid any redundantly generated is_a link, we extend the
above principle to obtain a more general one:

if  S1•A ⊆ S2•B1, S1•A ⊆ S2•B2, ..., S1•A ⊆ S2•Bn, <B2: B1>, ..., <Bn: Bn-1> then insert
is_a(IS(A), IS(Bn)) into S.

This generalized principle can be pictorially illustrated as shown in Fig. 8.

From this diagram, we can see that for the case shown in Fig. 8(a), only one is-a link
“ is_a(IS(A), IS(Bn))” is generated in terms of the above principle(as shown in Fig. 8(b)),
instead of a set of is_a links, each one for an inclusion assertion.  Note that it is possible
that, for some Bi (1 < i < n), no assertion between S1•A and S2•Bi will be specified for some
reason.  In this case, a more complex control mechanism is needed to implement the above
principle.  We will addressed this problem in Subsection 6.1, where an efficient integration
algorithm will be discussed in detail.

Fig. 8. Illustration for is_a link integration.

S1 :
B 1

B 2

B n

A

S :2

(b)

is_a

S 1 :
B 1

B 2

B n

S :2

(a)

A



SCHEMA INTEGRATION 569

Example 7. Let professor be a class from S1.  Let human and employee be two classes from
S2.  Assume that S1•professor ⊆ S2•human and S1•professor ⊆ S2•employee are declared.
Then, based on the above principle, only one is-a link “is_a(IS(professor), IS(employee))”
will be generated for the integrated schema if S2•employee ⊆ S2•human is locally (in S2)
specified.

(3) Integration principle for intersection assertions.

The third integration principle deals with the intersection relationship.  For them, we
construct rules to do the corresponding integration tasks.  First, for each pair of attributes
whose semantic relationship is specified using the intersection assertion, we provide a so-
called attribute integration function (AIF) for the purpose of attribute value conflict
resolution.  For instance, for assertion shown in fig. 4(c), if S1•faculty•income and S2•
student•study_support are integrated into an attribute named income_study_support, we
can compute its attribute values based on the following function:

AIF x yi s s_ _ ( , ) =

x y
oi faculty oi student oi oi

x oi income y

oi study
Null

( ),

_ ;
.

= + ∈ ∈ =
= ⋅

= ⋅











2 1 2 1 2

1

2

if there exist  and  such that 

in terms of data mapping  and 

otherwise
support

Further, for an integrated attribute ISattr, we define a function re(Si, ISattr) used to find
its corresponding local version in Si.  (Note that such functions have to be provided by users
or DBAs since their semantics entirely depend on individual instants.)  Then, the integra-
tion principle can be described as follows:

if  S1 ∑ A « S2 ∑ B then
{insert IS(S1 ∑ A) into S;
insert IS(S2 ∑ B) into S;
insert ISAB into S;
construct {<x: ISAB> ‹ <x: IS(S1 ∑ A)>, <y: IS(S2 ∑ B)>, y = x;

<x: ISA_> ‹ <x: IS(S1 ∑ A)>, ÿ <x: ISAB>;
<x: ISB_> ‹ <x: IS(S2 ∑ B)>, ÿ <x: ISAB>},

        for each attribute pair (a, b) with a in A and b in B do
    {switch a q b {

case a w b with w Œ {∫,  , Õ}:
construct {insert(ISab, ISAB) ‹ <_:ISAB>; (*Here “_”means “do not care”. *)
x Œ value_set(ISab) ‹ x Œ value_set (re(S1, ISab)) ⁄ x Œ value_set (re(S2, ISab))};
break;

case a « b: construct {insert (ISab, ISAB) ‹ <_:ISAB>;
                   AIFa_b(x,y) Œ value_set(ISab) ‹ x Œ value_set (re(S1, ISab)), y Œ value_set (re(S2, ISab))};

break;
case a ∆ b: construct {insert (IS(S1 ∑ A ∑ a), ISAB) ‹ <_:ISAB>;

insert (IS(S1 ∑ A ∑ b), ISAB) ‹ <_: ISAB>;
break;

case aa (z) b: construct {insert (z, ISAB) ‹ <_:ISAB>;
                 cancatenation(x, y) Œ value_set(z) ‹ x Œ value_set (re(S1, ISab)), y Œ value_set (re(S2, ISab))};



YANGJUN CHEN570

break;
case a b b: construct {insert (IS(S1 ∑ A ∑ a), ISAB) ‹ <_: ISAB>;

x Œ value_set (IS(S1 ∑ A ∑ a)) ‹ <_: ISAB>, x Œ value_set (re(S1, IS(S1 ∑ A ∑ a));}
break;}}

for  each aggregation function pair (f, g) with f in A and g in B do
{ switch f qg {

case f ¿ g: report an error; break;
case f w g with w Œ {∫,  , «}: let C be the range class of A ∑ f; let D be the range calss

     of B ∑ g; if C ∫ D or C « D then construct
insert (ISfg with cc, ISAB) ‹ <_: ISAB>; (*cc represents its cardinality con-

straint generated based on Principle 6.*)
break;

case f  ∆ g: construct {insert (IS(S1 ∑ A ∑ f) with cc’, ISAB) ‹ <_:ISAB>;
insert (IS(S1 ∑ A ∑ g) with cc ”, ISAB) ‹ <_: ISAB>; (*where cc ’ and cc”
represents the local cardinality constraints for f and g,  respectively.*)

     break;}}}}.

In the above description, ISAB, ISA-, and ISB- represent, respectively, the intersection part of
S1•A and S2•B, the part of S1•A which does not belong to S2•B, and the part of S2•B which
does not belong to S1•A.  Such symbols can be thought of as virtually defined classes since
their objects can be referenced only by computing the body classes of rules defining them.

Example 8. Consider the assertion S1•faculty ∩ S2•student, for which three rules are gen-
erated to define the virtual classes:

<x: ISfaculty, student> ‹ <x: IS(S1 ∑ faculty)>, <y: IS(S2 ∑ student)>, y =x,
<x: ISfaculty-> ‹ <x: IS(S1 ∑ faculty)>, ÿ <x: ISfaculty, student>,
<x: ISstudent-> ‹ <x: IS(S2 ∑ student)>, ÿ <x: ISfaculty, student>.

In addition, the following rules are established to define virtual attributes and virtual aggre-
gation functions for ISfaculty, student:

insert (ISfssn#, ssn#, ISfaculty, student) ‹ <_: ISfaculty, student>,
x Œ value_set (ISfssn#,ssn#) ‹ x Œ value_set(re(S1, ISfssn#,ssn#)) ⁄ x Œ value_set (re

(S2, ISfssn#,ssn#)),
insert(ISname,name, ISfaculty, student) ‹ <_:ISfaculty,student>,

x Œ value_set (ISname,name) ‹ x Œ value_set (re(S1, ISname,name)) ⁄ x Œ value_set
(re(S2, ISname,name)),

insert(ISincome, study_support, ISfaculty, student) ‹ <_:ISfaculty, student>,
AIFi_s_s(x, y) Œ value_set (ISincome, study_support) ‹

x Œ value_set (re(S1, ISincome, study_support)), y Œ value_set (re(S2, ISincome, study_support)) .

Note that we do not establish rules for attributes appearing in ISfaculty- and ISstudent- since, for
them, no integration happens at all.

(4) Integration principle for disjoint assertions.

First, we note that an assertion of the form S1•A ∅ S2•B is meaningful only in the
case where there are two object classes A' and B' such that S1•A' ≡ S2•B' and <A: A'> and
<B: B'> hold.  Accordingly, the integration principle for disjoint assertions can be defined
as follows:
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if  IS(S1•A' ) ≡ IS(S2•B' ), S1•A' ⊇ S1•A, S2•B' ⊇ S2•B, S1•A ∅ S2•B then construct <x:
IS(S2•B)> ⇐ <x: IS(S1•A')>, ¬ <x: IS(S1•A)>.

In general, if we have a set of disjoint assertions, S1•Ai ∅ S2•Bj (i = 1, ..., n; j = 1, ..., m) with
<Ai: A>, <Bj: B> for each i and j, and if IS(S1•A) ≡ IS(S2•B), then we can establish the
following rule to integrate the relevant concepts:

<x: IS(S2•B1)> ∨ ...∨ <x: IS(S2•Bm)> ⇐ <x: IS(S1•A)>, ¬ <x: IS(S1•A1)>, ..., ¬ <x: IS
(S1•An)>.

Alternatively, if there exists a specification about reverse aggregation functions, we can
rewrite this principle in the following way:

if  S1 ∑ A ∆ S2 ∑ B then {
if  there exists S1 ∑ A ∑ aggA ¿ S2 ∑ B ∑ aggB then

construct <x: IS(S2 ∑ B)|... ISagg
A
, agg

B
: y ...> ‹ <y: IS(S1 ∑ A)|...ISagg

A
, agg

B
: x...>} and

   <y: IS(S1 ∑ A)|...ISagg
A
,agg

B
: x...>} ‹ <x: IS(S2 ∑ B)|...ISagg

A
,agg

B
: y...>,

where ISagg
A
,agg

B
 is defined as follows:

IS x
agg x x IS S A

agg x x IS S Bagg agg
A

B
A B, ( )

( ) ( );

( ) ( ).
=

∈ •
∈ •





1

2

(5) Integration principle for derivation assertions.

As with the intersection assertion, for a derivation assertion, several virtual rules are
constructed but in a more complex form.  To this end, we first partition (manually) one
derivation assertion into several smaller ones such that neither the attribute name nor the
aggregation function appears more than once in an attribute correspondence or in an aggre-
gation function correspondence.  For example, assertions shown in Figs. 7(a) and (b) can be
decomposed into the forms shown in Figs. 9 and 10, respectively.

S1 ∑ car1 Æ S2 ∑ car2                                                     S1 ∑ car1 Æ S2 ∑ car2

value correspondence of attributes in S1: no constrains value correspondence of attributes in S1: no constraints

value correspondence of attributes in S2: no constraints value correspondence of attributes in S2: no constraints

attribute correspodence: attribute correspodence:

S1 ∑ car1 ∑ time ∫ S2 ∑ car2 ∑ time         ∑ ∑ ∑ S1 ∑ car1 ∑ time ∫ S2 ∑ car2 ∑ time

S1 ∑ car1 ∑ car-name « S2 ∑ car2 ∑ {‘ car-name1’} S1 ∑ car1 ∑ car-name « S2 ∑ car2 ∑ {‘ car-namen’}

S1 ∑ car1 ∑ price « S2 ∑ car2 ∑ car-name1 S1 ∑ car1 ∑ price « S2 ∑ car2 ∑ car-namen

S2 ∑ car2 Æ S1 ∑ car1                  S2 ∑ car2 Æ S1 ∑ car1

value correspondence of attributes in S2: no constrains value correspondence of attributes in S2: no constraints

value correspondence of attributes in S1: no constrains value correspondence of attributes in S1: no constraints

attribute correspodence: attribute correspodence:

S2 ∑ car2 ∑ time ∫ S1 ∑ car1 ∑ time         ∑ ∑ ∑     S2 ∑ car2 ∑ time ∫ S1 ∑ car1 ∑ time

S2 ∑ car2 ∑ car-name1 Õ S1 ∑ car1 ∑ price     S2 ∑ car2 ∑ car-namen Õ S1 ∑ car1 ∑ price

with S1 ∑ car1 ∑ car-name = car-name1                   with S1 ∑ car1 ∑ car-name = car-namen

(a) (b)

Fig. 10. Decomposed derivation assertions for S2 ∑ car2 Æ S1 ∑ car1.

Fig. 9. Decomposed derivation assertions for S1 ∑ car1 Æ S2 ∑ car2.
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Then, we construct a graph G (called assertion graph) for each decomposed deriva-
tion assertion of the form S1(A1, A2, ..., An) → S2•B.  In the graph, there is a node for each
“path” refering to an element in some class (see Definition 3.1) and an edge between nodes
patha and pathb iff patha rel pathb with rel ∈ {=, ∈, ⊆} is specified.  For instance, for the
assertion shown in Example 3, we can construct the graph shown in Fig. 11(a).

The key step in constructing a virtual rule is to establish the relationships among the
O-terms of the rule to be constructed through variables as in Artificial Intelligence.  (More
exactly, specify variables as in parent(x, y), brother(z, y) → uncle(x, z).)  For this purpose,
we mark the nodes of G in the following way:

(1) Each connected subgraph of G is marked using a different variable as shown in Fig.
11(a).  For example, the connected subgraph consisting of only one edge
(parent•Pssn#, brother•brothers) is marked x1.

(2) For each predicate p(path1, ..., pathm) appearing in the assertion, we construct a
hyperedge he(p), representing the set containing nodes path1, ..., and pathm.  For
example, in the graph associated with the assertion shown in Fig. 10(a), we have a
hyperedge for the predicate S1•car1•car-name = car-name1 (see Fig. 11(b) for an
example, in which the hyperedge is marked p.)  Note that, here, car-name1 is a
constant, and ‘= car-name1’ can be considered to be a predicate name.  Then,
‘S1•car1•car-name = car-name1’ is a unary predicate.

(We also note that the isolated node “S1•car1•car-name” is considered to be a connected
subgraph, which is marked y3.)

The goal of the assertion graph is to facilitate the generation of derivation rules.
Given a derivation assertion of the form S1(A1, A2, ..., An) → S2•B, what we want is to
establish a rule of the form B' ⇐ A1', A2', ..., An', p1, ..., pl, where B' and An' (i = 1, ..., n) are
O-terms and pj (j = 1, ..., l) are normal predicates.  Intuitively, B' corresponds to B, Ai' to Ai

and pj to the predicates appearing in the assertion.  They are logically linked together through
shared attribute variables and object variables.

We first define the following concepts.

Definition 5.1 A reverse substitution θ is a finite set of the form {c1/x1, ..., cn/xn}, where
each xi is a variable, each ci is a constant or a variable and c1, ..., cn are distinct.  Each element
ci/xi is called a binding for ci.

Fig. 11. Assertion graph and hyperedges.

S1 • car1 :S2 • car2S1(parent, brother) S2 • uncle :

p
p: S1 • car1 • car-name = car-name1

y3

y1

x3

S1 • brother • Bssn#

S1 • parent • children
S2 • uncle • niece_nephew

S2 • uncle • Ussn#

S2 • car2 • time
S1 • car1 • time

S1 • car1 • priceS2 • car2-name1

S1 • car1 • car2-name1

brother • brothersx1

x2

parent • Pssn#

y2

(a) (b)
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This concept can be thought of as a reverse operation of the substitution concept
defined in [29].  In fact, we are performing a process which is just the reverse of rule
evaluation in logic programming, by means of which variables are instantiated.  But in a
reverse substitution, a constant (or a variable) will be replaced with a variable.

Definition 5.2 Let θ = {c1/x1, ..., cn/xn} be a reverse substitution, and let A be an O-term, a
constant or a variable.  Then, Aθ is an O-term (or a variable) obtained from A by simulta-
neously replacing each occurrence of ci in A with the variable xi (i = 1, ..., n).

As an example, consider O-term B = <o1: IS(S2•uncle)Ussn#: x, niece_nephew: y>.
Let θ = {x/x2, y/x3}.  Then, Bθ = <o1: IS(S2•uncle)Ussn#: x2, niece_nephew: x3>.  Note
that in this example, both x and y are typed variables for strings.

If S = {A1, A2, ..., An} is a finite set of O-terms, constants and variables,  and if θ is a
reverse substitution, then Sθ denotes the set {A1θ, A2θ, ..., Anθ}.

Definition 5.3 Let θ = {c1/x1, ..., cn/xn} and δ = {d1/y1, ..., dm/ym} be reverse substitutions.
Then, the composition θδ of θ and δ is the reverse substitution obtained from the set.

{ c1/x1δ, ..., cn/xnδ, d1/y1, ..., dm/ym}

by deleting any binding ci/xiδ for which ci = xiδ and deleting any binding dj/yj for which dj ∈
{ c1, ..., cn}.

For a given derivation assertion, the relevant reverse substitutions can be produced in
terms of its assertion graph G.  According to the two different variable-marking approaches,
we have two methods we can use to produce reverse substitutions:

(i) Consider a connected subgraph Gs of G.  Assume that Gs is marked using xs.  Let
{ v1, ..., vt} be the node set of Gs.  Then, each vq may be of the form C•ai•aij•aijk ...
•“a ij...hl...s” or of the form C•ai•aij•aijk ...•aij...hl...s (see Definition 4.1).  If vq is of the
form C•ai•aij•aijk ...•“a ij...hl...s”, then construct a binding bq = C•ai•aij•aijk ...•“a ij...hl...

s”/xs.  If vq is of the form C•ai•aij•aijk ...•aij...hl...s , then construct a binding bq = x/xs,
where C•ai•aij•aijk ...•aij...hl...s: x is an attribute descriptor in the corresponding O-
term.  In this way, we can produce a reverse substitution θs = {b1, ..., bq, ..., bt} for
Gs.

(ii) Let he(p) be a hyperedge containing nodes u1, ..., um, where p is a predicate appear-
ing in the assertion.  Let bq = c/x be the binding generated as described above for uq

(q = 1, ..., m).  If c is a variable, let bq' be a/x, where a:c is an attribute descriptor in
the corresponding O-term.  Otherwise, let bq' be bq.  Then, the reverse substitution
for the predicate p is the composition {b1'}...{ bq'}...{ bm'}.  (Note that each {bq'} is
a reverse substitution.)

Based on the above discussion, the integration principle for derivation assertion can be
summarized as follows:

if  S1 (A1, A2, ..., An) ÆS2 ∑ B then
{construct an assertion graph G for it;

mark each connected subgraph Gj of G using xj;
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construct a hyperedge for each predicate pi appearing in the assertion;
for  each Gj do

generate reverse substitution qj;
for  each hyperedge he(pi) do

generate reverse substitution di;
generate a derivation rule of the form:

Bq1...qj... ‹ {A1, A2,...,An} q1...qj, {p1,...,pi...} d1... di...
}

Example 9. Consider the derivation assertion given in Example 3.  Its assertion graph can
be constructed as shown in Fig. 11(a).  Assume that the O-terms of the three classes are B =
<o1: IS(S2•uncle)Ussn#: x, niece_nephew: y>, A1 = <o2: IS(S1•parent)Pssn#: z, children:
u> and A2 = <o3: IS(S1•brother)Bssn#: v, brothers: w>.  Then, from that assertion graph,
three reverse substitutions can be produced: θ1 = {z/x1, w/x1}, θ2 = {v/x2, x/x2} and θ3 = {u/
x3, y/x3}.

According to the above principle, an inference rule of the following form will be
constructed:

Bq1q2q3‹ {A1, A2} q1q2q3

fl
<o1: IS(S2 ∑ uncle) | Ussn#: x2, niece_nephew: x3> ‹
<o2: IS(S1 ∑ parent) | Pssn#: x1, children: x3>, <o3: IS(S1 ∑ brother) | Bssn#: x2, brothers: x1>.

Example 10. Applying this principle to the decomposed assertions shown in Fig. 10, we
can establish a set of rules as follows:

<o1: IS(S1 ∑ car1) | time: y1, car-name: y2, price: y3> ‹ <o2: IS(S2 ∑ car2) | time: y1,
car-name1: y3>, y2 = car-name1
. . .

<o1: IS(S1 ∑ car1) | time: y1, car-name: y2, price: y3> ‹ <o2: IS(S2 ∑ car2) | time: y1,
car-namen: y3>, y2 = car-namen.

We need only to consider assertion shown in Fig. 10(a), for which a graph as shown in Fig.
11(b) can be constructed.  Assume that the O-terms of class car1 and car2 are of the forms B
= <o1: IS(S1•car1)time: x, car-name: y, price: z>, and A = <o2: IS(S2•car2)time: u, car-
name1: v, ...>, respectively.  Then, from that assertion graph, four reverse substitutions can
be generated: θ1 = {x/y1, u/y1}, θ2 = {v/y2, z/y2}, θ3 = {y/y3} and δ = {car-name/y3}.  The first
three are produced as its connected subgraphs while the last one is established according to
the hyperedge in it.

Let p denote the predicate S1•car1•car-name = car-name1.  Then, the first rule of the
above set can be built as follows:

 Bq1q2q3 ‹ Aq1q2q3, pd
  fl

<o1: IS(S1 ∑ car1)|time: y1, car-name: y2, price: y3> ‹ <o2: IS(S2 ∑ car2)|time: y1, car-
name1: y3>, y2 = car-name1.
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Example 11. Given assertions shown in Figs. 6(b) and (c), the following two inference
rules can be constructed based on the above principle:

<y: IS(S2∑Author)|name: string, birthday: date, book: <ISBN: y1, title: y2>> ‹ <x: IS
(S1∑Book)| ISBN: y1, title: y2,...>,
<y: IS(S1∑Book) |..., author: <name: y1, birthday: y2>> ‹ <x: IS(S2∑Author) |name:
y1, birthday: y2, book: <name: string, birthday: date>>.

If the attribute book in the class Author and the attribute author in the class Book are de-
fined as aggregation functions, then we can generate the following two simpler rules using
the above principle with a bit of modification:

<x: IS(S1∑Book)> ‹ <y: IS(S2∑Author) |book: x, ...>
<y: IS(S2∑Author)> ‹ <x: IS(S1∑Book) |author: y,...>.

As in a deductive database, the generated rules should be checked to see whether they are
well-defined, safe, or domain independent and allowed in the presence of negated body
predicates [8].

(6) Integration principle for is-a and aggregation links.

As for an is-a link is_a(A, A') in a local schema S1, let us consider the pair of the form
(B, B') in another schema S2, which satisfies the following conditions:

- B and B' are connected with an is-a path, i.e., a path of the form: B ← ... ← B';
- IS(S1•A') ≡ IS(S2•B') and IS(S1•A) ≡ IS(S2•B).

Then, if we insert any local is-a link into the integrated schema S (in fact, using our
integration algorithm, this simple strategy can be employed), we will have some subgraphs
of the forms as shown in Figs. 12(a) and (b) in the integrated schema.

Therefore, for the subgraph shown in Fig. 12(a), only one of the two links should be
inserted while for the subgraph shown in Fig. 12(b), the link indicated by * should not be
inserted. This principle can be formally represented as follows:

if  IS(S1∑A') ∫ IS(S2∑B'), IS(S1∑A) ∫ IS(S2∑B), (is_a(A, A') ⁄ is_a(B, B')) then insert
is_a(ISAB, ISA’B’) into S.

Fig. 12. Redundant is-a links which may exist in an integrated schema.

ISA’B’

ISAB

ISA’B’

ISAB

(a) (b)

**
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if IS(S1∑A') ∫ IS(S2∑B'), IS(S1∑A) ∫ IS(S2∑B), is_a(A, A'), is_a(B, B1), is_a(B1, B2),...,
is_a (Bn, B') then

insert is_a(ISAB, IS(B1)), is_a(IS(B1), IS(B2)),..., is_a(IS(Bn), ISA’B’) into S.

For the aggregation links, we consider only links of the form agg(B, B') and agg(A,
A') with IS(S1•A') δ IS(S2•B') and IS(S1•A) δ IS(S2•B) (δ ∈ { ≡, ∩}).  In these cases, the
cardinality constraints associated with them should be integrated.  To this end, consider the
simple constraint lattice shown in Fig. 13(a).

Fig. 13. Constraint lattices.

[n : m]

[1 : m] [n : 1]

[1 : 1]

(a)

[md_m: md_n] [md_n: 1] [n: md_1] [md_1: n] [1: md_n] [1: 

[md_n: md_1] [md_1: md_n] [md_1: 1] [1: md_1]

[md_m: n] [1 : n][n : 1][m: md_n]

[m : n]

[md_1: md_1]

(b)

Based on this constraint lattice, the principle for resolving the constraint conflicts
can be described as follows:

if  Agg(A', A) with cc1, Agg(B', B) with cc2 then {insert Agg(ISA'B', ISA'B') with lcs(cc1,
cc2) into S}, where lcs(cc1, cc2) represents the ‘least common super-node’ of cc1 and
cc2.

For example, [n : m] is lcs([1: m], [n : 1]) while [n : 1] is lcs([1: 1], [n : 1]).  In
addition, a node is considered to be the least common super-node of itself.  This idea can be
generalized for more complicated cases.  Consider, for example, the cardinality constraint
of the so-called “mandatory n to 1”, denoted [md_n : 1], which can be used to specify the
situation where the participation is total (mandatory) and the mapping is “n to 1”.  If some
constraints like this are involved, we can establish a constraint lattice as shown in Fig. 13
(b) to make the above principle implementable.  This lattice reflects a relaxation strategy of
the cardinality constraints.  If a constraint conflict is encountered, we can resolve it by
loosening the local constraints along the lattice from bottom-up, which is least loosened.
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6. CONTROLLING THE INTEGRATION PROCESS

In this section, we will discuss our integration algorithm.  This algorithm generates
almost automatically an integrated schema from two local object-oriented ones based on
their correspondence assertions declared by users.  Only in very difficult situations is hu-
man interference needed.  (See the discussion in 6.1.)  The algorithm is efficient compared
to that proposed in [33] since the semantics of local schemas are used to avoid the need to
check useless pairs of concepts.  More importantly, a semantically clear integrated schema
can be generated by avoiding redundant is-a links.  In subsection 6.1, we specify the main
part of our algorithm in detail.  In subsection 6.2, we discuss how to integrate links.  Finally,
the correctness and time complexity of the algorithm are considered in subsection 6.3.

6.1 Integration Algorithm

Notice that in our methodology, any local schema will be transformed into an object-
oriented one before the integration process is performed.  Consequently, a local schema can
be viewed as a graph consisting of a set of object classes connected by is-a links, aggrega-
tion links or semantic constraints.  Accordingly, the input of the following algorithm for
controlling the integration process consists of two graphs (with each representing a local
schema) and a set of assertions.

In the following, we will not consider the principles for integrating links.  We will
postpone the relevant discussion concerning link integration to subsection 6.2.  In addition,
to simplify the explanation, we will assume that each graph has a start node and will be

Fig. 14. Illustration of input graphs.

S 1
: S :

2

traversed only along is-a links.  If an input graph does not have such a node, we construct a
virtual one for it, and for each of those nodes which have no parent nodes in the original
graph, we draw a meaningless edge from it to the virtual start node.  Then, the input graphs
of the algorithm can be illustrated as shown in Fig. 14, where each node corresponds to a
class and each arc corresponds to an is-a or an aggregation link.

To perform the integration, a naive algorithm will check, for example, all nodes in S2

for each node in S1 to see whether some integration should be done on the corresponding
concepts.  If each local schema contains O(n) nodes, then, including the time spent on the
integration operations, the time complexity of a naive algorithm will be larger than O(n2).
Below is a naive algorithm which uses a breadth-first-search but works in a different way
from that proposed in [33].

Algorithm  naive_schema_integration
input: S1, s1; S2, s2; (*s1 and s2 represent the start nodes of S1 and S2, respectively.*)
output: S (*S represents the integrated schema.*)
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begin
1 Q: = (s1, s2); (*Q is a queue structure used to control breadth-first search*)
2 while Q is not empty do
3       { (N1, N2):= pop(Q); (*take the top element of Q*)
4 let N11,...,N1k be child nodes of N1;
5 let N21,...,N2m be child nodes of N2;
6 put all the pairs of the form (N1i, N2j), (N1, N2j) or (Nli, N2) (i=1,..., k; j=1,..., m) into Q;
7 do the integration according to the assertion between N1 and N2;
           }

end

In this algorithm, a queue structure Q is used to control a breadth-first search of two
input graphs.  Each element in Q is a pair (N, N'), where N is a node in S1 and N' a node in S2.
In each iteration, the top pair (a, b) of Q will be checked, and the corresponding integration
operation will be performed as described in section 5.  Simultaneously, all the pairs of the
form (a', b') are put into Q, and are checked in the subsequent iterations, where a' is a or an
a's child node and b' is b or a b's child node.  We note that this control mechanism is quite
different from that proposed in [33].  There, traversal of the two input graphs is completely
separated.  That is, traversal is performed in one of the two input graphs, say S1.  Then, for
each node in S1, the entire S2 is searched.  In contrast, in the above algorithm, these two
processes are integrated together, based on which a lot of optimization (which will be
discussed below) can be realized without difficulty.  More importantly, the integration
principle for inclusion of assertions (for which links will be generated) can be elegantly
handled by integrating a depth-first traversal into this algorithm.

First, we will consider the possibility of optimization by analyzing the characteristics
of correspondence assertions.

The following observations are important.

Fig. 15. Two simple input graphs.
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1. Consider the two simple graphs shown in Fig. 15.
If they are the input graphs and N1 ≡ N2 is an assertion in the assertion set, then the pairs
pa1 = {(N1, N21), (N1, N22), (N1, N23), (N1, N24)} and pa2 = {(N11, N2), (N12, N2), (N13, N2)}
needn’t be checked for the following reason.  Consider any N ∈ {N21, N22, N23, N24}.
Then, from N1 ≡ N2 and is_a(N, N2), we know immediately that is_a(IS(N), IS(N1)) holds.
That is, the semantic correspondences between each pair of pa1 can be derived.  The
same analysis applies to all pairs of pa2.

2. Consider Fig. 15 again.  If N1 ⊆ N2 is specified, then all the pairs of pa2 needn’t be
checked either since for any N ∈ {N11, N12, N13} is_a(IS(N), IS(N2)) can be decided from
the relationships N1 ⊆ N2 and is_a(N, N1) without doing any checking.  However, all the
pairs of pa1 have to be checked since in this case, nothing can be inferred from N1 ⊆ N2
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and the other known is-a relationships.  Similarly, if N1 ⊇ N2 is specified, then pa1 should
be but pa2 needn’t be checked.  In addition, this observation can be generalized to ‘is-a’
paths.  That is, if B1 ← B2 ← ... ← Bk is a path in S2, S1(A) ⊆ S2(Bk) holds and A1 is a
subclass of A, then the relationships S1(A1) ⊆ S2(Bk), ..., S1(A1) ⊆ S2(B1) can be inferred.
Thus, the corresponding pairs needn’t be checked.

3. If N1 ∅ N2 or a derivation assertion involving N1, and if N2 is specified, then we will check
neither pa1 nor pa2.  This is because, in this case, no clear semantic relationships between
each pair of pa1 and pa2 can be defined.  For example, if S1(man) ∅ S2(woman) is defined
and S1(man_student) is declared to be a subclass of S1(man), then one will tend not to
give an assertion to specify the semantic relationship between S1(man_student) and S2

(woman).  As another example, consider the assertion S2(parent, brother) → S1(uncle).
One might not specify an assertion between S2(old-brother) and S1(uncle), either.
Therefore, ignoring such pairs is reasonable.  Of course, it is possible that some asser-
tions between such pairs may be specified.  But we believe that ignoring such assertions
will not damage the semantics of the integrated schema - a theme in forthcoming research.
Alternatively, if such pairs exist, we may, for the purpose of safety, inform the user that
something is strange, and ask her or him whether the assertion is correct or a mistake.
(This is the only case where user interference is required.)

4. If N1 ∩ N2 is specified, then both pa1 and pa2 should be checked.  This is because, from
N1 ∩ N2, we can not derive anything about the relationship among N1_(part of N1 which
does not belong to N2) and the child nodes of N2.  (The same analysis applies to N2_ and
the child nodes of N1.)  Further, in the case where no assertion between N1 and N2 is
given, the pairs of pa1 and pa2 should be checked completely.

Obviously, in order to speed up the above algorithm, lines 6 and 7 in the algorithm
have to be changed so that only some of pairs are put into the queue Q based on different
correspondence assertions.  In addition, a depth-first-search should be integrated to search
is-a paths so that the integration principles for inclusions can be fully implemented in a
convenient way.  Further, to avoid any redundant operations during graph traversal and to
implement the integration principle for inclusion assertions uniformly, we introduce a la-
belling technique and a mechanism for label inheritance used to mark the corresponding
pairs, which needn’t be checked during graph traversal.  See the following Fig. 16.

Fig. 16. Illustration of node labelling.
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In this diagram, if N1 ⊆ N2 is specified, we will use a depth-first search to traverse the
subgraph rooted at N2, thereby labelling any path of the form P = N2 ← ... ← N (starting at
N2) with the following properties:

(i) for any node v (≠ N) on P, N1 ⊆ v is specified or no assertion between N1 and v is
defined;

(ii) N1 ≡ N, or N1 ⊆ N but for any descendent node Nc of N, neither N1 ≡ Nc nor N1 ⊆ Nc

is defined.

Assume that the path N2 ← b2 ← c2← d2 ← e2 in the diagram shown in Fig. 16 is one
such path.  Then, during depth-first traversal, we will mark all the nodes on the path with a
label, say l1, to indicate that these nodes should not be checked against any node in the
subgraph rooted at N1.  To do this, N1 will also be labelled with l1, and it will further be
inherited by all N1’s child nodes.  Then, in the subsequent traversal, we can use l1 to avoid
checks of b1, c1 and d1 against any node labelled with l1 in S2.  Similarly, e1 will not be
checked against these nodes (in S2) either, in terms of label l1 inherited from b1.  During
graph traversal, some other paths will be marked (with different labels) for the same reason.
For example, the path h2 ← i2← j2 shown in the above diagram may be labelled with l2 if b1

⊆ h2, b1 ⊆ i2, b1 ⊆ c2 but b1 ⊆ k2, θ ∈ {→, ∅, ∩}.  Then, the label for b1 will be changed to
l1 ⋅ l2 to indicate that all the nodes in the subgraph rooted at b1 will not be checked against
any node labelled with l1 or l2 in S2.  (According to the inheritance mechanism, all the child
nodes of b1 will also possess l1 ⋅ l2.)  In general, if a node in S1 is labelled with l1 ⋅ l2 ⋅ ... ⋅ lk, it
should not be checked against any node labelled with l1 or l2 or ... or lk in S2.  Similarly, if a
node in S2 is labelled with l1’  ⋅ l2’  ⋅ ... ⋅ l j’ besides any label of the form l i, it should not be
checked against any node labelled with l1’ or l2’ or ... or lj’ in S1.  Below, we will show that
each node in S1 and S2 will be labelled with a pair of label sequences to implement this
duality.

The following algorithm (named schema_integration) is mainly based on a combina-
tion of breadth-first and depth-first search.  By means of breadth-first search, a control
similar to naive_schema_integration is performed, but with label inheritance and some
optimization.  By mean of depth-first search, the above labelling technique is implemented.
To control the breadth-first search, a queue structure Sb is used to record node pairs of the
form (N1, N2), whose semantic relationship is to be checked.  Further, a stack structure Sd is
utilized to control the local depth-first search (in S1 or in S2) when a pair with assertion ⊆
(or ⊇) is encountered during breadth-first traversal.  (See lines 11 and 18; depth-first search
is done by calling path_labelling; see below.)

Essentially, the main control is done in lines 3-6 of the following algorithm.  Let (s1,
s2) be the pair being considered.  Assume that s1 has child nodes N11, ..., N1k, and that s2 has
child nodes N21, ..., N2m.  Then, all the pairs of the form (N1i, N2j) (i = 1, ..., k; j = 1, ..., m) will
be put into Sb for subsequent checks.  Further, in terms of the assertion between s1 and s2,
pairs of the form (s1, N2j) or (N1i, s2) (i = 1, ..., k; j = 1, ..., m) may not be put into Sb since
their semantic relationships may be derived.  (See the discussion above again to understand
lines 16, 23, 31, and 33-35.)

Additionally, slightly deviating from the labelling technique discussed above, each
node N of S1 and S2 is dynamically associated with a pair of label sequences, <l1 ⋅ ...⋅ ln, l1’ ⋅
...⋅ lm’>, instead of only a label sequence.  (We discuss this technique in this way so that the
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main idea behind the mechanism can be well understood.)  Here, l1 ⋅ ...⋅ ln are called the
labels of N, denoted labels(N), representing labels obtained during depth-first search while
l1’ ⋅ ...⋅ lm’ are the labels obtained through inheritance, called the inherited labels of N and
denoted inherited-labels(N).  Therefore, for a current node Ni, inherited-labels(Ni) = l1’ ⋅ ...
⋅ lm’ indicates that if a node Nj (in another graph) possesses a label pair with labels(Nj) = l1” ⋅
...⋅ lk” such that {l1” , ..., lk”} ∩ { l1’ , ..., lm’} is not empty, then Nj should not be checked
against Ni (see line 7.).

When node N1 in S1 meets N2 in S2 the first time, and when for them N1 ⊆ N2 is
specified, depth-first-search will be executed to traverse the subgraph rooted at N2.  By this
process, any node N with the properties i) and ii) shown above will be labelled, and some
integration operations over N1 and the nodes encountered during traversal will be performed.

Finally, we assume that each node of S1 and S2 is initially associated with an empty
label pair: < , >.

Algorithm  schema_integration (   (* breadth-first search*)
input: S1, s1; S2, s2; (*s1 and s2 represent the start nodes of S1 and S2, respectively.*)
output: S (*S represents the integrated schema.*)

begin
1 l: =0;    (*l is used to label paths during depth-first search.*)
2 Sb: = (s1, s2);
3 while Sb is not empty do
4 {(N1, N2): =pop(Sb);
5 let N11, ..., N1k be child nodes of N1; let N21, ..., N2m be child nodes of N2;
6 put all the pairs of the form (Nli, N2j) (i=1, ..., k; j=1, ...,m) into Sb;
7  if  inherited-labels (N1) « labels (N2) = f Ÿ labels (N1) « inherited-labels (N2) = f
then
8 {switch (N1 q N2) {
9 case N1 ∫ N2: put N = merging (N1, N2) into S;
10 let M11, ..., M1i be brother nodes of N1;

let M21,..., M2j be brother nodes of N2;
remove the pairs of the form (N1, M2j) or (M1i, N2) from Sb;
break;

11 case N1 Õ N2: call path_labelling (N1, S2, N2, l); (*Algorithm path_labelling is
given below.*)

12 let l’ be the returned label of path_labelling;
13 inherited-labels (N1): = labels (N1). l’;
14 for each child node Nli of N1 do
15 inherited-labels (Nli):= inherited-labels (N1);
16 put all the pairs of the form (N1, N2i) into Sb;
17 break;
18 case N1   N2: call path_labelling (N2, S1, N1, l);
19 let l’  be the returned label of path_labelling;
20 inherited-labels (N2):= inherited-labels (N2). l’ ;
21 for each child node N2i of N1 do
22 inherited-labels (N2j):= inherited-labels (N2);
23 put all the pairs of the form (N1i, N2) into Sb;
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24 break;
25 case N1 ∆ N2: construct the corresponding rules in terms of Principle 4;
26 case N1 and N2 involved in a derivation assertion:
27 construct the corresponding rules in terms of Principle 5;
28 break;
29 case N1 « N2: insert IS(N1) and IS(N2) into S;
30 construct rules defining IS(N1_), IS(N2_) and ISN1N2 based Principle 3;
31 put all the pairs of the form (N1, N2j) and (N1i, N2) into Sb;
32 break
33 default: put all the pairs of the form (N1, N2j) and (N1i, N2) into Sb;}}
34 else if inherited-labels(N1) « lables (N2) π f

then put all the pairs of the form (N1, N2j) into Sb;
35 else put all the pairs of the form (N1i, N2) into Sb;

}
end

In the above algorithm, one of seven cases, N1 ≡ N2, N1 ⊆ N2, N2 ⊆ N1, N1 ∅ N2, “N1

and N2 involved in a derivation assertion”, N1 ∩ N2, and “no assertion specified between N1

and N2” is handled in each step of breadth-first traversal.  If N1 ≡ N2, then only the pairs of
the form (N1i, N2j) are put into Sb.  In addition, all the pairs of the form (N1, M2j) or (M1i, N2)
(where M1i and M2j represent the brother nodes of N1 and N2, respectively) should be re-
moved from Sb since the relationship between N1 (N2) and M2j (M1i) is the same as the local
relationship between N2 (N1) and M2j (M1i).  If N1 ⊆ N2, then depth-first search (by calling
path_labelling; see below) will be performed over a subgraph of S2 (rooted at N2), in which
the label sequence of each node P will be lengthened with a new label (see line 1 of
path_labelling) if it is reached by mean of depth-first traversal and satisfies N1 ⊆ P.
Furthermore, the corresponding integration operation will be performed whenever the ap-
propriate node of S2 is encountered during depth-first traversal.  (See lines 10-12, 13-17,
19-25 of path_labelling.)  The new label will be returned from path_labelling, and N1’s
inherited label will also be lengthened with it.  Then, this new inherited label will be trans-
ferred to all its child nodes to execute label inheritance.

A similar description applies for the case N2 ⊆ N1.  In the fourth, fifth and sixth cases,
the corresponding integration operations will be performed without any optimization.  If no
assertion is specified for N1 and N2, nothing will be done; traversal continues.  Finally, we
note that the labels are checked in lines 7 and 34 to avoid any useless matching.

As mentioned earlier, depth-first-search should be employed to tackle the integration
principle for the inclusion assertion, by means of which the is-a paths have to be searched
ahead of the breadth-first-search process.  On the one hand, some integrated is-a links should
be created according to this principle.  On the other hand, we should avoid any redundant
traversal caused by the combination of these two orthogonal search strategies.  To this end,
we label the paths with the properties discussed above during depth-first search.  Then, this
label will be returned to the breadth-first-search process to avoid useless checks.  In addition,
to cope with cases where no assertions are defined at all for some nodes (classes), we
denote these nodes using a special symbol, e.g., ‘* ’, during local depth-first-search.  Then,
based on a backtracking mechanism, the integration principle for the inclusion assertion can
be implemented as discussed in the previous section.
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Algorithm  path_labelling  (*depth-first search*)
input: N1, T, N2, l
output: l    (*l will be changed during the algorithm and used as the otput.*)

begin
1 l:= l+1;
2 Sd:= N2;
3 while Sd is not empty do
4 {V:= pop(Sd);
5 switch (N1 q V) {
6 case N1 Õ V: labels (V): = labels (V). l;
7 let V1, ..., Vk be child nodes of V;
8 put all the nodes Vi (i = 1,..., k) into Sd;   (*go deeper into the graph*)
9 break;
10 case N1 ∫ V: labels (V):= lables (V).l;
11   put N = merging (N1, V) into S;
12   break; (* the remaining part of the current path will no longer be searched.*)
13  case q Œ {Æ, ∆,  }: let Uk ̈  Uk-1*¨ Uk-2*...¨ U1* ¨ V) be an is-a path in T such that
14   all nodes but Uk and V on it are denoted by*;
15    for all Uj* ( j = 1,..., k-1) do
16 labels (Uj*): = labels (Uj*)/ l; (*undo the invalid labels; i.e., in the subse-

quent traversal, such nodes should not be prevented from being checked
against any node in the subgrah rooted at N1.*)

17 insert is_a (IS(N1), IS(Uk)) into S; (*N1 Õ Uk must be specified; based on
Fig. 8(b), an is-a link should be generated.*)

18 break;
19 default: mark V with*;
20 if V has child nodes, then put all child nodes into Sd (*go deeper into the graph*)
21 else {let Uk ¨ Uk-1* ¨Uk-2*...¨U1*¨V) be an is-a path in T such that all
22 nodes but Uk and V on it are denoted by*;
23 for all Uj* ( j = 1,..., k-1) do
24 lables (Uj*): = lables (Uj*)/ l; (*undo the invalid labels*)
25 insert is_a (IS(N1), IS(Uk)) into S;}}

}
end

In the above algorithm, any path rooted at N2 is traversed until a node N with one of
the following properties is encountered: (1) N1 ≡ N; (2) N1 θ N with θ ∈ {→, ∅, ∩, ⊇}; (3)
N is an end node.  In the first case (see lines 10-12), we generate an integrated class for N1

and N and the remainder of the corresponding path will not be searched.  In the second and
third cases (see lines 13-18 and lines 19-25, respectively), we backtrack (along the corre-
sponding path) to the first node N’ which is not denoted by *.  In terms of the characteristics
of the algorithm, we know that N1 ⊆ N’ must be specified.  Then, an is-a link will be created
just as Principle 2.  In Appendix A, we trace a sample integration process to demonstrate
how the algorithms work.
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6.2 More About Link Integration

In the algorithm presented above, link integration is not considered at all.  In our
implementation, each local link is implicitly taken as a link in the integrated schema in this
procedure.  Consequently, in an integrated schema generated by the above algorithms, some
subgraphs as shown in Fig. 12 may exist.  Based on Principle 6, the edge denoted by * in
such graphs should be removed.  Further, for the aggregation links, we should replace the
corresponding semantic constraints with their ‘least common super-constraint’ w.r.t. the
constraint lattice shown in Fig. 13.

To address these problems, we modify the above algorithms a bit as follows.
First, we mark each node A (using a special symbol), for which an equivalence asser-

tion is specified.  Then, we check its father node B to see whether it has already been
marked.  If so, we further check B’s counterpart C to see whether A’s counterpart D is a
child node of C.  (See Fig. 17(a) for an illustration.)  In this way, we can easily identify the
subgraphs of the form shown in Fig. 12(a).

Fig. 17. Illustration of link integration.
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In the case of is-a links, we remove one of the two edges.  Otherwise, we integrate the
two aggregation links into one link with the semantic constraint being its lcs.  Of course, the
aggregation links to be integrated must have similar meaning, and their relationship must
have been declared.  (See Principle 6.)

The same technique applies to subgraphs of the form shown in Fig. 12(b).  Consider
algorithm path_labelling once again.  If the returned value of this algorithm is not a label,
but rather a pair consisting of a label and a node A, for which an equivalence assertion is
specified (see lines 9-11 in path_labelling), and if the current call of path_labelling is of
the form path_labelling (N1, S2, N2, l), then we need to check N2’s father node B to see
whether it has been marked.  If it has been marked, then we check B’s counterpart C to see
whether N1 is a child node of C.  (See Fig. 17(b) for an illustration).  In this way, this kind
of subgraph can also be identified without difficulty.

6.3 Correctness and Time Complexity of the Refined Integration Algorithm

The correctness of the refined integration algorithm can be directly derived from the
discussion given just before the description of that algorithm in subsection 6.2.  This is
because the difference between the algorithms naive-schema-integration and schema-inte-
gration lies only in the fact that by the latter some pairs are not checked.  However, based
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on that discussion, the removed pairs really do not need to be considered, and their seman-
tic relationships are included eventually in the integrated schema; or all the pairs are checked
explicitly or implicitly using schema-integration.

We distinguish among three kinds of pairs (N1, N2), where N1 ∈ S1 and N2 ∈ S2:

(1) those pairs that are really checked during the execution of schema-integration;
(2) those pairs of the form (N1, N2) with the following properties:

(i) there exists an N ∈ S1 (N ∈ S2) such that N is an ancestor of N1 (N2) and
(ii) N ≡ N2 (N ≡ N1) holds;

(3) those pairs (N1, N2) with N1 being labelled using <l1 ⋅ ...⋅ ln, l1’ ⋅ ...⋅ lm’> and N2 being
labelled using <l1”  ⋅ ...⋅ l i”, l1”’ ⋅ ...⋅ lk’”> such that {l1, ..., ln}  ∩ {l1”’, ... , lk’”} =  φ or
{ l1’ ⋅ ...⋅ lm’} ∩ {l1”  ⋅ ...⋅ l i”} =  φ.

From lines 9-10 of schema-integration, we can see that the second kind of pair will
not be checked.  However, it really needn’t be checked since the semantic relationship
between each pair of this kind can be directly derived.  From line 7, if {l1, ..., ln}  ∩ {l1”’, ... ,
lk’”} is not empty or {l1’ ⋅ ...⋅ lm’} ∩ {l1”  ⋅ ...⋅ l i”} is not empty, then the corresponding pair
(N1, N2) will not be checked, either.  This is because their semantic relationship can also be
inferred according to the integration principle for inclusion and the inclusion relationship
between some of their ancestors.  From schema-integration, we can see that no other pairs
are ignored.  Therefore, we claim that all the pairs are checked explicitly or implicitly,
which guarantees the correctness of the algorithm.

To simplify the time complexity analysis, we assume a simple setting where both S1

and S2 have tree structures and each concept from S1 has exactly one equivalent counterpart
from S2.  Further, we assume that both S1 and S2 have the same height h.  We denote the
average number of pairs (N1, N2) (N1 ∈ S1, N2 ∈ S2) checked during the process as Ωh.  Let
d be the average degree (the number of edges incident to a node) of the tree corresponding
to S1.   Then, we have the following recurrence relations:
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The first recurrence relation is obtained as follows.  We will consider two “extreme”
cases.  The first case is where the roots of S1 and S2 match.  In this case, the average number
of the pairs to be checked should be 1 + d⋅Ωh-1.  The second case is where the root of S1

matches some leaf node of S2.  In this case, since the rest of the nodes of S1 needn’t be
checked against S2, the total number of pairs checked is on the order O(n).  Therefore, the

average number of the pairs to be checked is 
1

2
1 1 0⋅ + ⋅ +−( )d

n

dhΩ .  Expanding the above

recurrence relations, we can derive Ωh = O(n).
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7. CONCLUSIONS

 In this paper, a new strategy is presented for integrating local OO schemas into a
deduction-like one.  On the one hand, a new correspondence assertion (derivation assertion)
has been introduced to accommodate more heterogeneities which can not be handled by any
existing method.  On the other hand, a more powerful object model has been discussed,
which enriches the object-oriented data model with deductive abilities.  In this way, not
only can the derivation assertion be tackled without difficulty, but some other complex
semantic relationships, such as the ‘path’ concept proposed in [35] and role-consistency
addressed in [32], can be treated uniformly in the same framework.  Further, an efficient
algorithm has been developed and analyzed in detail, which can be used to perform integra-
tion almost automatically if the correspondence assertions between local schemas are given.
Using this algorithm, the characteristics of each assertion can be utilized to speed-up the
computation, and the is-a paths can be taken into account to generate a semantically clearer
global schema.

At present, the behaviors of some classes can not be inferred when their parent classes
are declared with exclusion or derivation assertion.  This is not only related to optimization
of the integration algorithm, but also to semantic analysis.  Investigation into this issue may
lead to the discovery of new correspondence assertions.  In addition, the efficient evalua-
tion of rules defined across several databases is another interesting topic which is somewhat
different from the strategies developed for the rules in a single one.  Such rules may also be
used to support automatic decomposition and translation of queries submitted to an inte-
grated schema.
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APPENDIX A: SAMPLE INTEGRATION

To briefly illustrate the behavior of the above algorithms, let us trace a sample
integration.  The example is constructed in such a way that major ideas can be presented in
a simple way.

Example 12. Consider two simple local (object-oriented) schemas given in Fig. 18(a).

Fig. 18. Two simple local schemas and the assertion set defined for them.

If the assertion set between them is defined as shown in Fig. 18(b), then an integrated
schema as shown in Fig. 18(c) will be generated automatically by executing
schema_integration.
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In the following, we will explain the entire process step-by-step.  By a computation
step, we mean an iteration in schema_integration or an iteration in path_labelling, repre-
sented as a pair: the operations executed in this step and the resulting state of Sb or Sd.  Note
that the state of Sb is changed by executing lines 5-6, 16, 23, 31 and lines 33-35 in
schema_integration.

schema_integration (S1, person; S2, human):

initial step: source pairs into Sb; Sb state: [(person, human)]

step1: pop and check of the pair on the top of Sb:

person ∫ human;

generation of an integrated class: person;

some pairs into Sb; Sb state: [(student, employee), (lecturer, employee)]

step2: pop and check of the pair on the top of Sb:

no assertion between student and employee;

all the relevant pairs into Sb; Sb state: [(lecturer, employee), (student, faculty)]

step3: pop and check of the pair on the top of Sb:

lecturer Õ employee;

call of path_labelling (lecturer, S2, employee, l):

initial step: node employee into Sd; Sd state: [employee]

   step31: pop of the top element of Sd: employee;

check: lecturer Õ employee:

labelling: employee <l, >;

child nodes of employee

into Sd; Sd state: [faculty]

   step32: pop of the top elemet of Sd: faculty;

check: lecturer Õ faculty:

labelling: faculty <l, >;

child nodes of faculty

into Sd: Sd state: [professor]

   step33: pop of the top element of Sd: professor;

check: no assertion between lecturer and professor

marking professor with *;

faculty ̈  professor *;

(*since no other nodes appear on the path connecting faculty and professor,

no undoing operation will be done.*)

generation of is_a (lecturer, faculty);

professon has no child nodes and

therefore Sd becomes empty; Sd state: []

labelling: lecturer < , l>;

label inheritance for child nodes of lecturer: teaching_assistant < , l>;

some pairs into Sb:              Sb state: [(student, faculty), (teaching_assistant, faculty)]

step4: pop and check of the pair on the top of Sb:

student « faculty;

the following rules will be generated:

<x: ISfaculty, student> ‹ <x: IS(S1∑faculty)>, <y: IS(S2∑student)>, y = x,

<x: ISfaculty-> ‹ <x: IS(S1∑faculty)>, ÿ <x: ISfaculty, student>,

<x: ISstudent-> ‹ <x: IS(S2∑student)>, ÿ <x: ISfaculty, student>.
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   some rules for integrated attributes will also be created (see Example 8);

no new pairs into Sb;Sb state: [(teaching_assistant < , l>, faculty)]

step5: no checking will be done for

the pair on the top of Sb; (*in terms of the relationship of labels and inherited-labels*)

no new pairs into Sb and

therefore Sb becomes empty; Sb state: [].

In the above execution, we see that an integrated version for S1(person) and S2(human),
a new link connecting faculty and student, and several rules for declaring the semantic
relationships among the integrated concepts (derived in terms of local classes: S1(student)
and S2(faculty)) are created.  Therefore, with our default strategies combined together,
schema_integration and path_labelling will produce the integrated schema shown in Fig.
18(c).

In addition, the following three features of the algorithms can be observed:

1. In each iteration step of schema_integration, not all relevant pairs are put into Sb.
Therefore, the optimization discussed in the previous subsection is implemented.
For example, after S1(person) ≡ S2(human) is checked, only (student, employee)
and (lecturer, employee) are put into Sb for subsequent checks.  (In contrast, in the
naive algorithm, pairs such as (student, human), (lecturer, human) and (person,
employee) will be put into Sb.)

2. The integration principle for handling is-a paths is correctly realized.  For example,
only one is-a link between S1(lecturer) ≡ S2(faculty) is created, and all other is-a
links such as is_a(IS(lecturer), IS(employee)), is_a(IS(teaching-assistant), IS
(employee)) and is_a(IS(teaching-assistant), IS(faculty)) are not considered; they
will be redundantly generated if an algorithm like that proposed in [33] is used.

3. By utilizing labels, repetitive checking of “⊆” (or “⊇”) assertions is avoided.  For
example, pairs such as (teaching_assistant, employee) and (teaching_assistant,
faculty) (for which the inclusion assertion is declared) need not be checked.  More
importantly, the corresponding depth-first searches are also avoided in this way.

APPENDIX B: EVALUATING VIRTUAL RULES

In this appendix, we will discuss our strategy for evaluating “virtual” rules to show
that our method will not damage the autonomy.

Assume that S1 contains two concepts mother and father while S2 contains two other
concepts parent and brother.  Then, two rules of the following form will be generated in
IS1:

(1) parent(x, y) ← mother(x, y),
(2) parent(x, y) ← father(x, y).

If uncle is a concept of S2, then the following rule will be generated in IS2:

(3) uncle(x, y) ← parent(x, z), brother(z, y).

Given a query of the form ?-uncle(John, y) against IS2, rule (3) will be evaluated.  As
in a normal deductive database, rules (1) and (2) will be invoked when parent is encountered.
But the backward inference process is a bit different.  Here, we associate each head predi-
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cate q with a set of schema names S with each one containing q as a concept, and each body
predicate p with a set of rules R with each one having p as its head.  In this way, the above
rules can be rewritten as follows:

(1) parent{ S2}(x, y) ← mother{ } (x, y),
(2) parent{ S2}(x, y) ← father{ } (x, y),
(3) uncle{ S3}(x, y) ← parentr{1, 2}(x, z), brotherr{ } (z, y),
(4) mother{ S1}(x, y) ←,
(5) father{ S1}(x, y) ←,
(6) brother{ S2}(x, y) ←.

Note that in the above rules, each basic predicate is represented as a rule with an empty
body.

Based on the above labeling mechanism, the algorithm for evaluating rules can de-
scribed as shown below.  In the algorithm, q represents a query and Q is a set of rules whose
head predicate matches q.

Algorithm  evaluation(q, Q)
begin

for  each rule of the form: q{ S}  ← p1
{ R1} , ..., pn

{ Rn}  ∈ Q do
      {temp := ∅;

for  each s ∈ S do   (*s repersents a schema name.*)
temp := temp ∪ results of evaluating q against s;

for  each i = 1 to n do
tempi := evaluation(pi, Ri);   (*recursive call*)

temp’ := temp1  ...  tempn;
result := temp ∪ temp’;

      }
end

The above algorithm is just a naive version used to present our idea clearly.  As in
deductive databases, the constants appearing in the query and the constant propagation can
be used to optimize the evaluation process.
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