On the Bottom—-Up Evaluation of
Recursive Queries

Yangjun Chen*
Department of Computer Science, University of Kaiserslautern, P.O. Box
3049, 67663 Kaiserslautern, Germany

In this article, we present an optimal bottom-up evaluation method for handling both
linear and nonlinear recursion. Based on the well-known magic-set method, we develop
a technique: labeling to record the cyclic paths during the execution of the first phase
of the magic-set method and suspending the computation for the cyclic data in the
second phase to avoid the redundant evaluation. Then we postpone this computation
to an iteration process (the third phase) which evaluates the remaining answers only
along each cyclic path. In this way, we can guarantee the completeness. In addition,
for a large class of programs we further optimize our method by elaborating the iteration
process and generating most answers for each cyclic path directly from the intermediate
results instead of evaluating them by performing algebraic operations (after some of the
answers for the first cyclic path are produced). Because the cost of generating an answer
is much less than that of evaluating an answer, this optimization is significant. © 1996
John Wiley & Sons, Inc.

I. INTRODUCTION

One area in the field of logic programming, known as deductive database, is
concerned with developing logic-based programming systems which manipulate
large quantities of data efficiently. In terms of logic programming, deductive
databases are just logic programs without function symbols. An important
matter of research in such systems is the efficient evaluation of recursive que-
ries. Various strategies for processing recursive queries have been proposed
(see Refs. 1-9). These strategies include evaluation methods such as naive
evaluation,'®!! seminaive evaluation,'> query/subquery,’*-> RQA/FQI,!17.18
Henschen-naqvi,'® and the method used in PROLOG implementations. Another
class of strategies, called query optimization strategies, are used to transform
queries into a form that is more amenable to the existing optimization techniques
developed for relational databases. Several examples of this class of approaches

*Author’s current address: chen@informatik.tu-chemnitz.de or Dept. of Computer
Science, Technical University of Chemnitz-Zwickau, 09107 Chemnitz, Germany.

INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, VOL. 11, 807-832 (1996)
© 1996 John Wiley & Sons, Inc. CCC 0884-8173/96/100807-26

808 CHEN

are magic sets,?® counting,? and their generalized versions.?! In this article, we
confine ourselves only to the magic-set method. This method seeks to perform
a compile-time transformation of the database, based on the query form, into
an equivalent form which enables a bottom—up computation to focus on relevant
tuples. In the case that the program contains only one linear recursive rule
besides the nonrecursive rules (such a program is called canonical strongly
linear program,”? it may be executed in a two-phase approach. In the first
phase, all instantiations of the magic predicates are evaluated. In the second
phase, the answers to the original query are computed in terms of the modified
rules. With the help of the magic sets, the generation of irrelevant tuples is
minimized. We demonstrate that the method may be improved by labeling
the magic predicates to keep track of which magic rules are used and which
instantiations of magic predicates are generated to reach a certain instantiation
of some magic predicate. Thus, all ‘‘paths’” will be explicitly recorded as the
set of labels which appear in the instantiations of the labeled magic predicates.
Using the path information we can separate the noncyclic data from cyclic data
and suspend the computation for the cyclic data in the second phase. Then
we develop an iteration process to compute all cyclic data to guarantee the
completeness. In this way, we can remove much redundant work. On the one
hand, since there is no cycle, in the second phase we can find an order for the
corresponding instantiations of the labeled magic predicates such that in this
order each instatiation is used (to restrict the computation) only once. On the
other hand, in the third phase we evaluate the fixpoint only for the cyclic data
without participation of the noncyclic data. In addition, we may further optimize
our method for a large class of programs by separating the iteration process
into two steps. In the first step of the iteration process, we compute only some
answers for the first cyclic path. In the second step, we generate the remaining
answers directly from the answers already found and the corresponding cyclic
paths (see below). Because the cost of generating an answer is much less than
that of evaluating an answer by performing algebraic operations, this improved
algorithm achieves high efficiency.

In general, the idea described above cannot be directly employed to handle
more complex linear recursive programs and nonlinear recursive programs.
However, we can always partition the rules of a program into several subsets
in such a way that for each subset the above idea can be exploited. For example,
if two recursive predicates, in a linear recursive program, are not interdepen-
dent, i.e., each of them does not appear in the body of any rule defining the
other, we can process them independently and apply the optimal technique for
each. Otherwise, we first construct the magic rules and the modified rules for
the first one which does not appear in the body of any rule defining the other,
and then evaluate them using the idea described above. When the second
recursive predicate is encountered during the evaluation for the first recursive
predicate, we construct the corresponding (transformed) rules for it and evaluate
them in the same way. Obviously, a recursive algorithm can be developed for
handling any linear recursive program with the optimal idea being integrated.

The latter part of the above analysis applies to the nonlinear recursion if

RECURSIVE QUERIES 809

we think of each different appearance of a recursive predicate (in the body of
a clause) as a different predicate except that they have the same modified rules.
(In fact, each different appearance corresponds to a different magic rule.) In
subsection III, we will discuss this claim in detail.

All optimizations described above are based on a technique: labeling, with
which all cyclic paths can be recorded during the execution of the first phase
and be used in the subsequent iteration process.

In the next section, we briefly describe the magic-set method.? In Section
II1, we present three refined algorithms, based on the labeling technique, for
handling canonical strongly linear recursion, linear recursion, and nonlinear
recursion, respectively. In Section IV, a further improved algorithm is dis-
cussed, which can be employed for a larger class of programs. In Section V,
we make a comparison of time complexities between our methods and some
existing strategies, which shows that the elaboration of the recursive computa-
tion is worthwhile. Section VI is a short conclusion.

II. MAGIC-SET METHOD

In this section, we briefly describe the magic-set method which is necessary
for explaining the key idea of our algorithms. The method is based on the
idea of the sideways information-passing strategy and improves efficiency by
restricting the computation to tuples that are related to the query. Essentially,
the magic-set transformation does two things:2! It creates new magic rules, and
it introduces new body literals into the original rules to form modified rules.
The modified database enables a bottom-up computation to generate fewer
irrelevant tuples. First, we present some notation and preliminary definitions.

A. Basic Definitions

The language of a deductive database consists of the variables, constants,
and predicate names in the database. We adopt some informal notational con-
ventions for them. Variables will normally be denoted by the letters «, v, x, y,
and z (possibly subscripted). Predicate names will normally be denoted by the
letters a, b,and c (possibly subscripted). Predicate names will normally be
denoted by the letters p, q, r, and s (possibly subscripted). In the absence of
function symbols, a term is either a constant or a variable. Occasionally, it will
be convenient not to apply these conventions rigorously. In such a case, possible
confusion will be avoided by the context.

An atom is an n-ary predicate, p(¢;, t,, . . . , t,), n = 0, where p is a
predicate name and ¢,, #,, . . ., t,are terms. A literal is an atom or the negation
of an atom. A positive literal is just an atom. A negative literal is the negation
of an atom.

A rule is a first-order formula of the form

+

q<DPisDys- - - sPms m=0.

810 CHEN

q is called the head and the conjunction py, p,, . . ., P, is called the body of
the rule. Each p; is a body literal. When m = 0, the rule is of the form

q(——

and is known as a unit clause.

An atom p(t;, t;, . . . , t,), n = 0 is ground when all of its terms t,,
t, . . ., t,, are constants. A ground rule is one in which each atom in the rule
is ground. A fact is a ground unit clause. The definition of a predicate p is the
set of rules which have p as the head predicate. A base predicate is defined
solely by facts. The set of facts in the database is also known as the extensional
database. A rule that is not a fact is known as a derivation rule. A derived
predicate is a predicate which is defined solely by derivation rules. A derived
(base) literal is one whose predicate is derived (base). The set of derivation
rules is also known as the intensional database or program.

B. Sideways Information-Passing Strategy

A sideways information-passing strategy (SIPS) is an inherent component of
any query evaluation strategy. Informally, for a rule of a program, a SIPS
represents a decision about the order in which the predicates of the rule will
be evaluated, and the variables for which the values are passed from predicates
to other predicates during evaluation. Intuitively, a SIPS describes how bindings
passed to a rule’s head by unification are used to evaluate the predicates in the
rule’s body. Thus, a SIPS describes how we evaluate a rule when a given set
of head arguments are bound to constants. Consider, for example, the familiar
ancestor predicate where ancestor(x, y) is true if y is an ancestor of x, and
where parent is a base predicate, such that parent(x, y) is true if y is a parent
of x:

(1) ancestor(x, y) < parent(x, y)
(2) ancestor(x, y) < parent(x, 2), ancestor(z, y).

The query <« ancestor(john, y) retrieves all the ancestors of john. By unifica-
tion, the variable x in the second rule is bound to john. We can evaluate
parent (X, z) using this binding, and obtain a set of bindings for z. These are
passed to ancestor to generate subgoals, which in this case have the same
binding pattern. The values for z can then be said to be passed sideways from
parent to ancestor.

Generalizing from this example, we may say that the basic step of sideways
information passing is to evaluate a set of predicates (possibly with some argu-
ments bound to constants), and to use the results to bind variables appearing
in another predicate. It is important to stress that SIPS do not say how this
information is passed. Indeed, there may be more than one way to pass the
information for given SIPS. For example, SIPS do not specify whether the
information is passed on a tuple-at-a-time basis, or as a set of tuples. SIPS
describe only the flow of information with respect to a rule with a given set of

RECURSIVE QUERIES 811

head arguments bound to constants, which will be generated when a top—down
strategy like Prolog evaluates the rule. In general, SIPS are associated with a
rule according to the query form. Different query forms, such as ancestor?(x,
y) and ancestor®(x, y) (see below), usually have different SIPS for the same
set of defining rules. The choice of one SIPS over another is guided by factors
such as the current and expected size of different relations and the indexing
mechanism employed.

The following definition of SIPS is borrowed from Ref. 24. It is the refining
of the definition given by Ref. 21. In a given rule, two literals are called con-
nected if they share a common argument. This is extended in the obvious way
to connection through a chain of predicates, where each adjacent pair shares
an argument.

DEFINITION 2.1. Let B(r) denote the set of body literals for a rule r, and
let p* be a special literal, denoting the head literal restricted to its bound
arguments. An SIPS for a rule r is a labeled bipartite graph G(V,, V,), where
V. is the set of subsets of B(r) U {p°} and V, = B(r), and which satisfies the
following two conditions:

(1) Each arc is of the form N —, p, where N € V,, p € V,. The label x stands for
a nonempty set of variables which satisfies the following conditions:
(i) each variable in x appears in a member of N and in p;
(ii) each literal in N is connected to p;
(iii) each variable appearing in N appears in a positive literal in N, or in
a bound argument position of p® in N.
(2) There exists a total order of B(r) U {p°} in which:
(i) p?® precedes all members of B(r),
(ii) any literal which is not in the graph follows every literal that is in the
graph; and
(iii) for every arc N —, p, if the literal p' € N, then p' precedes p.

Note that this definition is different from the definition given by Ref. 21 in that
it preserves the allowedness under the magic-set transformation.?

Example 2.1. Consider the above program defining ancestor

(1) ancestor(x, y) < parent(x, y),
(2) ancestor(x, y) < parent(x,), ancestor(z, y).

Let the query be « ancestor(john, y) and ancestor; be a special predicate,
denoting ancestor(x, y) restricted to its first bound argument. An arc for the
first rule might be

{ancestor|(x)} =, parent(x, y).
The SIPS for the second rule is
{ancestor(x)} =, parent(x,y),

{ancestor(x), parent(x, 2)} —, ancestor(z, y).

812 CHEN

C. The Adorned Program

In terms of the SIPS for a program, we can adorn the program. This is done
by annotating predicates with a character string, which is called adornment. An
adornment for an m-ary predicate p(t;, t,, . . ., ¢t,) is a string of length m made
up of the letters b and f, where b stands for bound and f stands for free. We
obtain an adornment for a predicate as follows. During a computation, each
argument #;, 1 =i = m, of the literal p(¢,, 1,, . . ., t,) is expected to be bound
or free, depending on the information flow (SIPS). If ¢, is expected to be bound
(free), it acquires a b (f) annotation, and so the length of the adornment string
is m. Note that the adornment is attached to the predicate and becomes part
of it.

Example 2.2. The following is the adorned rule set corresponding to the familiar
ancestor predicate for the SIPS of example 2.1:

(1) ancestor”(x, y) « parent(x, y),
(2) ancestor™(x, y) « parent(x, z), ancestor¥(z, y).

D. The Magic-Set Algorithm

Now we consider the magic-set transformation of a program. Magic-set
algorithms are program transformations that take an initial adorned program
and query and return a modified program which gives the same answers for
a particular query as the initial program. Using the bottom—up method, the
transformed program generates fewer irrelevant tuples than the initial program.
There have been several magic-set algorithms reported in the literature.2021:24

A common trait among these algorithms is that, based on the adornment
of the head and body literals, some new positive literals are introduced into
the body of rules, and new rules are added to the program which define these
literals. The new literals are called magic literals and are related to the existing
literals of the program as follows. For a positive adorned predicate p® with /
bound argument positions where [> 0, define the magic predicate of p? to be
the predicate whose name is the predicate name of p? prefixed with *‘Magic-""
and whose arity is /. The new rules defining the magic predicates are called
magic rules.

The following is a magic-set algorithm.?* The input of the algorithm consists
of the adorned query, g%(v), the adorned program, P?, and the corresponding
set of SIPS, §°. The output of the algorithm is the modified version of the
adorned program plus the magic rules, P*", and the seed, magic—q*(v®), where
v’ is the vector of arguments which are bound in the adornment a of g. In the
algorithm, the following definitions are used:

bodyLit(N) denotes the conjunction of body literals of a rule r?in N, where
N is the tail of an arc N —, p in the SIPS for r°.
magic(r®(v)) returns a literal magic-r®(v®).

RECURSIVE QUERIES . 813

function magic-set-transformation (q°(v), P%, $9

P =
for each rule r® in P* of the formp < p, p5, . . . , P, dO
add the rule p « magic(p), p;, p3, - - - » Dm to P"

for each arc N —, r in the SIPS associated with r* do

if pisin N then
add the rule magic(r) « magic(p), bodyLit(N) to P*"
else add the rule magic(r) « bodyLit(N) to P
return (magic—q°(v), P*")
Example 2.3. Consider the adorned query « ancestor®(john, y) to the program
ancestor(x, y) < parent(x, y)
ancestor(x, y) < parent(x, 2), ancestor(z,y).

The corresponding adorned program is
ancestor?(x, y) < parent(x, y),

ancestor®(x, y) < parent(x, z), ancestor®(z, y).

The magic rules and modified rules are:
ancestor®(x, y) « magic—ancestor?(x), parent(x, y),
ancestor(x, y) « magic—ancestor?(x), parent(x, z), ancestor?(z, y),
magic—ancestor?(z) « magic—ancestor?(x), parent(x, z),

magic-ancestor®(john).

III. REFINED ALGORITHMS

In this section, we describe our refined algorithms. For ease of exposition,
we first present the query graph concept in subsection III-A, which may facilitate
the clarification of the key of the refinement. In subsection III-B and III-C, we
describe our refined algorithms for the cases of canonical strongly linear and
linear recursions, respectively. In subsection lII-F, we present another version
for the case of nonlinear recursion.

A. Query Graph

We can associate a directed graph to a (recursive) query form with respect
of a canonical strongly linear program which contains only one linear recursive
rule besides the nonrecursive rules. The nodes of the graph correspond to
tuples of constants; in particular, the source node corresponds to the tuple of
constraints in the query goal. The other nodes (and incoming arcs) are obtained
by retrieving tuples from database D via a goal composed by a conjunction of
base predicates, using restrictions from the tuples corresponding to previously
generated nodes. Essentially, such a graph is introduced to describe the constant

814 CHEN

a3 by
azz : b2
ay by

Figure 1. A simple graph G.

propagation and the construction of derivation trees which happens in a top-
down evaluation. Before the formal definition, let us consider the following
example:

s(x,y):-r{x,y),
s(x,y) - plx, 2), s(z, w), q(w, y),
play, a,), pla,, a,) q(bs, by), q(b,, by), r(a;, b})-

With respect to the query ?-s(a;, y), this program can be graphically inter-
preted as follows. We define a directed graph G = (V, A), where the set of
nodes is the set of constraints appearing in the ground terms (facts) and the
set of arcs A consists of the union of the free following disjoint sets:

A, ={(x,¥)| p(x, y) is true in the program};
A, ={(x, y)| r(X, y) is true in the program};
As = {(x,¥)| g(x, y) is true in the program}.

The graph G is shown in Figure 1. In fact, the query graph is the generalization
of such a graph. Let v be a list of arguments, and let « be an adornment. Then
v(a) stands for the ordered list of the arguments of v whose elements correspond
to the b annotations of a. Let g be a recursive query. We define the query
graph of g to be a directed graph G, = (N, U N, A, U AU A,) having nodes
of the form [a, ¢], where a is an adornment and ¢ is a tuple of constants. The
number of 4’s in a is the same as the number of components of ¢. The query
graph is constructed as follows:

(a) The node [a,, ¢/] is in N, (source node), where a, is the adornment of the query
goal and ¢, is the list of constants in the query goal.

(b) If {g;, ¢;]]is in N, and there exists a substitution 6 for the set of variables in the
predicates of the body occurring before some recursive subgoal, g(v,), and the
predicate of the head of the recursive rule, g(v,), such that vy(a,)8 = ¢; and
every predicate occurring before g(v,) is true if 8 is applied to them, then the
node {a;,, ¢/} is in N, and the arc ([g; ¢, [a;), €;)) is in A,, where a;,, is the
adornment of g(v;) and ¢; = v,(a;,,)8.

(©) If [a;, ¢] is in IV, and there exists both a nonrecursive rule in P, say g(v)
py, . - -, Py, and a substitution 4 for the set of variablesinp;, . . ., p, and
in v such that v{(a;)¢ = ¢; and every p8(i = 1, . . ., n)is in D, then the node
[ai, b] is in N, and the arc ([a;, ¢], [a;, b)) is in Af, where a; is an adornment

RECURSIVE QUERIES 815

obtained by replacing each b and f in a; with f and b, respectively, and b =
v(a;)é.

(d) If [a;, b] is in Ny, there is a; such that [a;, ¢] is the subsequent node of [a c'l,
and there exists a substltutlon @ for the set of variables in the recursive predlcate
g(vy), in the predicates occurring after it, and in the predicate of the head of
the clause, g(vy), such that v,(a;)8 = b and every predicate occurring after g(v,)
is true if 0 is applied to them, then the node [a;, b'] is in N, and the arc ([a;
bl, [a;, b']) is in A;, where b’ = vy(a;)6. [a;, ¢'] and [a;, b'] are called bound
tuple and answer tuple, respectively.

We note that the query graph G, is composed of three subgraphs, G, = (N,,
A), Gy = (N;, Ap), and G, = (Nd, A, that are induced by A,, A;, and A,
respectively. Note that A,, A, and A, are disjoint. It is easy to see that N, C

N, U N, is bipartite, since every arc in A, goes from a node in N, to a node
in N,.

Example 3.1. Consider the following program.

S(x, }’) - r(x9)’),
s(x,y) :- p(x, 2), s(z, w), g(w, y).

where p, g, and r are base predicates. Suppose that the facts in D are those
stored in the following database relations:

p q r

d e

O = O

- g o0 0
O -0 T
QR O - o

The query graph w.r.t. query ?-s(c, y) is shown in Figure 2. The dotted arcs
are in Ay, the solid arcs going up are in A,, and those going down are in A,.
One could expect that any answer to a query will correspond to a node that is
reachable from the source node through a path having i arcs from A, one arc
from A;, and i arcs from A4, where i = 0. In fact, we have the followmg theorem
for a simple class of queries.?

THEOREM 3.1. Let G, be the query graph of the query form q with respect to
the program P. If P contains exactly one recursive rule, and this rule is linear,
then there exists an answer path from the source node |a, b] to the node la;,
cl in G,, if q(b, ©) is an answer to the query 7-q(b, y).

Proof. See the appendix of Ref. 25.]

816 CHEN

G
R T B “ [<fb>, <0>]
} """"""""""""""""""""""""""""""""""")
[<fb>, <0>]
(<o efo] [oommemmeememem T e .

L [<bf>, <c>] {<fb>, <a>] 1 {<fb>J<i>] [<fb>, <g>]

----------------------------- 4 [<jb>‘ <i>} (<fb>‘ <0>1

[<bf>, <d>) (<>, <e> [<ft>, <g>]
T . [<bfo, <c>) (<fb>, <a>] [<fb>, <o>} [<fb>, <g>]

Figure 2. Query graph of Example 3.1.

In Figure 2 there are two cyclic paths in A,: C, and C,. (We connect the
nodes representing the same bound tuple in A, with dotted lines and we call
these nodes cyclic points.) When a new answer tuple corresponding to a cyclic
point is evaluated, we add a dotted arc from the cyclic point to the node
representing the new answer tuple and subsequently construct a new path
leaving this node in A, according to part (d) above. Therefore, corresponding
to each iteration along a cyclic path in A, we have a separate path in A,. For
example, for the cyclic path C, in A,: [{bf), (c)] = [bf), (b})] = [(bf), ()], we
have two paths in A, [(fb), (@)] — [(fb), (D] — [(fb), (0)] and [(fD), (0)] —
[(fb), (g)] with each corresponding to a traversal along the cyclic path C,.
Similarly, for the other cyclic path C, in A,: [{bf), (c)] — [bf), (b)] — [{bf),
(O] = Kb, ()], we have [(fD), (a)] = [(fb, ()] — [(fb), (0)] = [(fb), (2)] and
[{fb), (0)] = [{fb), ()] in A,. In addition, from the graph shown in Figure 2,
we see that the set of nodes of some paths (in A,) corresponding to a cyclic
path in A, is the same as that of some other paths (in A,) corresponding to
another cyclic path in A,. For example, the set of nodes (answer tuples) of the
paths (in A, corresponding to C, (in A,) is {[{/D), (a)], {fB), (D], [{SB), (0],
[(fb); (2)]}. The set of nodes (answer tuples) of the paths (in A,) corresponding
to C, (in A) is also {[{fb), @], [{fb), (D], /D), (O], [{fb), (]}. In fact, this
interesting property exists for all linear recursive programs, if a preprocessor
is used to reorder the body predicates of a recursive rule in the following way.
If any two nonrecursive predicates which are directly or indirectly (but not via
the recursive predicate) correlated are separated by the recursive predicate,
we shift the latter such that both of them are before the recursive predicate.
A program is called well ordered if it is reordered in this way. An example of
well-ordered programs is the same-generation problem:

sg(x,y) :- flat(x, y),
sg(x, y) - up(x, 2), sg(z, w), down(w, y).

Note that this reorder is consistent with the normal optimization strategy of

RECURSIVE QUERIES 817

reordering subqueries, which makes the predicates with some of their variables
bound to constants appear before the predicates whose variables have no bind-
ings. However, a well-reordered rule will have an extra property that the predi-
cates appearing after the recursive predicate are not correlated with any predi-
cate appearing before the recursive predicate. We have the following theorem.

THEOREM 3.2. Let P be a canonical strongly linear program with the property
that for the recursive rule r in P and any query form the unbound variables of
the head predicate appear neither in the nonrecursive predicates with some
variables bound to constants nor in the nonrecursive predicates which are
directly or indirectly (but not via recursive predicates) correlated with the
nonrecursive predicates having bound arguments. Let G, be the query graph
associated with the query form q with respect to P and P; and P; be two cyclic
paths starting from the same node in G, of G,. Then the set of answer tuples
corresponding to P, is the same as that corresponding to P;.

Proof. Let gq(x,y) :-p;, - . .,q(, 0, ..., p,be arecursive rule (with the
rule number r) in P, where x, v, s, and t are all variable tuples, and Z be the
set of all answer tuples with respect to the query ?-g(c, y). We define the
function f(v, z)(z € Z) as follows. If there exists a substitution @ for the variables
appearing in r such that v,6 = v, where v, are all variables which appear
simultaneously in the predicates before ¢(s, t) and the predicates after it (but
contain no variables intandy),t0 = z,y9 = z’', andeveryp; i=1,. . ., n)
is true, then f(v, z) = z’. In general, fis a multivalue function, since we may
find several substitutions 6, (j = 1, . . , m) such that v,6; = v, t6; = z, y6; =
zj[]), and every p; (i = 1, . . ., n) is true. For any recursive rule in P, since
all predicates occuring after a recursive predicate are only correlated with
the recursive predicate and the bindings for their variables are completely
determined by the answer tuples of the recursive predicate produced so far,
the answer tuples for the recursive predicate of the ith call are completely
determined by the answer tuples for the recursive predicate of (i + 1)th call.
Therefore, each answer tuple evaluated along a cyclic path is in a set of answer
tuples of the form: f(_, f(. . .f(_,z). . .)), where ‘‘_’’ means ‘‘do not care”
and z is an answer tuple whose corresponding bound tuple is the start node of
the cyclic path. Because P; and P; have the same start node, they have also
the same z. Thus, the set of answer tuples corresponding to is the same as that
corresponding to P;. =

The theorem is important to the optimization algorithm described in Sec-
tion IV.

Finally, we note that essentially the magic-set method works in two phases.
The first phase consists of determining all node in N, i.e., evaluating all instanti-
ations of the magic predicates. In the second phase, the magic-set method
computes all possible pairs of nodes (n;, n;) such that n; is in N,, n; is in N,
and there is an answer path from #; to n;. In practical implementation, we start
from an arc (n;, n) in A, and compute all pairs (n;,, n;) such that (n;, n;) is in

818 CHEN

A, and (n;, n;) is in A,. The so-obtained pair, in turn, is used to derived other
pairs. The magic set is used to make this derivation more efficient.

B. Refined Algorithm for Canonical Strongly Linear Recursion

Below is the refinement of the magic-set method for a simple case that in a
program there is exactly one linear recursive rule besides the nonrecursive
rules (such a program is called a canonical strongly linear program.?>? The
key idea of the improvement is that in the first phase of the magic-set method
we instantiate all magic predicates, storing not only the instantiations (of the
magic predicate) already produced, but also the cyclic and noncyclic paths of
G, explicitly. In the second phase, we suspend the evaluation along each cyclic
path of G, to avoid the redundant computation. In order to guarantee the
completeness, an iteration process is developed. The process iterates over
some instantiations of the magic predicate which represent the cyclic paths and
evaluates the remaining answers in terms of the answers already found.

In order to record the paths of a query graph, we have to define indexed
magic predicates such that in the first phase not only the magic predicates are
instantiated, but the paths are also constructed automatically. We construct
indexed magic predicates as follows. Let magic_p® (y) is a magic predicate.
We prefix it with ‘‘ind_’". The indexed version has one new argument. This
argument is used for constructing labels and pointers, and we assume that it
is the first argument. Note that the adornment a refers only to the nonindex
fields. Before the use of the argument is explained, we first define some relevant
concepts.

DEFINITION 3.1. Let magic_q°(y) :- magic_p*(zy), P1(2y, 25)s - - - » P2, ¥) be
a magic rule (with the rule number mr). Let Y be the set of instantiations for
magic_q°(y). We assign eachy € Y a different number, denoted num, and call
the number the ordinal number of y. In addition, we use numy, to represent the
set of all num,’s, where 'y € Y. Without loss of generality, we assume that the
ordinal numbers of Y are {1, . . ., m}, where m is the cardinality of Y.

DEFINITION 3.2. A label | is either 0O or a finite sequence of ordinal numbers
0.i,.i;i;. Beginning with a seed, denoted by 0, we denote its first, sec-
ond, . . ., ith, . . . immediate descendent node by 0.1, 0.2, The jth
direct descendent node of 0.i is denoted by 0.i,j, and in general 0.i,.i,i,
denotes the i,th immediate descendent node of the . . . of the i,th immediate
descending node of the ijth immediate descendent node of the seed.

Since we deal chiefly with the case in which all immediate descendent
nodes appear simultaneously, there is no obvious physical interpretation for
the meaning of “‘first,”” “‘second,” . . . immediate descent node. We use them
only for identifying the instantiations of a magic predicate.

DEFINITION 3.3. Assume we have m magic rules, numbered mr; to mr,, Then

RECURSIVE QUERIES 819

the sequence of magic rules mrs used in a derivation can be represented by a
sequence of mrik’s, each i; in the range [1, . . ., m].

DEFINITION 3.4. Let mr: magic_q*(y) - be a magic rule. The
indexed version of magic_q®(y) is of the form: ind_magic_q°(ind, v), where
ind is a two-element list: (mrs, label).

As with the magic method, we rewrite a program as follows. For each rule
rin P

(1) For each occurrence of an adorned predicate p® in the body of the adorned rule,
we generate a magic rule defining the indexed magic predicate ind_magic_p* if
the SIPS associated with r contains an arc N — p.

(2) The rule is modified by the addition of magic predicates to its body.

(3) We create a seed for the indexed magic predicates from the query, in the form
of a fact, with mrs and label being *“ > and 0, respectively. For example,
from the query ?-p(c, y), we may create the seed of the form: ind_
magic_p°((, 0), ¢).

Note that we modify the rules by adding magic predicates rather than indexed
magic predicates. It is because we use indexed magic predicates only in the
execution of the first phase to record the cyclic paths of G,. In the second
phase, we perform the bottom—-up computation as does the magic-set method
except that we suspend the computation along the corresponding paths of G,
by eliminating the cyclic points of each cyclic path from the set of different
instantiations of the magic predicates.
Now consider the adorned rule:

ri:q@*(x) - pi(v), . . ., piv,)

We generate a magic rule defining ind_magic.p{; if the SIPS associated with
r;contains an arc N — p;. The head of the magic rule is ind_nagic_pf{i((mrs.mr,,
label.num b), ") If p;, i <j, is in N, we add pfi(v) to the body of the magic
rule. If ¢° is mN we add ind_magic_q*((mrs, label), x®) to the body. Otherwise,
we add the built-in predicates (mrs = ** *”) and (label = 0) to the body. Using the
pair (mrs, label), we cannot only label each instantiation of a magic predicate,
but can also record each path. An instantiation with index (mr,. . . .mr; .mr;,,,
iyk will have an immediate precedent instantiation with index
(mry. . ..mr,.mry, ii.i,;) will have an immediate precedent instantia-
tion with index (mr,mr;, i;Q;).
The indexed magic rule corresponding to N — p; with respect to r; is:
mry : ind_magic_p{ ((mrs.mr;,, label.num,), v?) .
:-ind_magic_q*((mrs, label), xb), . . . , pfi(vi=y).
The rules are modified in the same way as the magic-set method.?!

Example 3.2. Continuing our running example, we present below the rewritten
rules, with respect to the query ?-s(c, y), produced by the above method.

820 CHEN

51
$3 ST S S3—=S4——S5
k&
(a) (b)

Figure 3. Magic graph and topological order.

s(x, y) :- magic_s%(x), r(x, y),
s(x, y) - magic_s¥(x), p(x, 2), s(z, w), g(w, ¥),

mr : ind_magic_s¥((mrs.mr, label.num,), z) :- ind_magic_s* ((mrs, label),
x), p(x, 2),
ind_magic_s¥((, 0), c).

With the index argument, we can record the paths, especially, the cyclic paths.
For example, assume that s, = ind_magic_s*(1,, v,) and s, = ind_magic_s*(l,,
v,) are two indexed magic predicates evaluated in the first phase, where /; and
l, are indexes and v, and v, are vectors of values. If v, is equal to v, and s, is
on the same path as s, (by checking the indexes /, and /, we can know that
whether s; and s, are on the same path), then path from s, to s, is cyclic. In
the first phase, we use the seminaive method to compute the indexed magic
predicates, thereby checking whether a cycle appears. If it is the case, we store
the cycle. In the second phase, we evaluate the modified rules with a naive or
seminaive strategy in terms of the set of the instantiations of the magic predi-
cates. Because we have eliminated the cyclic points of each cyclic path such
that the resultant set contains no cyclic data, we need not check the fixpoint
in the second phase if we arrange the remaining set of the instantiations of the
magic predicates carefully. For example, if s, 55, . . ., 55 are five instantiations
of the indexed magic predicate produced in the first phase for a canonical
strongly linear recursive program and the arcs between them are shown in
Figure 3(a). [We obtain the arcs by checking the label of each s;,(i=1,. . .,
5). Then we can find a topological order for them with the property that
all descendants of a node s; are before s; in the order, shown in Fig. 3(b)].
In this order the modified rules are evaluated only in one scan, i.e., only
one iteration is required. In this way, all answers for these noncyclic paths
are produced, but no redundancy will be done. For large data sets, this
improvement is significant. We guarantee the completeness by using an
iteration process over all cyclic paths. The following is the refined magic-
set algorithm.

RECURSIVE QUERIES 821

Algorithm refined-magic-set-method-1
phase 1. (computmg the magtc sets)
{Seed} SA -mg * = Smg!
whlle Samg * I do
new-S,. := new_answers evaluated in terms of magic rules and
SA-mg;
Samg := new-S,, — 8,
Spg i = Smg U Same
end

phase 2. (computing answers along the acyclic paths)
S, =&
S, := the resultant set obtained by removing all cyclic points from
mg;

repeat
new-S, := new_answers evaluated in terms of modified rules, §
Sa and D,
S, := 8, U new-§,

until no new answers are produced

mg’

phase 3. (computing answers along the cyclic paths)

S eyclic-parhs - = Cyclic_paths and the paths, of which each is from the start
node of a cyclic path to the source node;
repeat
for each path € S, .jic.parns 4O
S, := 8, U new_answers evaluated in terms of modified rules,
path, S,and D
until no new answers are produced

The algorithm works in three phases. The first phase consists of determining
all instantiations of the magic predicates (magic set). For efficiency, this phase
is implemented using the seminaive approach. As a consequence, S, ,, is intro-
duced to store the new instantiations (of the magic predicate) produced within
every loop. At the end (of the first phase), the evaluated magic set is stored in
S new-S,,, is used to store the temporary results. In the second phase, all
answers along the acyclic paths are evaluated. First, a topological order is
determined for all nodes (instantiations of the magic predicate) on the acyclic
paths. Then, in the topological order, all modified rules are evaluated only in
one scan. At the end, all answers produced in this phase are stored in S,. In
the third phase, the computation of the least fixpoint for each cyclic path is
carried out. Here, S, ji..pans CONtains all cyclic paths and S,.,,pining-parns CONtaiNs
those paths, each of which is from the source node to the start node of a cyclic
path. :

PROPOSITION 3.1. The above algorithm complete over the domain of function-
free Horn clauses.

822 CHEN

Proof. Note that if we do not remove the cyclic points of each cyclic path
from the set of the instantiations of magic predicates, the second phase of the
algorithm will produce all answers.?! Due to the absence of the cyclic points
for each cyclic path, all answer tuples of the form: f(v,.,, f(v,, . ..
f(v;, Z) . .), where f is the function defined in the proof of Theorem 3.2, z
is an answer tuple whose corresponding bound tuple is the start node of a cyclic
path,andv(i=1,. . ., n + 1)is a constant tuple bound to the variables which
simultaneously appear before and after the recursive predicate, and all answers
relying on them will not be produced by the second phase of the algorithm. In
the third phase of the algorithm, we will evaluate all answer tuples of the form:
Sy, flv,, ... f(v;, z ...) along each cyclic path. Since
S eyclicpaths CONtains also all paths, each of which is from the start node of a
cyclic path to the source node, the answers relying on these answer tuples will
be evaluated in the third phase. Therefore, the above algorithm is complete
over the domain of canonical strongly linear recursive programs. ||

Example 3.3. Here we trace the steps of the above algorithm for our running
example.
phase 1:

seed: ind_magic_s¥((, 0), c)
step 1: ind_magic_s%((mr, 0.1), d)
ind_magic_s%((mr, 0.2) b)

step 2: ind_magic_ s ((mr.mr, 0.2.1), c)
ind_magic_s%((mr.mr, 0.2.2),)
step 3: ind_magic_s%((mr.mr.mr, 0.2.2.1), ¢)

With the help of the index argument, we may record all paths during the
execution:

magic_s%(c) « magic_s%(d)
magic_.s¥(c) « magic_s”(b) « magic_s"(c)
magic_s¥(c) « magic_s¥(b) « magic_s¥(f) « magic_s¥(c).

The last two paths are cyclic.
phase 2:
D
S, =0
Smg = {magic_s%(d), magic_s¥(b), magic_s*(£)}
step 1. S, = {s(d, e)}}
phase 3:

D
S, = {s(d, e)}

RECURSIVE QUERIES 823

S yctic-parhs = {magic—s%(c) « magic_s*(b) « magic_s"(c),
magic_s¥(c) « magic_s"(b) « magic_s” () « magic_s"(c)}

step 1:
for loop 1: S, = {s(c, a), s(b, 1), s(c, o)}
for loop 2: S, = {s(c, a), s(b, i), s(c, 0), s(f, i), s(b, 0), s(c, g)}

step 2:
for loop 1: S, = {s(c, a), s(b, i), s(c, 0), s(b, g), s, i), s(b, 0), s(c, g)}
for loop 2: S, = {s(c, a), s(b, i), s(c, 0), s(b, g), s(f, i), s(b, 0), s(c, g),
i, g)}

From the example above, we can see that no redundant answers are computed.
In fact, we can further improve the efficiency of the algorithm for a large class
of programs with the property described in Theorem 3.2. In the next section,
we describe the optimization method.

C. Refined Algorithm for Linear Recursion

Now we consider linear recursive programs which contain several recursive
predicates. We differentiate between two cases.

(1) Each two recursive predicates are not interdependent, that is, a predicate does
not appear in the body of a clause defining another recursive predicate.
(2) There are at least two recursive predicates which are interdependent.

In the first case, we can handle each recursive predicate consecutively using
the technique described in subsection III-B. For example, consider the following
program:

s(x,)’) - sl(x, 2)9 Sz(Z,)’),

51(x, ¥) - ri(x,),

s1(x, ¥) - pi(x, 2), 51(z, W), q;(w, ¥),
SZ(x’ y) - r2(x9 }’),

55(x, ¥) = pax, 2), 55(z, W), gx(w, ¥).

In this program, s; and s, are not interdependent. With respect to the query
?- s(c, y) (where c is a constant), we first construct the magic rules and modified
rules for the first clause of the program as follows:

ind_magic_s¥((, 0), ¢),
s(x,) :- magic_s¥(x), s,(x, 2), 52(z, ¥).

In the evaluation of the transformed program above, s,(x, z) and s,(z, y) (with
the first argument bound to a constant, respectively) will be evaluated consecu-
tively. For the evaluation of s,(x, z), the corresponding indexed magic rules
and the modified rules will be constructed:

824 CHEN

ind_magic_s¥((, 0), c),

mr:ind_magic_s¥((mrs.mr, label.num,), z) :- ind_magic_s¥((mrs, lubel),
x), Pi(X, 2),

sl(x’ y) - magic_s’l’f(x), pl(xa Z), Sl(Z, W), ql(w’)’)

Then we compute them in a three-phase approach. That is, in the first phase
all instantiations of the magic predicate are produced by computing the corre-
sponding magic rule; in the second phase some answers are evaluated for the
noncyclic paths which are arranged in a topological order; in the third phase
the least fix point is evaluated for each cyclic path.

After s,(x, z) (with the first argument bound to c) is evaluated, the first
argument of s,(z, y) will be instantiated to a constant (or a set of constants).
Obviously, we can evaluate it in the same way as s,(x, 2).

In the second case, the technique described in subsection III-A can also be
used. However, we need to arrange the computation in a different way. As an
example, consider the following example:

si(x, y) = ri(x, y),

s1(x, ¥) - pilx, 2), si(z, W), g;(w, ¥1), s101, ¥)s
SZ(xa)’) - r2(xa y),

$5(x, ¥) - pax, 2), 52z, W), qo(w,).

With respect to the query ?-s,(c, y), where ¢ is a constant, we first construct
the magic rules and modified rules in terms of the first two clauses as below:

ind_magic_s¥((, 0), c),

mr:ind_magic_s¥((mrs.mr, label.num,) , z) :- ind_magic_.s¥((mrs, label),
x), (X, 2),

si(x, ¥) - magic_s¥(x), r(x,),

sy(x, y) - magic_s¥(x), py(x, 2), 51(z, W), @;(w, 1), 5:(¥1, ¥).

Then we execute the above rules in a three-phase approach. During the evalua-
tion of each phase, when s,(x, y) is first met, we need to construct the magic
rules and modified rules in terms of the clauses defining s,(x, y) in the way
above. Similarly, we can use the three-phase approach to evaluate the corre-
sponding rules each time s,(x, y) is encountered.

In terms of the above analysis, we have the following algorithm for linear
recursive programs.

Algorithm evaluation-for-linear(query)
construct the indexed magic rules mag-rules and the modified rules mod-
rules
in terms of the clauses defining query if they do not exist;
construct the corresponding seed;
for each r € mag-rules do
evaluate r in the bottom-up manner (in terms of the database D)
(if a derived predicate g in the body of r is encountered,
call evaluation-for-linear(q));
determine the topological order for the noncyclic paths;

RECURSIVE QUERIES 825

assume (magic_s;, magic_s,, . . ., magic_s,) is the corresponding topo-
logical order.
fori=1tomdo
evaluate each modified rule r in terms of magic_s; and D
(if a derived predicate g in the body of r is encountered,
call evaluation-for-linear(q));
S, := §, U new answers produced in this step;
for each path P € S, ic.parns O
repeat
evaluate each modified rule r along P
(if a derived predicate g in the body of r is encountered,
call evaluation-for-linear(q));
S, := S, U new answers produced in this step;
until no new answers are produced
for each path P € §,,,,ining-patns 40
evaluate each modified rule r along P
(if a derived predicate g in the body of r is encountered,
call evaluation-for-linear(q));
S, := S, U new answers produced in this step.

D. Refined Algorithm for Nonlinear Recursion

In this subsection, we present the refined method for handling nonlinear
recursive queries. For ease of representation, we assume that for the following
nonlinear recursive rule:

qx,y) - pi(x, 2, ¢z, 20), PAZDs - - -5 QZim15 25 -+« G(Zpts Z0)s P 1(Z0)

a set of magic rules will be constructed by using the magic-set algorithm:

m-r;: magic_q¥(2) - magic_q”(x), p,(x, 2),
m-ry: magic_q"(z)) - magic_q"(x), p\(x, 2), q(z, 21), P»(z}),

m-r;, magic_q"(z;,_,) :- magic.q¥(x), . . ., p{zi)»

m-r,: magic_q*(z,-,) :- magic_q¥(x), . . ., p(z,-1)

Here each ith magic rule corresponds to the ith appearance of the recursive
predicate. For example, for the Horn-clause

s(x, y) :- p(x, w), s(u, v), q(v, w), s(w, 2), 1z,),

the following magic rules will be constructed (if the query is of the form: ?-
s(c, y)):

magic_s¥ () :- magic_s¥(x), p(x, u),
magic_sbf(w) B magic—sbf(x)9 P(x, u)a s s(u9 U), Q(U, W)'

826 CHEN

Roughly speaking, the algorithm works in a two-steps approach. In the first
step all instantiations of the magic predicate are evaluated. In the second step,
all answers are evaluated in terms of the instantiations and the facts available.
Note that in order to instantiate the magic predicate defined by the nth magic
rule, all those answers will have to be evaluated first, which satisfy all ith
appearances of the recursive predicate { = 1,2, . . . , n — 1) in the rule.
Similarly, in order to instantiate the magic predicate defined by the (n — 1)th
magic rule, all answers which satisfy all jth appearances of the recursive predi-
cate (j=1,2,. . ., n — 2)in the corresponding rule will have to be evaluated
beforehand, and so on. Based on the analysis, we give the algorithm for handling
nonlinear recursion as follows.

procedure evaluation(m-r;, inif) {m-r;: the ith magic rule; init: Seed}
if m-r; = J then return {init}

step 1: repeat
temp := init,
execute evaluation(m-r,,, init);
evaluate some instantiations in terms of m-r; and the facts available;
init := new_instantiations - temp;

until no new instantiations are produced

step 2:
phase 1. (computing answers along the acyclic paths)
S, = ;
S, := the resultant set obtained by removing all cyclic points
from §,,.;
repeat

new-S, := new_answers evaluated in terms of modified rules,
Sy s Sq» and D; (If a recursive predicate is encoun-
tered, call evaluation() with the corresponding m-r
and initial values)
S, = 8, U new-§,
until no new answers are produced
phase 2. (computing answers along the cyclic paths)
S cyclic-parns = €yclic_paths and the paths, of which each is from
the start node of acyclic path to the source node;
repeat
for each path € S, pamms 40
S, := S, U new_answers evaluated in terms of modified rules,
path, S, and D
(If arecursive predicate is encountered, call evaluation() with
the corresponding m-r and initial values.)
until no new answers are produced

As with the linear recursion algorithm, the second step consists of two phases.
In the first phase, all answers along each acyclic path are evaluated. In the
second phase, we further handle each cyclic path to compute the remaining

RECURSIVE QUERIES 827

answers. An important difference is that in order to evaluate new answers the
recursive call to evaluation() will be performed when a recursive predicate is
encountered.

IV. FURTHER IMPROVEMENT

As described in Theorem 3.2, the set of nodes on the paths in A, corresponding
to a cyclic path in A, is the same as the set of nodes on the paths in A,
corresponding to the other cyclic path in A,. This feature may be employed to
optimize the evaluation of queries. We further separate the third phase into
two steps. In the first step, we compute some answers for the first cyclic path.
In the second step, we generate the remaining answers directly according to
the answers already found and the corresponding cyclic paths. Because the
cost of generating an answer is much less than that of evaluating an answer by
performing algebraic operations, we may achieve high efficiency in this way.
For example, in the example above we may directly generate s(f, i) for the
second cyclic path in terms of magic_ s¥(f) and s(b, i) (which has been produced
along the first cyclic path) instead of evaluating it by performing algebraic
operations. Similarly, we may also generate s(b, o) for the second cyclic path
in terms of magic_ s¥\ (b) and s(c, o) (which has also been produced along the
first cyclic path). In general, evaluating answers by performing algebraic opera-
tions requires access to the external storage or search of large relations. But
the ‘‘generating’’ operations happen always in main memory and require only
access to small data sets (i.e., the answers already evaluated or generated on
the other cyclic paths). Therefore, the generation of answers is much more
efficient than the evaluation of answers.

Algorithm refined-magic-set-method-2
phase 1. (computing the magic sets)
Smg 1= {seed}, Sy g := Spgs
while S, ., # & do
new-S,. := new._answers evaluated in terms of magic rules and
SA-mg;
Samg 1= new-S,., — S,.;
Simg := Smg U Samg
end

phase 2. (computing answers along the acyclic paths)

S, =0
Sne := the resultant set obtained by removing all cyclic points from
Somg>
repeat
new-S, := new_answers evaluated in terms of modified rules, §,,.’

mg

S,, and D;
S,:= 8, U new-§,
until no new answers are produced

828 CHEN

phase 3. (computing answers along the first cyclic path)
Sfirst-cyclic-parns <= the first cyclic_path
repeat
S, := §, U new_answers evaluated in terms of modified rules,
Sﬁrst-cyc‘lic-paths’ Sa’ and D
until no new answers are produced

phase 4. (generating the remaining answers along the cyclic paths)
S eyctic-parns 1= Cyclic_paths and the paths, of which each is from the
start node ofa cyclic path to the source node;
repeat
for each path; and path; € S_,cjicparns 40
S, := 8, U new_answers generated in terms of path; and the answers
evaluated or generated for path;
until no new answers are produced
begin
generating all answers to the initial goal in terms of §, and paths, of
which each is from the start node of a cyclic path to the source node
end

Example 4.1. Given the rules and facts as in the running example. Let q(c, x)
be the query. The refined algorithm will produce the following answers:

answers evaluated in phase 2: s(d, e);
answers evaluated in phase 3: s(c, a), s(b, 1), s(c, 0), s(b, g);
answers generated in phase 4: s(f, i), s(b, 0), s(c, g), s(f, g).

Obviously, the algorithm above can be used to improve the efficiency for
handling nonlinear recursion.

V. TIME COMPLEXITY

Now we consider the time complexity of the refined algorithms. We first
consider the case of linear recursion. To simplify the description of the results
of the analysis, we assume that each cyclic path has the same length (by
“‘length’’ we mean the number of instantiations of a magic predicate on a cyclic
path) and along each cyclic path the number of new answers got by the refined
algorithm from an initial value or an evaluated answer in one step is e. Therefore,
if each cyclic path has the length m and the number of iteration over a cyclic
path is [, then the time complexity of the third phase of refined-magic-set-
method-1 is on the order of

Y e™—1

n-ye'-C=n-

i=1 e—1

-C

where n is the number of the cyclic paths and C represents the cost of evaluating
an answer in the iteration step. In the worst case, C is the elapsed time of a

RECURSIVE QUERIES 829

read access to the external storage, i.e., each evaluation in the step requires
an I/0.

In the third phase of refined-magic-set-method-2, (e™ — 1)/(e — 1) answers
are evaluated on the assumption above. The remaining answers for each cyclic
path are all generated in the fourth phase. In comparison with the cost of
evaluating an answer (by algebraic operations; join, selection, projec-
tion,), the cost of generating an answer is very little such that we
cannot take it into account (In practice, the time complexity of a computation
mainly depends on the number of accesses to the external storage which in
turn depends on the number of the relations participating in the computation
and their cardinalities). Let & be the cost of generating an answer in the genera-
tion phase, then the running time for the third and fourth phase of refined-
magic-set-method-2 is

1
e—1

[(e™ ~1)-C+ (n—1-(e™~1)-8]

Since 8 < C, the saving on time is significant. If 8/C < n/e™, (n — 1)-(e™ —
1) - 8 is less than some constant, and therefore the time complexity of the third
and fourth phase of refined-magic-set-method-2 is O(e™ C). Therefore, refined-
magic-set-method-2 may reduce the worst-case time complexity of refined-
magic-set-method-1 by a factor n, the number of the cyclic paths, if we do not
take account of the cost of generating an answer. -

Below we further consider the case of double recursion (i.e., the body of a
recursive rule contains two recursive predicates) and suppose that the revised
algorithm described in subsection I1I-C is employed. For ease of representation,
assume that each cyclic path has the same length. Let n; be the number of the
cyclic paths associated with the first appearance of the recursive predicate and
1, be the length of such a cyclic path during the execution. Let n, be the number
of the cyclic paths associated with the second appearance of the recursive
predicate and /, be the length of such a cyclic path (/, is the number of instantia-
tions evaluated only in terms of m-r,), then we have the following recurrence
relation with respect to evaluation() (which was given in subsection 11I-C):

{CT=E§+A§+’12'12'C/2(
C‘Ié:lé.ll(+1 +nl'll'clf+l

where C¥ represents the amount of time spent in kth call to evaluation(m-r,).

EX represents the amount of time spent in the execution of the first step by the kth
recursive call,

AX represents the amount of time spent in the execution of the first phase of the
second step by the kth recursive call,

Ak*1 represents the amount of time spent in the computation over all acyclic paths
associated with the first appearance of the recursive predicate by (k + 1)th recursive
call, and

CX represents the amount of time spent in an iteration step during the execution of
the second phase of the second step by the kth recursive call.

830 | CHEN

The first equation is self-explanatory. The second equation reflects the fact that
in the worst case each iterative step along a cyclic path associated with the
second appearance of the recursive predicate includes all computations over
the acyclic and cyclic paths (associated with the first appearance of the recursive
predicate) which are generated by an iterative computation over m-r; with the
corresponding instantiation as an initial value.

For simplicity we assume that

A= Ak= ARk =2, . y—1),
Ay =Af=A¥1k=1,...,y—1)and
E,=Ei=Eflk=1,. ..,y 1),

where vy is the number of times of recursive calls.
Then we will have
(ny- 1) (ny - 12)7_1 (ny- ll)y—1 (ny- 12)7_1 -1
+n,-L-A
(ny-l)-(ny- L) — 1 2 (nl)-(ny-b) — 1

If we use the optimal method described Section N, we will have the following
recurrence relation

C=Ci=(E,+A4)

{C’,‘=E’2‘+A’2<+12-C’2‘
Ck= Akt + | - Cl!

The reason for this is that for each n; cyclic paths associated with the first
appearance of the recursive predicate only one path is evaluated by the optimal
method (the remaining answers for the other n; — 1 cyclic paths are generated)
and for each n, cyclic paths associated with the second appearance of the
recursive predicate only one path is evaluated as well (the remaining answers
for the other n, — 1 cyclic paths are generated). Therefore, n; and n, do not
appear in the above recurrence relation.
Using the above assumption, we will have

03 -1

-1
11'12 - 1

C=C}=(E2+A2) 1. —1
178

+ 12 * Al
Therefore, the optimal algorithrh will reduce the worst-case time complexity
of the algorithm described in subsection III-C by a factor (n, - ny)? (in the case
of double recursion).

VI. CONCLUSION

In this article, a bottom-up method for the evaluation of recursive queries
has been presented which is more efficient than the magic-set algorithm. The
key idea of the improvement is recording the cyclic paths during the execution
of the first phase of the magic-set algorithm and forbidding the computation
for the cyclic data in the second phase to avoid the redundant evaluation. We

RECURSIVE QUERIES 831

guarantee the completeness of the method by using an iteration process which
evaluates all answers along each cyclic path. Further, we optimize the evalua-
tion for a large class of programs by separating the iteration process into two
steps. In the first step of the iteration process, we compute only some answers
for the first cyclic path. In the second step, we generate the remaining answers
directly according to the answers already found and the corresponding cyclic
paths. »

All optimizations reported in this article are based on a technique called
labeling, which enables us to record all cyclic paths during the execution of
the first phase and use them in the iteration process.

We have given a brief comparison of the time complexity which shows that
in the case of linear recursion refined-magic-set-method-2 may reduce the worst-
case time complexity of refined-magic-set-method-1 by a factor n, the number
of the cyclic paths, if we do not take account of the cost of generating an
answer. In the case of double recursion, the optimal method may reduce the
worst-case time complexity of evaluation() by a factor (n, - n,)?, where n, is the
number of the cyclic paths associated with the first appearance of the recursive
predicate, n, is the number of the cyclic paths associated with the second
appearance of the recursive predicate and vy is the number of times of recursive
calls which happen during the execution of evaluation(). In practice, performing
algebraic operations requires access to the external storage or search of large
relations. In contrast, the ‘‘generating’’ operation happens always in the main
memory and requires only access to small data sets. Hence, we may suppose
that ‘‘generating answers’’ has the time complexity of O(1), and therefore the
cost of generating an answer is much less than that of evaluating an answer.
Therefore, the further improved algorithm (refined-magic-set-method-2)
achieves high efficiency.

References

1. F. Bancilhon and R. Ramakrishnan, ‘‘An amateur’s introduction to recursive query
processing strategies,”” Proc. 1986 ACM-SIGMOD Conf. Management of Data,
Washington, DC, May 1986, pp. 16-52.

2. Y. Chen and T. Harder, ‘‘Improving RQA/FQI recursive query algorithm,’” in
Proceedings ISMM—First Int. Conf. on Information and Knowledge Management,
Baltimore, MD, Nov. 1992.

3. Y. Chen, ‘A bottom-up query evaluation method for stratified databases,”” in
Proceedings of 9th International Conference on Data Engineering, Vienna, Austria,
April 1993, pp. 568-575.

4. Y. Chenand T. Harder, *‘On the optimal top—down evaluation of recursive queries,”’
in Proc. of 5th Int. Conf. on Database and Expert Systems Applications, Athens,
Greece, Sept. 1994, pp. 47-56.

5. Y. Chen and T. Hérder, ‘‘ An optimal graph traversal algorithm for evaluating linear
binary-chain programs,’’ in Proc. CIKM’94—the 3rd Int. Conf. on Information and
Knowledge Management, Gaithersburg, MD, Nov. 1994, pp. 34-41.

6. Y. Chen and T. Harder, Graph Traversal and Linear Binary-Chain Programs, ZRI-
Report 4/94, University of Kaiserslautern, 1994,

7. Y. Chen, “‘Processing of recursive rules in knowledge-based systems— Algorithms
for handling recursive rules and negative information and performance measure-

832

10.
1t.
12.

13.

14.

15.
16.
17.
18.
19.
20.

21.
22,

23.

24,

25.

CHEN

ments,”” Ph.D. Thesis, Computer Science Department, University of Kaiserslautern,
Germany, Feb. 1995.

. G. Grahne, S. Sippo, and E. Soisalon-Soininen, ‘‘Efficient evaluation for a subset

of recursive queries,”” J. Logic Programming, 10, 301-332 (1991).

. 1.D. Uliman, ‘‘Implementation of logical query languages for databases,”” ACM

Trans. Database Systems, 10, 3 (1985)

C. Chang, ‘‘On the evaluation of queries containing derived relations in relational
database,” in Advances in Data Base Theory, Vol. 1, Plenum, New York, 1981.
S. Shapiro and D. McKay, ‘‘Inference with recursive rules,”” in Proceedings of the
Ist Annual National Conference on Artificial Intelligence, 1980.

F. Bancilhon, ‘‘Naive evaluation of recursively defined relations,”” On Knowledge
Base Management Systems—Integrating Database and Al Systems, Springer-Ver-
lag, Berlin, 1985.

L. Vieille, ‘‘Recursive axioms in deductive databases: The query-subquery ap-
proach,”” Proc. First Int. Conf. on Expert Database System, L. Kerschberg, Ed.,
Charleston, 1986.

L. Vieille, ‘A database complete proof procedure based on SLD resolution,” Proc.
4th Int. Conference on Logic Programming ICLP’87, Melbourne, Australia, May
1987.

L. Vieille, ‘*‘From QSQ to QoSaQ: Global optimization of recursive queries,”’ Proc.
2nd Int. Conf. on Expert Database System, L. Kerschberg, Ed., Charleston, 1988.
W. Nejdl and E. J. Neuhold, The PROLOG-DB System: Integrating Prolog and
Relational Databases, Technical Report, TU Vienna, June 1986.

W. Nejdl and G. Fleischanderl, QSQR Revisit—Incompleteness, Causes and Im-
provements, Technical Report, TU Vienna, December 1986.

W. Nejdl, ‘‘Recursive strategies for answering recursive queries—The RQA/FQI
strategy,” Proc. 13th VLDB Conf., Brighton 1987, pp. 43-50.

L.J. Henschen and S. Naqvi, ‘‘On compiling queries in recursive first-order data-
base,” J. ACM, 31(1), 1984, pp. 47-85.

F. Bancilhon, D. Maier, Y. Sagiv, and J.D. Ullman, ‘‘Magic sets and other strange
ways to implement logic programs,’” Proc. 5th ACM Symp. Principles of Database
Systems, Cambridge, MA, March 1986, pp. 1-15.

C. Beeri and R. Ramakrishnan, ‘‘On the power of magic,”” in Proceedings of the
6th ACM SIGACT-SIGART Symposium on Principles of Database Systems, 1987.
D. Sacca and C. Zaniolo, ‘*On the implementation of a simple class of logic queries
for databases.’’ in Proceedings of the 5th ACM SIGMOD-SIGACT Symposium on
Principles of Database Systems, 1986, pp. 16-23.

D. Sacca and C. Zaniolo, ‘‘Implementation of recursive queries for a data language
based on pure horn logic,”” in Proceedings of the 4th International Conf. on Logic
Programming, Univ. of Melbourne, 1987, pp. 104-135.

G. Balbin, S. Port, K. Ramamohanarao, and K. Meenakshi, ‘‘Efficient bottom-up
computation of queries on stratified databases,’’ J. Logic Programming, November,
295--344 (1991).

M.-S. Alberto, A. Pelaggi, and D. Sacca, “Companson of methods for logic-query
implementation,’’ J. Logic Programming, 10, 333-360 (1991).

