
QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 471

Definition 1 (assumed values) An assumed value (for some variable) is either of the form
aX or ŒS, where X is either a variable or a constant, a Œ {=, <, £, >, ≥, π} and S represents
a set of constants. For example, > x, = c and Œ {c1, c2, ..., cn} are three assumed values.

Definition 2 (extended substitutions) An extended substitution (ES) is a finite set of the
form {x1/v1, ..., xl/vl}, where xi (i = 1, ..., l) is a variable and vi (i = 1, ..., l) is a set of pairs of
the form (Prop, v), where Prop Œ {p, s, ni, V, _} (where, “_” means “do not care”) and v is
an assumed value as defined above or “_”. In contrast to the traditional substitution concept,
the variables x1, ..., xl may not be distinct. Each element xi/vi is called a binding for xi, and a
variable may have several bindings.

For example, d = {x/{(p, _)}, y/{(p, _), (_, Œ {car1', car2', ..., carm'})}, z/{(s, >10000)}
is a legal ES. Alternatively, this ES can also be written as {x/(p, _), y/(p, _), y/(_, Œ {car1',
car2', ..., carm'}), z/(s, >10000)}.

4.4 Translation of Simple Algebra Expressions: ppppp(sssss(R))

Translation can be pictorially illustrated as shown in Fig. 4.

 rule <antecedent-part> fi <consequent-part> + ES
matching ≠ Ø derivation

 an algebra expr. Æ a set of new algebra expr.

Fig. 4. Illustration of the query translation process.

In the following, we discuss this process in detail.
Essentially, this process employs two functions. With the first function, we generate

an ES by matching the algebra expression to be translated with the corresponding rule’s
antecedent part. With the second function, we derive a set of new algebra expressions in
terms of the ES and the rule’s consequent part. These two functions can be defined as
follows:

the first function: substi-production: P ¥ A Æ S,
the second function:expression-production: P ¥ S Æ A,

where P, A and S represent the set of all c-expressions, the set of all algebra expressions and
the set of all extended substitutions, respectively.

Obviously, the matching algorithm used in Prolog [29] can not be employed for our
purpose, and a bit of modification is required so that not only the assumed values of a
variable, but also more information associated with it can be evaluated. As we will see in
the following algorithm (for substi-production), such informations can be obtained by do-
ing a simple analysis of the algebra expression to be translated (see lines 2-5). In the algorithm,
the following definitions are used:

∑ assumedValue(A a B, T) returns an assumed value of the form a X, where A a B is a select

condition, T is an RST or a c-expression and a Œ {=, <, £, >, ≥, π}. X is a constant “c” if
B = c, or a variable x if B: x is an attribute descriptor in T.

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 463

Received December 28, 1998; revised May 24, 1999; accepted July 19, 1999.
Communicated by Wei-Pang Yang.

JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 16, 463-497 (2000)

463

A Systematic Method for Query Evaluation in Distributed
Heterogeneous Databases

YANGJUN CHEN

IPSI Institute, GMD GmbH
64293 Darmstadt, Germany

E-mail: yangjun@darmstadt.gmd.de

In this article, we consider the query evaluation problem in relational multidatabases
and develop a method for generating optimal plans for queries submitted to such a system.
Three aspects will be discussed: query transformation, join tree balance and node allocation.
For query translation, the concept of relation structure terms (RST) is introduced. Based on
RSTs, we can transform a query into another form automatically by constructing derivation
rules for them. Further, we extend the approach for balancing a join tree proposed by Du et al.
so that more balanced join trees can be obtained. Lastly, we present the concept of dynamic
time tables for performing node allocation in a dynamic programming manner.

Keywords: heterogeneous databases, join tree balance, relation structure terms, dynamic
programming, dynamic time tables

1. INTRODUCTION

A multidatabase system (MDBS) is a database system which integrates pre-existing
databases, called component local database systems (LDBSs), to support global applica-
tions accessing data at more than one LDB. In such a system, as in a distributed database
(DDBS), query optimization is very important but quite different from that in the case of
DDBSs. First, due to the heterogeneity of component databases, a query submitted to a
multidatabase has to be decomposed and translated so that it can be evaluated against different,
possibly heterogeneous, local databases (see [2, 5, 6, 22, 26, 34]). On the other hand, due
to the autonomy requirement, not only the communication costs, but also the load measure-
ments of local databases must be considered in order to generate an optimal execution plan
for a given query. Although in a distributed database load measurement is also considered,
it is handled in a different way. That is, the load states can be changed by means of load
sharing. For example, one can distribute the system workload from heavily loaded nodes to
lightly loaded nodes in a system. But this is not possible in multidatabases due to the
autonomy of the local databases.

In this article, we confine ourselves to investigating how to generate optimal execu-
tion plans for queries and develop algorithms for this issue, by means of which both join
tree balance and the node allocation can be achieved. Many theoretical solutions have been
proposed, and different implementations have provided varying approaches to these prob-
lems [8, 14, 16, 17, 31, 37]. In [14], a hybrid algorithm was developed to transform a left
deep join tree into a balanced bushy join tree based on a simple cost analysis, so that the
overall response time can be reduced. However, how to allocate a (join) operation to a local

YANGJUN CHEN464

database system was untouched. In [8], a new push-down method is proposed without
taking the costs of information transmission among different sources into account. In [17],
a third approach was proposed to finding both the node allocation and the sequence of join
operations using linear programming. But the balance problem was not taken into account
there. Moreover, in that method, only the communication costs are considered (see Appen-
dix B of [17]), and the load measurements are not addressed at all. Similarly, in [37], a
fourth method was suggested for finding an optimal join sequence with node allocation
from a query graph in an exhaustive but overhead-distributed manner. But tree balance was
not considered. A further important approach was proposed by Evrendilek et al. [16]. This
approach works in a three-phase fashion. In the first phase, static node allocation of de-
composed subqueries is conducted. In the second phase, a join sequence of subqueries is
generated in terms of weight functions, by means of which both the cost and the selectivity
of join operations are considered. In the third phase, a bush join tree is produced using a
cost recurrence relation calculated in a bottom-up manner over the nodes of the join tree
being constructed. The algorithm requires O(n3) time, where n is the number of nodes (or
subqueries which are executed at local sites in the first phase) involved in the global query.
From exact analysis of the cost recurrence relation given in [16], however, we can see that
only the “static” load states of local machines are considered for generating a balanced join
tree. That is, the changes of the load states of local sites during the join operations them-
selves are not considered. Therefore, a generated join tree produced in terms of this cost
recurrence relation may be unbalanced since a site may get another join operation after
some join operation has been assigned to it, without being aware that the site may become
heavily loaded as the join operations proceed. Of course, we can assign more than one join
operation to a site if after the assignment of one or more join operations, its work load
remains low compared to the other sites. But this can be done only according to reasonable
cost estimation.

In contrast, in our method, both tree balance and (dynamic) node allocation are
considered. First, we propose a method for translating local queries automatically. Then,
we refine the algorithm proposed by Du et al. [14] to find a more balanced tree from a left
deep join tree by extending the basic transformation employed by them. Next, we introduce
the concept of a dynamic time table and devise an efficient algorithm for node allocation,
based on both the communication and workloads of local database systems. In particular,
dynamic changes of the workloads are considered by maintaining a dynamic time table for
the current join operations. We argue that the load measurement and its dynamic changes
are important for the query evaluation in a multidatabase and affect the performance
significantly. We also note that the load measurement will not damage the autonomy since
no interference with local databases occurs. The system enquires about and changes the
load states of local databases only by issuing queries and (decomposed) subqueries as local
users. Due to its autonomy, a local system has the right to reject cooperation. In this case,
the next replicate (residing in another local system) will be selected if it is available. Then,
the planner will be invoked once again with the rejecting local system excluded. We can
maintain a list of the names of the replicates for each relation in the global system, sorted
according to the average response time of the local systems in which they reside. The node
allocation algorithm examines each element of the list until a plan is generated or aborted.
If a local system becomes very busy during the evaluation process and its response time
greatly increases, we can treat it as a rejecting one, getting it off, select another replicate and
execute the planner again. The time complexity of our algorithm is bounded by O(n2).

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 465

The remainder of this article is organized as follows. In section 2, we present our
system architecture to provide background information for the subsequent discussion. Then,
in section 3, we give an overview of the plan generation process for optimizing a query
evaluation in a multidatabase environment. In section 4, an automatic method for translat-
ing queries is discussed in some detail. In section 5, we present our strategy for balancing
a join bushy tree, based on the basic transformation step proposed in [14], which is ex-
tended to a more powerful transformation step in our implementation. In section 6, we
discuss the communication costs and the load measurements and give an efficient method
for allocating operations to sites. Section 7 is a short conclusion.

2. SYSTEM ARCHITECTURE

In this section, we present our system architecture, which consists of three-layers: an
FSM-client, FSM and FSM-agents as shown in Fig. 1 (where FSM stands for “Federated
System Manager”). The task of the FSM-client layer is application management as a suite
of application tools is provided which enables users and DBAs to access the system. The
FSM layer is responsible for merging potentially conflicting local databases, defining glo-
bal schemas, and conducting global query treatment. In addition, a centralized manage-
ment is supported in this layer. The FSM-agents layer corresponds to local system manage-
ment and addresses all issues w.r.t. schema translation, local transactions and query
processing.

Based on this architecture, each component database is installed in some FSM-agent
and must be registered in the FSM. Then, for a component relational database, each at-
tribute value will be implicitly prefixed with a string of the form:

<FSM-agent name>.<database system name>.
<database name>.<relation name>.<attribute name>

where “.” denotes string concatenation. For example, through FSM-agent1.informix.
PatientDB.patient - records.name, the attribute “name” from thes relation “patient-records”
in a database named “PatientDB” will be referenced.

For ease of exposition, in the following, we discuss query translation in a simple
setting in which each local database involved in a query is relational and decomposition of
“global” relations occurs.

Fig. 1. System architecture.

FSM-agent1

FSM-client

FSMt

FSM-agent1

YANGJUN CHEN466

3. PLAN GENERATION FOR QUERY EVALUATION

We consider queries that are expressible as conjunctive queries or as projection-se-
lection-join queries where the selection and join conditions are restricted to equality. Fol-
lowing the traditional methods for estimating costs [17], we can develop an efficient algo-
rithm for constructing execution plans for any such query submitted to a (relational)
multidatabase. The algorithm can simply be described as shown in Fig. 2.

The algorithm mainly consists of four phases:
- the initial local process,
- local query translation
- join sequence production, and
- bushy join tree production.

Additionally, an estimation module is used to derive the sizes of temporary relations
based on the approach developed in [17].

(1) Initial local process. The initial local process specifies all the local selection operations
in the query. It identifies all the attributes of each relation that appears in the original
query. Furthermore, the attributes that are needed to perform the required normal joins
that do not explicitly appear in the query are also identified. In addition, if no schema
conflict exists, the initial local process will perform the local projection operations for
each relation over the previously identified attributes in order to reduce the size of each
relation.

(2) Query translation. After the initial local process, the query is translated into a locally
computable form. This can be done automatically if the relevant metadata for specify-
ing semantic conflicts are built correctly. We distinguish between two types of seman-
tic conflicts, i.e., schema conflict and data conflict. By schema conflict, we mean that
an attribute value of a global relation corresponds to an attribute name or a relation
name in the corresponding local database or vice versa. To declare such a conflict, a
rule-based method is developed, a detailed description of which can be found in section
4. For resolving data conflict, we associate each attribute A of a global relation with a
set of mapping functions, FDB B

A

i , , (i = 1, ..., n), with each being used for the value corre-
spondences of attribute A and attribute B from the local database DBi. An FDB B

A

i , may be
a simple string “default,” indicating that all actual values of B comprise a subset of A; a
set of triples of the form (a, b; c) indicating that a of A corresponds to b of B to degree

Fig. 2. Process of generating an execution plan for a given query.

estimation
module

initial local process

query translation

join sequence production

bushy join tree production

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 467

c Œ [0, 1] (where c is used to support the fuzzy set concept; see [4] for a detailed
discussion); or a simple function of the form y = f(x) (such as y = 2.5 ⋅ x), where y and
x are variables ranging over the domains of A and B, respectively. In addition, the size
estimation procedure given in [17] for the selection and projection operations is used to
estimate the sizes of the local transformed relations.

(3) Join sequence production. After the above two processes, we determine the optimal
order for the temporary relations resulting from these processes. This can be done in
the same way as discussed in [9, 10, 20] or by using A* search as described in [42] to
avoid cartesian products and to minimize the size of intermediate relations. However,
the algorithm proposed in [10] for generating bushy join trees directly from a query
graph is not used in our system based on the following considerations:

(i) The bushy join tree generated by [10] is not balanced. Therefore, an extra process is
needed to balance such a tree just as for a left deep join tree. (Note that in [10], tree
balance is accomplished by mean of processor allocation, which is completely un-
suitable for multidatabases.)

(ii) The time complexity of the algorithm for finding such a bushy join tree is O(n.e),
where n and e are the numbers of relations and corresponding joins involved in the
original query, while the time complexity of the algorithm for finding a left deep join
tree is O(n2) (see [10]). As we will see later, a recursive algorithm for transforming
a left deep join tree into a balanced bushy join one requires only O(n2) time. Therefore,
theoretically, the strategy developed based on the transformation of left deep join
trees will have a better time complexity than does the algorithm based on the ap-
proach for generating bushy join trees [10].

(4) Bushy join tree production. In principle, the method proposed by Du et al. [14] can be
extended to construct balanced bushy join trees (from optimal join sequences) in the
simple case where each participating relation resides in a different database. The only
difference consists in the load measurement and more exact calculation of communica-
tion costs as well as a labeling strategy for the node allocation. However, in the case
where more than one relation resides in the same database, a more sophisticated method
is needed to achieve an optimal plan. We addressed these issues in section 6 in detail.

4. LOCAL QUERY TRANSLATION

Let the global query be of the form:

π σA A sc sc n nl m
R R R R

1 1 1 2 1... ...((...)), +

where A1, ..., Al are attributes appearing in R1, ..., and Rn+1, and sci (i = 1, ..., m) is of the form
B a v, or B a C (called the selection condition) with B and C representing the attributes in
R1, ..., and Rn+1, v representing a constant and a being one of the operators {=, <, £, >, ≥, π}.
After the initial step, such a global query can be transformed into the following form:
π σ π σ π σc d c d

j
ci di i

jS Si i(((()) (())1 1 1 )), where c and d (as well as ci and di) rep-

YANGJUN CHEN468

resent the corresponding projection attributes and selection conditions, respectively, Si
ji

represents a join sequence of the form R R Ri i i j1 2
 ... , and each Rim corresponds to a

local relation at site ji. Obviously, each π σci di i
jS i(()) can be further transformed into the

form π σ π σ π σg f g f i gl f iR R
l l

(((()) (())))1 1 1
 , and each pgt(sft(Rit)) has to be translated

so that it can be evaluated locally. To do this, the schema and data conflicts of local
databases have to be recognized and resolved. Schema conflicts can be eliminated by
invoking an inference engine while data conflicts can be removed by establishing a series
of mappings in advance. In the following, we discuss schema conflicts in detail.

From [22, 26, 27, 32], there are five types of schema conflicts as shown in Fig. 3.
They are:

Fig. 3. Illustration for schema conflicts.

relation nameattribute name
conflict3

attribute data

conflict1 conflict2

conflict4 conflict5

1. when an attribute value in one database appears as a relation name in another database,
2. when an attribute value in one database appears as a relation name in another database,
3. when an attribute name in one database appears as a relation name in another database,
4. when an attribute name in one database corresponds to several different attribute names

in another database, and
5. when a relation name in one database corresponds to several different relation names in

another database.

In the following, we mainly focus on the first three types of semantic conflicts for
simplicity. (But as we will see later, types 4 and 5 can be tackled in the same way as we
tackle types 1, 2 and 3.) First, we consider three local databases storing car prices.

Example 1 Consider three databases representing information about car prices. The local
schemes are as follows:

DB1: R1 (time, car, price),
DB2: R2 (time, car1, ..., carn),
DB3: car1’ (time, price),

 carm’ (time, price).

In DB1, there is one single relation, with one tuple per month and car, storing the actual
price. In DB2, there is one single relation, with one tuple per month and one attribute per
car, named by the car name and storing its price. Finally, DB3 has one relation per car,
named by the car name; each relation has one tuple per month storing the price.

If we want to integrate these three databases, and if the global schema is chosen to be
the same as R1 (in DB1), then a query of the form ptime,car(sprice > 10000(R1)) against the global
schema has to be translated into the following form:

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 469

for each y Œ {car1’, ..., carm’} do
 {ptime(sprice>10000(y))}

so that it can be evaluated in DB3.

Several approaches to this problem have been proposed in the literature [22, 26]. In
[22], a higher order language was suggested to deal with schema discrepancies and to issue
higher order queries (queries containing variables which range over both data and metadata).
However, how to translate a query automatically when data and schema conflicts occur was
not considered. In [26], an F-logic-based algorithm was developed; but no clear translation
rules were defined there.

To overcome this difficulty, we propose a method for performing the task in a logical
fashion.

In order to develop a mechanism to perform query translation automatically, we must
introduce the concept of relation structure terms (RST) in order to capture higher-order
information w.r.t. a local database. Then, for RSTs w.r.t. some heterogeneous databases,
we define a set of derivation rules to specify the semantic conflicts among them.

4.1 Relation Structure Terms

In our system, an RST is defined as follows:

[re{ R1, ..., Rm}Ωa1: x1, a2: x2, ..., al: xl, y: z{ A1, ..., An}],

where re is a variable ranging over the relation name set {R1, ..., Rm}, y is a variable ranging
over the attribute name set {A1, ..., An}, x1, ..., xl and z are variables ranging over respective
attribute values, and a1, ..., al are attribute names. In the above, each pair of the form ai: xi

(i = 1, ..., l) or y: z is called an attribute descriptor. Obviously, such an RST can be used to
represent either a collection of relations possessing the same structure or a part of the
structure of a relation. For example, [re{ car'1, ..., car'm}Ωtime: x, price: y] represents any relation
in DB3 while an RST of the form [re{ R2} Ωtime: x, y: z{ car1, ..., carn}] (or simply [R2Ωtime: x, y: z
{ car1, ..., carn}]) represents a part of the structure of R2 with the form: R2(time,..., cari, ...) in DB2.
Since such a structure allows variables for relation names and attribute names, it can be
regarded as a higher order predicate quantifying both data and metadata. When the vari-
ables (of an RST) appearing in the relation name position and attribute name positions are
all instantiated to constants, it degenerates to a first-order predicate. For example, [R1Ωtime:
x1, car: x2, price: x3] is a first-order predicate quantifying tuples of R1.

The purpose of RSTs is to formalize metadata information. Therefore, they can be
used to declare schematic discrepancies. In fact, by combining a number of RSTs into a
deductive rule, we can specify exactly some semantic correspondences of heterogeneous
local databases.

For convenience, an RST can be simply written as [re{ R1, ..., Rm}Ωa1: x1, a2: x2, ..., al: xl, y:
z{ A1, ..., An}] if the possible confusion can be avoided by the context.

YANGJUN CHEN470

4.2 Derivation Rules

For RSTs, we can define derivation rules in a standard way as implicitly universally
quantified statements of the form: g1 & g2 ... & gl ‹ t1 & t2 ... & tk, where both gi’s and tj’s
are (partly) instantiated RSTs or normal predicates of first-order logic. For example, using
the following two rules,

rDB1-DB3: [yΩtime: x, price: z] ‹ [R1Ωtime: x, car: y, price: z], y Œ {car1', car2', ..., carm'},
rDB3-DB1: [R1Ωtime: x, car: y, price: z] ‹ [yΩtime: x, price: z], y Œ {car1", car2", ..., carl"},

the semantic correspondence between DB1 and DB3 can be specified. (Note that in rDB3-DB1,
car1", car2", ..., and carl" are the attribute values of “car” in R1.)

Similarly, using the following rules, we can establish the semantic relationship be-
tween DB1 and DB2:

rDB1-DB2: [R2Ωtime: x, y: z] ‹ [R1Ωtime: x, car: y, price: z], y Œ {car1, car2, ..., carn},
rDB2-DB1: [R1Ωtime: x, car: y, price: z] ‹ [R2Ωtime: x, y: z], y Œ {car1", car2", ..., carl"}.

Finally, in a similar way, the semantic correspondence between DB2 and DB3 can be con-
structed as follows:

rDB3-DB2: [R2Ωtime: x, y: z] ‹ [yΩtime: x, price: z], y Œ {car1, car2, ..., carn},
rDB2-DB3: [yΩtime: x, price: z] ‹ [R2Ωtime: x, y: z], y Œ {car1', car2', ..., carn'}.

In the remainder of this paper, a conjunction consisting of RSTs and normal first-order
predicates is called a c-expression (standing for “complex expression”). For a derivation
rule of the form B ‹ A, A and B are called the antecedent part and the consequent part of the
rule, respectively.

4.3 Extended Substitutions

A third important concept is that of so-called extended substitution.
Note that an attribute involved in such an algebra expression may either appear in sci

(i = 1, ..., m), or/and in {A1, ..., Al}, or may not be involved in any operation at all. To
characterize this feature, we associate each attribute with a label which consists of a subset
ap Õ {p, s, ni, V}, where p, s, ni and V stand for ‘project,’ ‘select,’ ‘not-involved’ and ‘the
current values of the attribute,’ respectively.

In terms of an algebra expression q, we can instantiate the variables appearing in the
consequent part of a rule which matches q. Then, by means of constant propagation, the
antecedent part of the rule can also be instantiated; and what we want now is to derive a set
of new algebra expressions in terms of it. Unfortunately, such a derivation can not be done
only by means of constant propagation since both the higher order information (e.g., infor-
mation about iterations over relation/attribute names) and the necessary control mechanism
are absent. To this end, we introduce the concept of extended substitutions.

YANGJUN CHEN472

∑ aV(q(x1, ..., xk), xij) returns an assumed value (for xij), where q is a first order predicate, xi

(i = 1, ..., k) may be a variable, a constant or a set of constants but xij Œ {x1, ..., xk} must be
a variable. For example, aV(x Œ {c1, c2, ..., cn}, x) = Œ {c1, c2, ..., cn}. (Note that here the
predicate q(x) is of the form x Œ {c1, c2, ..., cn).}

Algorithm: substi-production(P, e)

(*P is a c-expression and e is an algebra expression.*)
 input: P: a c-expression; e: an algebra expression;
 output: ES: an extended substitution;
begin
1 ES := f;
2 if e is of the form pA1...Al(σ{ σsc1

...scm(R)) then {
3 construct two sets for e:
4 PA := {A1, ..., Al};
 (*PA contains the attributes involved in project operations.*)
5 SC := {sc1, ..., sci, ..., scm};
 (*SC contains all select conditions.*)
6 for each a Œ PA do
7 {let A: x be an attribute descriptor of some RST in P;
8 if a = A then ES := ES » {x/(p, −)}}
9 for each a Œ SC do
10 {let A: x be an attribute descriptor of some RST in P;
11 assume that a is of the form: B b C;
12 if B = A then

{ v := assumedValue(B b C, P); ES := ES » {x/(s, v)};}}
13 for each predicate of the form: q(x1, ..., xk) in P do
14 for each variable xij in q do
15 {v := aV (q(x1, ..., xk), xij); ES := ES » {xij / (−, v)}
end

Example 2 Consider the algebra expression e = pprice(scar = Mercedes Ÿ time = 'July 1994'(R1)). If we
want to translate it into an algebra expression which can be evaluated against DB2 as shown
in Example 1, then the rules for specifying the semantic discrepancies between DB1 and DB2

will be considered, and the matching rule will be rDB1-DB2. Its antecedent part P is of the form
[R1Ωtime: x, car: y, price: z], y Œ {car1, car2, ..., carn}.

First, executing lines 2-5, we have

PA = {price},
SC = {car = Mercedes, time = ‘July 1994’}.

Then, executing lines 6-8, we obtain

ES = {z/(p, -)}.

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 473

Next, after lines 9-12 are performed, ES is of the following form:

ES = {z/(p, -), x/(s, = ‘July 1994’), y/(s, = Mercedes)}.

Finally, by executing lines 13-15, a new item, y/{(−, Î {car1, car2, ..., carn} (constructed in
terms of the predicate y Î {car1, car2, ..., carn}), is inserted into ES. Therefore, the final ES
is of the form:

{ z/(p, -), x/(s, = ‘July 1994’), y/{(s, = Mercedes)},
(-, ∈ {car1, car2, ..., carn})}}.

Note that in the final ES, the pair (-, Î {car1, car2, ..., carn} should be eliminated if “Mercedes”
Î {car1, car2, ..., carn} holds since “y = Mercedes” subsumes “y Î {car1, car2, ..., carn}”. In
addition, if “Mercedes” does not belong to {car1, car2, ..., carn}, then substi-production
should report a “nil” to indicate that matching did not succeed, and that translation can not
be done based on the rule. In fact, if {car1, car2, ..., carn} does not contain “Mercedes,” then
any query concerning “Mercedes” submitted to DB2 will evaluate to “nil.” In the algorithm,
however, such checks are not described for simplicity. It is easy to extend this algorithm to
a complete version.

After the ES is evaluated, we can derive a set of new algebra expressions in terms of
it, the RSTs and the first-order predicates appearing in the consequent part of the rule. This
can be done by executing the following algorithm, which generates not only two sets, PA
and SC, (from which an algebra expression can be constructed), but also a set of iteration
control statements of the form for ... do, a set of checking statements with the form: if ...
then, and a set of print statements. Together with PA and SC produced by the algorithm,
such statements enable us to generate a complete query.

The main idea is as follows.
Consider a variable appearing in an RST. It may be a variable ranging over the rela-

tion names, a variable ranging over the attribute names or a variable ranging over some
attribute values. Then, in terms of its bindings recorded in the corresponding ES, we can
immediately fix its assumed value. On the other hand, which statements are associated with
it can also be determined through synthetic analysis of its assumed value and its properties.

Algorithm: expression-production(P, d)

(*P is a c-expression and d is an ES.*)}
 input: P: a c-expression; d: an ES;
 output: PA: project attributes; SC: select conditions;

 FS: iteration control statements; CS: checking statements;
begin
1 SC := f; PA := f; FS := f; CS := f;
 (*SC, PA, FS and CS are global set variables.*)
2 construct V1, a set of variables (in P) ranging over attribute values;
3 construct V2, a set of variables (in P) ranging over attribute names;
4 construct V3, a set of variables (in P) ranging over relation names;
5 for each x Œ V1 do

YANGJUN CHEN474

 6 call attr-value-handling(x, P, d);
7 for each x Œ V2 do
 8 call attr-or-rel-name-handling(x, P, d, 0);
9 for each x Œ V3 do
 10 call attr-or-rel-name-handling(x, P, d, 1);
end

From the above algorithm, we can see that two subprocedures are called to deal with differ-
ent cases. That is, attr-value-handling is used to tackle variables ranging over attribute
values and attr-or-rel-name-handling is employed to deal with variables ranging over at-
tribute names or variables ranging over relation names. Below, we give a formal description
for each. First, we define the following operation:

∑ conditionProduction(xay) returns a select condition of the form EaF if E:x and F:y are
two attribute descriptors in the corresponding c-expression.

Algorithm: attr-value-handling(x, P, d)
begin
1 let A:x be an attribute descriptor of some RST in P;
2 (*Here A is an attribute name or a variable.*)
3 if x/(p, -) is a binding in d then PA := PA » {A};
4 if there exist bindings: x/(s, v1), ..., x/(s, vk) in d then
5 { for i = 1, ..., k do
6 {sci := conditionProduction(xvi); SC := SC » {sci};}
end

Algorithm: attr-or-rel-name-handling(x, P, d, Int)
begin
1 if Int = 0 then find x:z,
 which is an attribute descriptor of some RST in P
2 else find [x Ω...], which is an RST in P;
 (*If Int = 0, x is a variable ranging over attribute names.*)
3 if there exist x/(s, v1), ..., x/(s, vk) in d then
4 { for i = 1, ..., k do
5 {if vi is of the form =c, then replace x with c in all the newly produced PAs and

SCs as well as iteration control statements, checking statements and printing
statements
(*see below*)

6 else
7 {let vi be of the form: aX;
8 generate a statement of the form: if xaX then;}}}

(*produce a checking statement*)
9 if there exists a binding of the form x/(-, Œ {c1, c2, ..., cm}),
10 then generate a statement of the form:
 for each x Œ {c1, c2, ..., cm} do;
 (*produce an iteration statement*)

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 475

11 if there exist bindings x/(-, v1'), ..., x/(-, vl') in d with each vi' π “ Œ {c1, c2, ..., cm}”,
12 then { for i = 1, ..., l do {generate a statement of the form if xvi' then;}}
13 if there exist a binding of the form: x/(p, -) in d, then
14 generate a output statement of the form print(x);
end

The result of these algorithms can be thought of as being composed of four parts: a set of
iteration control statements, a set of checking statements, a set of printing statements and
an algebra expression derivable from PA and SC produced by the algorithm. If for each
variable x (in the algebra expression) ranging over the relation names or ranging over the
attribute names, there is a statement of the form: for each x Œ {c1, c2, ..., cm} do, where c1, c2,
..., cm are constants, then this result corresponds to a program which can be correctly executed.
We do this as follows.

First, we suffix each iteration statement and each checking statement with an open
bracket “{” and suffix each printing statement with a semi-comma. Then, we change the
newly generated algebra expression e' with “if e' then” and suffix it with “{”. Next, we put
them together in the order: iteration statements - checking statements - algebra expression
- printing statements. Finally, we put the same number of close brackets “}” at the end of
the sequence of the elements. For example, for the algebra expression e = ptime, car(sprice>10000

(R1)), the following elements will be generated based on rule rDB1-DB3:

“for each y ∈ {car1', car2', ..., carm'} do”,
“print(y)”,
“ptime(sprice>10000(y))”.

Then, the corresponding code will be of the form:

for each y Œ {car1', car2', ..., carm'} do
 {if ptime(sprice>10000(y)) then
 {print(y);}}.

According to the above discussion, the entire process for translating a simple algebra ex-
pression of the form: p(s(R))) can be outlined as follows.

Algorithm: simple-query-translation(r, e)

input: r: a derivation rule; e: an algebra expression;
output: a program corresponding to the translated query;

begin
d := substi-production(antecedent-part of r, e);
S := expression-production(consequent-part of r, d);
generate a program in terms of S;

end

YANGJUN CHEN476

4.5 About Other Types of Semantic Conflicts

As mentioned earlier, semantic conflicts of types 4 and 5 can be handled in the same
way as we handle types 1, 2 and 3 conflicts. This can be illustrated using a simple example.

Consider two databases containing information about parent, brother and uncle. The
local schemas are as follows:

DB: parent(name, child), brother(name, brother_name).
DB': uncle(name, nephew_niece).

In DB, parent is a relation, with one tuple per person and one of his/her children; brother is
another relation, storing the pairs of the form (<person>, <one of his/her brothers>). In
DB', there is only one single relation, with one tuple per man and one of his nephews or
nieces.

Then, their semantic correspondence can be established as follows:
rDB-DB':
[uncleΩname: x, nephew_niece: y] ‹ [parentΩname: z, child: y],

brotherΩname: z, brother_name: x]
rDB'-DB:
[parentΩname: x, child: y], [brotherΩname: x, brother_name: z]

‹ [uncleΩname: z, nephew_niece: y].

Accordingly, all the techniques discussed above (with a bit of modification) can be used to
translate a query involving both parent and brother, or uncle. In this way, the semantic
conflicts of type 4 can be resolved.

The same analysis applies to the semantic conflicts of type 5.

5. BALANCING A JOIN TREE

After local query translation, the size of each “relation” can be determined if the
corresponding estimation information is available. Now, we can consider the transformed
global query as a normal one with the difference being that the “relations” may be distrib-
uted to different sites, and we can generate a left deep join tree for it using the traditional
methods [9, 10, 20], without taking the relation distribution into account for the time being.

Then, based on such a left deep join tree, we can further generate a balanced join by
performing a tree transformation. In the following, we first present the concept of basic
transformation and its extension in 5.1. Then, in 5.2, a recursive algorithm for the tree
transformation is described.

5.1 Transformation of Left Deep Join Trees

The algorithm proposed by Du et al. can be used to transform a left deep join tree into
a balanced bushy join tree. The main idea behind that method is repeated application of
basic transformations to the join sequence (called the left deep join tree in [14]). According
to [14], a basic transformation is a transformation step which takes a segment from a left
deep join tree as the input and then translates this segment as follows:

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 477

Example 3 Consider the bushy join tree shown in Fig. 6(a). The cost of each base relation
and the response time of each join node are shown in the figure. For ease of exposition, we
assume that the cost of each local join is 5 units of time, and that between the members of
each pair of relations there exists a join predicate. If we take the UAN and LAN as shown
in Fig. 6(a), a basic transformation will translate the tree into the form shown in Fig. 6(b).

The primary use of basic transformation is to balance left deep join trees. It does so by
converting n sequentially executed joins (between and including the UAN and the LAN)
into n-1 sequential joins (between and including the LAN and the new UAN) and a new join
node (a node corresponding to a join operation) concurrent to the corresponding left child
subtree of the LAN. In this way, since the number of sequentially executed joins between
the LAN and the new UAN is one less than the original number, the query response time can
be improved if the new join can be executed in parallel without resulting in any extra costs.

1. The top node of the segment is called the upper anchor node (UAN), and the bottom
node of the segment is called the lower anchor node (LAN) (see Fig. 5(a); here na and nb

are the UAN and the LAN of the selected segment, respectively)
2. The (direct) left child node (nc) of the UAN (na) becomes the new UAN of the trans-

formed segment (see Fig. 5(b)); and the original UAN (na) is removed from the left deep
join tree.

3. The LAN (nb) remains unchanged, but its (direct) right child node is replaced with a
subtree corresponding to a join operation between the respective right child subtrees of
na and nb (see Fig. 5(c)).

Fig. 5. Illustration of basic transformation.

selected
segment

n a

n c

n b

R
j+2

R
j+1

R
j

R
k

R
j-2

R
j-1

UAN

LAN

(a)

will be removed

transformed
segment

na

nc

nb

Rj+2

R
j+1

R
j

R
k

Rj-1

Rj-2

LAN

(b)

selected
segment

n c

n b

R
j+2

R
j

R
k

R
j-2

R
j-1

R
j+2

(c)

new UAN

LAN

Fig. 6. Basic transformation.

UAN

LAN

40

5

535

30

25

20

15 15

15

5

35

30

25

20

15 15 15 5

5

5

20

(a) (b)

YANGJUN CHEN478

In fact, with the transformation of a left deep join tree into a bushy join tree, we
should not restrict UANs and LANs to be on the same segment. Instead, a LAN can be any
node in the subtree rooted at a UAN as long as the corresponding transformation reduces
the response time of the subtree. Then, we can employ a depth-first search to find any LAN
in the subtree and do the corresponding transformation if this is possible. To this end, we
introduce the concept of extended basic transformation.

Definition 3 Extended basic transformation (EB-transformation) is a transformation step
which takes a subtree T as the input and translates the subtree as follows:

1. The root of the subtree is called the upper anchor node (UAN), and any node in the
subtree may be taken as a lower anchor node (LAN).

2. The (direct) left child node of the UAN becomes the new UAN of the transformed subtree;
and the original UAN (na) is removed from the left deep join tree.

3. Let nb be the chosen LAN. Then, nb remains unchanged but its right (or left) child node
is replaced with a new join node between nb’s right (or left) node and the right node of
the original UAN. Such a transformation is denoted EB-transformation(T, nb).

The advantage of EB-transformation over basic transformation [14] can be seen in the
following example.

Example 4 Consider the bushy join tree shown in Fig. 7(a).

The cost of each base relation and the response time of each join node are shown in
the figure. As in Example 3, we assume that each local join operation has a cost of 5 units
of time, and that between the members of each pair of relations there exists a join predicate.
Using the hybrid algorithm in [14], this bushy join tree can be translated into the tree shown
in Fig. 7(b). But further balancing is not possible due to the restriction that a UAN and the
corresponding LAN must be on the same segment, no matter what strategies, top-down or
bottom-up, are utilized (see 4.3 of [14]). However, if we use EB-transformation as the
basic transformation step, we can translate the tree shown in Fig. 7(b) into the tree shown in
Fig. 7(c) by taking na (the root of the tree) as the UAN and nb (an interior node) as the LAN.
From Fig. 7(b), we see that na and nb are not on the same segment.

In general, we have the following proposition.

Proposition 1 For any binary join tree T, if we take T’s root as the UAN, then applying EB-
transformation to T is no worse than applying basic transformation (as proposed by Du et
al.) to T.

Fig. 7. Comparison of basic transformation and EB-transformation.

n a

n b

35

30

25

20

15 15 15 5

20

5
5

15

20

25

30

15 15 5

5 5

10

20
15 15

20

25

20

15 15

5

5

10

5
(a) (b) (c)

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 479

Proof: The proof is straightforward. See Fig. 8.

Since when we used the basic transformation of Du et al., UANs and LANs must be
on the same segment, the possibility that an appropriate LAN for the root na will be selected
by it is smaller than that if EB-transformation is applied, if the depth-first search method is
employed in the implementation of EB-transformation to traverse the corresponding subtree.
For example, if an appropriate LAN on the segment exists, say nb (see Fig. 7), then both
basic transformation and EB-transformation will find it. However, if such a LAN does not
exist, basic transformation will do nothing for the current UAN. In contrast, EB-transfor-
mation will try another LAN, say nb’, if it exists. Therefore, a more balanced join tree can
be obtained by applying EB-transformation than by applying the basic transformation of Du
et al. o

Obviously, this improvement is at the cost of more searches of a subtree. Therefore,
more time will be required by an EB-transformation step than by a basic transformation
step. However, by developing a recursive algorithm for generating balanced join trees
(with the EB-transformation being used), this drawback can be overcome. As we will see
later, the entire time complexity of the recursive algorithm is not worse than that of Du’s
hybrid algorithm. But more balanced binary trees can be generated (see subsection 5.2).

Intuitively, for any join subtree, what we want is those EB-transformations by means
of which the response time can be improved. This leads to another important concept.

Definition 4 Let T be a join subtree with the root na. Let nc be the left child node of na. We
say that EB-transformation(T, nb) (where nb stands for a node in T) is time improving if
response-time(nc, T’) < response-time(na, T), where T’ represents the tree obtained by ap-
plying EB-transformation(T, nb) to T and response-time(nc, T’) represents the response time
of nc with respect to T’ while response-time(na, T) represents the response time of na with
respect to T. A time improving EB-transformation is denoted TIEB-transformation(T, nb).

In order to facilitate time improvement checking for a LAN, we associate each node
in a join tree with a pair of the form (rt, Card), where rt represents the response time of the
subtree rooted at this node and Card stands for the cardinality of the intermediate result of
this subtree. Given the response time and the cardinality for each base relation, the pairs of
interior nodes can be computed as follows. Let v be an interior node, and let a and b be two
child nodes of it. Then:

rt(u) = max { rt(a), rt(b)} + rt(a b), (1)

Card(u) = size-estimation (Card(a), Card(b)), (2)

Fig. 8. Illustration of basic transformation and EB-transformation.

n a

n b (LAN)
n b ’

YANGJUN CHEN480

if pipelining is not considered. (The effect of pipelining was examined in [7, 30].) In fact,
in our implementation only sort-merge join and nested join are taken into account. It is
worth mentioning that due to its stable performance, sort-merge join is the most prevalent
join method used in some database products to handle both equal and nonequal join queries
[1]. Hash-based join, though having good average performance, suffers from the problem
of hash bucket overflow and is, thus, avoided in many commercial database products.

Note that both rt and size-estimation can be calculated using the formulas provided in
[36], in [41] or in [17]. For each selected LAN in a join tree, the pairs associated with the
nodes on the path connecting the LAN and the left child of UAN will be computed anew in
a bottom-up manner based on the newly generated join between the right child node of the
UAN and the right (or left) child node of the LAN. See Fig. 9 for an illustration.

In addition, three heuristics are utilized to find a time improving LAN as quickly as
possible:

1. A node will be considered as a candidate for a LAN only if its right (or left) child node has
join predicates with the right child node of the original UAN.

2. If the right child node of a LAN has join predicates only with the right child node of the
original UAN, this LAN will be selected.

3. If (2) is not the case, i.e., the right (or left) child node of each such LAN has join predi-
cates with other base relations, then we select the LAN with the best time improvement.

As with the basic transformation step in [14], a time improving EB-transformation is
uniquely identified by a UAN and a LAN. Then, the process of balancing a left deep join
tree can be illustrated as a process of repeatedly selecting UANs and LANs, and applying
TIEB-transformations through cost computation. In this process, the cost formulas pro-
vided in [36] or in [41] can be used. In the following, we outline a top-down process.

We traverse the left deep join tree from the root to the leaf and take the root as the
initial UAN. For each UAN (the initial UAN, or any newly generated UAN during the tree
transformation process), the algorithm differentiates among three cases:

1. If its left child node is a leaf node, then the algorithm simply terminates (or returns if the
process is recursively called) as the load of the UAN can not be redistributed, and all
other join nodes have already been processed.

2. If the response time of the right subtree is about the same or greater than that of the left
subtree, then no transformation will be applied to the UAN. But recursive invocations of
the algorithm on both the right and left subtrees will be performed.

Fig. 9. Illustration of recomputation of response times and estimated sizes.

new UAN

LAN

new join

will be anewly computed
path, on which the pairs

n
a

b

UAN

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 481

3. If the response time of the left subtree is greater than that of the right subtree, then the
subtree rooted at the left child node of the UAN is traversed to find a LAN, by means of
which a TIEB-transformation can be performed. If no such node exists, the algorithm
will first balance the left child subtree. Afterwards, the right child subtree will also be
balanced. Otherwise, an extended basic transformation will be performed. That is, the
right (or left) child node of the LAN will be replaced with the join between the right (or
left) child node of the LAN and the right child node of the original UAN, which will
subsequently be removed.

Example 5 We will trace a sample transformation to illustrate the above top-down process.
See the left deep join tree shown in Fig. 10(a), in which there exist join predicates between
relations A and B, B and C, C and D, D and E, and C and F. As in Example 3, we assume for
clarity of explanation that each local join operation has a cost of 5 units of time. Furthermore,
to make the trace non-trivial, we assume that each local relation has an initial cost (shown in
the figure).

First, by taking the root as the UAN and the node marked with 25 as the LAN, it is
translated into the form shown in Fig. 10(b). Then, taking the node marked with 30 as the
LAN (note that the node marked with 35 becomes the new UAN), this tree will be changed
into the tree shown in Fig. 10(c). Finally, the balanced tree shown in Fig. 10(d) can be
obtained.

Although the top-down approach works in some cases using TIEB-transformation, it
suffers from a critical problem; that is, the algorithm balances a node before its child nodes
are balanced, which may keep us from finding a more balanced join tree. In the following
subsection, we propose a recursive algorithm to overcome this deficiency.

30

25

20

15
15

15 5

20
5

10

F C

E

B

D

A

5

(c)

25

20
15 15

15

20
15

10
5

5
5A B

F
C D

E

(d)

40
35

30
25

20
15

15
5

5
5

15

A B

D
C

E
F

(a) (b)

A
F C

D

E

15
15

20

25

30
35

5
5

15B 5
20

Fig. 10. Sample trace of top-down approach.

YANGJUN CHEN482

5.2 Recursive Algorithm for Balancing Left Deep Join Trees

To demonstrate the problem with the top-down approach stated above, let us exam-
ine the left deep join tree shown in Fig. 11(a). For ease of exposition, we assume that
between the members of each pair of relations there exists at least one join predicate.

After a TIEB-transformation step (by taking the nodes marked with 40 and 35 as the
UAN and LAN, respectively), it will be translated into the form as shown in Fig. 11(b).
Since the left child subtree of the root is not balanced, this transformation makes a global
balance impossible. Fig. 11(c) shows the final bushy join tree which is not well balanced.
(See Fig. 12(d) for a comparison.)

To improve this behavior, we propose the following recursive algorithm, which works
better than both the above top-down strategy and the hybrid algorithm proposed in [14].
The key idea behind the algorithm is that before a tree is balanced, the left child subtree of
its root is first balanced. Then, we take the root as the UAN and traverse the subtree in a
depth-first manner to find a LAN so that TIEB-transformation can be performed. With the
TIEB-transformation, this strategy leads to a more balanced tree.

Procedure tree-transformation (LDT, root)
(*LDT stands for a left deep (or bushy) join tree; root represents its root.*)
begin

if the height of LDT h £ 2 then return;
let LDT’ and r-node be the left child subtree and the right child node of the root, respectively;
let a be the root of LDT’;
call tree-transformaiton (LDT’, a);
(*recursive call of tree-transformation*)
let T be the balanced bushy join tree found by
tree-transformation (LDT’, a);
perform a depth-first traversal of T to find a time improving LAN in T;
if lan is such a node found in T, for which
EB-transformation can be applied and if at the same time, it is the best one compared
to the other transformable nodes;
then {make the EB-transformation:
 remove root and its right child subtree from LDT;
 replace lan’s right (or left) child node LS with a new join node between LS and
 r-node;}

return;
end

Fig. 11. Example of top-down transformation.

15 15

20
25

30
35

40

10
5

10
5

(a)

15 15

20
25

30
35

10 5

15 15 10 5

15
10 5

20

30

20
25

(c)(b)

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 483

The above algorithm works by means of recursive procedure calls. Thus, each recur-
sive call returns nothing. But some subtree will be changed by each procedure call. Therefore,
whenever the control is switched over to a calling procedure, it will handle a new subtree
whose root’s left subtree has been balanced. The entire tree will be balanced after the
highest recursive call is executed.

In the following, we present another trace of tree transformation to illustrate the ma-
jor idea behind our recursive algorithm.

Example 6 Fig. 12(a) shows a left deep join tree, in which each relation node is labeled
with its cost and each join node is labeled with the response time of the subtree rooted at
that node. As before, each join operation is assumed to take 5 units of time.

At the beginning of the procedure, three recursive calls will be executed successively:

tree-transformation (LDT, root) Æ recursive-call

tree-transformation (LDT1, a) Æ recursive-call

tree-transformation (LDT2, b) Æ recursive-call

tree-transformation (LDT3, c).

After the return from tree-transformation(LDT3, c) to tree-transformation(LDT2, b),
the first transformation (as shown in Fig. 12(b)) occurs, and tree T2 is the corresponding
local balanced tree. Then, the control is returned to tree-transformation(LDT1, a). During
the execution of it, tree T2 is searched, and node d is selected as the LAN (see Fig. 12(b)
again). Consequently, tree T1 is constructed as shown in Fig. 12(c). Afterwards, the control
is returned to tree-transformation(LDT, root). During the execution of it, T1 is traversed,
and node e is selected as the LAN. (See Fig. 12(c) again.) Lastly, the tree shown in Fig. 12
(d) is generated.

Fig. 12. Tracing a sample example.

LDT1

LDT2
LDT3

LDT

root
35

30

25

20

15 15
10

5
10

5

40

T1

25

20

15 15

20

1015

10

5 5

T2 30

25

20

15
15

10 5

15
20

10

5

e

d

35

30
25

20

15 15 10 5

10
5

(a) (b)

(c) (d)

YANGJUN CHEN484

From this example, we see that the result obtained using tree-transformation() is
better than that obtained using the top-down strategy. In fact, it is also better than the result
obtained using the hybrid method in [14]. In this example, the hybrid algorithm behaves
accidently like a top-down strategy. (See [14] for a detailed description.) However, from
the description of the hybrid algorithm, we know that it is a combination of a top-down and
a bottom-up process. During execution, a top-down process switches over to a bottom-up
process when some condition is satisfied, and vice versa. Therefore, when a hybrid process
accidently becomes top-down execution, our method works better than it does. But one
may argue that in some cases, when a bottom-up process is involved, the hybrid algorithm
may outperforms ours.

In the following, we give another example to demonstrate that this is not the case,
either.

Example 7 Examine the left deep join tree shown in Fig. 13(a). In terms of the mechanism
of the hybrid algorithm [14], a bottom-up process is invoked, which translating the tree
shown in Fig. 13(a) into the one shown in Fig. 13(b) in one basic transformation step.
Further, by means of a second basic transformation, the tree shown in Fig. 13(b) is trans-
lated into the tree shown in Fig. 13(c). Any further transformation is not possible, but using
tree-transformation(), the tree shown in Fig. 13(d) can be obtained.

In addition, the time complexity of tree-transformation() is the same as that of the
hybrid algorithm, in which O(n.logn) basic transformations are required, where n is the
number of base relations involved in the join tree. In contrast, tree-transformation() needs
only n basic transformations since there are only n recursive calls altogether and by means
of each recursive call, at most one EB-transformation can be performed. If we do not take
node allocation into account, the transformation used in our method takes the same amount
of time as does that used in [14]. However, the complexity of tree traversal in our method
is O(n2) time. This is the case because O(n) nodes are accessed by each depth-first search
of some subtree and there are n subtree traversals in the worst case. But the complexity of
tree traversal in the method proposed by Du et al. is also on the order of O(n2) (see [13]).

Fig. 13. Tree transformation.

45
40

35
30

25
20

15 15
15

5
5

5
25

(a)

30
35

40

15 5
520

15

(b)

25 2
5

20

15

15 15 5

25
30

35

20 5
10

25

5
15

15

20

(c)

30
25

5
55

20

(d)

15 15
20

25

15
10

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 485

In the following, we prove a proposition to show that our recursive algorithm gener-
ally aids tree balance.

Proposition 2 Let T be a bushy binary tree, and let T’ and T” be two balanced bushy join
trees obtained by applying tree-transformation() and the hybrid algorithm proposed by Du
et al. to T, respectively. Then, rt(T’) £ rt(T”), where rt(T) stands for the response time of T.

Proof: We prove the proposition by induction on the height of T: h.

Basis: When h £ 3, the proof is trivial (see Proposition 1).

Induction step: Suppose that for some k, for all T with h £ k, rt(T’) £ rt(T”) holds. We
consider a bushy join tree with height k + 1 (see Fig. 14(a)).

If we apply Du’s hybrid algorithm to T1, then one of the following three cases may
happen in its first main loop:

1. During top-down traversal, a UAN and a LAN are determined.
2. During bottom-up traversal, a UAN and a LAN are determined.
3. No transformation can be made.

We first consider case (1). Without loss of generality, assume that the root (na) is
chosen as the UAN, and that the corresponding LAN is nb (see T1 shown Fig. 14(a)). Then,
T1 will be transformed into T2 as shown in Fig. 14(b). On the other hand, if we use tree-
transformation() for T1, then at the moment when the subtree rooted at the left child of na

is searched to find a LAN for na (see Fig. 14(c) for an illustration, where nc'' represents the
root of the transformed left subtree of T1), we find the following two cases:

Fig. 14. Illustration of tree transformation.

T1 : na

nb

nc
nc’

nb’

na’

T :2 nc

nb nc’

nb’ na’

nc’’

na

na’

na

na’

nb’

nc’’

nb’’

nc’’

nb’’

nb’ na

(e)(c) (d)

k

(a) (b)

YANGJUN CHEN486

(i) nb has not been removed.
(ii) nb has been removed.

If nb has not been removed, then tree-transformation() will do the same transforma-
tion as shown in Fig. 14(b). Then, in effect, the tree obtained by applying tree-transforma-
tion() to T1 is the same as that obtained by applying tree-transformation() to T2. Thus, in
terms of the induction suppose, we have:

 rt(T1') = rt(T2') ≤ rt(T2'') ≤ rt(T1'').

If nb has been removed, then without loss of generality, we assume that the corre-
sponding tree is of the form shown in Fig. 14(d) (in which nb'' stands for the root of the left
subtree of nb before it is removed). Then, tree-transformation() finds nb' (or a node with
better response time in terms of the heuristics discussed in subsection 5.1); and the result-
ant tree is of the form shown in Fig. 14(e). From this, we see that

 rt(T1') £ rt(T2').

This is because if we apply transformation() to T2 directly, then nodes nb' and na' can
only be moved together (as the join node between them). But if we apply transformation(
) to T1, then better transformation may be performed due to the lack of this restriction.
Thus, the following inequalities hold:

rt(T1') £ rt(T2') £ rt(T2'') £ rt(T1'').

Case (2) can be proved in a way similar to that in case (1).

For case (3), we denote T3 as the left subtree of T1. Then, in terms of the induction
suppose, we have

rt(T3') £ rt(T3'').

Note that rt(T1') = rt(T3') + t' and rt(T1'') = rt(T3'') + t'', where t' and t'' represent the
elapsed times for the join between T3' and the right subtree of na and the join between T3''
and the right subtree of na, respectively. Thus, rt(T1') £ rt(T1''). o

Together with Example 7, this proposition shows that in all the cases, our recursive
algorithm outperforms the hybrid algorithm proposed in [14].

In order to demonstrate that the improvement in response time is not trivial, we ex-
amine an extreme situation, in which the reduction in response time is tremendous. To this
end, we show a tree (called a basic tree, denoted T1) in Fig. 15(a), whose response time is 5.
a1 units of time, where we assume that the cost of each local join is a1 units of time. Using
our algorithm, this tree can be transformed into the form shown in Fig. 15(b). Its response
time is 4.a1 units of time. But this transformation is not possible using the hybrid algorithm
proposed in [14]. Similarly, we can construct a second basic tree T2 as shown in Fig. 15(c),
where a2 = 4.a1 and the cost of each local join is a2 units of time. We denote the tree shown
in Fig. 15(d) as T1 + T2. Then, our algorithm can improve the response time by a1 + a2 units

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 487

of time. In the same way, we can define the nth basic tree Tn and construct T1 + T2 + ... + Tn

as shown in Fig. 15(e), where ai+1 = 4.ai (i = 1, ..., n - 1). Using our algorithm, its response
time can be reduced by i

n
ia=∑ 1 units of time. But no improvement can be made at all using

Du’s algorithm.

6. NODE ALLOCATION

Once a balanced bushy join tree has been generated, we should apply a node alloca-
tion to it by taking relation distribution into account. This can be done by assigning a label
to each node of the tree to indicate at which site the corresponding (join) operation will be
performed.

6.1 Communication Costs and Load Measurements

In order to achieve reasonable node allocation, we have to know both the load states
of the local databases and the communication costs of the network. To this end, we main-
tain a dynamic matrix for the transmission rate between each pair of local databases and a
dynamic table for load measurements, which is changed periodically to indicate the actual
load states of networks as well as of local databases (see Fig. 16(a) and (b)). Note that
changing the dynamic table periodically is the only small workload imposed on the network
by our global federated system manager.

Fig. 16(a) shows a sample transmission cost matrix, in which each cij corresponds to
the rate of transmission from DBi to DBj. Such a matrix has to be changed periodically to
record the actual transmission rates so that the actual load states of networks (accordingly,
the data transmission delay) can be observed. In the table shown in Fig. 16(b), each entry is
used to store the actual frequency of queries arriving at some local database and its average
serving time, in terms of which the response time can be calculated using the queuing
analysis.

Fig. 15. Tree transformation.

T1 :
a14

a1

a1

a13
a1

a12

5a1

a3 n
an

an

Tn :
a4 n

5a n

a2 n

(e)

a14

a13

a12

a1 a1

a1

BA

(b)

T1 :
5a1

a14

a13

a12a1

a1
a1

B

A

(a)

a2

5a2

a22

a4 2

T :2

T1 : 5a1
a14

a1

a1

a13
a1

a12

a3 2

a2

(d)

T :2 5a1
a14

a13

a12a1

a1
a1

B

A

(c)

YANGJUN CHEN488

Clearly, we have the following formulas for computing response times, assuming
that the query arrival rate obeys the Poisson distribution, and that the service time is expo-
nentially distributed [33]:

system load s

average response time
t sq

: ,

/ (), ;

,

ρ λ
ρ ρ

ρ

= ⋅

=
= − <

∞ ≥




1 1

1

where l represents the current query arrival rate and s represents the average service time.
For example, from the first entry in the table shown in Fig. 16(b), we know that the re-
sponse time of DB1 is tq = s /(1 - r) = 6.0/(1 - 0.2) = 7.5.

The response time can be more exactly estimated by taking the join costs into account.
For this purpose, we divide the costs of joins into several classes and record the average
service time for each. For example, we can classify the costs of joins into four categories,
J1, J2, J3 and J4, in terms of the cost function ΩRiΩ+ΩRjΩ+ΩRi RjΩ[41], such that 0 ≤
costJ1 < 50 ¥ 106, 50 ¥ 106 £ costJ2 < 100 ¥ 106, 100 ¥ 106 £ costJ3 < 150 ¥ 106 and 150 ¥ 106

£ costJ4 < •. Then, according to [33], a sample load measurements can be of the form as
shown in Fig. 17, in which each type has a different service time.

Fig. 16. Transmisson cost matrix and load measurement.

DB1

DB2

DB3

DB4
2

3 1 0 1
3 1 0

average service

time s (sec.)

current query rate

λ (per minute)

transmission cost: = per bit x 10c ij
-4

6.0 2.0

4.0 5.0

7.0 3.0

2 3

3
4

1
2

0 3
2 0 1 2

i 1 42 3

j

8.0 1.5

(a) (b)

Fig. 17. Refined load measurement.

DB1

DB2

DB3

DB4

1.0

1.5

2.0

2.1

2.4

2.0

3.3

3.7

4.0

3.2

5.0

6.1

6.0

4.0

7.0

8.0

2.0

5.0

3.0

1.5

sJ1 sJ2 sJ3 sJ4 λ (per minute)
current query rate

time (sec.)
average service

Accordingly, the average response time can be calculated as follows (see [33]):

system load:

average response time:

ρ λ

ρ

= ⋅
+ + +

= − =

S S S S

t S i

J J J J

qi Ji

1 2 3 4

4
1 1 2 3 4

,

/ () (, , ,).

(3)

(4)

D D

(5)

(6)

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 489

Note that we can also compute each sJi above using the regression cost formulas for “join
queries” proposed in [43] if the access methods used in the local databases and the informa-
tion concerning the index structures (such as index-based join, clustered-index-based join,
or sequential scan join) are known at the global schema level. Then, the index structures
have to be taken into account for join classification. Conventional cost models [17, 36, 41]
can estimate the size of intermediate results. Then, in terms of it, the transmission costs, the
workload of the local database systems and the response time of each node can be estimated
dynamically. Our approach is applicable regardless of the model used for estimation of
intermediate result sizes or the probabilistic distribution used to derive the average re-
sponse time of a local database system. We assume that some method of estimating the
sizes of intermediate results is available.

In our multidatabase system, a relation may have several replicates distributed over
local databases involved in the federation. Then, for each relation, the FSM (Federated
System Manager) maintains a list of the names of its replicates, sorted according to the
average response time of the local systems, in which they reside. A local system has the
right to reject cooperation due to autonomy. If this happens, the next replicate (residing in
another local system) is selected, and the planner is executed once again. By the execution,
the rejecting local system is not considered any more. This process repeats until a plan is
generated or aborted. If a local system becomes very busy during evaluation and its re-
sponse time severely degenerates, we can treat it as a rejecting one. That is, we get it off,
select another replicate and execute the planner again. (Due to space limitations, a detailed
discussion of this issue will be given in another paper now in preparation.)

6.2 Node Allocation Strategy

Given a balanced join tree, we label its leaf nodes (corresponding to the relations
involved in the query) with the site numbers to indicate where a relation resides. Then, we
try to label the remaining nodes to complete a node allocation so as to minimize the total
response time. In fact, our method can be regarded as an extended version of the method
proposed in [19], i.e., a dynamic programming strategy with the dynamic time tables being
integrated (see below).

First, we define the following data structure, which is used in our model for node
allocation.

Definition 4 A dynamic time table associated with a join tree T (denoted dt-tableT) is a set
of pairs of the form (DB, v), where DB is a label representing a site and v is a list of the form
(v1, ..., vi, ...) with each vi representing the response time of the i-th operation performed in
DB w.r.t. T. Such a list is called a current allocation of DB and is denoted dt-tableT(DB).

For example, for the tree with node allocation, shown in Fig. 18(a), we have a dy-
namic time table as shown in Fig. 18(b), where each node in the tree is associated with a
triple: (l, rt, S).

Here, l is a label which indicates that the relation or the join operation represented by
the corresponding node resides or will be executed at l (or in DBl), rt represents the re-
sponse time of the subtree rooted at this node and S stands for the estimated size of the
result of the operation represented by this node.

YANGJUN CHEN490

Definition 5 opt-rt(a, k) is defined as the shortest response time of the subtree rooted at a
such that a is labeled with k. If node a is pre-labeled with a label different from k, then opt-
rt(a, k) = • (which will prevent a pre-labled node a from being labled with any other lables.)
If node a is pre-labeled with the same label as k, then opt-rt(a, k) = 0.

Consider a node a which has children a1, a2, ..., ap. If the labels for a1, a2, ..., ap and
the corresponding response times have been fixed, say k1, k2, ..., kp and rt1, rt2, ..., rtp,
respectively, then the response time of the subtree rooted at a is the response time of site k
plus the time at which the last operand arrives from some aj (1 £ j £ p) since an operation
can not be performed at a site until all the operands have arrived at it and, at the same, it is
idle. (Note that pipelining is not considered here.) Thus, the following equation holds:

opt-rt(a, k) = max{ maxaj {ckjk.ΩajΩ + rtj}, dt-tableT(k)[last]} + tka, (7)

where αj (1 £ j £ p) stands for the child nodes of a, dt-tableT(k)[last] represents the last
element in the list referenced by dt-tableT(k), i.e., the response time of the last operation
performed at site k, tka represents site k’s average response time calculated in terms of the
average service time (w.r.t. the cost class of the join represented by a) and its load state, and
ΩajΩ is the size of a. Note that if dt-tableT(k) is an empty list, then dt-tableT(k)[last] returns
0.

More strictly, we have the following definition.

Definition 6 Let L be the set of all labels. Let a and k represent a node and some label in L,
respectively. opt-rt(a, k) and another quantity opt(a) can be calculated recursively as follows:

(i) If a is a leaf node, unlabeled or pre-labeled with k, then opt-rt(a, k) = 0. If a is pre-
labeled with a label other than k, then opt-rt(a, k) = • (which will prevent a pre-labled
node from being labled with any other lables).

(ii) opt(a) is defined as miniŒL{ opt-rt(a, i)}, i.e., the shortest response time of the subtree
rooted at a irrespective of the label of a. In addition, a function f(opt(a)) is defined as a
label l such that opt(a) = opt-rt(a, l).

(iii) If a is not a leaf node, then

R 1 R 2 R 3 R 4

(DB1, 17.7, 10000)

(DB2, 8.0, 15000) (DB1, 9.9, 90000)

(DB1, 0, 10000) (DB2, 0, 20000) (DB3, 0, 5000) (DB4, 0, 8000)

DB 1

DB i

DB

DB

DB

2

3

4

(8.0, 17.7)

(9.9)

()

()

response
time

Fig. 18. Tree with node allocation and its dynamic time table.

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 491

opt rt a k

a k
c opt

dt table k t

j j
f opt a k j j

T ka

− =

∞
⋅ +

− +









(,)

, ;
max max{ | | (},

()[]} , ,

((),

 if is pre - labeled with a label other than
{

last otherwise

α
α α

opt a opt rt a i

dt table l dt table l opt rt a l opt rt a l

opt rt a i

i L

T T

i L

() min{ (,)},

(): () { (,)} (,)

min{ (,)}.

= −

= ∪ =
∈

∈

- - - if -

 -

The following example traces a sample labeling of a tree based on Definition 6.

Example 8 We consider a multidatabase consisting of four local databases DBi (i = 1, 2, 3,
4). Assume that the transmission cost matrix and the current load measurements are the
same as those shown in Figs. 16(a) and (b). (For the sake of simplicity, we will not consider
the cost classification of joins here. Instead, we will assume that for a local database system,
the response times of computing joins are the same, i.e., for any a tka = tk, to clarify the main
idea the strategy.) We will demonstrate how to compute opt-rt for the tree shown in Fig.
19, where each Ri (i = 1, 2, 3, 4) represents a base relation residing in DBi. In this tree, the
sizes of intermediate results are assumed. But they can be calculated using the formulas
suggested in [17, 36, 41]. In addition, each leaf node is marked with a pair of the form (l,
N), where l is a label used to indicate that the corresponding relation resides at site l and N
represents its cardinality:

t1 = s1/(1 - l1.s1) = 6.0/(1 - 0.2) = 7.5 sec,
t2 = s2/(1 - l2.s2) = 4.0/(1 - 1/3) = 6.0 sec,
t3 = s3/(1 - l3.s3) = 7.0/(1 - 0.35) = 9.33 sec,
t4 = s4/(1 - l4.s4) = 8.0/(1 - 0.2) = 10.0 sec,

First, we calculate the response time of each local database based on its actual load
measurement.

Then, it is useful to think of opt-rt, opt and f(opt(...)) as three tables as shown in Fig.
20. Definition 4 can be applied to fill in the columns in the table in a left to right manner. In
Fig. 21, the change of the dynamic time table is demonstrated.

(8)

(9)

(10)

Fig. 19. A partly labeled tree.

R 1 R R R2 3 4

10000

15000 9000

(DB1, 10000) (DB2, 20000) (DB3, 5000) (DB4, 8000)

YANGJUN CHEN492

At the beginning, each dt-tableT(DBi) is empty (see Fig. 21(a)). After the column for
R12 is filled, the dynamic time table takes to the form shown in Fig. 21(b). Note that this
column is computed using the values in the columns for R1 and R2. For example, using the
formula given in Definition 5, opt-rt(R12, DB1) = max{ max {cf(opt(R1)),1.ΩR1Ω+ opt(R1), max
{cf(opt(R2)),1 .ΩR2Ω+ opt(R2)}, dt-tableT(DB1)[last]} + t1 = max{ max 0, 2 ¥ 10-4 ¥ 20000 + 0},
0} + 7.5 = 11.5. (In Appendix A, the detailed computations for this example are given; also,
notice that the classifications of join costs are not considered in this example.)

Further, after the column for R34 and then the column for R are filled, the dynamic
time table is changed to the forms shown in Figs. 21(c) and 21(d), respectively. In addition,
the table for f(opt(...)) gives the last node allocation.

Fig. 20. Calculation of opt-rt, opt and f(opt(...)) for tree of Fig. 19.

0.0 0.0 0.08.0 9.9 17.70.0

DB1 DB2 DB2 DB3 DB4 DB1 DB2

DB1

DB4

DB3

DB2

R 1 R 2 R 12 R 3 R 4 R 34
opt-rt :

:opt

f(opt(...)):

0.0

0.0

12.33 0.0

9.9

14.0

10.13

10.5

11.5

14.0

8.0

18.5

0.0

17.7

21.93

22.6

R

Fig. 21. Change of dynamic time table.

DB i

DB 1

DB 2

DB 3

response
time

()

(8.0)

DB 4

()

()

DB i

DB 1

DB 2

DB 3

DB 4

response
time

()

()

(8.0)

(9.9)

DB i

DB 1

DB 2

DB 3

DB 4

response
time

(8.0, 17.7)

()

()

(9.9)

DB i

DB 1

DB 2

DB 3

response
time

()DB 4

()

()

()

7. CONCLUSIONS

In this article, a new method for evaluating queries submitted to a relational
multidatabase has proposed. This method mainly consists of four processes: the initial
local process, the query translation, the join sequence production and bushy join tree
production.

In order to implement an automatic query translation strategy, two important concepts,
the relation structure term and extended substitution, have been introduced. Based on
these concepts, many algorithms can be developed to perform query translation automati-
cally even if schema conflicts exist. A second difficult problem is the generation of bal-
anced join trees from a join sequence since, in essence, this problem is NP-hard [25]. To
get a better approximately optimal solution to this problem, we have extended the basic

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 493

transformation step used in [14] and developed a recursive algorithm to obtain more bal-
anced join trees. This algorithm has been proved to be significantly better than the one
found by [14]. The third problem is that join operations have to be distributed reasonably.
For this purpose, a new concept of the dynamic time table has been introduced and inte-
grated into the dynamic programming strategy proposed in [19] to implement a node allo-
cation algorithm. Lastly, the queuing theory has been utilized to calculate the response
times of local database systems in terms of their actual load states.

APPENDIX A. COMPUTATION FOR EXAMPLE 7

In this Appendix, node allocation for a balanced join tree is illustrated using the tree
shown in Fig. 19 and the assumed system state shown in Fig. 16.

First, for the base relations R1, R2, R3 and R4, we have:

opt-rt(R1, DB1) = 0; opt-rt(R1, DB2) = •; opt-rt(R1, DB3) = •;
opt-rt(R1, DB4) = •; opt(R1) = 0; f(opt(R1)) = DB1.
opt-rt((R2, DB1) = •; opt-rt(R2, DB2) = 0; opt-rt((R2, DB3) = •;
opt-rt((R2, DB4) = •; opt(R2) = 0; f(opt(R2)) = DB2.
opt-rt(R3, DB1) = •; opt-rt(R3, DB2) = •; opt-rt(R3, DB3) = 0;
opt-rt(R3, DB4) = •; opt(R3) = 0; f(opt(R3)) = DB3.
opt-rt(R4, DB1) = •; opt-rt(R4, DB2) = •; opt-rt(R4, DB3) = •;
opt-rt(R3, DB4) = 0; opt(R4) = 0; f(opt(R4)) = DB4.

The momentary contents of dt-tableT are:

dt-tableT(DB1) = (); dt-tableT(DB2) = (); dt-tableT(DB3) = (); dt-tableT(DB4) = ().

Then, opt-rt(R12, DBi) (i = 1, 2, 3, 4) can be computed as follows:

opt-rt(R12, DB1) = max{ max {cf(opt(R1)),1ΩR1Ω+ opt(R1)},
 max{cf(opt(R2)),1ΩR2Ω+ opt(R2)}, dt-tableT(DB1)[last]} + t1

= max{ max{0, 2 ¥ 10-4 ¥ 20000 + 0}, 0} + 7.5 = 11.5;
opt-rt(R12, DB2) = max{ max {cf(opt(R1)),2ΩR1Ω+ opt(R1)},
 max{cf(opt(R2)),2ΩR2Ω+ opt(R2)}, dt-tableT(DB2)[last]} + t2

= max{ max{2 ¥ 10-4 ¥ 10000 + 0, 0}, 0} + 6.0 = 8.0;
opt-rt(R12, DB3) = max{ max {cf(opt(R1)),3ΩR1Ω+ opt(R1)},
 max{cf(opt(R2)),3ΩR2Ω+ opt(R2)}, dt-tableT(DB3)[last]} + t3

= max{ max{3 ¥ 10-4 ¥ 10000 + 0, 1 ¥ 10-4 ¥ 20000 + 0}, 0} + 9.33 = 12.33;
opt-rt(R12, DB4) = max{ max {cf(opt(R1)),4ΩR1Ω+ opt(R1)},
 max{cf(opt(R2)),4ΩR2Ω+ opt(R2)}, dt-tableT(DB4)[last]} + t4

= max{ max{3 ¥ 10-4 ¥ 10000 + 0, 2 ¥ 10-4 ¥ 20000 + 0}, 0} + 1.0 = 14.0;

Now the contents of dt-tableT become:

dt-tableT(DB1) = (); dt-tableT(DB2) = (8.0); dt-tableT(DB3) = ();
dt-tableT(DB4) = ().

YANGJUN CHEN494

Subsequently, opt-rt(R34, DBi) (i = 1, 2, 3, 4) can be evaluated:

opt-rt(R34, DB1) = max{ max{ cf(opt(R3)),1ΩR3Ω+ opt(R3)},
 max{ cf(opt(R4)),1ΩR4Ω+ opt(R4)}, dt-tableT(DB1)[last]} + t1
= max{max{3 ¥ 10-4 ¥ 5000 + 0, 3 ¥ 10-4 ¥ 8000 + 0}, 0} + 7.5 = 9.9;
opt-rt(R34, DB2) = max{ max{ cf(opt(R3)),2ΩR3Ω+ opt(R3)},
 max{ cf(opt(R4)),2ΩR4Ω+ opt(R4)}, dt-tableT(DB2)[last]} + t2
= max{max{1 ¥ 10-4 ¥ 5000 + 0, 2 ¥ 10-4 ¥ 8000 + 0}, 8.0} + 6.0 = 14.0;
opt-rt(R34, DB3) = max{ max{ cf(opt(R3)),3ΩR3Ω+ opt(R3)},
 max{ cf(opt(R4)),3ΩR4Ω+ opt(R4)}, dt-tableT(DB3)[last]} + t3
= max{max{0, 1 ¥ 10-4 ¥ 8000 + 0}, 0} + 9.33 = 10.13;
opt-rt(R34, DB4) = max{ max{ cf(opt(R3)),4ΩR3Ω+ opt(R3)},
 max{ cf(opt(R4)),4ΩR4Ω+ opt(R4)}, dt-tableT(DB4)[last]} + t4
= max{max{1 ¥ 10-4 ¥ 5000 + 0, 0}, 0} + 1.0 = 10.5;

Then, we have opt(R34) = 9.9 and f(opt(R34)) = DB1.
The contents of dt-tableT are changed to:

dt-tableT(DB1) = (9.9); dt-tableT(DB2) = (8.0);
dt-tableT(DB3) = (); dt-tableT(DB4) = ().

Lastly, opt-rt(R, DBi) (i = 1, 2, 3, 4) can be computed in the same way as above:

opt-rt(R, DB1) = max{ max{ cf(opt(R12)),1ΩR12Ω+ opt(R12)},
 max{ cf(opt(R34)),1ΩR34Ω+ opt(R34)}, dt-tableT(DB1)[last]} + t1

= max{max{2 ¥ 10-4 ¥ 15000 + 8.0, 0 + 9.9} 9.9} + 7.5 = 18.5;
opt-rt(R, DB2) = max{ max{ cf(opt(R12)),2ΩR12Ω+ opt(R12)},
 max{ cf(opt(R34)),2ΩR34Ω+ opt(R34)}, dt-tableT(DB2)[last]} + t2

= max{max{0 + 8.0, 2 ¥ 10-4 ¥ 9000 + 9.9}, 8.0} + 6.0 = 17.7;
opt-rt(R, DB3) = max{ max{ cf(opt(R12)),3ΩR12Ω+ opt(R12)},
 max{ cf(opt(R34)),3ΩR34Ω+ opt(R34)}, dt-tableT(DB3)[last]} + t3

= max{max{1 ¥ 10-4 ¥ 15000 + 8.0, 3 ¥ 10-4 ¥ 9000 + 9.9} 0} + 9.33 = 21.93;
opt-rt(R, DB4) = max{ max{ cf(opt(R12)),4ΩR12Ω+ opt(R12)},
 max{ cf(opt(R34)),4ΩR34Ω+ opt(R34)}, dt-tableT(DB4)[last]} + t4

= max{max{2 ¥ 10-4 ¥ 15000 + 8.0, 3 ¥ 10-4 ¥ 9000 + 9.9} 0} + 1.0 = 22.6;

Similarly, opt(R) = 17.7 and f(opt(R)) = DB2 can be derived, and dt-tableT is now of the
form:

dt-tableT(DB1) = (9.9); dt-tableT(DB2) = (8.0, 17.7);
dt-tableT(DB3) = ();
dt-tableT(DB4) = ().

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 495

REFERENCES

1. C. Baru et al, “An overview of DB2 parallel edition,” in Proceedings of ACM SIGMOD,
1995, pp. 460-462.

2. BBMS98 M. L. Barja, T. Bratvold, J. Myllymaki, and G. Sonnenberger, “Informia: a
mediator for integrated access to heterogeneous information sources,” in Proceedings
of 7th International Conference on Information and Knowledge Management (CIKM),
ACM, 1998, pp. 234-241.

3. Y. Breitbart, P. Olson, and G. Thompsom, “Database integration in a distributed het-
erogeneous database system,” in Proceedings of 2nd IEEE Conference on Data
Engineering, 1986, pp. 301-310.

4. W. Benn, Y. Chen, and I. Gringer, A Rule-based Strategy for Schema Integration in a
Heterogeneous Information Environment, Technical Report/CSR-96-01, Computer Sci-
ence Department, Technical University of Chemnitz-Zwickau, Germany, 1996.

5. Y. Chen and W. Benn, “On the query treatment in federated systems,” in Proceedings
of 8th International DEXA Conference on Database and Expert Systems Application,
1997, pp. 583-592.

6. Y. Chen and W. Benn, “A systematic method for query evaluation in federated rela-
tional databases,” Technical Report, CSR-97-03, Computer Science Department, Tech-
nical University of Chemnitz-Zwickau, Germany, 1997.

7. M. S. Chen, M. L. Lo, P. S. Yu, and H. C. Young, “Applying segmented right-deep trees
to pipelining multiple hash joins,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 7, No. 4, 1995, pp. 656-668.

8. I. A. Chen and D. Rotem, “Integrating information from multiple independently devel-
oped data sources,” in Proceedings of 7th International Conference on Information
and Knowledge Management (CIKM), ACM, 1998, pp. 242-250.

9. M. S. Chen and P. S. Yu, “A graph theoretical approach to determine a join reducer
sequence in distributed query processing,” IEEE Transactions on Knowledge and Data
Engineering, Vol. 6, No. 1, 1995, pp. 152-165.

10. M. S. Chen, P. S. Yu, and K. L. Wu, “Optimization of parallel execution for multi-join
queries,” IEEE Transactions on Knowledge and Data Engineering, Vol. 8, No. 3, 1996,
pp. 416-428.

11. S. Ceri and J. Widom, “Managing semantic heterogeneity with production rules and
persistent queues,” in Proceedings of 19th International Very Large Data Base
Conference, 1993, pp. 108-119.

12. W. Du, R. Krishnamurthy, and M. Shan, “Query optimization in heterogeneous DBMS ”
in Proceedings of 18th International Very Large Data Base Conference, 1992, pp.
277-291.

13. W. Du, M. Shan, and U. Dayal, “Reducing multidatabase query response time by tree
balancing,” DTD Technical Report, Hewlett-Packard Labs., 1994.

14. W. Du, M. Shan, and U. Dayal, “Reducing multidatabase query response time by tree
balancing,” in Proceedings of 15th International ACM SIGMOD Conference on Man-
agement of Data, 1995, pp. 293-303.

15. Y. Dupont, “Resolving fragmentation conflicts schema integration,” in Proceedings
13th International Conference on the Entity-Relationship Approach, 1994, pp. 513-
532.

YANGJUN CHEN496

16. C. Evrendilek, A. Dogac, S. Nural, and F. Ozcan, “Multidatabase query optimization,
” International Journal of Distributed and Parallel Databases, Vol. 5, No. 1, 1997, pp.
77-114.

17. C. J. Egyhazy, K. P. Triantis, and B. Bhasker, “A query processing algorithm for a
system of heterogeneous distributed databases,” International Journal of Distributed
and Parallel Databases, Vol. 4, No. 1, 1996, pp. 49-79.

18. G. Harhalakis, C. P. Lin, L. Mark, and P. R. Muro-Medrano, “Implementation of rule-
based information systems for integrated manufacturing,” IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 6, No. 6, 1994, pp. 892-908.

19. W. Hasan and R. Motwani, “Coloring away communication in parallel query optimization,”
in Proceedings of 21st International Very Large Datab Base Conference, 1995, pp.
239-250.

20. W. Hong and M. Stonebraker, “Optimization of parallel query execution plans in XPRS,”
International Journal of Distributed and Parallel Databases, Vol. 1, No. 1, 1993, pp.
9-32.

21. J. L. Koh and Arbee L.P. Chen, “Integration of heterogeneous object schemas,” in
Proceedings of 12th International Conference on the Entity-Relationship Approach,
1993, pp. 297-314.

22. R. Krishnamurthy, W. Litwin, and W. Kent, “Language features for interoperability of
databases with schematic discrepancies,” in Proceedings of the ACM SIGMOD Con-
ference on Management of Data, 1991, pp. 40-49.

23. P. Johannesson, “Using conceptual graph theory to support schema integration,” in
Proceedings of 12th International Conference on the Entity-Relationship Approach,
1993, pp. 283-296.

24. W. Litwin and A. Abdellatif, “Multidatabase interoperability,” IEEE Computing
Magazine, Vol. 19, No. 12, 1986, pp. 10-18.

25. J. M. Lucas, D. R. van Baronaigien, and F. Ruskey, “On rotation and the generation of
binary trees,” International Journal of Algorithms, Vol. 15, No. 1, 1993, pp. 343-366.

26. A. Lefebvre, P. Bernus, and R. W. Topor, “Querying heterogeneous databases: a case
study,” in Proceedings of 3rd Australian Database Conference, 1993, pp. 186-198.

27. C. Lee, C. Chen, and H. Lu, “An aspect of query optimization in multidatabase systems,
” SIGMOD Record, Vol. 24, No. 3, 1995, pp. 28-33.

28. E. Lim, S. Hwang, J. Srivastava, D. Clements, and M. Ganesh, “Myriad: design and
implementation of a federated database prototype,” Software-Practice and Experience,
Vol. 25, No. 5, 1995, pp. 533-562.

29. J. W. Lloyd, Foundation of Logic Programming, Springer-Verlag, Berlin, 1987.
30. M. L. Lo, M. S. Chen, C. V. Ravishankar, and P. S. Yu, “On optimal processor alloca-

tion to support pipelined hash joins,” in Proceedings of ACM SIGMOD, 1993, pp. 69-
78.

31. H. Lu, B. Ooi, and C. Goh, “Multidatabase query optimization: issues and solutions,” in
Proceedings of 3rd International Workshop on Research Issues in Data Engineering,
1993, pp. 137-143.

32. C. LEE and M. Wu, “A hyperrelational approach to integration and manipulation of
date in multidatabase systems,” International Journal of Cooperative Information
Systems, Vol. 5, No. 4, 1996, pp. 395-429.

QUERY EVALUATION IN DISTRIBUTED HETEROGENEOUS RELATIONAL DATABASES 497

33. J. Martin, Systems Analysis for Data Transmission, New Jersey, Prentice-Hall, 1972.
34. B. Reinwald, H. Pirahesh, G. Krishnamoorthy, and G. Lapis, “Heterogeneous query

processing through SQL table function,” in Proceedings of 15th International Confer-
ence on Data Engineering, IEEE, 1999, pp. 366-373.

35. M. P. Reddy, B. E. Prasad, P. G. Reddy, and A. Gupta, “A methodology for integration
of heterogeneous databases,” IEEE Transactions on Knowledge and Data Engineering,
Vol. 6, No. 6, 1994, pp. 920-933.

36. P. Selinger, M. M. Astrahan, D. D. Chamberling, A. A. Lorie, and T. G. Price, “Access
path selection in a relational database management system,” in Proceedings of ACM-
SIGMOD International Conference on Management of Data, 1979, pp. 23-34.

37. S. Salza, G. Barone, and T. Morzy, “Distributed query optimazation in loosely coupled
multidatabase systems,” in Proceedings of 5th International Conference on Database
Theory, 1995, pp. 40-53.

38. W. Sull and R. L. Kashyap, “A self-organizing knowledge representation schema for
extensible heterogeneous information environment,” IEEE Transactions on Knowl-
edge and Data Engineering, Vol. 4, No. 2, 1992, pp. 185-191.

39. S. Spaccapietra, P. Parent, and Y. Dupont, “Model independent assertions for integra-
tion of heterogeneous schemas,” VLDB Journal, Vol. 1, No. 1, 1992, pp. 81-26.

40. S. Spaccapietra and P. Parent, “View integration: a step forward in solving structural
conflicts,” IEEE Transactions on Knowledge and Data Engineering, Vol. 6, No. 2,
1994, pp. 258-274.

41. J. L. Wolf, D. M. Dias, and P. S. Yu, “A parallel sort merge join algorithm for managing
data skew,” IEEE Parallel and Distributed Systems, Vol. 4, No. 1, 1993, pp. 70-86.

42. H. Yoo and S. Lafortune, “An intelligent search method for query optimization by semijoins,”
IEEE Transactions on Knowledge and Data Engineering, Vol. 1, No. 2, 1989, pp. 226-
237.

43. Q. Zhu and P. Larson, “A query sampling method for estmating local cost parameters
in a multidatabase system,” in Proceedings of 10th International Conference on Data
Engineering, 1994, pp. 144-153.

Yangjun Chen (³³̄¯³³̄¯³¯¶§¶§¶§¶§¶§-x-x-x-x-x) received his BS degree in infor-
mation system engineering from the Technical Institute of
Changsha, China, in 1982, and his Diploma and Ph.D. degrees in
computer science from the University of Kaiserslautern, Germany,
in 1990 and 1995, respectively. From 1995 to 1997, he worked as
an assistant professor at the Technical University of Chemnitz-
Zwickau, Germany. Dr. Chen is currently a senior engineer at
German National Research Center of Information Technology. His
research interests include deductive databases, federated databases,
multimedia databases, constraint satisfaction problem, graph theory
and combinatorics. He has more than 50 publications in these areas.

