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1 BWT: An Index Structure to Speed-Up
2 Both Exact and Inexact String Matching

3 Yangjun Chen and Yujia Wu

4 Abstract The BWT transformation of a string is originally proposed for string
5 compression, but can also be used to speed up string matchings. In this chapter, we
6 address two issues around this mechanism: (1) how to use BWT to improve the
7 running time of a multiple pattern string matching process; and (2) how to integrate
8 mismatching information into a search of BWT arrays to expedite string matching
9 with k mismatches. For the first problem, we will first construct the BWT array of a

10 target string s, denoted as BWT(s); and then establish a trie structure over a set of
11 pattern strings R = r1, . . . , rlf g, denoted as T(R). By scanning BWT(s) against T
12 (R), the time spent for finding occurrences of ri’s can be significantly reduced. For
13 the second problem, for a given pattern string r, we will precompute its mis-
14 matching information (over some different substrings of it, denoted as M(r)) and
15 construct a tree structure, called a mismatching tree, to record the mismatches
16 between r and s during a search of BWT(s) against r. In this process, the mis-
17 matching tree can be effectively utilized to do some kind of useful mismatching
18 information derivation based on M(r) to avoid any possible redundancy. Extensive
19 experiments have been done to compare our methods with the existing ones, which
20 show that for both the problems described above our methods are promising.21

22 1 Introduction

23 The recent development of next-generation sequencing has changed the way we
24 carry out the molecular biology and genomic studies. It has allowed us to sequence
25 a DNA (Deoxyribonucleic acid) sequence at a significantly increased base coverage,
26 as well as at a much faster rate. This requires us considering all the string patterns as
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27 a whole, rather than separately check them one by one. Two kinds of string
28 matching need to be handled: exact matching and inexact matching. By the exact
29 matching, we will find all the occurrences of a pattern string r in a target string s,
30 but by the inexact matching we allow each occurrence having up to k positions
31 different between r and s. The inexact matching is important due to the polymor-
32 phisms or mutations among individuals or even sequencing errors, the pattern may
33 disagree in some positions at an occurrence of r in the target s.
34 The string matching is always an interesting and important research topic in
35 computer science and computer engineering. In the past several decades, a bunch of
36 efficient strategies have been proposed to find all the occurrences of a pattern in a
37 target very fast, such as those discussed in [1–7]. Roughly speaking, all these
38 methods can be classified as illustrated in Fig. 1.
39 From Fig. 1, we can see that for the exact matching problem we distinguish
40 between two kinds of strategies: the single-pattern oriented and the multi-pattern
41 oriented methods. By the former, each time only one pattern string will be mapped
42 to a target string, and for this we have both on-line methods such as Knuth-Morris-
43 Pratt [6], Boyer-Moore [5], and Apostolico-Giancarlo [8], and off-line
44 (index-based) methods like suffix trees [9, 10], suffix arrays [11], and BWT-trans-
45 formation (Burrows-Wheeler Transformation) [12–14]. However, by the latter, we
46 have only on-line strategies, such as the Aho-Corasick’s algorithm proposed in
47 1975 [15], and its improved versions [16–18], by which an automaton is established
48 over all the patterns and will be searched against a target in one scan.
49 For the inexact matching problem, we have string matching with k mismatches,
50 k errors, as well as don’t-care symbols. By the string matching with k mismatches,
51 we will find all the occurrences of a pattern string r in a target string s with each
52 occurrence having up to k positions different between r and s. Different methods for
53 this problem have been proposed, such as the on-line strategies discussed in [1, 3,
54 19, 20], and the index-based method proposed in [21]. The methods of [3, 19, 20]
55 have the worst-case time complexities bounded by O(kn + mlogm), where n = |s|
56 and m = |r|. By these three methods, the mismatch information among substrings
57 of r is used to speed up the working process. The method discussed in [1] is with a

58 slightly better time complexity O n
ffiffiffi
k

p
log k

� �
. By this method, the periodicity

exact matching

inexact matching
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Fig. 1 Classification of methods for string matching
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59 within r is utilized. In [21], a target string s is transformed to a BWT-array (denoted
60 as BWT(s)) as an index [12]. In comparison with suffix trees [9], BWT(s) uses much
61 less space [12]. However, its time complexity is bounded by O(mn′+ n), where n′ is
62 the number of leaf nodes of a tree produced during the search of BWT(s). This time
63 requirement can be much worse than the best on-line algorithm for large patterns.
64 The reason for this is that by this method neither mismatch information nor peri-
65 odicity within r is employed.
66 The string matching with k errors is quite different from the string matching with
67 k mismatches, by which we will find all the occurrences of a pattern string r in a
68 target string s such that the edit distance between each occurrence and s is ≤ k. To
69 do such a task, the dynamic programming paradigm has to be employed [22],
70 possibly with suffix trees being used as indexes [23, 24]. By the string matching
71 with don’t-care symbols, we allow don’t-care to appear in r, in s, or in both of them
72 [25, 26].
73 In this chapter, we address two issues. One is to construct indexes for the
74 multiple pattern string matching, and another one is to construct indexes for the
75 string matching with k mismatches. As discussed above, up to now no effective
76 indexes have been established for these two problems. Specifically, for the first
77 problem, we will

78 • Construct a trie T over all the pattern sequences, and check T against the
79 BWT-array of s’s reverse, denoted as BWT s ̄ð Þ created as an index for s. This
80 enables us to avoid repeated search of the same part of different pattern strings.
81 • Change a single-character checking to a multiple-character checking. (That is,
82 each time a set of characters respectively from more than one pattern strings will
83 be checked against a BWT-array in one scan, instead of checking them sepa-
84 rately one by one in multiple scans.)
85

86 Our experiment shows that it can be more than 40% faster than single-pattern
87 oriented methods when multi-million pattern strings are checked.
88 For the second problem, two techniques are introduced, which will be combined
89 with a BWT-array scanning as described below:

90 • An efficient method to calculate the mismatches between r[i … m] and r[j …
91 m] (i, j ∈ {1, …, m}, i ≠ j), where r[i … m] represents a substring of r starting
92 from position i and ending at position m. The mismatches between them is
93 stored in an array R such that if R[p] = q then we have r[i + q − 1] ≠ r[j + q −
94 1] and it is their pth mismatch.
95 • A new tree (forest) structure D to store the mismatches between r and different
96 segments of s. In D, each node v stores an integer i, indicating that there are
97 some positions i1, i2, …, il in s such that s[iq + i − 1] ≠ r[i] (q = 1, …, l). If
98 v is at the pth level of D, it also shows that it is the pth mismatch between each s
99 [iq … iq + i − 1] and r.

100
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101 By using these two techniques, the time complexity for solving the string
102 matching with k mismatches can be reduced to O(kn′+ n). Our experiment shows
103 that n′ ≪ n.

104 2 Related Work

105 The string matching problem has always been one of the main focuses in computer
106 science. A huge number of algorithms have been proposed, which can be generally
107 divided into two categories: exact matching and inexact matching. By the former,
108 all the occurrences of a pattern string r in a target string s will be searched. By the
109 latter, a best alignment between r and s (i.e., a correspondence with the highest
110 score) is searched in terms of a given distance function or a score matrix, which is
111 established to indicate the relevance between different symbols.

112 • Exact matching
113

114 The first interesting algorithm for this problem is the famous Knuth-Morris-Pratt’s
115 algorithm [6], which scans both r and s from left to right and uses an auxiliary next-
116 table (for r) containing the so-called shift information (or say, failure function
117 values) to indicate how far to shift the pattern from right to left when the current
118 character in r fails to match the current character in s. Its time complexity is
119 bounded by O(m + n), where m = |r| and n = |s|. (By the shift information, we
120 mean a largest integer j associated with a position i in r such that r[1 … j] = r[i –
121 j + 1 … i]. Thus, if the current character from the target does not match r[i + 1],
122 we will compare r[j +1] with the character next to the current one at a next step.)
123 The Boyer-Moore’s approach [5] works a little bit better than the Knuth-Morris-
124 Pratt’s. In addition to the next-table, a skip-table skip (also for r) is kept, in which
125 each entry skip[w] is a smallest integer j such that r[m – j] = w. (Here, we notice
126 that the entries in skip are indexed by characters w in the alphabet Σ.) For a large
127 alphabet and small pattern, the expected number of character comparisons is about
128 n/m, and is O(m + n) in the worst case. These two methods have sparked a series of
129 subsequent research on this problem [15, 24, 27, 28]. Especially, the idea of the ′

130 shift information′ has also been adopted by Aho and Corasick [15] for the multiple
131 pattern matching, by which s is searched for an occurrence of any one of a set of

132
l patterns: {r1, r2, …, rl}. Their algorithm needs only O ∑l

i=1 rij j + n
� �

time. This

133 method has been slightly improved in different ways. In [16], Commentz-Walter
134 combines the Boyer-Moore’s technique into the Aho-Corasick’s algorithm. In [17],
135 Wu and Mamber extend the Boyer-Moore’s algorithm to concurrently search
136 multiple pattern strings. Instead of using bad character heuristics to compute shift
137 values, they utilize a character block containing 2 or 3 characters. In addition, hash
138 tables are created to link the blocks and the related patterns. In [29], a concept of
139 superalphabets is introduced, in which each (super) character corresponds to a set
140 of q-grams (each being a substring from a certain pattern and represented as a bit
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141 string, called a signature, generated by using a hash function). In this way, a super
142 automaton can be created, in which each transition is labeled with a super character.
143 s will also be handled as a sequence of q-grams and searched in the same way as the
144 Aho and Corasick’s algorithm. The main problem of this method is the false
145 positive and a very time-consuming verification process is needed. In [18], Cro-
146 chemore et al. combine the directed acyclic word graphs into the Aho-Corasick’s
147 algorithm. If the total length of all patterns is polynomial with respect to the shortest
148 length m′ of a pattern, the average number of comparisons is O((n/m′)log m′).
149 However, all the improved algorithms have the same worst-case time complexity
150 as the Aho-Corasick’s.
151 In situations where a fixed string s is to be searched repeatedly, it is worthwhile
152 constructing an index over s, such as suffix trees [9, 10], suffix arrays [11], and
153 more recently the BWT-transformation [12, 14, 21, 30]. A suffix tree is in fact a trie
154 structure [31] over all the suffixes of s; and by using the Weiner’s algorithm [10] it
155 can be built in O(n) time. However, in comparison with the BWT-transformation, a
156 suffix tree needs much more space. Especially, for DNA sequences the
157 BWT-transformation works highly efficiently due to the small alphabet Σ of DNA
158 strings. By the BWT, the smaller Σ is, the less space will be occupied by the
159 corresponding indexes. According to a survey done by Li and Homer [32] on
160 sequence alignment algorithms for next-generation sequencing, the average space
161 required for each character is 12–17 bytes for suffix trees while only 0.5–2 bytes for
162 the BWT. The experiments reported in [19] also confirm this distinction. For
163 example, the file size of chromosome 1 of human is 270 Mb. But its suffix tree is of
164 26 Gb in size while its BWT needs only 390 Mb–1 Gb for different compression
165 rates of auxiliary arrays, completely handleable on PC or laptop machines.
166 By the hash-table-based algorithms [33], short substrings called ‘seeds’ will be
167 first extracted from a pattern r and a signature (a bit string) for each of them will be
168 created. The search of a target string s is similar to that of the Brute Force searching,
169 but rather than directly comparing the pattern at successive positions in s, their
170 respective signatures are compared. Then, stick each matching seed together to
171 form a complete alignment. Its expected time is O(m + n), but in the worst case,
172 which is extremely unlikely, it takes O(mn) time. The hash technique has also been
173 extensively used in the DNA sequence research [34–37]. However, almost all
174 experiments show that they are generally inferior to the suffix tree and the BWT
175 index in both running time and space requirements.

176 • Inexact matching
177

178 By the inexact matching, we will find, for a certain pattern r and an integer k, all the
179 substrings s′ of s such that d(s′, r) ≤ k, where d is a distance function. In terms of
180 different distance functions, we distinguish between two kinds of inexact matches:
181 string matching with k mismatches and string matching with k errors. A third kind
182 of inexact matching is that involving Don’t Care, or wild-card symbols which
183 match any single symbol, including another Don’t Care.

BWT: An Index Structure to Speed-Up Both Exact … 5
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184 k mismatches When the distance function is the Hamming distance, the problem
185 is known as the string matching with k mismatches [1, 20]. By the Hamming
186 distance, the number of differences between r and the corresponding substring s′ is
187 counted. There are a lot of algorithms proposed for this problem, such as [1, 20, 38–
188 42]. They are all on-line algorithms. Except those discussed in [1, 20], all the other
189 methods have the worst-case time complexity O(mn). The method discussed in
190 [20], however, requires only O(kn + mlogm) time, by which the mismatch arrays
191 for r is precomputed and exploited to speed up the search of s. The method dis-
192 cussed in [1] works slightly better, by which the periodicity within r is utilized. Its

193 time complexity is bounded by O n
ffiffiffi
k

p
log k

� �
. The algorithm discussed in [21] is

194 index-based, by which s is transformed to a BWT-array, used as an index; but its
195 time complexity is bounded by O(mn′+ n), where n′ is the number of leaf nodes of
196 a tree produced during the search of BWT(s ̄). If m is large, it can be worse than all
197 those on-line methods discussed in [1, 20, 40, 41]. Another index-based method is
198 based on a brute-force searching of suffix trees [43]. Its time complexity is bounded
199 by O m+ n+ c log nk ̸k!

� �� �
, where c is a very large constant. It can also be worse

200 than an on-line algorithm when n is large and k is larger than a certain constant.
201 k errors When the distance function is the Levenshtein distance, the problem is
202 known as the string matching with k errors [39]. By the Levenshtein distance, we
203 have
204

dij =min di− 1, j +w ri,ϕð Þ, di, j− 1 +w ϕ, s′j
� �

, di− 1, j− 1 +w ri, s′j
� �n o

,

206206

207 where di,j represents the distance between r[1 … i] and s′[1 … j], ri (sj′) the ith
208 character in r (jth character in s′), ϕ an empty character, and w(ri, sj′) the cost to
209 transform ri into sj′.
210 Also, many algorithms have been proposed for this problem [3, 22–24]. They are
211 all some kinds of variants of the dynamic programming paradigm [22] with the
212 worst-case time complexity bounded by O(mn). However, by the algorithm dis-
213 cussed in [23], the expected time can reach O(kn).
214 don’t care As a different kind of inexact matching, the string matching with
215 Don’t-Cares (or wild-cards) has been a third active research topic for decades, by
216 which we may have wild-cards in r, in s, or in both of them. Due to the wild
217 character’s property that it can matches any character, the ′match′ relation is no
218 longer transitive, which precludes straightforward adaption of the shift information
219 used by Knuth-Morris-Pratt and Boyer-Moore. Therefore, all the methods proposed
220 to solve this problem seem not so skillful and need a quadratic time [26]. Using a
221 suffix array as the index, however, the searching time can be reduced to O(logn) for
222 some patterns, which contain only a sequence of consecutive Don’t Cares [25].
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223 3 BWT Transformation

224 In this section, we give a brief description of the BWT transformation to provide a
225 discussion background.

226 3.1 BWT and String Searching

227 We use s to denote a string that we would like to transform. Assume that s termi-
228 nates with a special character $, which does not appear elsewhere in s and is
229 alphabetically prior to all other characters. In the case of DNA sequences, we have
230 $ < a < c < g < t. As an example, consider s = acagaca$. We can rotate s con-
231 secutively to create eight different strings, and put them in a matrix as illustrated in
232 Fig. 2a.
233 In Fig. 2a, for ease of explanation, the position of a character in s is represented
234 by its subscript. (That is, we rewrite s as a1c1a2g1a3c2a4$.) For example, a2 rep-
235 resenting the second appearance of a in s; and c1 the first appearance of c in s. In the
236 same way, we can check all the other appearances of different characters.
237 Now we sort the rows of the matrix alphabetically, and get another matrix, as
238 demonstrated in Fig. 2b, which is called the Burrow-Wheeler Matrix [12, 13, 30]
239 and denoted as BWM(s). Especially, the last column L of BWM(s), read from top to
240 bottom, is called the BWT-transformation (or the BWT-array) and denoted as BWT
241 (s). So for s = acagaca$, we have BWT(s) = acg$caaa. The first column is
242 referred to as F.
243 When ranking the elements x in both F and L in such a way that if x is the ith
244 appearance of a certain character it will be assigned i, the same element will get the
245 same number in the two columns. For example, in F the rank of a4, denoted as
246 rkF(a4), is 1 (showing that a4 is the first appearance of a in F). Its rank in L, rkL(a4)
247 is also 1. We can check all the other elements and find that this property, called the

(a) (c)(b)

Fig. 2 Rotation of a string

BWT: An Index Structure to Speed-Up Both Exact … 7

Layout: T1 Standard STIX Book ID: 439206_1_En Book ISBN: 978-981-10-8475-1

Chapter No.: 12 Date: 17-3-2018 Time: 8:46 pm Page: 7/44

A
u

th
o

r 
P

ro
o

f



U
N
C
O
R
R
EC

TE
D
PR

O
O
F

248 rank correspondence, holds for all the elements. That is, for any element a in s, we
249 always have
250

rkF að Þ= rkL að Þ ð1Þ
252252

253 According to this property, a string searching can be very efficiently conducted.
254 To see this, let us consider a pattern string r = aca and try to find all its occur-
255 rences in s = acagaca$.
256 First, we notice that we can store F as |Σ| + 1 intervals, such as F$ = F[1 … 1],
257 FA = F[2 … 5], FC = F[6 … 7], FG = F[8 … 8], and FT = Φ for the above
258 example (see Fig. 1c) We can also represent a segment within an Fx with x ∈ Σ as
259 a pair of the form <x, [α, β]>, where α ≤ β are two ranks of x. Thus, we have
260 FA = F[2 … 5] = <a, [1, 4]>, FC = F[6 … 7] = <c, [1, 2]> , and FG = F[8 …

261 8] = <g, [1, 1]>. In addition, we can use Lv to represent a range in L corresponding
262 to a pair v. For example, in Fig. 1c, L<a, [1, 4]> = L[2 … 5], L<c, [1, 2]> = L[6 … 7].
263 L<a, [2, 3]> = L[3 … 4], and so on.
264 We will also use a procedure search(z, v) to search Lv to find the first and the last
265 rank of z (denoted as α′ and β′, respectively) within Lv, and return <z, [α′, β′]> as
266 the result:
267

search z, vð Þ= < z, α′, β′
� �

>, if z appears in Lv;
ϕ, otherwise.

	
ð2Þ

269269

270 Then, we work on the characters in r in the reverse order (referred to as a
271 backward search). That is, we will search r ̄ (reverse of r) against BWT(s), as shown
272 below.
273 Step 1: Check r[3] = a in the pattern string r, and then figure out FA = F[2… 5]
274 = <a, [1, 4]>.
275 Step 2: Check r[2] = c. Call search(c, L<a, [1, 4]>). It will search L<a, [1, 4]> = L
276 [2 … 5] to find a range bounded by the first and last rank of c. Concretely, we will
277 find rkL(c2) = 1 and rkL(c1) = 2. So, search(c, L<a, [1, 4]>) returns <c, [1, 2]>. It is
278 F[6 … 7].
279 Step 3: Check r[3] = a. Call search(a, L<c, [1, 2]>). Notice that L<c, [1, 2]> = L[6
280 … 7]. So, search(a, L<c, [1, 2]>) returns <a, [2, 3]>. It is F[3 … 4]. Since now we
281 have exhausted all the characters in r and F[3… 4] contains only two elements, two
282 occurrences of r in s are found. They are a1 and a3 in s, respectively.
283 The above working process can be represented as a sequence of three pairs: <a,
284 [1, 4]>, <c, [1, 2]>, <a, [2, 3]>. In general, for r ̄=C1 . . . Cm, its search against
285 BWT(s) can always be represented as a sequence:
286

< x1, α1, β1½ �> , . . . , < xm, αm, βm½ �>
288288
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289 where < x1, α1, β1½ �> = Fx1, and < xi, αi, βi½ �> = search xi, L< xi− 1, αi− 1, βi− 1½ �>
� �

for
290 1 < i ≤ m. We call such a sequence as a search sequence. Thus, the time used for
291 this process is bounded by O ∑m

i=1 τi
� �

, where τi is the time for an execution of

292 search xi,L< xi− 1, αi− 1, βi− 1½ �>
� �

. However, this time complexity can be reduced to
293 O(m) by using the so-called rankAll method [12], by which |Σ| arrays each for a
294 character x ∈ Σ are arranged such that Ax[k] (the kth entry in the array for x) is the
295 number of appearances of x within L[1 … k] (i.e., the number of x-characters
296 appearing before L[k + 1].) (See Fig. 3a for illustration.)
297 Now, instead of scanning a certain segment L[i … j] (i ≤ j) to find a subrange
298 for a certain x ∈ Σ, we can simply look up the array for x to see whether Ax[i −
299 1] = Ax[j]. If it is the case, then x does not occur in L[i … j]. Otherwise, [Ax[i −
300 1] + 1, Ax[j]] should be the range to be found.
301 For instance, to find the subrange for g within L[6 … 7], we will first check
302 whether Ag[6 − 1] = Ag[7]. Since Ag[6 − 1] = Ag[5] = Ag[7] = 1, we know that
303 g does not appear in L[6 … 7]. However, since Ac[2 − 1] ≠ Ac[5], we immediately
304 get the subrange for c within L[2 … 5]: [Ac[2 − 1] + 1, Ac[5]] = [1, 2].
305 The problem of this method is its high space requirement, which can be miti-
306 gated by replacing x[] with a compact array Ax for each x ∈ Σ, in which, rather than
307 for each L[i] (i ∈ {1, …, n}), only for some entries in L the number of their
308 appearances will be stored. For example, we can divide L into a set of buckets of the
309 same size and only for each bucket a value will be stored in Ax. Obviously, doing
310 so, more search will be required. In practice, the size π of a bucket (referred to as a
311 compact factor) can be set to different values. For example, we can set π = 4,
312 indicating that for each four contiguous elements in L a group of |Σ| integers (each
313 in an Ax) will be stored. That is, we will not store all the values in Fig. 3a, but only
314 store $[4], a[4], c[4], g[4], t[4], and $[8], a[8], c[8], g[8], t[8] in the corresponding
315 compact arrays, as shown in Fig. 4b. However, each x[j] for x ∈ Σ can be easily
316 derived from Aα by using the following formulas:

(a) (b)

Fig. 3 Illustration for rankAlls
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317 x j½ � = Ax i½ � + ρ, ð3Þ
319319

320 where i= ⌊j ̸π⌋ and ρ is the number of x’s appearances within L[i ⋅ π + 1 … j], and
321

x j½ �=Ax i′
� �

+ ρ′, ð4Þ
323323

324 where i′ = ⌈j ̸π⌉ and ρ′ is the number of α’s appearances within L[j + 1 … i′ ⋅ π].
325 Thus, we need two procedures: sDown(L, j, π, x) and sUp(L, j, π, x) to find ρ and
326 ρ′, respectively. In terms of whether j − i ⋅ π ≤ i′ ⋅ π − j, we will call sDown(L, j, π,
327 x) or sUp(L, j, π, x) so that fewer entries in L will be scanned to find x[j].
328 We notice that the column for $ needn’t be stored since it will never be searched.
329 We can also create rankAlls only for part of the elements to reduce the space
330 overhead, but at cost of some more searches. See Fig. 3b for illustration.

331 3.2 Construction of BWT Arrays

332 A BWT-array can be constructed in terms of a relationship to the suffix arrays [12,
333 13, 30].
334 As mentioned above, a string s = a1 …. an is always ended with $ (i.e., ai ∈ Σ
335 for i = 1, …, n – 1, and an = $). Let s[i] = ai (i = 1, 2, …, n) be the ith character
336 of s, s[i… j] = ai … aj a substring and s[i … n] a suffix of s. Suffix array H of s is a
337 permutation of the integers 1, …, n such that H[i] is the start position of the ith
338 smallest suffix. The relationship between H and the BWT-array L can be determined
339 by the following formulas:

(a) (b)

Fig. 4 A trie and its compact version
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340 L i½ �= $, if H i½ �=0;
L i½ � = s H i½ � − 1½ �, otherwise.

	
ð5Þ

342342

343 Since a suffix array can be generated in O(n) time [44], L can then be created in a
344 linear time. However, most algorithms for constructing suffix arrays require at least
345 O(nlogn) bits of working space, which is prohibitively high and amounts to 12 GB
346 for the human genome. Recently, Hon et al. [44] proposed a space-economical
347 algorithm that uses n bits of working space and requires only <1 GB memory at
348 peak time for constructing L of the human genome. We use this for our purpose.

349 4 Multiple Pattern Matching

350 In this section, we present our algorithm to search a bunch of pattern strings against
351 a target s. Its main idea is to organize all the reads into a trie T and search T against
352 L to avoid any possible redundancy. First, we present the concept of tries in
353 Sect. 4.1. Then, in Sect. 4.2, we discuss our basic algorithm for the task. We
354 improve this algorithm in Sect. 4.3.

355 4.1 Tries over Pattern Strings

356 Let D = {s1, …, sn} be a DNA database, where each si (i =1, …, n) is a genome, a
357 very long string ∈ Σ* (Σ = {A, T, C, G}). Let R = {r1, …, rm} be a set of reads
358 with each rj being a short string ∈ Σ*. The problem is to find, for every rj’s (j =1,
359 …, m), all their occurrences in an si (i =1, …, n) in D.
360 A simple way to do this is to check each rj against si one by one, for which
361 different string searching methods can be used, such as suffix trees [9, 10],
362 BW-transformation [12], and so on. Each of them needs only a linear time (in the
363 size of si) to find all occurrences of rj in si. However, in the case of very large m,
364 which is typical in the new genomic research, one-by-one search of reads against an
365 si is no more acceptable in practice and some efforts should be spent on reducing the
366 running time caused by huge m.
367 Our general idea is to organize all rj’s into a trie structure T and search T against
368 si with the BW-transformation being used to check the string matching. For this
369 purpose, we will first attach $ to the end of each si (i = 1, …, n) and construct
370 BWT(si). Then, attach $ to the end of each rj (j = 1, …, m) to construct T = trie
371 (R) over R as below.
372 If |R| = 0, trie(R) is, of course, empty. For |R| = 1, trie(R) is a single node. If |
373 R| > 1, R is split into |Σ| = 5 (possibly empty) subsets R1, R2, …, R5 so that each
374 Ri (i ∈ {1, …, 5}) contains all those sequences with the same first character αi ∈
375 {A, T, C, G} ∪ {$}. The tries: trie(R1), trie(R2), …, trie(R5) are constructed in the
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376 same way except that at the kth step, the splitting of sets is based on the kth
377 characters in the sequences. They are then connected from their respective roots to a
378 single node to create trie(R).

379 Example 4.1 As an example, consider a set of four reads:

380 r1: ACAGA
381 r2: AG
382 r3: ACAGC
383 r4: CA
384

385 For these reads, a trie can be constructed as shown in Fig. 4a. In this trie, v0 is a
386 virtual root, labeled with an empty character ε while any other node v is labeled with
387 a real character, denoted as l(v). Therefore, all the characters on a path from the root
388 to a leaf spell a read. For instance, the path from v0 to v8 corresponds to the third
389 read r3 = ACAGC$. Note that each leaf node v is labelled with $ and associated
390 with a read identifier, denoted as γ(v).
391 The size of a trie can be significantly reduced by replacing each branchless path
392 segment with a single edge. By a branchless path we mean a path P such that each
393 node on P, except the starting and ending nodes, has only one incoming and one
394 outgoing edge. For example, the trie shown in Fig. 4a can be compacted to a
395 reduced one as shown in Fig. 4b.

396 4.2 Integrating BWT Search with Trie Search

397 It is easy to see that exploring a path in a trie T over a set of reads R corresponds to
398 scanning a read r ∈ R. If we explore, at the same time, the L array established over
399 a reversed genome sequence s ̄, we will find all the occurrences of r (without $

(a) (b) (c)

Fig. 5 Illustration for Step 1
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400 involved) in s. This idea leads to the following algorithm, which is in essence a
401 depth-first search of T by using a stack S to control the process. However, each
402 entry in S is a triplet <v, a, b> with v being a node in T and a ≤ b, used to indicate
403 a subsegment in Fl(v)[a … b]. For example, when searching the trie shown in
404 Fig. 5a against the L array shown in Fig. 2a, we may have an entry like <v1, 1,
405 4> in S to represent a subsegment FA[1 … 4] (the first to the fourth entry in FA)
406 since l(v1) = ′A′. In addition, for technical convenience, we use Fε to represent the
407 whole F. Then, Fε[a … b] represents the segment from the ath to the bth entry in F.
408 In the algorithm, we first push <root(T), 1, |s|> into stack S (lines 1–2). Then,
409 we go into the main while-loop (lines 3–16), in which we will first pop out the top
410 element from S, stored as a triplet <v, a, b> (line 4). Then, for each child vi of v, we
411 will check whether it is a leaf node. If it is the case, a quadruple <γ(vi), l(v), a,
412 b> will be added to the result ℜ (see line 7), which records all the occurrences of a
413 read represented by γ(vi) in s. (In practice, we store compressed suffix arrays [11,
414 12] and use formulas (1) and (5) to calculate positions of reads in s.) Otherwise, we
415 will determine a segment in L by calculating α′ and β′ (see lines 8–9). Then, we will
416 use sDown(L, α′ − 1, π, x) or sUp(L, α′ − 1, π, x) to find x[α′ − 1] as discussed in
417 the previous section. (See line 10.) Next, we will find x[β′] in a similar way. (See
418 line 11.) If x[β′] > x[α′ − 1], there are some occurrences of x in L[α′ … β′] and we
419 will push <vi, x[α′ − 1] + 1, x[β′]>) into S, where x[α′ − 1] + 1 and x[β′] are the
420 first and last rank of x’s appearances within L[x′ … y′], respectively. (See lines 12–
421 13.) If x[β′] = x[α′ − 1], x does not occur in L[α′ … β′] at all and nothing will be
422 done in this case. The following example helps for illustration.
423

425425
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426 Example 4.2 Consider all the reads given in Example 4.1 again. The trie T over
427 these reads are shown in Fig. 4a. In order to find all the occurrences of these reads
428 in s = ACAGACA$, we will run readSearch() on T and the LF of s ̄ shown in
429 Fig. 5b. (Note that s = s ̄ for this special string, but the ordering of the subscripts of
430 characters is reversed. In Fig. 5a, we also show the corresponding BWM matrix for
431 ease of understanding.)
432 In the execution of readSearch(), the following steps will be carried out.
433 Step 1: push <v0, 1, 8> into S, as illustrated in Fig. 5c.
434 Step 2: pop out the top element <v0, 1, 8> from S. Figure out the two children of
435 v0: v1 and v11. First, for v11, we will use Ac to find the first and last appearances of l
436 (v11) = ‘C’ in L[1… 8] and their respective ranks: 1 and 2. Assume that π = 4 (i.e.,
437 for each 4 consecutive entries in L a rankAll value is stored.) Further assume that for
438 each Ax (x ∈ {a, c, g, t}) Ax[0] = 0. The ranks are calculated as follows.

439 • To find the rank of the first appearance of ‘C’ in L[1… 8], we will first calculate
440 C[0] by using formula (3) or (4) (i.e., by calling sDown(L, 0, 4, C) or sUp(L, 0,
441 4, C)). Recall that whether (4) or (5) is used depends on whether j − i′ ⋅ π ≤ i′ ⋅ π
442 − j, where i= ⌊j ̸π⌋ and i′ = ⌈j ̸π⌉. For C[0], j = 0. Then, i = i′ = 0 and (4)
443 will be used:

444

445

C 0½ �=Ac ⌊0 ̸4⌋½ � + ρ
447447

448 Since Ac ⌊0 ̸4⌋½ �=Ac 0½ �=0 and the search of L[i ⋅ π … j] = L[0 … 0] finds ρ
449 = 0, C[0] is equal to 0.

450 • To find the rank of the last appearance of ‘C’ in L[1… 8], we will calculate C[8]
451 by using (4) for the same reason as above. For C[8], we have j = 8 and i = 2.
452 So we have

453

<v1, 1, 4> 
<v11, 1, 2> 

S: 

<v5, 4, 4> 
<v9, 1, 1> 

<v11, 1, 2> 

<v3, 2, 3> 
<v9, 1, 1> 

<v11, 1, 2> 

<v4, 1, 1> 
<v9, 1, 1> 

<v11, 1, 2> 

<v2, 1, 2> 
<v9, 1, 1> 

<v11, 1, 2> 

(a) (b)

(c) (d) (e)

Fig. 6 Illustration for stack
changes
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454

C 8½ �=Ac ⌊8 ̸4⌋½ �+ ρ
456456

457 Since Ac ⌊8 ̸4⌋½ �=Ac 2½ �=2, and the search of L[i ⋅ π … j] = L[8 … 8] finds ρ
458 = 0, we have C[8] = 2.
459 So the ranks of the first and the last appearances of ‘C’ are C[0] + 1 = 1, and C
460 [8] = 2, respectively. Push <v11, 1, 2> into S.
461 Next, for v1, we will do the same work to find the first and last appearances of l
462 (v1) = ‘A’ and their respective ranks: 1 and 4; and push <v1, 1, 4> into S. Now
463 S contains two entries as shown in Fig. 6a after step 2.
464 Step 3: pop out the top element <v1, 1, 4> from S. v1 has two children v2 and v9.
465 Again, for v9 with l(v9) = ‘G’, we will use Ag to find the first and last appearances
466 of G in L[2 … 5] (corresponding to FA[1 … 4]) and their respective ranks: 1 and 1.
467 In the following, we show the whole working process.

468 • To find the rank of the first appearance of ‘G’ in L[2… 5], we will first calculate
469 G[1]. We have j=1, i= ⌊j ̸π⌋= ⌊1 ̸4⌋=0 and i′ = ⌈1 ̸4⌉=1. Since j − i ⋅ π =
470 0 < i′ ⋅ π − j = 3, formula (4) will be used:

471

472

G 1½ �=Ag ⌊1 ̸4⌋½ �+ ρ
474474

475 Since Ag ⌊0 ̸4⌋½ �=Ag 0½ �=0 and search of L[i ⋅ π… j] = L[0 … 0] finds ρ = 0, G
476 [1] is equal to 0.

477 • To find the rank of the last appearance of ‘G’ in L[2 … 5], we will calculate G
478 [5] by using (4) based on an analysis similar to above. For G[5], we have j = 5
479 and i= ⌊j ̸π⌋=1. So we have

480

481

G 5½ �=Ag 5 ̸4½ �+ ρ
483483

484 Since Ag ⌊5 ̸4⌋½ �=Ag 1½ �=1, and search of L[i ⋅ π … j] = L[4 … 5] finds ρ = 0,
485 we have G[5] = 1.
486 We will push <v9, G[1] + 1, G[5]> = <v9, 1, 1> into S.
487 For v2 with l(v2) = ‘C’, we will find the first and last appearances of C in L[2 …

488 5] and their ranks: 1 and 2. Then, push <v2, 1, 2> into S. After this step, S will be
489 changed as shown in Fig. 6b.
490 In the subsequent steps 4, 5, and 6, S will be consecutively changed as shown in
491 Fig. 6c, d, and e, respectively.
492 In step 7, when we pop the top element <v5, 4, 4>, we meet a node with a single
493 child v6 labeled with $. In this case, we will store <γ(v6), l(v5), 4, 4> = <r1, A, 4,
494 4> in ℜ as part of the result (see line 7 in searchRead()). From this we can find that
495 rkL(A3) = 4 (note that the same element in both F and L has the same rank), which
496 shows that in s ̄ the substring of length |r1| staring from A3 is an occurrence of r1. □
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497 4.3 Time Complexity and Correctness Proof

498 In this subsection, we analyze the time complexity of readSearch(T, LF, π) and
499 prove its correctness.

500 4.3.1 Time Complexity

501 In the main while-loop, each node v in T is accessed only once. If the rankAll arrays
502 are fully stored, only a constant time is needed to determine the range for l(v). So
503 the time complexity of the algorithm is bounded by O(|T|). If only the compact
504 arrays (for the rankAll information) are stored, the running time is increased to O(|
505 T| ⋅ π), where π is the corresponding compact factor. It is because in this case, for
506 each encountered node in T, O 1

2 π
� �

entries in L may be checked in the worst case.

507 4.3.2 Correctness

508 Proposition 4.1 Let T be a trie constructed over a collections of reads: r1, …, rm,
509 and LF a BWT-mapping established for a reversed genome s ̄. Let π be the compact
510 factor for the allRank arrays, and ℜ the result of readSearch(T, LF, π). Then, for
511 each rj, if it occurs in s, there is a quadruple {<γ(vi), l(v), a, b>} ∈ ℜ such that
512 γ(vi) = rj, l(v) is equal to the last character of rj, and Fl(v)[a], Fl(v)[a + 1], …, Fl

513 (v)[b] show all the occurrences of rj in s.

514 Proof We prove the proposition by induction on the height h of T.
515 Basic step. When h = 1. The proposition trivially holds.
516 Induction hypothesis. Suppose that when the height of T is h, the proposition
517 holds. We consider the case that the height of T is h + 1. Let v0 be the root with l
518 (v0) = ε. Let v1, …, vk be the children of v0. Then, height(T[vi]) ≤ h (i = 1, …, k),
519 where T[vi] stands for the subtree rooted at vi and height(T[vi]) for the height of T
520 [vi]. Let l(vi) = x and Fx = <x; a, b>. Let vi1, …, vil be the children of vi. Assume
521 that α and β be the ranks of the first and last appearances of x in L. According to the
522 induction hypothesis, searching T[vij] against L[a′ … b′], where a′ = a + α − 1
523 and b′ = a + β − 1, the algorithm will find all the locations of all those reads with l
524 (vi) as the first character. This completes the proof. □

525
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526 5 String Matching with k Mismatches

527 5.1 Basic Working Process

528 By the string matching with k mismatches, we allow up to k characters in a pattern
529 r to match different characters in a target s. By using the BWT as an index, for
530 finding all such string matches, a tree structure will be generated, in which each
531 path corresponds to a search sequence discussed in the previous section. It is due to
532 the possibility that a position in r may be matched to different characters in s and we
533 need to call search() multiple times to do this task, leading to a tree representation.

534 Definition 5.1 (search tree) Let r be a pattern string and s be a target string.
535 A search tree T (S-tree for short) is a tree structure to represent the search of
536 r against BWT s ̄ð Þ (which is equivalent to the search of r ̄ against BWT(s)). In T, each
537 node is a pair of the form <x, [α, β]>), and there is an edge from v (=<x, [α, β]>) to
538 u (=<x′, [α′, β′]>) if search(x, Lv) = u.
539 As an example, consider the case where r = tcaca, s = acagaca and k = 2. To
540 find all occurrences of r in s with up to two mismatches, a search tree T shown in
541 Fig. 7 will be created.
542 In Fig. 7, v0 is a virtual root, representing the whole L, and ‘virtually’ corre-
543 sponds to the virtual starting character r[0] = ‘-’. By exploring paths P1 = v1 → v4
544 → v8 → v12 → v16 and P2 = v1 → v5 → v9 → v13 → v16, we will find two
545 occurrences of r with 2 mismatches: s[1 … 5] (=a1c1a2g1a3) and s[3 … 7]
546 (=a2g1a3c2a4) while by either P3 = v2 → v6 → v10 → v14 → v18 or P4 = v3 →
547 v7 → v11 → v15 → v19 no string matching with at most 2 mismatches can be
548 found.
549 A node <x, [α, β]>in such a tree is called a matching node if it corresponds to a
550 same character in r. Otherwise, it is called a mismatching node. For example, node
551 v4 = <c, [1, 2]> is a matching node since it corresponds to r[2] = c while v1 = <a,
552 [1, 4]> is a mismatching node since it corresponds to r[1] = t.

<-, [1, 8]>

<a, [1, 4]>

<c, [1, 2]>

<a, [2, 3]>

<g, [1, 1]>

<g, [1, 1]>

<a, [4, 4]>

<c, [2, 2]>

<c, [1, 2]>

<a, [2, 3]>

<g, [1, 1]>

<g, [1, 1]>

<a, [4, 4]>

v0 

v1 v2 v3 

v4 v5 
v6 v7 

v8 v9 
v10 

v12 v13 

P1 P2 P3 P4

<a, [4, 4]> <a, [3, 3]>v16 
v17 

r[2] = c 

r[3] = a  

r[4] = c 

r[5] = a  

r[1] = t 

r: 

<a, [4, 4>]v14 

<c, [2, 2]>v18 

<a, [3, 3]>

<$, [-, -]>

<c, [2, 2]>

v15 

v19 

v11 

T:

Fig. 7 Search for string matching with 2 mismatches
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553 For a path Pl, we can store all its mismatching positions in an array Bl of length
554 k + 1 such that Bl[i] = j if Pl[j] ≠ r[j] and this is the ith mismatch between Pl and
555 r, where Pl[j] is the jth character appearing on Pl. If the number of mismatches, k′,
556 say, between Pl and r is less than k + 1, then the default value ∞ onwards, i.e.,
557

Bl k′ +1
� �

=Bl K ′ +2
� �

=⋯=Bl k+1½ �=∞.
559559

560 We call Bl a mismatch array. For instance, in Fig. 3, for P1, we have B1 = [1, 4,
561 ∞], indicating that at position 1, we have the first mismatch P1[1] = a ≠ r
562 [1] = t and at position 4 we have the second mismatch P1[4] = g ≠ r[4] = a. For
563 the same reason, we have B2 = [1, 2, ∞], B3 = [1, 2, 3], and B4 = [1, 2, 3].
564 These data structures can be easily created by maintaining and manipulating a
565 temporary array B of length k + 1 to record the mismatches between the current
566 path P and r. Initially, each entry of B is set to be∞ and an index variable i pointing
567 to the first entry of B. Each time a mismatch is met, its position is stored in B[i] and
568 then i is increased by 1. Each time r is exhausted or B becomes full (i.e., each entry
569 is set a value not equal to ∞), we will store B as an Bl (and associate it with the leaf
570 node of the corresponding Pl.) Then, ‘backtrack’ to the lowest ancestor of the
571 current node, which has at least a branch not yet explored, to search a new path. For
572 instance, when we check v16, r is exhausted and the current value of B is [1, 4, ∞].
573 We will store B in B1 (the array associated with the leaf node v16 of P1) and
574 ‘backtrack’ to v1 to explore a new path. At the same time, all those values in B,
575 which are set after v1, will be reset to ∞, i.e., B will be changed to [1, ∞, ∞].
576 Now we consider another path P3. The search along P3 will stop at v10 since
577 when reaching it B becomes full (B = [1, 2, 3]). Therefore, the search will not be
578 continued, and v14, v18 will not be created.
579 It is essentially a brute-force search to check all the possible occurrences of r in
580 s. Denote by n′ the number of leaf nodes in T. The time used by this process is
581 bounded by O(mn′).
582 In fact, it is the main process discussed in [21]. The only difference is that in [21]
583 a simple heuristics is used, which precomputes, for each position i in r, the number
584 σ(i) of consecutive, disjoint substrings in r[i … m], which do not appear in s. For
585 example, in Fig. 3, σ(1) = 2 since in r[1 … 5] = tcaca both r[1 … 1] = t and r[2
586 … 4] = cac do not occur in s = acagaca. But σ(3) = 0 since any substring in r[1
587 … 3] = aca does appear in s. Assume that the number of mismatches between r[1
588 … i – 1] and P[1 … i – 1] (the current path) is l. Then, if k – l < σ(i), we can
589 immediately stop exploring the subtree rooted at P[i – 1] as no satisfactory answers
590 can be found by exploring it.
591 The time required to establish such a heuristics is O(n) by using BWT(s) [21].
592 However, the theoretic time complexity of this method is still O(mn′). Even in
593 practice, this heuristics is not quite helpful since σ(i) delivers only the information
594 related to r[i … m] and the whole s, rather than the information related to r[i …
595 m] and the relevant substrings of s, to which it will be compared. To see this, pay
596 attention to part of the tree marked grey in Fig. 7. Since σ(3) = 0, the search along
597 P4 will be continued. But no answer can be found. The heuristics here is in fact
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598 useless since it is not about r[3 … 5] and s[5 … 7], which is to be checked in a next
599 step.

600 5.2 Mismatch Information

601 Searching S-trees in an improvement over scanning strings, but it often happens that
602 there are repetitive traversals of similar subtrees due to the multiple appearances of
603 a same pair. However, such repeated appearance of pairs cannot be simply removed
604 since they may be aligned to different positions in r. For example, the first
605 appearance of <c, [1, 2]> (v4 in Fig. 3) is compared to r[2] while its second
606 appearance (v2) is to r[1]. Hence, we cannot use the result computed for v4
607 (when <c, [1, 2]> is first met) as the result for v2.
608 However, if we have stored the mismatch information R between substrings of r,
609 like r[2 … 4] and r[1 … 3], in some way, the mismatches along P3 can be derived
610 from R and B1 (the mismatches recorded for P1), instead of simply exploring P3

611 again in a way done for P1. To do so, for each pair i, j ∈ {1, …, m}, we need to
612 maintain a data structure Rij containing the positions of the first k + 1 mismatches
613 between r[i … m – q + i] and r[j … m – q + j], where q = max{i, j}, such that if
614 Rij[l] = x (≠ ∞) then r[i + x − 1] ≠ r[j + x − 1] or one of them does not exist,
615 and it is the lth mismatch between them.
616 Clearly, this task requires O(km2) time and space.
617 For this reason, we will precompute only part of R, instead of Rij for all i, j ∈ {1,
618 …, m}. Specifically, R12,…, R1m for r will be pre-constructed in a way as described
619 in [20], giving the positions of the mismatches between the pattern and itself at
620 various relative shifts. That is, each R1i (2 ≤ i ≤ m) contains the positions within
621 r of the first 2k + 1 mismatches between the substring r[1 … m – i] and r[i + 1 …

622 m], i.e., the overlapping portions of the two copies of pattern r for a relative shift of
623 i. Thus, if R1i[j] = x, then r[x] ≠ r[i + x − 1] or one of them does not exist, which
624 is the jth mismatch between r[1 … m – i] and r[i + 1 … m]. (See Fig. 8a for
625 illustration.)
626 In Fig. 8b, we show a pattern r1 = tcacg and all the possible right-to-left shifts:
627 r2 = r[2 … 5] = cacg, r3 = r[3 … 5] = acg, and so on. In Fig. 8c, we give R12,

(a) (b) (c)

Fig. 8 Illustration for table R
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628 …, R15 for r1. In an R1i, if the number of mismatches, k′, say, between r[1 … m –

629 i] and r[i + 1 … m] is less than 2k + 1, then the default value ∞ onwards, i.e.,
630

R1i K ′ +1
� �

=R1i k′ +2
� �

=⋯=R1i 2k+1½ �=∞.
632632

633 We will also use δ(R1i) to represent the number of all those entries in R1i, which
634 are not ∞. Trivially, R11 = [∞, …, ∞].
635 Using the algorithm of [20], R12, …, R1m can be constructed in O(mlogm) time,
636 just before the process for the string matching gets started. In addition, we need to
637 keep 2k + 1, rather than k + 1 mismatches in each R1i (i = 2, …, m), since for
638 generating an R1j, up to 2k + 1 mismatches in some R1i with i < j are needed to get
639 an efficient algorithm (see [20] for detailed discussion.)
640 Each time we meet a node u (compared to a certain r[j]), which is the same as an
641 already encountered one v (compared to an r[i]), we need to derive dynamically the
642 relevant mismatches, Rij, between r[i … m – q + i] and r[j … m – q + j] from R1i

643 and R1j, as well as r, to compute mismatch information for some new paths (to
644 avoid exploring them by using search()). (A node <x, [α, β]> is said to be the same
645 as another node <x′, [α′, β′]> if x = x′, α = α′ and β = β′.) For this purpose, we
646 design a general algorithm to create Rij efficiently.

647 • Let ω, ω1 and ω2 be three strings. Let A1 and A2 be two arrays containing all the
648 positions of mismatches between ω and ω1, and ω and ω2, respectively.
649 • Create a new array A such that if A[i] = j (≠ ∞), then ω1[j] ≠ ω1[j], or one of
650 them does not exists. It is the ith mismatch between them.
651

652 The algorithm works in a way similar to the sort-merge-join, but with a sub-
653 stantial difference in handling a case when an entry in A1 is checked against an
654 equal entry in A2. In the algorithm, two index variables p and q are used to scan A1

655 and A2, respectively. The result is stored in A.

Fig. 9 Illustration for merge()
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656 1. p := 1; q := 1; l := 1;
657 2. If A2[q] < A1[p], then {A[l] := A2[q]; q := q + 1; l := l + 1;}
658 3. If A1[p] < A2[q], then {A[l] := A1[p]; p := p + 1; l := l + 1;}
659 4. If A1[p] = A2[q], then {if ω1[p] ≠ ω2[q], then {A[l] := q; l := l + 1;} p := p + 1;
660 q := q + 1;}
661 5. If p > |A1|, q > |A2|, or both A1[p] and A2[q] are ∞, stop (if A1 (or A2) has some
662 remaining elements, which are not ∞, first append them to the rear of A, and
663 then stop.)
664 6. Otherwise, go to (2).
665

666 We denote this process as merge(A1, A2, ω1, ω2). As an example, let us consider
667 the case where A1 = R12 = [1, 2, 3, 4, ∞], A1 = R13 = [1, 3, ∞, ∞, ∞], ω1 = r[2
668 … 4] = cacg and ω1 = r[3 … 5] = acg, and demonstrate the first three steps of the
669 execution of merge(A1, A2, ω1, ω2) in Fig. 9. The result is A = [1, 2, 3, 4], showing
670 the mismatches between these two substrings.
671 In step 1: p = 1, q = 1, l = 1. We compare A1[p] = A1[1] and A2[q] = A2[1].
672 Since A1[1] = A2[1] = 1, we will compare ω1[1] and ω2[1], and find that
673 ω1[1] = c ≠ ω2 [1] = a. Thus, A[1] is set to be 1. p := p + 1 = 2, q := q + 1 = 2,
674 l := l + 1 = 2.
675 In step 2: p = 2, q = 2, l = 2. we compare A1[2] and A2[2]. Since
676 A1[2] = 2 < A2[2] = 3, A[2] is set to be 2. p := p + 1 = 3, q := 2, l := l + 1 = 3.
677 In step 3: p = 3, q = 2, l = 3. We compare A1[3] and A2[2], and find that
678 A1[3] = A2[2] = 3. So, we need to compare ω1[3] and ω2[3]. Since ω1[3] = c ≠ ω2

679 [3] = g, A[3] is set to be 3. p := p + 1 = 4, q := 3, l := l + 1 = 4.
680 In a next step, we have p = 4, q = 3, l = 4. We will compare A1[4] and A2[3].
681 Since A1[4] = 4 < A2[3] = ∞, we set A[4] to 4.
682 Obviously, the running time of this process is bounded by O(k).

683 Proposition 5.1 Let A be the result of merge(A1, A2, ω1, ω2) with A1, A2, ω1, ω2

684 defined as above. Let k′ be the number of mismatches between ω1 and ω2. Then, A
685 [i] must be the position of the ith mismatch between ω1 and ω2, or ∞, depending on
686 whether i is ≤ k′.

687 Proof Consider ω2[j]. Position j may satisfy either, neither, or both of the following
688 conditions:

689 (i) j corresponds to the lth mismatch between ω and ω2 for some l, i.e.,
690 ω[j] ≠ω2[j] and A2[l] = j.
691 (ii) j corresponds to the fth mismatch between ω and ω1 for some f, i.e.,
692 ω[j] ≠ ω1[j] and A1[f] = j.
693

694 If (i) holds, but (ii) not, (2) in merge(A1, A2, ω1, ω2) will be executed. Since in
695 this case, we have ω[j] ≠ ω2[j] and ω[j] = ω1[j], (2) is correct.
696 If (ii) holds, but (i) not, (3) will be executed. Since in this case, we have
697 ω[j] ≠ ω1[j] and ω[j] = ω2[j], (3) is also correct.
698 If both (i) and (ii) hold, no conclusion concerning ω1[j] and ω2[j] can be drawn
699 and we need to compare them. In this case, (4) is executed. If neither (i) nor (ii) is
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700 satisfied, we must have ω[j] = ω2[j] and ω[j] = ω1[j]. So ω2[j] = ω1[j], i.e., we
701 have a matching at j. □

702 5.3 Main Idea: Mismatch Information Derivation

703 Now we are ready to present the main idea of our algorithm, which is similar to the
704 generation of an S-tree described in Subsection A. However, each time we meet a
705 node u (compared to a position in r, say, r[j]), which is the same as a previous one
706 v (compared to a different position in r, say, r[i]), we will not explore T[u] (the
707 subtree rooted at u), but do the following operations to derive the relevant mis-
708 matching information:
709 First, we will create Rij by executing merge(R1i, R1j, r[i … m – q + i], r[j … m –

710 q + j]), where q = max{i, j}. Then, we will created a set of mismatch arrays for all
711 the sub-paths in T[u], which start at u and end at a leaf node, by doing two steps
712 shown below.

713 • For each path Pi going through v, figure out a sub-array of Bl, denoted as Bi
l,

714 containing only those values in Bl, which are larger than or equal to i. Moreover,
715 each value in it will be decreased by i – 1. (For example, for B1 = [1, 4, ∞], we
716 have Bi

l = [1, 4, ∞], B2
l = [3, ∞], B3

l = [2, ∞], B4
l = [1, ∞], and B5

l = [∞].)
717 • Create the mismatch arrays for all the paths going through u by executing merge
718 (Bi

l, Rij, Pl[i … ml], r[j … m]) for each Pl, where ml = |Pi|.
719

720 We denote this process as mi-creation(u, v, j, i).
721 As an example, consider v2 (in Fig. 7, labeled <c, [1, 2]> and compared to r
722 [1] = t), which is the same as v4 (compared to r[2] = c). By executing mi-creation
723 (v2, v4, 1, 2), the following operations will be performed, to avoid repeated access of
724 the corresponding subtree (i.e., part of P3 shown in Fig. 10a):

725 1. Create R21:726

727 R12 = [1, 2, 3, 4, ∞], R11 = [∞, ∞, ∞, ∞, ∞],728

(a) (b) (c)

Fig. 10 Illustration for derivation of mismatch information
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729 R21 = merge(R12, R11, r[2 … 5], r[1 … 4]) = [1, 2, 3, 4].
730 2. Create part of mismatch information for P3:731

732 B1 = [1, 4, ∞], B2
l = [3, ∞]. P1[2 … 5] = caga, r[1 … 4]) = caca.733

734 merge(B2
l , R21, P1[2 … 5], r[1 … 4]) = [1, 2, 3, 4].

735

736 In general, we will distinguish between two cases:

737 (i) i < j. This case can be illustrated in Fig. 10b. In this case, the mismatch
738 information for the new paths can be completely derived.
739 (ii) i > j. This case can be illustrated in Fig. 10c. In this case, only part of mis-
740 match information for the new paths can be derived. Thus, after the execution
741 of merge(), we have to continue to extend the corresponding paths.
742

743 Therefore, among different appearances of a certain node v, we should always
744 use the one compared to r[i] with i being the least to derive as much mismatch
745 information as possible for to be created paths.
746 Finally, we notice that it is not necessary for us to consider the case i = j since
747 the same node will never appear at the same level more than once. The following
748 lemma is easy to prove.

749 Lemma 5.1 In an S-tree T, if two nodes are with the same pair, then they must
750 appear at two different levels. □

751 5.4 Algorithm Description

752 The main idea presented in the previous subsection can be dramatically improved.
753 Instead of keeping a Bl for each Pl, we can maintain a general tree structure, called a
754 mismatch tree, to store the mismatch information for all the created paths. First, we
755 define two simple concepts related to S-trees.

756 Definition 5.2 (match path) A sub-path in an S-tree T is called a match path if each
757 node on it is a matching node in T.

758 Definition 5.3 (maximal match sub-path) A maximal match sub-path (MM-path for
759 short) in an S-tree T is a match sub-path such that the parent of its first node in T is a
760 mismatching node and its last node is a leaf node or has only mismatching nodes as
761 its children.
762 For example, edge v4 → v8 in T shown in Fig. 7 is a MM-path. Path v9 → v13
763 → v17 is another one. The node v16 alone is also a MM-path in T.
764 Based on the above concepts, we define another important concept, the so-called
765 mismatch trees.

766 Definition 5.4 (mismatch trees) A mismatch tree D (M-tree for short) for a given S-
767 tree T, is a tree, in which for each mismatching node <x, [α, β]> (compared to r
768 [i] for some i) in T we have a node of the form <x, i>, and for eachMM-path a node
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769 of the form <−, 0>. There is an edge from u to u′ if one of the following two
770 conditions is satisfied:

771 • u is of the form <x, i> corresponding to a pair <x, [α, β]> (compared to r[i]),
772 which is the parent of the first node of an MM-path (in T) represented by u′; or
773 • u is of the form <−, 0> and u′ corresponds to a mismatching node which is a
774 child of a node on the MM-path represented by u.775

776 Without causing confusion, we will also call <−, 0> in D a matching node,
777 and <x, i> a mismatching node.
778

779 For example, for T shown in Fig. 7, we have its M-tree shown in Fig. 11, in
780 which u0 is a virtual root corresponding to the virtual root of the S-tree shown in
781 Fig. 7. Its value is also set to be <−, 0> since it will be handled as a matching
782 node. Then, each path in the M-tree corresponds to a Bl. For instance, path u0 → u1
783 → u4 → u8 → u12 corresponds to B1 = [1, 4, ∞] if all the matching nodes on the
784 path are ignored. For the same reason, u0 → u1 → u5 → u19 corresponds to
785 B2 = [1, 2, ∞].
786 In addition, we can store all the different nodes v (=<x, [α, β]>) in T in a hash
787 table with each entry associated with a pointer to a node in the corresponding M-
788 tree D, described as follows.

789 • If v is a mismatching node compared to r[i] for some i ∈ {1, …, m}, a node
790 u = <x, i> will be created in D and a pointer (associated with v, denoted as p
791 (v)) to u will be generated.
792 • If v is a matching node, a node u = <−, 0> will be created in D and p(v) to
793 u will be generated. If the parent u′ of u itself is <−, 0>, u will be merged into
794 its parent. That is, v will be linked to u′ while u itself will not be generated.
795

796 For instance, when <a, [1, 4]> (v1 in T shown in Fig. 7) is created, it is com-
797 pared to r[1] = t. Since a ≠ t, we have a mismatch and then u1 = <a, 1> in the M-
798 tree D will be generated. At the same time, we will insert <a, [1, 4]> into the hash
799 table and produce a pointer associated with it to u1 (see Fig. 11 for illustration).

Fig. 11 A mismatch tree
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800 However, when <c, [1, 2]> (v4 in T shown in Fig. 7) is created, it is compared to r
801 [2] = c and we have a matching. For this, a node <−, 0> (u4 in Fig. 7) will be
802 generated, and a link from <c, [1, 2]> to it will be established. But when <a, [2, 3]
803 > (v8 in T shown in Fig. 7, compared to r [5] = a) is met, no node in D will be
804 generated since it is a matching node (in T) and the parent (u4 in Fig. 11) of the
805 node to be created for it is also <−, 0>. We will simply link it to its parent u4.
806 In order to generate D, we will use a stack S to control the process, in which each
807 entry is a quadruple (v, j, κ, u), where
808 v—a node inserted into the hash table.
809 j—j is an integer to indicate that v is the jth node on a path in T (counted from the
810 root with the root as the 0th node).
811 κ—the number of mismatches between the path and r[0 … j] (recall that r
812 [0] = ‘−’).
813 u—the parent of a node in D to be created for v.
814 In this way, the parent/child link between u and the node to be created for v can
815 be easily established, as described below.
816 Each time an entry e = (v, j, κ, u) with v = <x, [α, β]> is popped out from S, we
817 will check whether x = r[j].

818 (i) If x = r[j], we will generate a node u′= <x, j> and link it to u as a child.
819 (ii) If x ≠ r[j], we will check whether u is a node of the form <−, 0>. If it is not
820 the case, generate a node u′ = <−, 0>.821

822 Otherwise, set u′ to be u.
823 (iii) Using search() to find all the children of v: v1, …, vl. Then, push each (vi,
824 j + 1, κ′, u′) into S with κ′ being κ or κ + 1, depending on whether yi= r
825 [j + 1], where vi = <yi, [αi, βi]> .
826

827 Note that in this process it is not necessary to keep T, but insert all the nodes (of
828 T) in the hash table as discussed above.

(a) (b)

(d) (e)

(c)

Fig. 12 Illustration for stack changes
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829 Example 5.1 In this example, we run the above process on r = tcaca and L =
830 BWT s ̄ð Þ shown in Fig. 3c with k = 2, and show its first 5 steps. The tree created is
831 shown in Fig. 12.
832 Step 1: Create the root, v0 = <−, [1, 8]>. Push (v0, 0, 0, ϕ) into S, where ϕ is
833 used to represent the parent of the root D. See Fig. 12a.
834 Step 2: Pop out the top element (v0, 0, 0, ϕ) from S. Create the root u0 of D,
835 which is set to be a child of ϕ. Push <v3, 1, 1, u0>, <v2, 1, 1, u0>, <v1, 1, 1,
836 u0> into S, where v3, v2, and v1 are three children of v0. See Fig. 12b.
837 Step 3: Pop out (v1, 1, 1, u0) from S. v1 = <a, [1. 4]>. Since r[1] = t ≠ a, a
838 mismatching node u1 = <a, 1> will be created and set to be a child of u0. Then,
839 push (v4, 2, 1, u1) into S, where v4 is the child of v1. See Fig. 12c.
840 Step 4: Pop out (v4, 2, 1, u1) from S. v4 = <c, [1, 2]>. Since r[2] = c, we
841 will check whether u1 is a matching node. It is the case. So, a matching node
842 u4 = <−, 0> will be created and set to be a child of u1. Then, push (v8, 3, 1, u4)
843 into S, where v8 is the child of v4. See Fig. 12d.
844 Step 5: Pop out (v8, 3, 1, u4) from S. v8 = <a, [2, 3]>. r[3] = a. However, no
845 new node is created since u4 is a matching node. Push (v12, 4, 1, u4) into S, where
846 v12 is the child of v8. See Fig. 12e. □

847 From the above sample trace, we can see that D can be easily generated. In the
848 following, we will discuss how to extend this process to a general algorithm for our
849 task.
850 As with the basic process, each time a node v = <x, [α, β]> (compared to r[j]) is
851 encountered, which is the same as a previous one v′ = <x′, [α′, β′]> (compared to r
852 [i]), we will not create a subtree in T in a way as for v′, but create a new node u for
853 v in D and then go along p(v′) (the link associated with v′) to find the corresponding
854 nodes u′ in D and search D[u′] in the breadth-first manner to generate a subtree
855 rooted at u in D by simulating the merge operation discussed in Subsection B. In
856 other words, D[u] (to be created) corresponds to the mismatch arrays for all the
857 paths going though v in T, which will not be actually produced. See Fig. 13 for
858 illustration.
859 For this purpose, we introduce a third kind of nodes of the form <−, ∞> into
860 D to represent symbol ∞ in mismatching arrays. Such a node is always the last
861 node of a path in D.
862 To search D[u′] breadth-first, a queue data structure Q is used to control the
863 search of D[u′] and at the same time generate D[u]. In Q, each entry e is a triplet (w,
864 γ, h) with w being a node in D[u′], γ an entry in Rij, and h is the number of

Fig. 13 Illustration for
generation of subtrees in T′
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865 mismatching nodes on the path from the root to the node to be created in D[u].
866 Initially, put (u′, Rij[1], h′) into Q, where h′ is the number of mismatching nodes on
867 the path from the root to u. In the process, when e is dequeued from Q (taken out
868 from the front), we will make the following operations (simulating the steps in
869 merge()):

870 1. Let e = (w, Rij[l], h). Assume that w = <z, f> and Rij[l] = val.

871 • If <z, f>is equal to <−, 0>, then create a copy of <−, 0>added to D[u]. Let
872 u1, …, ug be the children of w. We will enqueue (append at the end) (u1,
873 Rij[l], h), …, (ug, Rij[l], h) into Q in turn.
874 • If is a mismatching node, do (2), (3), or (4).
875 • If <z, f>is equal to <−, ∞ >, do (5).

876 2. If f <i + val − 1, add <z, j + f − i + 1> to D[u]. If h < k + 1, enqueue (u1,
877 Rij[l], h + 1), …, (ug, Rij[l], h +1) into Q.
878 3. If f > i + val – 1 (and f ≠ ∞), we will scan Rij starting from Rij[l] until we meet
879 the largest l′ ≤ k – h + l such that f > i + Rij[l′] – 1. For each
880 Rij[q] (l ≤ q ≤ l′), we create a new node <r[i + Rij[q] – 1], j + Rij[q] –

881 1> added to D[u]. If l′ < k – h + l, add <−, ∞> to D[u], and enqueue <w,
882 Rij[l′ + 1], h + l′ − l +1> into Q.
883 4. If f = i + val − 1, we will distinguish between two subcases: z ≠ r[j + val −
884 1] and z = r[j + val - 1]. If z ≠ r[j + val − 1], we have a mismatch and a copy
885 of w will be generated and added to D[u]. If h < k + 1, enqueue (u1, Rij[l + 1],
886 h + 1), …, (ug, Rij[l + 1], h + 1) into Q. If z = r[j + val − 1], create a
887 node <−, 0> added to D[u]. (If its parent is also <−, 0> , it will be merged into
888 its parent.) Also enqueue <u1, Rij[l + 1], h), …, <ug, Rij[l + 1], h) into Q.
889 5. If w = <−, ∞>, scan Rij starting from Rij[l] until we find the largest l′ ≤ k –

890 h + l such that Rij[l] ≠ ∞. For each Rij[q] (l ≤ q ≤ l′), we create a new
891 node <r[i + Rij[q] − 1], j + Rij[q] − 1> added to D[u]. If l′ < k – h + l, add <
892 −, ∞> to D[u], and enqueue <w, Rij[l′ + 1], h + l′ − l +1> into Q.
893

894 In the above process, (2) corresponds to step 3 inmerge(), (3) to step 4 inmerge(),
895 and (4) to step 5 in merge().
896 In (2), we handle the case when f < i + val – 1. In this case, we must have r
897 [f] = r[j + f − i]. Then, by the following simple inference:
898 P[f] ≠ r[f], r[f] = r[j + f − i] ⇒ P[f] ≠ r[j + f − i],
899 we know that a mismatching node should be added to D[u]. Here, P stands for a
900 path starting from v′ in T corresponding to a path starting from u′ in D, and P[f] for
901 the fth node on P. See Fig. 11a for illustration.
902 In (3), we handle the case that f > i + val – 1. In this case, we have, for each i′
903 ∈ { i + val – 1, …, f} with Rij[q] = i′ (l ≤ q ≤ l′),
904

p i′½ �= r i′
� �

, r i′
� �

≠ r j+ i′ − i
� �

⇒P i′
� �

≠ r j+ i′ − i
� �

.
906906

907 Thus, for each Rij[q] (l ≤ q ≤ l′), a mismatching node will be created and
908 added to D[u].
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909 In the above description, we ignored the technical details on how D[u] is con-
910 structed for simplicity. However, in the presence of D[u′], it is easy to do such a
911 task by manipulating links between nodes and their respetive parents.
912 Denote the above process by node-creation(w, γ, i, j, Rij). We have the following
913 proposition.

914 Proposition 5.2 node-creation(w, γ, i, j, Rij) create nodes in D[u] correctly.

915 Proof The correctness of node-creation(w, γ, i, j, Rij) can be derived from
916 Proposition 1.□
917 Again, if i > j, D[u] needs to be extended, which can be done in a way similar to
918 the extension of mismatch arrays as discussed in Subsection C.
919 As an example, consider Figs. 7 and 11 once again.Whenwemeet <g, [1, 1]> (v5
920 in T, compared to r[2]) for a second time, we will not generate T[v5] in Fig. 3, but
921 D[u5] in Fig. 11. Comparing T and D, we can clearly see the efficiency of this
922 improvement. In D, an MM-path in T is collapsed into a single node of the
923 form <−, 0>.
924 The following is the formal description of the working process.
925

927927
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928 If we ignore lines 3–9 in the above algorithm, it is almost a depth-first search of a
929 tree. Each time an entry (v, j, κ, u) is popped out from S (see line 4), it will be
930 checked whether v is the same as a previous one v′ (compared to r[i]). (See line 4.)
931 If it is not the case, a node u′ for v will be created in D (see lines 11–14). Then, all
932 the children of v will be found by using the procedure search() (see line 17) and
933 pushed into S (see lines 18, and 19.) Otherwise, we will first create Rij by executing
934 merge(R1i, R1j, r[i … m – q + i], r[j … m – q + j]), where q = max{i, j}. (see lines
935 5–6.) Then, we create a subtree in D by executing a series of node-creation oper-
936 ations (see lines 8–9.)
937 Concerning the correctness of the algorithm, we have the following proposition.

938 Proposition 5.3
939 Let L be a BWT-array for the reverse s ̄ of a target string s, and r a pattern.
940 Algorithm A(L, r, k) will generate a mismatching tree D, in which each root-to-leaf
941 path represents an occurrence of r in s having up to k positions different between r
942 and s.

943 Proof In the execution of A(L, r, k), two data structures will be generated: a hash
944 table and a mismatching tree D, in which some subtrees in D are derived by using
945 the mismatching information over r. Replacing each matching node in D with the
946 corresponding maximum matching path and each mismatching node <x, i> with
947 the corresponding pair <x, [α, β]> (compared to r[i]), we will get an S-tree, in
948 which each path corresponds to a search sequence discussed in Section III. Thus, in
949 D each root-to-leaf path represents an occurrence of r in s having up to k positions
950 different between r and s. □

951 The time complexity of the algorithm mainly consists of three parts: the cost for
952 generating the mismatching information over r which is bounded by O(mlogm); the
953 cost for generating the M-tree and maintaining the hash table, which is bounded by
954 O(kn′), where n′ is the number of the M-tree’s leaf nodes; and the cost for checking
955 the characters in s against the characters in r, which is bounded by O(n). So, the
956 total running time is bounded by O(kn′ + n + mlogm).

957 6 Experiments

958 In this section, we report the test results. For all the experiments on both the
959 multiple pattern string matching and the string matching with k matches, we use the
960 same data sets summarized in Table 1.

Table 1 Characteristics of
genomes

Genomes Genome sizes (bp)

Rat (Rnor_6.0) 2,909,701,677
Zebra fish (GRCz10) 1,464,443,456
Rat chr1 (Rnor_6.0) 290,094,217
C. elegans (WBcel235) 103,022,290
C. merlae (ASM9120v1) 16,728,967
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961 To store BWT, s ̄ð Þ we use 2 bits to represent a character ∈ {a, c, g, t} and store 4
962 rankAll values (respectively in Aa, Ac, Ag, and At) for every 4 elements (in L) with
963 each taking 32 bits.
964 All the tested methods are implemented in C++, compiled by GNU make utility
965 with optimization of level 2. In addition, all of our experiments are performed on a
966 64-bit Ubuntu operating system, run on a single core of a 2.40 GHz Intel Xeon
967 E5-2630 processor with 32 GB RAM.

968 6.1 Experiment on Multiple Pattern String Matching

969 In this experiment, we have tested altogether five different methods:

970 • Burrows Wheeler Transformation (BWT for short),
971 • Suffix tree based (Suffix for short),
972 • Hash table based (Hash for short),
973 • Trie-BWT (tBWT for short, discussed in this paper),
974 • Improved Trie-BWT (itBWT for short, discussed in this paper).
975

976 Among them, the codes for the suffix tree based and hash based methods are
977 taken from the gsuffix package [45] while all the other three algorithms are
978 implemented by ourselves.

979 6.1.1 Tests on Synthetic Data Sets

980 All the synthetic data are created by simulating reads from the five genomes shown
981 in Table 1, with varying lengths and amounts. It is done by using the wgsim
982 program included in the SAMtools package [36] with default model for single reads
983 simulation.
984 Over such data, the impact of five factors on the searching time are tested:
985 number n of reads, length l of reads (pattern strings), size s of genomes, compact
986 factors f1 of rankAlls (see Sect. 3.1) and compression factors f2 of suffix arrays [11],
987 which are used to find locations of reads (in a reference genome) in terms of
988 formula (5) (see Sect. 3.2).

989 • Tests with varying amount of reads
990

991 In this experiment, we vary the amount n of reads with n = 5, 10, 15, …, 50
992 millions while the reads are 50 bps or 100 bps in length extracted randomly from
993 Rat chr1 and C. merlae genomes. For this test, the compact factors f1 of rankAlls
994 are set to be 32, 64, 128, 256, and the compression factors f2 of suffix arrays are set
995 to 8, 16, 32, 64, respectively. These two factors are increasingly set up as the
996 amount of reads gets increased.
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997 In Fig. 14a, b, we report the test results of searching the Rat chr1 for matching
998 reads of 50 and 100 bps, respectively. From these two figures, it can be clearly seen
999 that the hash based method has the worst performance while ours works best. For

1000 short reads (of length 50 bps) the suffix-based is better than the BWT, but for long
1001 reads (of length 100 bps) they are comparable. The poor performance of the
1002 hash-based is due to its inefficient brute-force searching of genomes while for both
1003 the BWT and the suffix-based it is due to the huge amount of reads and each time
1004 only one read is checked. In the opposite, for both our methods tBWT and itBWT,
1005 the use of tries enables us to avoid repeated checkings for similar reads.
1006 In these two figures, the time for constructing tries over reads is not included. It
1007 is because in the biological research a trie can be used repeatedly against different
1008 genomes, as well as often updated genomes. However, even with the time for
1009 constructing tries involved, our methods are still superior since the tries can be
1010 established very fast as demonstrated in Table 2, in which we show the times for
1011 constructing tries over different amounts of reads.
1012 The difference between tBWT and itBWT is due to the different number of BWT
1013 array accesses as shown in Table 3. By an access of a BWT array, we will scan a
1014 segment in the array to find the first and last appearance of a certain character from
1015 a read (by tBWT) or a set of characters from more than one read (by itBWT).
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Fig. 14 Test results on varying amount of reads

Table 2 Time for trie construction over reads of length 100 BPS

No. of reads 30M 35M 40M 45M 50M

Time for Trie Con. (s) 51 63 82 95 110
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1016 Figure 15a, b show respectively the results for reads of length 50 bps and 100
1017 bps over the C. merolae genome. Again, our methods outperform the other three
1018 methods.

1019 • Tests with varying length of reads
1020

1021 In this experiment, we test the impact of the read length on performance. For
1022 this, we fix all the other four factors but vary length l of simulated reads with l
1023 = 35, 50, 75, 100, 125,…, 200. The results in Fig. 16a shows the difference among
1024 five methods, in which each tested set has 20 million reads simulated from the Rat
1025 chr1 genome with f1 = 128 and f2 = 16. In Fig. 16b, the results show the case that
1026 each set has 50 million reads. Figure 17a, b show the results of the same data
1027 settings but on C. merlae genome.
1028 Again, in this test, the hash based performs worst while the suffix tree and the
1029 BWT method are comparable. Both our algorithms uniformly outperform the others
1030 when searching on short reads (shorter than 100 bps). It is because shorter reads tend
1031 to have multiple occurrences in genomes, which makes the trie used in tBWT and
1032 itBWT more beneficial. However, for long reads, the suffix tree beats the BWT since
1033 on one hand long reads have fewer repeats in a genome, and on the other hand higher
1034 possibility that variations occurred in long reads may result in earlier termination of a
1035 searching process. In practice, short reads are more often than long reads.

Table 3 No. of BWT array accesses

No. of reads 30M 35M 40M 45M 50M

tBWT 47856K 55531K 63120K 70631K 78062K
itBWT 19105K 22177K 25261K 28227K 31204K

time (s)

amount of reads (million) amount of reads (million)
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Fig. 15 Test results on varying amount of reads
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1036 • Tests with varying sizes of genome
1037

1038 To examine the impacts of varying sizes of genomes, we have made four tests
1039 with each testing a certain set of reads against different genomes shown in Table 1.
1040 To be consistent with foregoing experiments, factors except sizes of genomes
1041 remain the same for each test with f1 = 128 and f2= 16. In Fig. 18a, b, we show the
1042 searching time on each genome for 20 million and 50 million reads of 50 bps,
1043 respectively. Figures 19a, b demonstrate the results of 20 million and 50 million
1044 reads but with each read being of 100 bps.
1045 These figures show that, in general, as the size of a genome increases the time of
1046 read aligning for all the tested algorithms become longer. We also notice that the
1047 larger the size of a genome, the bigger the gaps between our methods and the other
1048 algorithms. The hash-based is always much slower than the others. For the suffix
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Fig. 17 Test results on varying length of reads
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Fig. 16 Test results on varying length of reads
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1049 tree, we only show the matching time for the first three genomes. It is because the
1050 testing computer cannot meet its huge memory requirement for indexing the Zebra
1051 fish and Rat genomes (which is the main reason why people use the BWT, instead
1052 of the suffix tree, in practice.) Details for the 50 bp reads in Figs. 17 and 18 show
1053 that the tBWT and the itBWT are at least 30% faster than the BWT and the suffix
1054 tree, which happened on the C. elegans genome. For the Rat genome, our algo-
1055 rithms are even more than six times faster than the others.
1056 Now let us have a look at Fig. 18a, b. Although our methods do not perform as
1057 good as for the 50 bp reads due to the increment of length of reads, they still gain at
1058 least 22% improvement on speed and nearly 50% acceleration in the best case,
1059 compared with the BWT.
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Fig. 19 Test results on varying sizes of genomes
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Fig. 18 Test results on varying sizes of genomes
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1060 • Tests with varying compact and compression factors
1061

1062 In the experiments, we focus only on the BWT method, since there are no
1063 compressions in both the suffix tree and the hash-based method. The following test
1064 results are all for 20 million reads with 100 bps in length. We first show the impact
1065 of f1 on performance with f2 = 16, 64 in Fig. 20a and b, respectively. Then we
1066 show the effect when f2 is set to 64, 256 in Fig. 21a, b.
1067 From these figures, we can see that the performance of all three methods degrade
1068 as f1 and f2 increase. Another noticeable point is that both the itBWT and the tBWT
1069 are not so sensitive to the high compression rate. Although doubling f1 or f2 will
1070 slow down their speed, they become faster compared to the BWT. For example, in
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Fig. 20 Test results on varying compact and compression factors
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Fig. 21 Test results on varying compact and compression factors
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1071 Fig. 19, the time used by the BWT grows 80% by increasing f1 from 8 to 64,
1072 whereas the growth of time used by the tBWT is only 50%. In addition, the factor f1
1073 has smaller impact on the itBWT than the BWT and the tBWT, since the extra data
1074 structure used in the itBWT effectively reduced the processing time of the trie nodes
1075 by half or more.

1076 6.1.2 Tests on Real Data Sets

1077 For the performance assessment on real data, we obtain RNA-sequence data from
1078 the project conducted in an RNA laboratory at University of Manitoba [46]. This
1079 project includes over 500 million single reads produced by Illumina from a rat
1080 sample. Length of these reads are between 36 bps and 100 bps after trimming using
1081 Trimmomatic [47]. The reads in the project are divided into 9 samples with different
1082 amount ranging between 20 million and 75 million. Two tests have been conducted.
1083 In the first test, we mapped the 9 samples back to rat genome of ENSEMBL release
1084 79 [48]. We were not able to test the suffix tree due to its huge index size. The
1085 hash-based method was ignored as well since its running time was too high in
1086 comparison with the BWT. In order to balance between searching speed and
1087 memory usage of the BWT index, we set f1 = 128, f2 = 16 and repeated the
1088 experiment 20 times. Figure 22a shows the average time consumed for each
1089 algorithm on the 9 samples.
1090 Since the source of RNA-sequence data is the transcripts, the expressed part of
1091 the genome, we did a second test, in which we mapped the 9 samples again directly
1092 to the Rat transcriptome. This is the assembly of all transcripts in the Rat genome.
1093 This time more reads, which failed to be aligned in the first test, are able to be
1094 exactly matched. This result is showed in Fig. 22b.
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Fig. 22 Test results on real data
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1095 From Fig. 22a, b, we can see that the test results for real data set are consistent
1096 with the simulated data. Our algorithms are faster than the BWT on all 9 samples.
1097 Counting the whole data set together, itBWT is more than 40% faster compared
1098 with the BWT. Although the performance would be dropped by taking tries’
1099 construction time into consideration, we are still able to save 35% time using
1100 itBWT.

1101 6.2 Experiment on String Matching with K Mismatches

1102 In this experiment, we have tested altogether four different methods:

1103 • BWT-based [12] (BWT for short),
1104 • Amir’s method [1] (Amir for short),
1105 • Cole’s method [43] (Cole for short),
1106 • Algorithm A discussed in this paper (A() for short)
1107

1108 By the BWT-based method, an S-tree will be created as described in Section IV,
1109 but with σ(i) being used to cut off branches, where σ(i) is the number of consec-
1110 utive, disjoint substrings in r[i … m] not appearing in s. By the Amir’s algorithm, a
1111 pattern r is divided into several periodic stretches separated by 2 k aperiodic sub-
1112 strings, called breaks, as illustrated in Fig. 23. Then, for each break bi, located at a
1113 certain position i, find all those substrings sj (located at different positions j) in
1114 s such that bi = sj, and then mark each of them. After that, discard any position that
1115 is marked less than k times. In a next step, verify every surviving position in s.
1116 By the Cole’s, a suffix tree for a target is constructed. (The code for constructing
1117 suffix trees is taken from the gsuffix package: http:://gsuffix.Sourceforge.net/).
1118 For the test, five reference genomes shown in Table 1 are used. Similar to the
1119 first experiment, all the simulating reads are taken from these five genomes, with
1120 varying lengths and amounts. Concretely, we take 5000 reads with length varying
1121 from 100 to 300 bps.
1122 In Fig. 24a, b, we report the average time of testing the Rat (Rnor_6.0) for
1123 matching 100 reads of length 100 to 300 bps. From this figure, we can see that
1124 Algorithm A() outperforms all the other three methods. But the Amir’s method is
1125 better than the other two methods. The BWT-based and the Cole’s method are
1126 comparable. However, for small k, the Cole’s is a little bit better than the
1127 BWT-based method while for large k their performances are reversed.

brea

a a a a a a b b b b b b c c c c c c c c c d d d d

periodic stretches 

Fig. 23 Illustration for periodic stretches and breaks
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1128 To show why A() has the best running time, we show the number n′ of leaf nodes
1129 in the M-trees created by A() for some tests in Table 4, which demonstrates that n′
1130 can be much smaller than n. Thus, the time complexity O(kn′) of A() should be a

1131 significant improvement over O n
ffiffiffi
k

p
log k

� �
—the time complexity of Amir’s.

1132 In this test (and also in the subsequent tests), the time for constructing BWT s ̄ð Þ is
1133 not included as it is completely independent of r. Once it is created, it can be
1134 repeatedly used.
1135 In Fig. 24b, we show the impact of read lengths. For this test, k is set to 25. It
1136 can be seen that only the BWT-based and the Cole’s are sensitive to the length of
1137 reads. For the BWT-based, more time is required to construct S-trees for longer
1138 reads while for the Cole’s longer paths in a suffix tree will be searched as the
1139 lengths of reads increase. For the other two methods: A() and the Amir’s, the
1140 lengths of reads only impact the time for the read pre-processing, but it is com-
1141 pletely overshadowed by the time spent on searching genomes. For the Amir’s, the
1142 time for recognizing breaks is linear in |r| [2] while for A() the time for generating
1143 the mismatch information is bounded by O(|r|log|r|). No significant difference
1144 between them can be measured.
1145 In Fig. 25a, b, we report the test results of searching the Zebra fish (GRCz10).
1146 Again, similar to Fig. 24a, the performance of Algorithm A() is best, and the
1147 Amir’s is still better than both the BWT-based and the Cole’s.
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Fig. 24 Test results on varying values of k and read length

Table 4 Number of leaf
nodes of S-trees

k/Length-of-read 5/50 10/100 20/150 30/200

No. of leaf nodes 2K 0.7M 16.5M 102M
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Fig. 25 Test results on varying values of k and read length

Table 5 Number of leaf nodes of S-trees

k/Length-of-read 5/50 10/100 20/150 30/200

No. of leaf nodes 0.7K 0.30M 9.2M 89M
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Fig. 26 Test results on varying values of k and read length
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1148 In Table 5, we show the number n′.
1149 Figure 25b shares the same features as Fig. 24b. It also shows that only the
1150 BWT-based and the Cole’s are sensitive to the length of reads.
1151 In Figs. 26, 27, and 28, we show the tests on Rat chr1 (Rnor_6.0), C. elegans
1152 (WBcel235), and C. merlae (ASM9120v1), respectively.
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Fig. 27 Test results on varying values of k and read length
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Fig. 28 Test results on varying values of k and read length
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1153 From these figures, the most important feature we can observe is that as the size
1154 of genomes becomes smaller, the difference between the Amir’s and Cole’s
1155 diminishes. But the BWT-based and A( ) remain the worst and the best, respec-
1156 tively. Although A( ) is impacted by the number of leaf nodes of an S-tree, the
1157 impact factor is small in comparison with the size of the whole S-tree, which
1158 dominates the time complexity of the BWT-based method. Also, the big difference
1159 between A( ) and Amir’s shows that using M-trees the cost for creating mismatch
1160 information of r’s occurrences in s can be significantly reduced.

1161 7 Conclusion and Future Work

1162 In this chapter, two new methods have been discussed. One is to search a large
1163 volume of pattern strings against a single long target string, aiming at efficient
1164 next-generation sequencing in DNA databases. The main idea behind it is to
1165 combine the search of tries constructed over the patterns and the search of the BWT
1166 indexes over the target. Extensive experiments have been conducted, which show
1167 that our method improves the running time of the traditional methods by an order of
1168 magnitude or more.
1169 The second one is to do the string matching with k mismatches. Its main idea is
1170 to transform the reverse s ̄ of target string s to BWT s ̄ð Þ and use the mismatch
1171 information over a pattern string r to speed up the computation. Its time complexity
1172 is bounded by O(kn′ + n + mlogm), where m = |r|, n = |s|, and n′ is the number
1173 of leaf nodes of a tree structure produced during the search of a BWT(s). Our
1174 experiments show that it has a better running time than any existing on-line and
1175 index-based algorithms.
1176 As a future work, we will use the BWT to solve another important problem, the
1177 string matching with k errors. It seems to be more challenging than the k mis-
1178 matches since the Levenshtein distance is more difficult to handle than the Ham-
1179 ming distance.
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