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A key problem in providing enterprise-wide information is the integration of databases
that have been independently developed. A major requirement is to accommodate heterogene-
ity and at the same time preserve the autonomy of component databases. This article addresses
this problem and presents a strategy to integrate heterogeneous OO schemas. As compared to
the existing methodologies, this approach integrates local schemas into a deduction-like global
schema. In this way, more semantic relationships of component schemas can be captured, and
more complete integration can be obtained. In addition, an efficient algorithm is proposed
which can do the integration almost automatically, based on the correspondence assertions
supplied by designers. This algorithm is efficient in the sense that the characteristics of asser-
tions are utilized to avoid useless matchings.
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1. INTRODUCTION

With the advent of applications involving increased cooperation among systems, the
development of methods for integrating the pre-existing databases has become important.
The design of such global database systems must allow unified access to diverse and possi-
bly heterogeneous database systems without subjecting them to conversion or major modi-
fications [4, 7, 11, 18, 33]. One important step in integrating heterogeneous systems is to
build a global schema from local ones, which is usually done in two phases: schema trans-
formation and schema integration [1, 30]. By means of schema transformation, a local
schema is transformed into an abstract one, e.g., an object-oriented schema [24, 25]. Then,
all the local object-oriented schemas are integrated into a global one, thereby removing
semantic conflicts caused by different perceptions of the same real world concepts.

To eliminate semantic conflicts among the component databases, a set of correspon-
dence assertions for declaring their semantic relationships has to be constructed by DBAs
or by users. Normally, four set relationships between object classes, equivalence, inclusion,
intersection, and exclusion, are defined so as to provide knowledge about correspondences
that exist among the local schemas [35].

In this article, we will introduce a new assertion, the so-calégtvation assertion
to accommodate more heterogeneities, which can not be treated using the existing method-
ologies (see [2, 10, 13, 22, 27, 35]). As an example, consider two local object-oriented
schemas$, andS,. Assume tha§, contains two classeparentandbrother, and thas,
contains one classincle A derivation assertion of the forB(parent, brothey - S,

(uncle can specify their corresponding semantic relationship clearly, which can not be
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established otherwise. We claim that this kind of assertion is necessary for the following
reason. Imagine a query concernimgle submitted to the integrated schema fi@rand

S. If the above assertion is not specified, the query evaluation will not take sShiemaa
account; thus, the answers to the query will not be correctly computed in the sense of
cooperations. Some more complicated examples will be given later to show that derivation
assertions can always be used to handle intricate semantic relationships.

Recently, the problem of schema integration has been addressed extensively. In [35],
the four semantic assertions mentioned above were used to declare semantic conflicts be-
tween two heterogeneous schemas. In addition, attention was paid to the path correspon-
dence problem there. However, no formal method has been developed for this situation. In
[13], another kind of path correspondences was introduced, with which more difficult se-
mantic conflicts (likeS(Salary.Persop~ S(Salary.Salesmen.Pergoindicating thaSal-
ary of Personfrom S andSalaryof Salesmeiffrom S, are identical) can be tackled. However,
no derivation relationships can be dealt with in this way, either. In fact, such a path corre-
spondence can be declared using a combination of equivalence and inclusion. That is, we
can declar&,(Person) O S(Salesme)) thereby specifying that the attribi@alaryof Per-
sonis equivalent t@Galaryof Salesmen In [22], a hyperrelation approach was proposed,
with which different attributes of relevant concepts (belonging to different local schemas)
can be connected together. Similarly, no derivation problem is considered in this method.
In [26], a formal method to describe schema equivalence was developed. It distinguishes
between “unconditional” equivalence and the “conditional” equivalence, and also can not
be used to declare the derivation relationship. A similar approach was described in [15],
where the notion of a database “context” is used to specify conditionally equivalent concepts.
In the other methods, such as those proposed in [2, 10, 27], derivation correspondence is
not mentioned at all.

To integrate relevant concepts connected by derivation assertions, however, the de-
ductive approach should be employed, and a mechanism to do inferences should be devel-
oped to support such more complete global schemas. For this purpose, we simplify the data
model proposed in [16] by replacing the concept of “object constructors” with that of “ag-
gregation functions”, which is well-defined, extends predicate calculus and enriches the
object-oriented model with deduction abilities. In this way, an object-oriented global schema
can be equipped with an inference mechanism to capture more semantics. (More importantly,
this concept can be easily implemented on the “Ontos” system [28] by using its aggregation
functions. “Ontos” does not support the concept of object constructors; our system is built
on “Ontos”.) As we will see later, the path problem proposed in [34, 35] can also be
handled formally in our framework. In addition, autonomy is not violated since the “vir-
tual” inferences (more exactely, rule evaluation; see Appendix B) are performed only at an
abstract level and no extra requirements are placed on the local databases.

On the other hand, the integration algorithm has not been studied extensively in pre-
vious work concerning federated databases. Although several approaches [33, 35] have
been suggested, in terms of the given assertions, to integrate local schemas automatically,
no effort has been made to optimize this process. That is, no analysis of correspondence
assertions has been done to minimize redundant operations by using their characteristics.
Furthermore, in [33, 35], only equivalence and inclusion assertions were considered by an
integration process; ways to deal with the other kinds of assertions were not considered. In
addition, approaches to integrating aggregation links as well as is-a links (paths) have not
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been fully addressed up to now. In fact, these problems are not trivial, and some attention
should be paid to them. To this end, we present a new algorithm for perfoming integration
almost automatically while taking the assertion characteristics and link integrations into
account to achieve high performance.

The remainder of this article is organized as follows. Section 2 introduces the data
model used in our system. In section 3, our system architecture is briefly outlined. Section
4 discusses the assertion set, through which the semantic correspondences between local
schemas can be defined. In section 5, we give our integration principles. Section 6 is
devoted to a integration algorithm. Finally, conclusions are set forth in section 7.

2. OBJECT MODEL

As discussed in the introduction, we need a powerful data model to represent inte-
grated schemas. One way to do this is to accommodate deduction with complex objects and
object identities so that local databases can be integrated more fully into a deduction-like
object-oriented schema. In the following, we will present an object model with well-de-
fined semantics that equips complex objects with a deduction capability. This object model
is used to represent the integrated information in our system.

In fact, our model is a modification of those proposed in [16, 23]. First, in our model,
the object identifiers can be referenced only through aggregation functions, rather than as
attribute values as suggested in [16]. In addition, we implement the concdgeof
constructorgdeveloped in [16] as a combination of aggregation functions in a natural way.
Further, due to the above modification, a rule in our model is simply a clause of the first-
order logic [20], and no extra complexity is assumed, as compared with the object
constructors. On the other hand, the aggregation function is supported in the “Ontos”
system [28], which is used as our platform.

In our model, a schema is defined as a set of cl&ssdhe type of a class in C,
denoted byypgC), is defined as:

typgC) = <a;:type, ..., a:typa, Agg with cc, ...,Agg with cc>,

whereg; represents an attribute namge [ { boolean, integer, real, character, string, date}
U typegC) andAgg represents an aggregation functitypg(C) - type(C’) (C, C' U C).
Further, each aggregation function may be associated with a cardinality coregjraint
{[1:1], [1:n], [m:1], [m:n]} (j = 1, ...,K). Forinstance, a clagsticle may be of the type:
typgArticle) = <title: string,author_namestring,Published_inProceedingsith [m:1]>,
where Published_in: Proceedingsepresents an aggregation function (aggregation
relationship)Article - Proceedingsspecifying the semantic relationship betweemain
classArticle andrangeclassProceedings

Accordingly, an object (instance) Gfis represented as a term (calleddbmplex O-
term):

<o:Clavy, ...,a:v, agq, ...,agg>,
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whereo is the object identifielC is its classa’s are attribute names;’s are the corre-
sponding values and eaabq represents an instanceAdg. For example, an instance of
classArticle may be of the form: <id_Hrticle[title: ‘improving path-consistence algorithm’,
author_name‘'John’, Published_if.) with [m:1]>, wherePublished-irf.) takes ‘id_1'" as

the input and returns a value, say ‘Al_Tool_91’, an object identifier of the class called
Proceedingswhich can be used to visit the corresponding object. In addition, when we
refer to an object without considering its attribute values, we simply writ€= instead

of <0 : Clagvy, ...,a:Vv, agyq, ..., agge> for convenience.

The classes in an object database are organized into an inheritance hierarchy. We say
that a clas€ is a subclass of another cl&@sdenoted €: C'> (oris_aC, C") and called
thetypingO-term iff {< 0: C>} O {<0': C>}, where {<0: C>} ({<0': C'>}) represents all
the instances belonging to cla8C’). For example, student: persom and <aculty:
employee are two types of O-terms.

As for the O-terms (complex O-terms and typing O-terms), we can define derivation
relations in a standard way, as implicitly universally quantified statements of theyf&m:
Vo..& YO 1,& 1,...& T, Where bothy’s andrt’'s are O-terms or normal predicates of the
first-order logic. (Notice that an O-term can be regarded as a higher order predicate, in
which variables for class names and attribute names are allowed). For example, the rule <
: EmplOe_name: x, work_in: 0Dept>- 0 <o, : Deptdd_name: y, manageo, Empb
states that department managers work in the department they manag&ntpémadDept
are classe®), ando, are object variables amwdork_inandmanagerare two aggregation
functions. Universal quantifiers overando,are omitted. As another example, consider
the so-called ‘interesting pair’ problem, which was first addressed in [23] and was further
discussed in [16]. The problem is to find the pairs employee-manager such that the
employee’s department’s manager’'s name coincides with the employee’s name, which can
be represented (using our method) as follows:

pair(o;, manage(o,)) 0 <o, : Emplle_name: X, work_im, Dept>, manage(o,).
e_name =X

As we can see, this rule is much simpler than that presented in [16], and the semantic ambi-
guity of [23] is also eliminated.
Alternatively, the first rule above may be written in the following form:

<0, : EmplJe_name: x, work_iny> [0 <o, : Deptdd_name: y, manager>x}

if work_inandmanagerare defined as attribute names.

In addition, in a derivation rule, we allow variables for object identifiers, class names,
attribute names or aggregation function names appearing in an O-term. In this way, more
complicated semantic relationships can be declared. In particular, for integrating schemas
of heterogeneous local databases, such a rule can be used to specify complicated schematic
discrepancies where an attribute value in one database appears as an attribute name or as a
class name in another database (which will be discussed in sections 4 and 5.)

Lastly, we note that here the multi-valued attributes are not considered here for the
sake of simplicity. Howeuver, it is not difficult to extend the model to accommodate the
relevent concepts.
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3. SYSTEM ARCHITECTURE

Before we present our principles for doing schema integration, we will present our
system architecture, which consists of three-layers, FSM-client, FSM and FSM-agents, as
shown in Fig. 1.

== 5 - &

Fig. 1. System architecture.

Here, FSM represents the “Federated System Manager”. The task of the FSM-client
layer is application management, providing a suite of application tools which enable users
and DBAs to access the system. The FSM layer is responsible for merging potentially
conflicting local databases and defining global schemas. In addition, centralized manage-
ment is supported in this layer. The FSM-agents layer corresponds to local system manage-
ment and addresses all the issues w.r.t. schema translations and exports as well as local
transaction and query processing.

With this architecture, each local schema is first transformed into an object-oriented
one to remove model conflicts, so that a component database can be integrated into a coop-
eration more easily (see [6]). However, the data residing in a local database should not be
translated, but rather be referenced. Therefore, a datum (in some local database) needs to
be uniquely identified in a federated environment. In our system, if a relation is translated
into a class, then each of its tuples (of some relation) will be assigned an OID so that the
transformed schema will behave just like an object-oriented one. This assignment can be
done as follows.

Each component database in our system is installed in some FSM-agent and must be
registered in the FSM. Then, if we number the tuples of a relation in the normal way, the
OIDs for tuples will be in the following form:

<FSM-agent name>.<database system name>.<database name>.<relation name>.
<integer>,

where “.” denotes string concatenation. For example, FSM-agentl.informix.PatientDB.
patient-records.5 is a legal OID for the fifth tuple of the relation “patient-records” in a
database called “PatientDB.” Accordingly, each attribute value will be implicitly prefixed
with a string of the form

<FSM-agent name>.<database system name>.<database name>.<relation name>.
<attribute name>.



560 Y ANGJUN CHEN

Based on such a mechanism, a series of data mappings for each one Attflibee
integrated schema can be constructed, derEtfgg, (i =1, 2), with each being used for
value correspondences of attribdtand attributeB from the local databa$aB,. An F[fa'B
may be a simple string “default”, indicating that all actual valuésfofm a subset o; a
set of triples of the forma( b; X), representing that of A corresponds tb of B to degree
X [0, 1] (wherey is used to support the fuzzy set concept; see [5] for a detailed discussion);
or a simple function of the form=f(x) (such ay = 2.54X), wherey andx are variables
ranging over the domains AfandB, respectively. In the following, for simplicity, we will
not discuss data conflicts and will assume that for each pair of classes considered, the
relevant data mappings will be established manually and can be accessed by the corre-
sponding methods defined in the root-class (or called the meta-class, pre-defined in the
system) for any integrated classes. Corresponding to the above three kinds of data mappings,
three accessing methods will be implemented. In addition, additional methods may be
associated with the integrated classes manually to establish special value correspondences.
Such correspondences can not be made otherwise (see [19]).

In this article, we will discuss only the process of integrating two local object-ori-
ented databases. For the integration of more than two local databases, we adopt a simple
“accumulation” strategy as shown in Fig. 2(a), where &stands for a local database
schema and ead§, for an integrated schema of its two child nodes. However, an integra-
tion process like that shown in Fig. 2(b) is allowed.

7/

. @%
e@a@ clelic

@ (b)

Fig. 2. Integration process.

Using the former strategy, we integrate a single schema into the existing integrated
schema at each step. Using the latter, we first contruct a set of integrated schemas by
integrating some pairs of local schemas such that all the participating local schemas are
considered. Then, for the integrated schemas, we repeat this process until a global schema
is generated.

4. ASSERTION SET FOR INTEGRATION
In this section, we will discuss assertions and their classifications.
4.1 Assertion Classification
Assertions for classes
[35] proposed simple and uniform correspondence assertions for the declaration of

semantic, descriptive, structural, naming and data correspondences and conflicts. These
assertions allow one to declare how the schemas are related but not how to integrate them.
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Concretely, four semantic correspondences between two classes were defined in [35], based
on thereal-world stategRWS of object classes. They are equivale®eificlusion (J or

), disjunction () and intersection(). Equivalence between two classes means that their
extensions (populations) hold the same number of occurrences and that we should be able
to relate these occurrences in some way (e.g., with dbgct identifiery. Borrowing
terminology from [13], a correspondence assertion can be informally described as follows:

S e A =S e B, iff RW$A) = RW$B) always holds,

S e A c Se B, iff RWSA) c RWSB) always holds,

Se A NS e B, iff RWRA) n RWEB) = ¢ holds sometimes,
Se A DS e B, iff RW$A) n RWEB) = ¢ always holds,

For example, assuming tharson, book, facultgndmanare four classes frof), and that
human, publication, studgr@andwomanare another four classes fr@nthe following four
assertions can be established to declare their semantic correspondences, respectively:
Sieperson= S»human S;ebook 0 S,epublication Sefaculty n S,estudent Seman
Sewoman

Observation reveals that the above four assertions are not powerful enough to specify
all the semantic relationships of local databases. As mentioned in the introduction of this
article, an extra assertion, derivation)( has to be introduced to capture more semantic
conflicts, which can be informally described as follows. Agt,, ..., A, be class names
from S, and letB be those frons,. A derivation assertion has the following form:

S(AL A, .., A) - SeB, iff P(RW3A), RWSRA), ...,RWSA,)) (“some constraints”
holds0 RWS$B),

whereP is a predicate representing tRAV$A,), RWSA), ..., andRWSIA,) exist simulta-
neously and [l ” represents the logical implication. The intuition of this assertion is that
each occurrence & can be derived by some operations over a combination of occurrences
of A, A, ..., andA,. Here, “some constraints” refers to such operations. At a very abstract
level, such a constraint can not be specified. But with the help of the declaration of at-
tribute relationships and aggregation function correspondence (see below), we can estab-
lish it exactly. For example, assume tBabkis a class of the typt&ypgBook = <ISBN

string, title: string,author. <name string, birthday. date>> fromS,, and thatAuthoris a

class of the typetypgAuthor) = <name string,birthday. date book <ISBN string,title:
string>> fromS,. We can construct their semantic correspondence using two derivation
assertionsS;eBook — Sy AuthorandS,e Author —» SeBook At the same time, through a
further specification w.r.t. attributes or aggregation functions, these two derivation asser-
tions can be declared more exactly using an attribute corresponden&e Biele ISBN=

S,e Author boolke ISBN.

Assertions for attributes, aggregation functions and values

In our system, a second group of correspondence assertions is defined for attributes,
such as composed-inta(k)), more-specific-thand) and those used for classes (gl
or J, n, and). Here,a(x) indicates that the relevant attributes can be combined into a
new attributex, andg is used to declare that one of the two attributes provides more spe-
cific information than the other. For examplegiify andstreet-numbeare two attributes
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belonging, respectively, to two classes being integrated cihea(address¥treet-number
states thatity andstreet-numbecan be combined into a new attribute caliddress To
explain ‘more-specific-than’, assume tleategoryis an attribute of clagestaurant-1 and
thatcuisineis an attribute ofestaurant-2 Then,cuisinemay contain more specific infor-
mation thancategory(e.g., the value ‘Milan’ otuisineis more specific than the value
‘Italian’ of category. Therefore, theuisinef categoryshows this semantic relationship.
In addition, we may associate a predicate of the fitmContwith an inclusion (I or [J)

to provide more semantic information, whatestands for an attribut€ontrepresents a
constantand U { =, <, <, >, 2, #}. For example, itypgstocR = <time date,stock-name
string,price: integer> andypgstock-in-March-April = <stock-namestring,price-in-March
integer,price-in-April: integer> are two classes belonging to local datab8sasdS,,
respectively, then we can use the following two assertions to specify the corresponding
semantic relationships:

S, e stock-in-March-Aprile price-in-Marchc S, e stocke price with time= ‘March’
S, e stock-in-March-Aprile price-in-April ¢ S, e stocke price with time= ‘April’.

Further, for two classes being integrated, the semantic correspondence among their
aggregation functions also has to be specified. To this end, a third group of assertions is
utilized, which contains reversgl], equivalences), inclusion (J or ), disjunction ()
and intersectionn(), wheref1g represents thaf is a reverse function ¢f For example,
the aggregation functiospouseappearing in the classanis the reverse of thgpouse
function appearing in the clas@mman The other assertions are used for the set relation-
ships of the aggregation function’s ranges.

In some cases, it is necessary to specify the value correspondence of attributes in the
same database. For this purpose, we use ‘="#&rfdr single-valued attributes and*,

‘0, “n’, 'O and ‘=’ for multi-valued attributes. For exampleSi{parent, brothey - S

(unclg is declared as a class correspondence, then we need to further specify the relation-
ship between attribute values to show hmakentandbrothercan be connected together to

form anuncleconcept. In this case,Hfssrt andbrothersare two attributes belonging to
parentandbrother, respectively, theparent Pssn#] brother brothersshould be estab-

lished in the complete description of the assertion warent brotheranduncle.(We will

discuss it in the next subsection in more detail.)

Last, due to the fact that in a complex object class an attribute itself may have the type
of some other class, the correspondences between elements in different levels of two classes
have to be considered. For example, assumddukis a class of the typ&ypgBook =
<ISBN string, title: string,author. <name string, birthday. date>> fromS,, and thatAu-
thor is a class of the typéypgAuthor) = <name string, birthday: date,book <ISBN
string, title: string>> fromS,. Then, it is desirable to allow a correspondence of the form
SieBook= S Author book(or S, Author= S;e Boolke author) to specify some of their se-
mantic relationships exactly.

We summarize all the assertions in the following Table 1, Table 2 and Table 3.

4.2 Specifying an Assertion

The discussion given in the previous subsection motivates the following definition.
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Table 1. Assertions for Table 2. Assertion for Table 3. Assertions for
classer. attributes. aggregation functions.
= equivalence = equivalence = equivalence

c, inclusion c, inclusion c, inclusion
a) intersection N intersection N intersection

%) exclusion %) exclusion %) exclusion

- derivation o(X) composed-into X reverse

B more-specified-thgn

Definition 4.1 A pathw.r.t. a clas€ is a sequence of the fol@ g a;° a ..+ b, wherea; is
an attribute name @, g; is an attribute name tfpga) (if typga) O typgC), i.e.,a; itself
is a class), ..a;.n is an attribute name ofpa;_1,) (if typg(a;.) O typgC)), ... andb is of

The following example helps to illustrate this concept.

Example 1.Consider the abovBook(from S)) andAuthor (from S,) classes. The paths
Boole authorebirthday andAuthor boole“title” refer to the attribute values bfrthday (in
the clas8Bookfrom S,) and the stringtitle” (in the classAuthorfrom S), respectively.

Based on the above discussion, a correspondence assertor(000 0On O-)
between a class from schem&, and a clasB from S, can be described as shown in Fig. 3,
including four kinds of correspondences value correspondence of attrib&esatue
correspondence of attributes $ attribute correspondence betwegrandsS,, and
agg_function correspondence betw&andsS,.

Note that in Fig. 3, not only can the attribute and agg_function correspondences
between two local schemas be declared (through “attribute correspondence” and
“agg_function correspondence”, respectively), but the value correspondences between two
attributes in the same schema can also be specified (through “value correspondence of
attributes inS”, i = 1, 2; see also Example 3 for illustration).

Si(Az Ao, ., A) 8 S0 B
value correspondence of attributeSin

...... whered::==kle| ||,

attribute correspodence: v::=alBlElD|N,
...... A=RE D) and
S, e path,sY S, ® pathg with Py, ..., Py P; (=1,...0) are the predicates of the
agg_function correspondence: forait T Cont.
S e pathy A S, ¢ path,

Fig. 3. Description of derivation assertion.
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Example 2.In Fig. 4, four correspondence assertions are shown, each specifying a differ-
ent semantic relationship. Such assertions may be given by users or by DBAs.

S e person= S, e human S e bookc S, e publication
attribute correspondence: attribute correspondence:
S e persone ssn#= S, e humane ssn# Se booke ISBN= S,  publication e ISBN
S e persone full_name= S, e humane name Se booke title = S, e publication e title
S e persone city o(addres$ S, e humane street-number 19 booke autherc S, e publication e contributor
S, e persone interests S, « humane hobby agg_function correspondence:

S e booke published_by S, e publicatione published_by
(a) (b)

S e facultyn S; e student $e mand S, e woman
attribute correspondence: attribute correspondence:
S, e facultye fssn#= S, e studente ssn# $e mane ssn#= S, e woman e ssn#
S, e facultye name= S, e studente name $e mane name= S, e woman e name
S, o facultye incomen S,  students study_support S mane occupation= S, e woman e occupation
agg_function correspondence: agg_function correspondence:
S, o facultye work_in=S, e students work_in S e mane spouseX S, e womane spouse
() (d)

Fig. 4. Examples of correspondence assertions.

With the assertion show in Fig. 4(a), we can indicate that thepgassnfrom S, is
equivalent to the classimanfromS,. Three more assertions shown in Figs. 4(b), 4(c) and
4(d) help to explain the usage @i*; “ n” and “0", respectively.

In the following, we will show three further examples to demonstrate how the deriva-
tion assertion can be used to specify complicated semantic relationships.

Example 3.Consider the following two schemas for genealogical applications.

S;: person S,: human
parent Pssn# brother B uncle Ussn#
C) brothers 4
children niece_nephew

Fig. 5. Two simplified data schemas.

In the Fig. 5Pssn#, Bssn&ndUssn#are attributes for social security numbers. The
existing methodologies, such as those proposed in [9, 12, 13, 17, 19, 30, 35], fail to declare
the semantic relationship amoparent brother (from S)) anduncle(from S;). Using the
derivation assertion, however, we can specify the correspondence among them as follows:

Si(parent, brothey — S, e uncle
value correspondence of attributesSin
parente Pssnft e brothere brothers
value correspondence of attributesSinno constraints
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attribute correspodence:

S, e brothere Bssit =S, e unclee Ussri
S e parente children S, e unclee niece_nephew

Note that in the above assertion, more complicated semantics are associat8gpaitérit,
brothen - S(uncle”. That is, through the value correspondence of the attribuge in
parent Pssn#] brother brothersas well as the attribute correspondergelsrother Bssn#
= Seuncle Ussn#andS,e parent childrenJ Seuncle niece_nepheythe following seman-
tic relationship can be declared:

parentx, y), brother(z, y) - unclgx, 2,

whereparen(x, y) indicates thay is theparentof x, brother(z, y) indicates thay is the
brotherof zandunclgx, 2 indicates thaz is theuncleof x.

Example 4.As another example, we consider BaokandAuthorclasses again. In [35], a

path correspondence assertion as shown in Fig. 6(a) was be defined to specify the corre-
sponding semantic relationship. Then, for integration purposes, [35] provided a “path inte-
gration rule” to integrate these two semantically equivalent paths. The shortcoming of this
method is that no formal method can be developed to represent the integration results.

In contrast, using our method, this path equivalence can be represented as two deriva-
tion assertions as shown in Figs. 6(b) and (c). Then, based on these two assertions, two
inference rules can be exactly constructed, each for an assertion as shown in section 5. In
this way, the relevant semantics can be formally established. Furthermore, such rules can be
created automatically using our integration principles and integration algorithms, which we
will present in the next section.

S (Bookauthor)= S,(Author-book)
(@)
S, e Book— S, e Author S e Author— S, e Book
value correspondence of attributesSjinno constraints value correspondence of attribut&s imo constraints
value correspondence of attributesSinno constraints value correspondence of attribut&s imo constraints

attribute correspodence: attribute correspodence:
S, e Booke ISBN= S, e Authore booke ISBN S e Authore name= S, e Booke authore name
S, e Booke title = S, ¢ Authore booke title S, ¢ Authore birthday= S, e Booke authore birthday
(b) (c)

Fig. 6. Path equivalence and the corresponding derivation assertions.

Example 5.As a third example of derivation assertion, we consider an extreme situation to
show how derivation assertions can be used to specify the semantic correspondence when
the so-calledschema conflicexists [14]. Examine the following two local schemas:

Si: type(car,) = time: string, car-name string, price: integer>,
S, type(car,) = <time: string, car-name: integer,..., car-nameninteger>.
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In S, there is a single class, with one instance per month and car, storing the actual price at
that time. InS,, there is a single class, with one instance per month, and one attribute per
car, named using the car name and storing its price. The semantic correspondence between
them can be established as shown in Fig. 7. (Note that the goal of this example is to show an
extreme case in a spectrum of semantic conflicts, which can be declared by establishing
derivation rules.)

S ecan— S ecarn S ecar,— S ecan
value correspondence of attributesSinno constraints value correspondence of attribut8s imo constraints
value correspondence of attributesSinno constraints value correspondence of attribut8s imo constraints
attribute correspodence: attribute correspodence:
S ecar e time=S, e car, e time Secar,etime=S, e car o time
Secare car—namep S,ecarn e { car-namg,...,'‘car-namg} S e car, e car-name C S, e car, e price
S, e carn, e pricen _Ul(sz e car, e car-name with Se car; e car-name = car-name
i=
(a) Secar, e car-namgc S, e car; e price

Witl5, e car, e car-name= car-name
(b)

Fig. 7. Derivation assertions.

5. INTEGRATION STRATEGIES

Using our object model, we can integrate any two local (object-oriented) databases
based on an assertion set given manually. As we will see in Section 6, this integration
process can be done almost automatically by executing our integration algorithm with all
types of assertions involved.

Once the correspondence assertions between local databases have been stated, inte-
gration can be done based on a series of integration principles. In this section, we will
discuss these principles in detail.

To simplify our exposition, we assume two default strategies. The first one is that, if
for a class, no equivalence assertion is defined, we make a copy of it in the integrated
schema, and the relationships with the other integrated classes are built in terms of the
corresponding local ones. The second default strategy is that, if no assertion for a pair of
attributes is specified, we regard them as being semantically disjointed. Such attributes
should be simply accumulated into the corresponding integrated class. Furthermore, we
uselS(SeA) (resp. |S(SeBe a)) to denote the integrated version of clagsesp., attributa
of some clas8) of the local schem&. Thus, ifSeA= SeB, thenlS(SeA) = 1S(S*B) =
equivalence-clas$f A, S B), denoted a$S,s. Similarly, for any two equivalent attributes
(aggregation functiond(S;e Aca) (1S(Se Aef)) andIS(S,» Beb) (IS(S,*BeQ)), we usdS,,

(1Sy) to denote their integrated version. Further, weSisgepresent the integrated schema
andvalue sefatt) for the largest non-null subset of the domain of the attritite.r.t. the
current database state. Finally, “/” represents the set difference operation.

(1) Integration principle for equivalence assertions.
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Based on the above notations, the first principle can be defined as follows.

if SSe A=S,e Bthen

{insert(ISss, 9);
for each attribute paia( b) with ain Aandbin B do

{switch abb {
caseamb withw € {=, , c}: insert(ISy, 1Swe);
value_seflS,,): =value_se(S, e Ae a) U value_se(S, e Be b);
break;

casean b:insert(a_, 1Sg); value_sefa ): =value_se(S e Ae a)/
value_se(S, e Be b); } (*'/” represents set difference*)
insert(b_, 1S); value_setb ): =value_se(S, e B ¢ b)/value_set

(S eAea)}
insert(a_b, 19g); value_sdia_h): =value_se(S ¢ Ae a)nvalue_set
(S, eBeb)};

break;
casea@ b: insert(IS( Sy e Ae a), 1Ssg); insert(IS(S; e B e b), ISyp);

value_se(lS(S, e Ae a)): =value_se(S, e Ae a);
value_se(lS(S; e B e b)): =value_se(S; e Be b);
break;

casea o (2)b: insert(z, 1Sg); value_sdlr): = cancatenatiorfA e a, Beb);
break;

casea P b: insert (IS(S e A e a), IS); value_seiS (S, e Ae a)): =
value_sefa);
break;}}

for each aggregation function pdiiy ¢) with f in A andg in B do

{switchf6 g {
casef X g:insert(IS(S, e A e f), IS,) with the corresponding locatss;

insert(1IS(S; B e ), ISse) With the corresponding locat’s;

break;
casef o gwithw € {=, , N} let C be the range class Afe f; let D be

the range class &e g; if C=D or Cn D then insertlS, 1Sxs) and
construct its cardinality constrairtdj based on the integration prin-
ciple for is-a and aggregation links (see principle 6);

break;
casef I g: insert(IS(S, » A e f), IS,g) with the corresponding locat’s;

insert(1IS(S; e B e g), ISAB with the corresponding locet’s,;
break;}}}

wherea_, b _, anda_brepresent three newly created attributes for the integrated class, and
where cancatenatiof¢a, B¢b) is a function defined as follows:
Xy if thereexist oi, OA and oi, OB such that oi; = oi,
cancatenation(x,y) = E (in terms of data mapping), x = oi, [ andy = oi, [b;
FNull  otherwise
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In addition, in the description for the aggregation function integration, the corre-
sponding strategies are not specified in detail, but will be treated using Principle 6.

Using this statement, we can integrate two equivalent classes into one. In this way,
all the relevant attributes and aggregation functions can be handled in terms of the “attribute
and aggregation function correspondence” given in the corresponding assertion.

Example 6.Consider the assertions shown in Fig. 4(a). petsori be chosen to stand for
ISperson,human “ssn# for ISpssnv*-rt,hssrb#“r]a-mé for ISfull_name,namt-:and ‘intereStg for ISnterests,hobby
respectively. Then, the integrated versiois@persor) andS,(humar) should be of the
following type:

typg(persorn) = <ssn# string,name string, interests {string}, address: strings con-
nected with>,

whereinterestss a multi-valued attribute, {string} represents a set of strings and “address”
is a new attribute name constructed in termsgfderson city a(addres$ S;» human street-
numbef given in assertion Fig. 4(a).

(2) Integration principle for inclusion assertions.
For the inclusion relationship, a simple integration principle can be defined as follows:
if SeA 0 SeBtheninsertis_alS(A), IS(B)) into S.

Additionally, in order to avoid any redundantly generatedlink, we extend the
above principle to obtain a more general one:

if SeA0 SeB;, SeA SeB,, ...,.S*A0 SeB,, <B,: B>, ..., B, B..>then insert
is_a1S(A), IS(By)) into S.

This generalized principle can be pictorially illustrated as shown in Fig. 8.

@ (b)

Fig. 8. lllustration foiis_alink integration.

From this diagram, we can see that for the case shown in Fig. 8(a), only one is-a link
“is_aIS(A), 1IS(By))” is generated in terms of the above principle(as shown in Fig. 8(b)),
instead of a set a§_alinks, each one for an inclusion assertion. Note that it is possible
that, for someB; (1 <i <n), no assertion betwe&p A andS B; will be specified for some
reason. In this case, a more complex control mechanism is needed to implement the above
principle. We will addressed this problem in Subsection 6.1, where an efficient integration
algorithm will be discussed in detail.
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Example 7.Let professorbe a class fror,. Lethumanandemployede two classes from
S,. Assume tha§eprofessor] S, humanandS;e professor] S, employeeare declared.
Then, based on the above principle, only one is-a Igka(1S(professoy), IS(employep”
will be generated for the integrated schem@«employeél] S,» humanis locally (inS,)
specified.

(3) Integration principle for intersection assertions.

The third integration principle deals with the intersection relationship. For them, we
construct rules to do the corresponding integration tasks. First, for each pair of attributes
whose semantic relationship is specified using the intersection assertion, we provide a so-
calledattribute integration functiorfAIF) for the purpose of attribute value conflict
resolution. For instance, for assertion shown in fig. 4(S,eiflacultysincomeandS,e
studentstudy supportare integrated into an attribute namecome_study_ supponve
can compute its attribute values based on the following function:

+ . . . . . .
Y it there exist oi, O faculty and oi, Ostudent such that oi, = oi,

- 2
AR s(xy) = E (in terms of data mapping), x = oi, [Income and y

0 = oi, [$tudy_support;
ENull  otherwise.

Further, for an integrated attribu®y,, we define a functiore(S, 1S,,) used to find
its corresponding local version$ (Note that such functions have to be provided by users
or DBAs since their semantics entirely depend on individual instants.) Then, the integra-
tion principle can be described as follows:

if Se ANnS, e Bthen
{insert1S(S, e A) into S,
insertlIS(S, e B) into S,
insertlS,z into S,
construct {< I1Spp> & <X I1S(S, @ A)>, <y IS(S, @ B)>, y =X;
<X ISy > & <X 1S(S, 0 A)>, — <X 1Sp>;
<X ISz >« <x: I1S(S; @ B)>, — <x: 1Ss>},
for each attribute pai( b) with ain A andbin B do
{switcha 6 b {
caseambwithwe {= ,c}
construct {nser{(IS,, 1Sas) < <_:ISas>; (*Here “_"means “do not care”. *)
x € value_sdiS,,) < x e value_selre(S, I1S,y)) v x € value_selre(S,, IS.))};
break;
casea N b: construct {nsert(ISy, 1Sag) & <_1Sae™;
AlE 4(x,y) € value_sdiS,) < x e value_sefre(S, ISy,)), y € value_sefre(S,, 1S,))};
break;
casea d b: construct {nsert(IS(S; e A e a), ISs) < <_1Sp>;
insert(IS(S; e Ae b), ISyg) & < _:ISs>;

“won

break;
caseac (2) b: construct {nsert(z, I1Sys) < <_1Sx>;
cancatenatiofx, y) € value_sdi) < xe value_sefre(S, I1S,)), y€ value_sefe(S, I1S)};
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break;
casea 3 b: construct {nsert(IS(S; e A e @), ISys) < <_:1Sa>;
x € value_seflS(S, e A e a)) & <_:ISe>, X € value_setre(S, IS(S, e Ae a));}
break;}}
for each aggregation function pdirg) with f in A andg in B do
{'switch f 6g {
casef X g: report an error; break;
casef ogwithwe {=, , N} let Cbe the range class Afe f; letD be the range calss
ofBe g; if C=D orCn D then construct
insert(1Sg with cc, ISyg) & <_:1Sxg>; (*ccrepresents its cardinality con-
straint generated based on Principle 6.*)
break;
casef & g: construct {nsert(IS(S, e A e f) with cC, 1Sp) & <_I1Sss>;
insert(IS(S, e A e g) with cc”, 1Spg) < <_:IS,s>; (*wherecc’ andcc’
represents the local cardinality constraints fondg, respectively.*)
break;}}}}.

In the above descriptiof§,g, IS,., andIS;. represent, respectively, the intersection part of

S A andSe B, the part ofSie A which does not belong ®¢ B, and the part 0B which

does not belong t6§*A. Such symbols can be thought of as virtually defined classes since
their objects can be referenced only by computing the body classes of rules defining them.

Example 8.Consider the asserti@efaculty n S studentfor which three rules are gen-
erated to define the virtual classes:

<X: ISfacuIty, studert & <X IS(Sl ° faCU|tY)>, <y. IS(SZ o Studen):>, Y =X,
<X Isfaculty-> = <X IS(S ° faCU|tY)>, - <X ISfacuIly, Sluder?v
<X ISstudent-> —= <X IS(SZ ° Studen)>, - <X |Sfacu|ty, student -

In addition, the following rules are established to define virtual attributes and virtual aggre-
gation functions foiScuny, student

insert(lsfssn#, ssn#lsfacully, Sluder)t &~ <_: Isfacully, Sluder?v
X € value_sellS«snssny <= X € value_sdlre(S,, |Sssnssn)) Vv X € value_sefre
(&- Istsn#,ssn»v

inserl(lsname,name ISfacuIty, studer)( — <_:|Sfaculty,sluder?=
x € value_se(lS amenam: < X € value_se(re(S,, 1Siamenamp) v X € value_set
(re(SZa ISname,nan‘Dz);

inser('Sncome, study_supportl Sfacully, studer} = <_:|Sfaculty, studer?a

A”:i_s_ixv y) € Value_se(ISncome, study_suppn)rt<=
Xe vaIue_se(re(&, ISncome, study_supp()av ye value_se(re(&, ISncome, study_suppal) .

Note that we do not establish rules for attributes appearit®dfy- andlSygent-Since, for
them, no integration happens at all.

(4) Integration principle for disjoint assertions.

First, we note that an assertion of the f@mA [0 S,»B is meaningful only in the
case where there are two object clagsemdB' such thaS,eA'= SeB' and <A: A> and
<B: B> hold. Accordingly, the integration principle for disjoint assertions can be defined
as follows:
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if IS(SeA") =1S(S*B'), SeA' [0 S A, SeB' [0 S#B, S¢A 0 SBthen construct x:
IS(S*B)> 0 <x: IS(SeA)>, = <x: IS(S;* A)>.

In general, if we have a set of disjoint asserti@pgy 0 SB; (i =1, ...,n;j = 1, ...,m) with
<A;: A>, <B;: B> for eachi andj, and ifIS(S;*A) = IS(S¢B), then we can establish the
following rule to integrate the relevant concepts:

<X IS(S2By)> O..0<x IS(S#2B)> O <x: IS(Se A)>, = <X IS(Se A)>, ...,m <X IS
(SeA)>.

Alternatively, if there exists a specification about reverse aggregation functions, we can
rewrite this principle in the following way:

if Se A S eBthen{
if there existS, e Ae agg, X S, ¢ B e agg then
construct X IS, @ B)|...1Sugq, agg" Y > <Y: 1SS, @ A)|.. 1S54, agq: X--->} @and
Y 1S(S; @ A)|.. 1Sagg agg: X--->} & <X 1S(S; @ B)|.. 1Ssgq agq: Y-,
WherelS,gq aqq is defined as follows:

_ (90,00 XTI+ A);
(99:(x) x OIS+ B).

(5) Integration principle for derivation assertions.

ISaggA,aggB (X)

As with the intersection assertion, for a derivation assertion, several virtual rules are
constructed but in a more complex form. To this end, we first partition (manually) one
derivation assertion into several smaller ones such that neither the attribute name nor the
aggregation function appears more than once in an attribute correspondence or in an aggre-
gation function correspondence. For example, assertions shown in Figs. 7(a) and (b) can be
decomposed into the forms shown in Figs. 9 and 10, respectively.

S, ecar — S ecarn, S ecar— S ecan
value correspondence of attributesSinno constrains value correspondence of attribut8s imo constraints
value correspondence of attributesSinno constraints value correspondence of attribut8s imo constraints
attribute correspodence: attribute correspodence:
S, e car, etime=S, o car, ® time XX} S, e car, e time=S, o car, o time
S, e car, e car-namen S, e car, ¢ {' car-name’} S, e car, e car-namen S, e car, e {* car-namg’}
S, e car, e pricen S, o car, e car-name S, e car, e pricen S, o car, e car-name

Fig. 9. Decomposed derivation assertions3ercar, — Sy« car,.

Secar, > S ecan Se car, > S, e cany

value correspondence of attributesSinno constrains value correspondence of attribut8s imo constraints
value correspondence of attributesSinno constrains value correspondence of attribut&s o constraints
attribute correspodence: attribute correspodence:

S ecar,etime=S, o car, o time XX} S ecar, etime=S, o car, e time

S, e car, e car-name C S, e car; e price Secar, ecar-namgc S, e car, e price

with S e car, e car-name = car-name Witl§, e car, e car-name= car-name
(@) (b)

Fig. 10. Decomposed derivation assertionssoercar, — S, ¢ car.
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Then, we construct a gra@(calledassertion graphfor each decomposed deriva-
tion assertion of the fori§ (A, A, ...,A) —» S*B. Inthe graph, there is a node for each
“path” refering to an element in some class (see Definition 3.1) and an edge between nodes
path, andpath, iff path, rel path, with rel O {=, [, O} is specified. For instance, for the
assertion shown in Example 3, we can construct the graph shown in Fig. 11(a).

Si(parent, brother) —> Sz uncle: Secae —> Secan:

yl

x1 brother  brothers Se carze timms' carie time
parent® Pssi#  \Q———0 o

S carz-names

X2 @) o\ S cari® price
S brother * Bss#/{(n— (7 /S unclee Uss# "
Vil
Siecare a@aﬂe ;0
. i x3 7 i

Sie parent* childrenc’ 0
par S e uncle niece_nephew § p
p: Sie cari® car-name= car-name:
@ (b)

Fig. 11. Assertion graph and hyperedges.

The key step in constructing a virtual rule is to establish the relationships among the
O-terms of the rule to be constructed throughablesas in Atrtificial Intelligence. (More
exactly, specify variables asparentx, y), brother(z, y) - unclgx, 2.) For this purpose,
we mark the nodes @ in the following way:

(1) Each connected subgraphis marked using a different variable as shown in Fig.
11(a). For example, the connected subgraph consisting of only one edge
(parentPssn# brotherebrotherg is markedk;.

(2) For each predicat&path,, ..., path,) appearing in the assertion, we construct a
hyperedgehg(p), representing the set containing nogdath, ..., andpath,. For
example, in the graph associated with the assertion shown in Fig. 10(a), we have a
hyperedge for the predica$g car,* car-name= car-name (see Fig. 11(b) for an
example, in which the hyperedge is marled Note that, herezar-name is a
constant, and ‘zar-name’ can be considered to be a predicate name. Then,
‘Secar,ecar-name= car-name’ is a unary predicate.

(We also note that the isolated no@&etar,;*car-namé is considered to be a connected
subgraph, which is marked.)

The goal of the assertion graph is to facilitate the generation of derivation rules.
Given a derivation assertion of the fo81{As, A,, ...,A)) - SeB, what we want is to
establish a rule of the forBl O A/, A, ...,A), Py, ---.p, WhereB'andA, (i =1, ...,n) are
O-terms angy; (j = 1, ...,I) are normal predicates. IntuitiveB, corresponds tB, A’ to A
andp; to the predicates appearing in the assertion. They are logically linked together through
shared attribute variables and object variables.

We first define the following concepts.

Definition 5.1 A reverse substitutiofl is a finite set of the formdy/x,, ..., c/x.}, where
eachx is a variable, eaoty is a constant or a variable and...,c, are distinct. Each element
c/x; is called aindingfor c.



SCHEMA INTEGRATION 573

This concept can be thought of as a reverse operation stibbstitutionconcept
defined in [29]. In fact, we are performing a process which is just the reverse of rule
evaluation in logic programming, by means of which variables are instantiated. But in a
reverse substitution, a constant (or a variable) will be replaced with a variable.

Definition 5.2 Let® = {c/x,, ...,C/X,} be a reverse substitution, and febe an O-term, a
constant or a variable. TheM is an O-term (or a variable) obtained frénby simulta-
neously replacing each occurrenceah A with the variable (i = 1, ...,n).

As an example, consider O-teBrr <01: IS(S,» unclgUssn#: x, niece_nephewsy
Let 8 = {xX/xy, Y/xg}. Then,BO = <01: IS(S,euncleUssn#: %, niece_nephew:zx. Note
that in this example, bothandy are typed variables for strings.

If S={A4 A, ...,A} is a finite set of O-terms, constants and variables, abdsifa
reverse substitution, thes® denotes the se#y0, A9, ...,A.0}.

Definition 5.3 Let 8 = {cy/xy, ..., C/X%,} and & = {di/yi, ...,d/y} be reverse substitutions.
Then, the compositiofd of 6 andd is the reverse substitution obtained from the set.

{c/x0, ...,Col%:0, dulY1, .oy OiYin}

by deleting any binding/x for whichc, = x6 and deleting any bindingdy/y, for whichd, [
{cy, .oy Co}
For a given derivation assertion, the relevant reverse substitutions can be produced in
terms of its assertion gra@ According to the two different variable-marking approaches,
we have two methods we can use to produce reverse substitutions:

(i) Consider a connected subgraphof G. Assume tha®&, is marked using,. Let
{v1, ..., v} be the node set db.. Then, each, may be of the fornCea; a;°ay ...
*“aj.n.s or of the formCeaea;eay ..2a; n._s (see Definition 4.1). ¥, is of the

form Ceaea;eay ..2"a; n.s, then construct a binding, = Cea;e a;° ay ..2“aj_n..
oI%s. 1If vy is of the formCeae ae ay ..2a;_n.s, then construct a bindirigy = x/xs,
whereCeaeajea ..2a; n.s X iS an attribute descriptor in the corresponding O-
term. In this way, we can produce a reverse substit@fis{b, ...,by, ...,b} for

G.

(i) Let he(p) be a hyperedge containing nodes.., u,, wherep is a predicate appear-
ing in the assertion. Lét = c/x be the binding generated as described aboug, for
(=1, ...m). Ifcis a variable, lelb, bea/x, wherea:cis an attribute descriptor in
the corresponding O-term. Otherwise ldgteb, Then, the reverse substitution
for the predicat@ is the compositiontf;'}...{ by'}...{ b,}. (Note that eachlf,} is
a reverse substitution.)

Based on the above discussion, the integration principle for derivation assertion can be
summarized as follows:

if S (A Ay, ..., A) &S, e Bthen
{construct an assertion graghfor it;
mark each connected subgrapfof G usingx;;
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construct a hyperedge for each predigatgppearing in the assertion;
for eachG; do
generate reverse substitutign
for each hypereddes(p) do
generate reverse substitution
generate a derivation rule of the form:
BeleJ = {Al, Az,...An}Gl...Gj, {pl,...,pi...} 61 6,
}

Example 9.Consider the derivation assertion given in Example 3. Its assertion graph can
be constructed as shown in Fig. 11(a). Assume that the O-terms of the three cld&sses are
<0l IS(SeunclgUssn#: xniece_nephew:>; A; = <02 1S(S;e paren) IPssn#: zchildren:

u> andA,; = <03 IS(SebrothenBssn#: ybrothers: w. Then, from that assertion graph,
three reverse substitutions can be produed:{z/x, w/x}, 6, = {v/x, X/%} and 65 = {u/

Xs, YI%e}.

According to the above principle, an inference rule of the following form will be
constructed:

B6:10,83= { Ay, Ao} 0:0,0;
U

<01: IS(S; e unclg | Ussn# X,, niece_nephewx;> <
<02:1(S, e paren) | Pssn#x,, children x>, <03: 1S, e brother) | Bssn#x,, brothers x;>.

Example 10.Applying this principle to the decomposed assertions shown in Fig. 10, we
can establish a set of rules as follows:

<01: 1S(S, e cary) | time:y;, car-namey,, price: ys> < <02: IS(S; e car,) | time:y,,
car-name: ys>, Y, = car-name

<01: 1S(S, e car) | time:y;, car-namey,, price: ys> < <02: IS(S; e car,) | time:y,,
car-name: ys>, y, = car-name.

We need only to consider assertion shown in Fig. 10(a), for which a graph as shown in Fig.
11(b) can be constructed. Assume that the O-terms ofcelasndcar, are of the form8
= <01 IS(Se car,)[time: x car-name: y, price: 2, andA = <02 |S(S car,)[time: y car-
name: v, ...>, respectively. Then, from that assertion graph, four reverse substitutions can
be generated; = {x/yy, ulys}, 6, = {Vly,, z/\s}, 65 = {ylys} and 6 = {car-name/y}. The first
three are produced as its connected subgraphs while the last one is established according to
the hyperedge in it.

Let p denote the predicafge car,ecar-name= car-name. Then, the first rule of the
above set can be built as follows:

8619293 — A919293, p6
U

<0l:IS(S e carn)|time:y,, car-namey,, price: y;> < <02: 1S(S;  car,)|time:y;, car-
name: ys>, ¥, = car-name.
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Example 11.Given assertions shown in Figs. 6(b) and (c), the following two inference
rules can be constructed based on the above principle:

<y: IS(S;eAuthor)|name string,birthday. date,book <ISBN y;, title: y,>> < <x: IS
(S:eBoOK| ISBN vy, title: ys,,...>,

<y: IS(S;#BooK) |...,author. <name y;, birthday: y,>> < <x: IS(S,eAuthor) [hame
yi1, birthday: y,, book <name string,birthday. date>>.

If the attributebookin the clasuthorand the attributauthorin the clas88ookare de-
fined as aggregation functions, then we can generate the following two simpler rules using
the above principle with a bit of modification:

<X: IS(SeBook> < <y: IS(S,eAuthon) |book x, ...>
<y: IS(SeAuthon)> < <x: IS(SieBooK [author. y,...>.

As in a deductive database, the generated rules should be checked to see whether they are
well-defined safe or domain independergndallowedin the presence of negated body
predicates [8].

(6) Integration principle for is-a and aggregation links.

As for anis-a links_a(A, A) in a local schem§,, let us consider the pair of the form
(B, BY) in another schem$, which satisfies the following conditions:

- BandB' are connected with an is-a path, i.e., a path of the Brm.... - B';
-1S(Se A") = 1S(S#B") andIS(Se A) = IS(S#B).

Then, if we insert any local is-a link into the integrated sch8ifrafact, using our
integration algorithm, this simple strategy can be employed), we will have some subgraphs
of the forms as shown in Figs. 12(a) and (b) in the integrated schema.

| SA’ B I SA’ B’

*
\
!

1Shg O)D
1Sag

@ (b)
Fig. 12. Redundant is-a links which may exist in an integrated schema.

Therefore, for the subgraph shown in Fig. 12(a), only one of the two links should be
inserted while for the subgraph shown in Fig. 12(b), the link indicated by * should not be
inserted. This principle can be formally represented as follows:

if IS(SeA") =1S(S0B"), IS(SieA) = IS(S,eB), (is_aA, A) v is_aB, B")) then insert
is_AISag, ISyp) INtOS.
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if IS(SieA") = 1S(S0B"), IS(SeA) = 1S(SeB), is_aA, A), is_aB, B,), is_aBy, By), ...,
is_a(B,, B") then
insertis_a(lSag, 1S(By)), is_aIS(B,), IS(B,)),...,is_alIS(B,), ISyg) into S.

For the aggregation links, we consider only links of the fagyB, B) andaggA,
A") with IS(SeA") 3 1S(S,2B") andIS(Se A) 8 1S(S#B) ( O {=, n}). In these cases, the
cardinality constraints associated with them should be integrated. To this end, consider the
simple constraint lattice shown in Fig. 13(a).

[n:m]

PN

[1:m] [n:1]

™~

[1:1]
@

[m:n]

e e
[md_m:n] [m:md_n] [n:1] [1:n]

[md_m:md_n] [mdn:1] [n:md_1] [md_L:n] [Lmdn [L
/
[md n:md 1] [md_1:md_n] [md_1: 1] [1: md_1]
T
[md_1: md_1]

(b)
Fig. 13. Constraint lattices.

Based on this constraint lattice, the principle for resolving the constraint conflicts
can be described as follows:

if AggA', A) with cc;, AggB', B) with cc, then {insert Agy(I1Sas, [Sve) With Ics(ccy,
CCy) into S, wherelcs(ccy, €c,) represents the ‘least common super-nodecpand
CC,.

For example, i : m] is Ics([1: m], [n: 1]) while [n: 1] isles([1: 1], [n: 1]). In
addition, a node is considered to be the least common super-node of itself. This idea can be
generalized for more complicated cases. Consider, for example, the cardinality constraint
of the so-called “mandatoryto 1”, denoted [mdn : 1], which can be used to specify the
situation where the participation is total (mandatory) and the mappindasl”. If some
constraints like this are involved, we can establish a constraint lattice as shown in Fig. 13
(b) to make the above principle implementable. This lattice reflects a relaxation strategy of
the cardinality constraints. If a constraint conflict is encountered, we can resolve it by
loosening the local constraints along the lattice from bottom-up, which is least loosened.
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6. CONTROLLING THE INTEGRATION PROCESS

In this section, we will discuss our integration algorithm. This algorithm generates
almost automatically an integrated schema from two local object-oriented ones based on
their correspondence assertions declared by users. Only in very difficult situations is hu-
man interference needed. (See the discussionin 6.1.) The algorithm is efficient compared
to that proposed in [33] since the semantics of local schemas are used to avoid the need to
check useless pairs of concepts. More importantly, a semantically clear integrated schema
can be generated by avoiding redundant is-a links. In subsection 6.1, we specify the main
part of our algorithm in detail. In subsection 6.2, we discuss how to integrate links. Finally,
the correctness and time complexity of the algorithm are considered in subsection 6.3.

6.1 Integration Algorithm

Notice that in our methodology, any local schema will be transformed into an object-
oriented one before the integration process is performed. Consequently, a local schema can
be viewed as a graph consisting of a set of object classes connected by is-a links, aggrega-
tion links or semantic constraints. Accordingly, the input of the following algorithm for
controlling the integration process consists of two graphs (with each representing a local
schema) and a set of assertions.

In the following, we will not consider the principles for integrating links. We will
postpone the relevant discussion concerning link integration to subsection 6.2. In addition,
to simplify the explanation, we will assume that each graph has a start node and will be

S;: S,

Fig. 14. lllustration of input graphs.

traversed only along is-a links. If an input graph does not have such a node, we construct a
virtual one for it, and for each of those nodes which have no parent nodes in the original
graph, we draw a meaningless edge from it to the virtual start node. Then, the input graphs
of the algorithm can be illustrated as shown in Fig. 14, where each node corresponds to a
class and each arc corresponds to an is-a or an aggregation link.

To perform the integration, a naive algorithm will check, for example, all no&s in
for each node i1$, to see whether some integration should be done on the corresponding
concepts. If each local schema containg)@¢des, then, including the time spent on the
integration operations, the time complexity of a naive algorithm will be larger th@n O(
Below is a naive algorithm which uses a breadth-first-search but works in a different way
from that proposed in [33].

Algorithm naive_schema_integration
input: S, si; S, & (*s; ands; represent the start nodesandS,, respectively.*)
output:S (*Srepresents the integrated schema.*)
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begin

Q: = (s, s); (*Qis a queue structure used to control breadth-first search*)
while Q is not emptydo

{ (N1, No):= pop@Q); (*take the top element @@*)

let Ny4,.... Ny be child nodes dfl;;

let N,,,... N, be child nodes dfl,;

put all the pairs of the formNg, N), (N1, Ny) or (i, N) (i=1,....k j=1,...,m) intoQ;

do the integration according to the assertion betwe@mdN,;

}

~NOoO oA~ WN PP

end

In this algorithm, a queue structupeis used to control a breadth-first search of two
input graphs. Each elementQris a pair N, N'), whereN is a node irs; andN' a node ir5,.
In each iteration, the top paa,(b) of Q will be checked, and the corresponding integration
operation will be performed as described in section 5. Simultaneously, all the pairs of the
form @', b) are put intdQ, and are checked in the subsequent iterations, whisra or an
a's child node an8l'is b or ab's child node. We note that this control mechanism is quite
different from that proposed in [33]. There, traversal of the two input graphs is completely
separated. That is, traversal is performed in one of the two input grapBs, $#&en, for
each node i1, the entireS; is searched. In contrast, in the above algorithm, these two
processes are integrated together, based on which a lot of optimization (which will be
discussed below) can be realized without difficulty. More importantly, the integration
principle for inclusion of assertions (for which links will be generated) can be elegantly
handled by integrating a depth-first traversal into this algorithm.

First, we will consider the possibility of optimization by analyzing the characteristics
of correspondence assertions.

The following observations are important.

St Sy
O N N>
Nllo/:I\ Nao/(v\)\3 N
Ny N N, N=

Fig. 15. Two simple input graphs.

1. Consider the two simple graphs shown in Fig. 15.

If they are the input graphs ahg= N, is an assertion in the assertion set, then the pairs
Pay = {(N1, N21), (N1, Nag), (N1, Nzg), (N1, Nog)} and pae = {(Nig, Np), (Ni2, N2), (Nis, No)}
needn’t be checked for the following reason. Considemany{ N,;, Nas, Naz, Nag}.
Then, fromN, =N, andis_a(N, N,), we know immediately thas_a(IS(N), IS(N,)) holds.
That is, the semantic correspondences between each ppair @dn be derived. The
same analysis applies to all pairpaf.

2. Consider Fig. 15 again. IN; [0 N, is specified, then all the pairs p&, needn’t be
checked either since for aiyd { Ny, Nio, Nag} is_ aIS(N), IS(N,)) can be decided from
the relationshipsl, 00 N, andis_a(N, N;) without doing any checking. However, all the
pairs ofpa, have to be checked since in this case, nothing can be inferretlifid,
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and the other known is-a relationships. Similarl{y,if1 N, is specified, thepa, should

be butpa, needn’t be checked. In addition, this observation can be generalized to ‘is-a’
paths. Thatis, iB, « B, — ... « B is a path inS,, S(A) 0 S(By) holds andA; is a
subclass oA, then the relationshig&i(A) O S(By), ..., Si(A) O S(By) can be inferred.
Thus, the corresponding pairs needn’t be checked.

3. If N, O N, or a derivation assertion involvilg;, and ifN, is specified, then we will check
neitherpa, norpa,. This is because, in this case, no clear semantic relationships between
each pair opa, andpa, can be defined. For exampleSifman)d S(woman) is defined
andS;(man_student) is declared to be a subclasy(afan), then one will tend not to
give an assertion to specify the semantic relationship bet&éean_student) an§,
(woman). As another example, consider the assesf{parent, brothey - S(uncle.

One might not specify an assertion betwé&gold-brother) andS,(uncle), either.
Therefore, ignoring such pairs is reasonable. Of course, it is possible that some asser-
tions between such pairs may be specified. But we believe that ignoring such assertions
will not damage the semantics of the integrated schema - a theme in forthcoming research.
Alternatively, if such pairs exist, we may, for the purpose of safety, inform the user that
something is strange, and ask her or him whether the assertion is correct or a mistake.
(This is the only case where user interference is required.)

4. If N; n N, is specified, then botha, andpa, should be checked. This is because, from
N; n N,, we can not derive anything about the relationship arhgnpart ofN; which
does not belong th,) and the child nodes of,. (The same analysis applieNp and
the child nodes oN,.) Further, in the case where no assertion betweemdN, is
given, the pairs gba, andpa, should be checked completely.

Obviously, in order to speed up the above algorithm, lines 6 and 7 in the algorithm
have to be changed so that only some of pairs are put into the Quiased on different
correspondence assertions. In addition, a depth-first-search should be integrated to search
is-a paths so that the integration principles for inclusions can be fully implemented in a
convenient way. Further, to avoid any redundant operations during graph traversal and to
implement the integration principle for inclusion assertions uniformly, we introduce a la-
belling technique and a mechanism for label inheritance used to mark the corresponding
pairs, which needn't be checked during graph traversal. See the following Fig. 16.

W .

2

Fig. 16. lllustration of node labelling.
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In this diagram, iN; 00 N, is specified, we will use a depth-first search to traverse the
subgraph rooted &%,, thereby labelling any path of the fofP= N, — ... — N (starting at
N,) with the following properties:

(i) for any nodev (# N) onP, N; O v is specified or no assertion betwéénandv is
defined;

(i) N; =N, orN; O N but for any descendent nolgof N, neitherN; =N, norN; [0 N,
is defined.

Assume that the patl, — b, — ¢, d, « & in the diagram shown in Fig. 16 is one
such path. Then, during depth-first traversal, we will mark all the nodes on the path with a
label, sayl;, to indicate that these nodes should not be checked against any node in the
subgraph rooted &;. To do thisN; will also be labelled withy, and it will further be
inherited by alN;’s child nodes. Then, in the subsequent traversal, we cdntosavoid
checks ofb,, ¢, andd; against any node labelled within S,. Similarly, e, will not be
checked against these nodesSineither, in terms of labé] inherited fromb,. During
graph traversal, some other paths will be marked (with different labels) for the same reason.
For example, the pathy — i, j, shown in the above diagram may be labelled Wiihb,

O hy, by Oy, by O ¢, buth, Ok, 60 { -, O, n}. Then, the label fob, will be changed to

[, 0, to indicate that all the nodes in the subgraph rootedwill not be checked against
any node labelled with orl, in S,. (According to the inheritance mechanism, all the child
nodes ob, will also possesk [1,.) In general, if a node i§ is labelled witH, [, [..0,, it
should not be checked against any node labellediwdtt, or ... orlin S,. Similarly, if a
node inS; is labelled withl,;’ [1,’ O..0;" besides any label of the forky it should not be
checked against any node labelled Wjtlor [’ or ... orl in S;. Below, we will show that
each node ir5;, andS, will be labelled with a pair of label sequences to implement this
duality.

The following algorithm (nameschema_integrationis mainly based on a combina-
tion of breadth-first and depth-first search. By means of breadth-first search, a control
similar tonaive_schema_integratide performed, but with label inheritance and some
optimization. By mean of depth-first search, the above labelling technique is implemented.
To control the breadth-first search, a queue stru@uiused to record node pairs of the
form (N1, N,), whose semantic relationship is to be checked. Further, a stack st&jdsure
utilized to control the local depth-first search @iror in S;) when a pair with assertidn
(or 0) is encountered during breadth-first traversal. (See lines 11 and 18; depth-first search
is done by callingpath_labelling see below.)

Essentially, the main control is done in lines 3-6 of the following algorithm. sl,et (

s,) be the pair being considered. Assume shhgas child nodeNl,,, ...,Ny, and thas, has

child nodesN,, ...,N,n. Then, all the pairs of the foriN{, Ny) (i =1, ...k j =1, ....m) will

be put intaS, for subsequent checks. Further, in terms of the assertion betywaeds,,

pairs of the formg, Ny) or Ny, s) (i = 1, ...k j = 1, ...,m) may not be put int&, since

their semantic relationships may be derived. (See the discussion above again to understand
lines 16, 23, 31, and 33-35.)

Additionally, slightly deviating from the labelling technique discussed above, each
nodeN of S, andS, is dynamically associated with a pair of label sequendgs,. &, 1,'[]

...[0,/>, instead of only a label sequence. (We discuss this technique in this way so that the
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main idea behind the mechanism can be well understood.) IHere,l,, are called the
labels ofN, denotedabelgN), representing labels obtained during depth-first search while
I,'0.0, are the labels obtained through inheritance, called the inherited lab¢laraf
denotednherited-label§N). Therefore, for a current nodlg inherited-labeléN,) =1,"[1..

O indicates that if a nodi; (in another graph) possesses a label pairledit@l{N;) =1,"0
Oy such that {7, ... K} n {l/, ..., I} is not empty, therl; should not be checked
againstN; (see line 7.).

When nodeN; in S, meetsN, in S, the first time, and when for thehy O N, is
specified, depth-first-search will be executed to traverse the subgraph rostedgtthis
process, any nodd with the properties i) and ii) shown above will be labelled, and some
integration operations ovél; and the nodes encountered during traversal will be performed.

Finally, we assume that each nodespnds,; is initially associated with an empty
label pair: <, >.

Algorithm schema_integratiofl (* breadth-first search*)
input: S, s; S, ; (*s; ands; represent the start nodesfands,, respectively.*)
output:S (*Srepresents the integrated schema.*)

begin
11:=0; (M is used to label paths during depth-first search.*)
25 = (1),

3 while S is not emptydo

4 {(Ny, Np): =pop@&);

5 let Ny, ..., Ny be child nodes dfl;; et N,y ..., Noy, be child nodes dfl,;

6 put all the pairs of the formN(, Ny) (i=1, ...,k; j=1, ...m) into S;;

7 if inherited-labelgN,) N labels(N,) = ¢ A labels(N;) N inherited-labelqN,) = ¢
then

8 {switch (N; 6 N,) {
9 caseN; = Ny: putN = merging N, Ny) into S
10 let My, ..., My; be brother nodes d¥;;

let My,..., My be brother nodes of;
remove the pairs of the formi{, My) or My, N,) from S;

break;
11 casel; c N,: call path_labelling(Ny, S, N,, 1); (*Algorithm path_labellingis
given below.*)
12 letl” be the returned label giath_labelling
13 inherited-labelqN,): = labels(N,). I';
14 for each child nod&l; of N; do
15 inherited-labelqN;):= inherited-labels(N,);
16 put all the pairs of the form\g, Ny) into S;;
17 break;
18 caseN; Ny call path_labelling(N,, S;, Ny, 1);
19 letl'" be the returned label phth_labelling
20 inherited-labelqN,):= inherited-labelgN,). I';
21 for each child nodél, of N; do
22 inherited-labels(Ny):= inherited-labelgN,);

23 put all the pairs of the forniN(;, N,) into S;;
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24 break;

25 caseN; @ N,: construct the corresponding rules in terms of Principle 4;
26 case\; andN, involved in a derivation assertion:

27 construct the corresponding rules in terms of Principle 5;

28 break;

29 caseN; N Ny insertIS(N;) andIS(N,) into S

30 construct rules definints(N, ), IS(N, ) andISyn, based Principle 3;
31 put all the pairs of the formN¢, N;) and Ny, N,) into S;;

32 break

33 default: put all the pairs of the fornN(, N»;) and Ny, N,) into S;;}}

34 else ifinherited-label§N,) N lables(N,) # ¢
then put all the pairs of the forniNg, N) into S;
35 elseput all the pairs of the forniN(;, Ny) into S;;
}

end

In the above algorithm, one of seven cadks; Ny, Ny [ Ny, Np 0 Ny, Ny O Ny, “N;y
andN, involved in a derivation assertio; n N,, and “no assertion specified betwéén
andN," is handled in each step of breadth-first traversalN, E N,, then only the pairs of
the form {Ny;, Ny) are put intdg,. In addition, all the pairs of the formy,( My) or My, Ny)
(whereMy andMy represent the brother nodesNyfandN,, respectively) should be re-
moved fromS, since the relationship betweli (N,) andM, (My) is the same as the local
relationship betweeN, (N;) andMy (My). If N; O N,, then depth-first search (by calling
path_labelling see below) will be performed over a subgrap8,gfooted at\,), in which
the label sequence of each nd@l&ill be lengthened with a new label (see line 1 of
path_labelling if it is reached by mean of depth-first traversal and satidies P.
Furthermore, the corresponding integration operation will be performed whenever the ap-
propriate node 08, is encountered during depth-first traversal. (See lines 10-12, 13-17,
19-25 ofpath_labelling) The new label will be returned fropath_labelling andN;’s
inherited label will also be lengthened with it. Then, this new inherited label will be trans-
ferred to all its child nodes to execute label inheritance.

A similar description applies for the casel] N;. In the fourth, fifth and sixth cases,
the corresponding integration operations will be performed without any optimization. If no
assertion is specified fof; andN,, nothing will be done; traversal continues. Finally, we
note that the labels are checked in lines 7 and 34 to avoid any useless matching.

As mentioned earlier, depth-first-search should be employed to tackle the integration
principle for the inclusion assertion, by means of which the is-a paths have to be searched
ahead of the breadth-first-search process. On the one hand, some integrated is-a links should
be created according to this principle. On the other hand, we should avoid any redundant
traversal caused by the combination of these two orthogonal search strategies. To this end,
we label the paths with the properties discussed above during depth-first search. Then, this
label will be returned to the breadth-first-search process to avoid useless checks. In addition,
to cope with cases where no assertions are defined at all for some nodes (classes), we
denote these nodes using a special symbol, €.,gduring local depth-first-search. Then,
based on a backtracking mechanism, the integration principle for the inclusion assertion can
be implemented as discussed in the previous section.
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Algorithm path_labelling (*depth-first search*)
input: Ny, T, Ny, |
output:l  (*I will be changed during the algorithm and used as the otput.*)

begin

11:=1+1;

2Si=N,;

3 while S is not emptydo

4 {V:=pop&);

5 switch (N; 6 V) {

6 caseN; c V: labels(V): = labels(V). I;

7 letV,, ..., Vi be child nodes 0¥,

8 put all the node¥, (i=1,...,K) into S;; (*go deeper into the graph*)

9 break;

10 caseN, = V: labels(V):= lables(V).I;

11 putN = merging N, V) into S

12 break; (* the remaining part of the current path will no longer be searched.*)

13 casdbe {—,J, } letUy« U *« Uo*...«— U* « V) be an is-a path ifisuchthat

14 all nodes but, andV on it are denoted by*;

15 for all Uj* (j = 1,....k-1) do

16 labels (Uj*): = labels(U;*)/1; (*undo the invalid labels; i.e., in the subse-
guent traversal, such nodes should not be prevented from being checked
against any node in the subgrah rootei, &)

17 insertis_a (IS(N,), IS(UyY) into S; (*N; < U, must be specified; based on
Fig. 8(b), an is-a link should be generated.*)

18 break;

19 default markV with*;

20 if V has child nodes, then put all child nodes &tfgo deeper into the graph*)

21 else{let Uy «— Up1* «U,o*...«<U;*<V) be an is-a path if such that all

22 nodes but, andV on it are denoted by*;

23 forallU* (j = 1,.., k1)do

24 lables(U¥): = lables(U;*)/I; (*undo the invalid labels*)

25 insertis_a(IS(Ny), IS(Uy)) into S}}

}
end

In the above algorithm, any path rootedNats traversed until a nodé with one of
the following properties is encountered: KL= N; (2)N, 8 Nwith6 O { -, 0, n, O0}; (3)

N is an end node. In the first case (see lines 10-12), we generate an integrated lass for
andN and the remainder of the corresponding path will not be searched. In the second and
third cases (see lines 13-18 and lines 19-25, respectively), we backtrack (along the corre-
sponding path) to the first not& which is not denoted by *. In terms of the characteristics

of the algorithm, we know th&t, O N' must be specified. Then, an is-a link will be created
just as Principle 2. In Appendix A, we trace a sample integration process to demonstrate
how the algorithms work.
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6.2 More About Link Integration

In the algorithm presented above, link integration is not considered at all. In our
implementation, each local link is implicitly taken as a link in the integrated schema in this
procedure. Consequently, in an integrated schema generated by the above algorithms, some
subgraphs as shown in Fig. 12 may exist. Based on Principle 6, the edge denoted by * in
such graphs should be removed. Further, for the aggregation links, we should replace the
corresponding semantic constraints with their ‘least common super-constraint’ w.r.t. the
constraint lattice shown in Fig. 13.

To address these problems, we modify the above algorithms a bit as follows.

First, we mark each node(using a special symbol), for which an equivalence asser-
tion is specified. Then, we check its father nBd® see whether it has already been
marked. If so, we further che@s counterparC to see whethei's counterparD is a
child node ofC. (See Fig. 17(a) for an illustration.) In this way, we can easily identify the
subgraphs of the form shown in Fig. 12(a).

W VN

@ (b)

Fig. 17. lllustration of link integration.

In the case of is-a links, we remove one of the two edges. Otherwise, we integrate the
two aggregation links into one link with the semantic constraint beifgs.it©f course, the
aggregation links to be integrated must have similar meaning, and their relationship must
have been declared. (See Principle 6.)

The same technique applies to subgraphs of the form shown in Fig. 12(b). Consider
algorithmpath_labellingonce again. If the returned value of this algorithm is not a label,
but rather a pair consisting of a label and a mader which an equivalence assertion is
specified (see lines 9-11 path_labelling, and if the current call giath_labellingis of
the formpath_labelling(N;, S;, Ny, 1), then we need to ched'’s father nodeB to see
whether it has been marked. If it has been marked, then weRBkexunterparC to see
whetherN; is a child node of. (See Fig. 17(b) for an illustration). In this way, this kind
of subgraph can also be identified without difficulty.

6.3 Correctness and Time Complexity of the Refined Integration Algorithm

The correctness of the refined integration algorithm can be directly derived from the
discussion given just before the description of that algorithm in subsection 6.2. This is
because the difference between the algorithange-schema-integratiomndschema-inte-
grationlies only in the fact that by the latter some pairs are not checked. However, based
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on that discussion, the removed pairs really do not need to be considered, and their seman-
tic relationships are included eventually in the integrated schema; or all the pairs are checked
explicitly or implicitly usingschema-integration

We distinguish among three kinds of paNs, (\,), whereN; (0 S, andN, (0 S:

(1) those pairs that are really checked during the executischeima-integration
(2) those pairs of the fornN(, N,) with the following properties:
(i) there exists all 0 S, (N 0 S)) such thalN is an ancestor df; (N,) and
(i) N=N, (N =N,) holds;
(3) those pairsi;, Ny) with N; being labelled usingl<1..0,, I’ ..0,'> andN, being
labelled using K" (0.00;", 1, 0..0,"> such that {,, ...,I.} n {l,”, ..., "} = @or
{1,;0.0,}n {I”0.07% = o

From lines 9-10 o§chema-integrationwe can see that the second kind of pair will
not be checked. However, it really needn’t be checked since the semantic relationship
between each pair of this kind can be directly derived. From linelz, if.{.} n {1,", ...,

I} is not empty or {I,;’1.0,'} n {I," O..00;"} is not empty, then the corresponding pair

(N1, Ny) will not be checked, either. This is because their semantic relationship can also be
inferred according to the integration principle for inclusion and the inclusion relationship
between some of their ancestors. Fsmhema-integrationve can see that no other pairs

are ignored. Therefore, we claim that all the pairs are checked explicitly or implicitly,
which guarantees the correctness of the algorithm.

To simplify the time complexity analysis, we assume a simple setting wher&,both
andS, have tree structures and each concept Bphas exactly one equivalent counterpart
from S,.. Further, we assume that b@handS, have the same height We denote the
average number of pairBl{, N,) (N; O S;, N, 0 S)) checked during the process@s Let
d be the average degree (the number of edges incident to a node) of the tree corresponding
toS. Then, we have the following recurrence relations:

1 n
Q, = > [@@+dQ,, +d_0),

n

1
Q.= 5 @1+d@Q,_, +?),

1 n
Q,, ==M+d@,  +—),
h-i 2'1 h-i d,)

The first recurrence relation is obtained as follows. We will consider two “extreme”
cases. The first case is where the roof§ ahdS, match. In this case, the average number
of the pairs to be checked should be di®,,. The second case is where the rod$,of
matches some leaf node 8f In this case, since the rest of the nodeS, ofeedn’t be
checked againsh, the total number of pairs checked is on the orda}.O(herefore, the

1 n
average number of the pairs to be checkedli@+d @, _, +F)' Expanding the above
recurrence relations, we can derfyg= O(n).
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7. CONCLUSIONS

In this paper, a new strategy is presented for integrating local OO schemas into a
deduction-like one. On the one hand, a new correspondence assertion (derivation assertion)
has been introduced to accommodate more heterogeneities which can not be handled by any
existing method. On the other hand, a more powerful object model has been discussed,
which enriches the object-oriented data model with deductive abilities. In this way, not
only can the derivation assertion be tackled without difficulty, but some other complex
semantic relationships, such as the ‘path’ concept proposed in [35] and role-consistency
addressed in [32], can be treated uniformly in the same framework. Further, an efficient
algorithm has been developed and analyzed in detail, which can be used to perform integra-
tion almost automatically if the correspondence assertions between local schemas are given.
Using this algorithm, the characteristics of each assertion can be utilized to speed-up the
computation, and the is-a paths can be taken into account to generate a semantically clearer
global schema.

At present, the behaviors of some classes can not be inferred when their parent classes
are declared with exclusion or derivation assertion. This is not only related to optimization
of the integration algorithm, but also to semantic analysis. Investigation into this issue may
lead to the discovery of new correspondence assertions. In addition, the efficient evalua-
tion of rules defined across several databases is another interesting topic which is somewhat
different from the strategies developed for the rules in a single one. Such rules may also be
used to support automatic decomposition and translation of queries submitted to an inte-
grated schema.
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APPENDIX A: SAMPLE INTEGRATION

To briefly illustrate the behavior of the above algorithms, let us trace a sample

integration. The example is constructed in such a way that major ideas can be presented in
a simple way.

Example 12.Consider two simple local (object-oriented) schemas given in Fig. 18(a).

Sl: Sz: S
human person
person ‘ T~
employee student employee
student lecturer \ rues™>
‘ faculty faculty

teaching_assistant professor lecturer  professor

teaching_assistant

@ (b)
Fig. 18. Two simple local schemas and the assertion set defined for them.

If the assertion set between them is defined as shown in Fig. 18(b), then an integrated

schema as shown in Fig. 18(c) will be generated automatically by executing
schema_integratian
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In the following, we will explain the entire process step-by-step. By a computation
step, we mean an iterationsahema_integrationr an iteration irpath_labelling repre-
sented as a pair: the operations executed in this step and the resultingStat&ofNote
that the state 0§, is changed by executing lines 5-6, 16, 23, 31 and lines 33-35 in
schema_integratian

schema_integratio(, personsS,, human):

initial step:
step:

step:

step:

step:

source pairs int®; S state: [(person, human)]
pop and check of the pair on the togspf
persor= human;
generation of an integrated class: person;
some pairs int&;; S, state: [(student, employee), (lecturer, employee)]
pop and check of the pair on the tofspf
no assertion between student and employee;
all the relevant pairs int§, S, state: [(lecturer, employee), (student, faculty)]
pop and check of the pair on the tofspf
lecturerc employee;
call of path_labelling(lecturer.S,, employeel):
initial step: node employee in®; S state: [employee]
step:: pop of the top element &: employee;
check: lecturecc employee:
labelling: employe& >;
child nodes of employee
into S;; S state: [faculty]
stepy: pop of the top elemet &;: faculty;
check: lecturec faculty:
labelling: faculty>;
child nodes of faculty
into S S state: [professor]
steps: pop of the top element &;: professor;
check: no assertion between lecturer and professor
marking professor with *;
faculty < professor *;
(*since no other nodes appear on the path connecting faculty and professor,
no undoing operation will be done.*)
generation ofs_a(lecturer, faculty);
professon has no child nodes and
thereforeS; becomes empty; S state: []
labelling: lecturef;
label inheritance for child nodes of lecturer: teaching_assistant

some pairs int&,: Sstate: [(student, faculty), (teaching_assistant, faculty)]
pop and check of the pair on the togspf
student faculty;

the following rules will be generated:
<X Isfaculty, studert <= <X |S(Sl‘faCU|ty)>, <y: IS(SZ.StUdean Yy=X
<X Isiaculty—> = <X |S(Sl'faCU|ty)>x - <X ISVacuIty, studer?r
X Sstudens™ & <X IS(Sestuden)>, — <X 1Sacuty, studert-
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some rules for integrated attributes will also be created (see Example 8);
no new pairs int&,; S, state: [(teaching_assistant, faculty)]
step: no checking will be done for
the pair on the top @&, (*in terms of the relationship of labels and inherited-labels*)
no new pairs int&, and
thereforeS, becomes empty; S state: [].

In the above execution, we see that an integrated versiSi{gerson) an&,(human),
a new link connecting faculty and student, and several rules for declaring the semantic
relationships among the integrated concepts (derived in terms of local ct&tadent)
andSy(faculty)) are created. Therefore, with our default strategies combined together,
schema_integratioandpath_labellingwill produce the integrated schema shown in Fig.
18(c).

In addition, the following three features of the algorithms can be observed:

1. In each iteration step e€hema_integratigmot all relevant pairs are put in&
Therefore, the optimization discussed in the previous subsection is implemented.
For example, afteg,(person)= S,(human) is checked, only (student, employee)
and (lecturer, employee) are put ilgdfor subsequent checks. (In contrast, in the
naive algorithm, pairs such as (student, human), (lecturer, human) and (person,
employee) will be put int&,.)

2. The integration principle for handling is-a paths is correctly realized. For example,
only one is-a link betweeg,(lecturer)= Sy(faculty) is created, and all other is-a
links such ass_a(lS(lecturer),IS(employee))js_&lS(teaching-assistant)S
(employee)) anés_aIS(teaching-assistant)$(faculty)) are not considered; they
will be redundantly generated if an algorithm like that proposed in [33] is used.

3. By utilizing labels, repetitive checking dfl* (or “[0") assertions is avoided. For
example, pairs such as (teaching_assistant, employee) and (teaching_assistant,
faculty) (for which the inclusion assertion is declared) need not be checked. More
importantly, the corresponding depth-first searches are also avoided in this way.

APPENDIX B: EVALUATING VIRTUAL RULES

In this appendix, we will discuss our strategy for evaluating “virtual” rules to show
that our method will not damage the autonomy.

Assume tha§, contains two conceptaotherandfatherwhile S, contains two other
conceptparentandbrother. Then, two rules of the following form will be generated in

IS;:

(1) parentx, y) — mothe(x, y),
(2) paren(x, y) — father(x, y).

If uncleis a concept 0%,, then the following rule will be generatedI:
(3) unclgx, y) ~ parentx, 2, brother(z, y).
Given a query of the form @aclgJohn,y) againstS,, rule (3) will be evaluated. As

in a normal deductive database, rules (1) and (2) will be invokedeinentis encountered.
But the backward inference process is a bit different. Here, we associate each head predi-
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cateq with a set of schema nam@svith each one containingas a concept, and each body
predicatep with a set of rule® with each one having as its head. In this way, the above
rules can be rewritten as follows:

(1) parent2(x, y) — mothef}(x, y),

(2) parent2(x, y) ~ father}(x, y),

(3) unclé#(x, y) — parentt:3(x, 2, brotherr!(z, y),
(4) mothef*} (x, y) «,

(5) fathers(x, y) —,

(6) brothert2(x, y) .

Note that in the above rules, each basic predicate is represented as a rule with an empty
body.

Based on the above labeling mechanism, the algorithm for evaluating rules can de-
scribed as shown below. In the algoritlqnepresents a query afds a set of rules whose
head predicate matchgs

Algorithm evaluatiorfg, Q)

begin
for each rule of the forng'®  p,{Rd, ... p{R* 0 Qdo
{temp :=0;
for eachs [0 Sdo (*srepersents a schema name.*)
temp := tem@J results of evaluating against,
for eachi = 1 tondo
temp := evaluatiorfp,, R); (*recursive call*)
temp’ :=temp <] ... D<] temp;
result := temg] temp’;
}
end

The above algorithm is just a naive version used to present our idea clearly. As in
deductive databases, the constants appearing in the query and the constant propagation can
be used to optimize the evaluation process.

Yangjun Chen ( ) received his BS degree in informa-
tion system engineering from the Technical Institute of Changsha,
China, in 1982, and his Diploma and PhD degrees in computer
science from the University of Kaiserslautern, Germany, in 1990
and 1995, respectively. From 1995 to 1997, he worked as an assis-
tant professor at the Technical University of Chemnitz-Zwickau,
Germany. Dr. Chen is currently a senior engineer at the German
National Research Center of Information Technology. His research
interests include deductive databases, federated databases, multi-
media databases, the constraint satisfaction problem, graph theory
and combinatorics. He has published more than 50 works in these
areas.




