
Information Processing Letters 99 (2006) 19–26

www.elsevier.com/locate/ipl

On the cost of searching signature trees

Yangjun Chen 1

Department of Applied Computer Science, University of Winnipeg, Winnipeg, Manitoba, Canada R3B 2E9

Received 31 August 2005; received in revised form 14 October 2005; accepted 17 October 2005

Available online 11 April 2006

Communicated by L. Boasson

Abstract

A precise analysis of the retrieval of signature trees is presented. A signature tree is a data structure constructed over a signature
file to speed up searching all those signatures, which match a given query signature. The methods used include a detailed study of
probabilistic analysis in conjunction with suitable contour integration of complex variabled functions.
© 2006 Elsevier B.V. All rights reserved.

Keywords: Data structures; Index; Signature files; Signature identifiers; Signature trees; Probabilistic analysis; Contour integration
1. Introduction

The signature file method has been widely advocated
as an efficient index schema to handle large volumes
of textual databases and recently extended to support a
wide range of applications, such as multi-media, hyper-
text systems [11], relational and object-oriented data-
bases [4,13,15,16], as well as data mining [1]. In com-
parison with the other index structures, it has mainly the
following advantages:

• it can be used to efficiently evaluate set-oriented
queries;

• it can handle insertion and update operations easily.

Intuitively, a signature file can be considered as a set
of bit strings, called signatures. A typical query process-

E-mail address: ychen2@uwinnipeg.ca (Y. Chen).
1 The author is supported by NSERC 239074-01 (242523) (Natural

Sciences and Engineering Council of Canada).
0020-0190/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ipl.2005.10.015
ing with the signature file is as follows: when a query is
given, a query signature (a bit string) is formed from
the query values. Then each signature in the signature
file is examined over the query signature. If a signature
in the file matches the query signature, the correspond-
ing data object becomes a candidate that may satisfy
the query. Such an object is called a drop. The next
step of the query processing is the false drop resolu-
tion. Each drop is accessed and examined whether it
actually satisfies the query condition. Drops that fail the
test are called false drops while the qualified data ob-
jects are called actual drops. In general, for each query
processed, the entire signature file needs to be searched
[9,10]. Consequently, the signature file method involves
high processing and I/O cost. This problem is mitigated
by partitioning a signature file, by introducing auxiliary
data structure, as well as by exploiting parallel computer
architectures [7]. Recently, a new data structure, called
a signature tree [5], is proposed to get rid of useless sig-
nature comparisons. However, no precise analysis has
been given to show the benefits brought by it. In this pa-
per, we give a probabilistic analysis of this problem and

20 Y. Chen / Information Processing Letters 99 (2006) 19–26
object: John 12345678 professor

attribute signature:
John 010 000 100 110

12345678 100 010 010 100
professor ∨ 010 100 011 000

object signature (OS) 110 110 111 110

queries: query signatures: matching results:
John 010 000 100 110 match with OS
Paul 011 000 100 100 no match with OS
11223344 110 100 100 000 false drop

Fig. 1. Signature generation and comparison.
show that for a file containing n signatures, only n1−b/k

signatures need to be checked by using the signature tree
built over it, where k and b represent the length of the
query signature and its weight (number of 1s appearing
in the signature), respectively.

The remainder of the paper is organized as follows.
In Section 2, we show what is a signature file and what
is a signature tree. In Section 3, we analyze the average
number of nodes checked during a signature tree search-
ing, Section 4 is a short conclusion.

2. Signature files and signature trees

In this section, we give a brief description of sig-
nature files and signature trees to provide a discussion
background.

2.1. Signature files

Signature files are based on the inexact filter. They
provide a quick test, which discards many of the non-
qualifying elements. But the qualifying elements defi-
nitely pass the test although some elements which ac-
tually do not satisfy the search requirement may also
pass it accidentally, i.e., there may exist “false hits” or
“false drops” [9,10]. In an object-oriented database, for
instance, an object is represented by a set of attribute
values. The signature of an attribute value is a hash-
coded bit string of length k with b bit set to “1”. As an
example, assume that we have an attribute value “pro-
fessor”. Its signature can be constructed as follows. In
terms of [3], the letter triplets in a word (or an attribute
value) are the best choice for information carrying text
segments in the construction of the signature for that
word. So we decompose “professor” into a series of
triplets: “pro”, “rof”, “ofe”, “fes”, “ess”, and “sor”. Us-
ing a hash function hash, we will map a triplet to an in-
teger p indicating that the pth bit in the string will be set
to 1. For example, assume that we have hash(pro) = 2,
hash(rof) = 4, hash(ofe) = 8, and hash(fes) = 9. Then,
we will establish a bit string: 010 100 011 000 for “pro-
fessor” as its word signature (see [8] for a detailed dis-
cussion).
An object signature is formed by superimposing the
signatures for all its attribute values. (By ‘superimpos-
ing’, we mean a bit-wise OR operation.) Object signa-
tures of a class will be stored sequentially in a file, called
a signature file. Fig. 1 depicts the signature generation
and comparison process of an object having three at-
tribute values: “John”, “12345678”, and “professor”.

When a query arrives, the object signatures are
scanned and many nonqualifying objects are discarded.
The rest are either checked (so that the “false drops”
are discarded) or they are returned to the user as they
are. Concretely, a query specifying certain values to be
searched for will be transformed into a query signature
sq in the same way as for attribute values. The query
signature is then compared to every object signature in
the signature file. Three possible outcomes of the com-
parison are exemplified in Fig. 1:

(1) the object matches the query; that is, for every bit
set in sq , the corresponding bit in the object signa-
ture s is also set (i.e., s ∧ sq = sq) and the object
contains really the query word;

(2) the object does not match the query (i.e., s ∧ sq �=
sq); and

(3) the signature comparison indicates a match but the
object in fact does not match the search criteria
(false drop).

In order to eliminate false drops, the object must be ex-
amined after the object signature signifies a successful
match.

In addition, we can see that the signature matching is
a kind of inexact matching. That is, sq matches a signa-
ture s if for any bit set to 1 in sq , the corresponding bit
in s is also set to 1. However, for any bit set to 0 in sq ,
it does not matter whether the corresponding bit in s is
set to 1 or 0.

The purpose of using a signature file is to screen out
most of the nonqualifying objects. A signature failing
to match the query signature guarantees that the corre-
sponding object can be ignored. Therefore, unnecessary
object access is prevented.

Y. Chen / Information Processing Letters 99 (2006) 19–26 21
signature file: OIDs:

1 0 1 0 1 0 0 1 o1
0 1 1 0 0 0 1 1 o2
0 0 1 0 1 1 0 1 o3
1 1 1 0 1 0 0 0 o4
0 0 1 1 1 0 0 1 o5
1 1 1 0 0 0 1 0 o6
0 1 0 1 0 0 1 1 o7
0 1 0 1 0 1 1 0 o8

Fig. 2. Illustration of sequential.

To determine the size of a signature file, we use the
following formula [3]:

k × ln 2 = b × D,

where D is the average size of a block. (In a relational
or an object-oriented database, D can be considered to
be the average number of attributes in a tuple or in an
object.)

In a signature file, a set of signatures is sequentially
stored, which is easy to implement and requires low
storage space and low update cost. However, when a
query is given, a full scan of the signature file is re-
quired. Therefore, it is generally slow in retrieval. Fig. 2
is a quite simple signature file. If more than one objects
share a same signature, that signature will be associated
with the identifiers of all those objects.

2.2. Signature trees

In [5], a new method was proposed to organize sig-
nature files to speed up a signature file scanning. Using
this method, a tree over a signature file S, called a sig-
nature tree, is constructed with the following properties.

(1) Each node v is associated with a number to tell
which bit in sq to check when v is encountered dur-
ing the tree searching.

(2) For each node, its left outgoing edge is labeled with
0 and its right outgoing edge is labeled with 1.

(3) Each path from the root to a leaf represents a sig-
nature identifier that uniquely identifies a signature
in S just as a position identifier used to identify
a substring [2]. A signature identifier is defined
as follows. Let S = s1s2 . . . sn denote a signature
file. Let si[j] represent the j th bit in si . The sig-
nature identifier for an si is a sequence of pairs:
(j1, si[j1])(j2, si[j2]) . . . (jh, si[jh]) (1 � jl � k;
denoted si(j1, . . . , jh)) such that for any l �= i

(1 � l � n) we have si(j1, . . . , jh) �= sl(j1, . . . , jn).

Example 1. In Fig. 3(b), we show a signature tree for
the signature file shown in Fig. 3(a). In this signature
s1. 011 001 000 101
s2. 111 011 001 111
s3. 111 101 010 111
s4. 011 001 101 111
s5. 011 101 110 101
s6. 011 111 110 101
s7. 011 001 111 111
s8. 111 011 111 111

(a) (b)

Fig. 3. A signature tree.

tree, each edge is labeled with 0 or 1 and each leaf node
is a pointer to a signature in the signature file. In ad-
dition, each internal node is associated with a positive
integer (which is used to tell how many bits to skip when
searching). Consider the path going through the nodes
marked 1, 7 and 4. If this path is searched for locating all
those signatures that match the query signature s, three
bits of s: s[1], s[7] and s[4] must be checked during the
searching process. If s[4] = 1, the search will go to the
right child of the node marked “4”. This child node is
marked with 5 and then the 5th bit of s: s[5] will be
checked.

See the path consisting of the dashed edges in
Fig. 3(b), which corresponds to the identifier of s6:
s6(1,7,4,5) = (1,0)(7,1)(4,1)(5,1). Similarly, the
identifier of s3 is s3(1,4) = (1,1)(4,1) (see the path
consisting of the thick edges in Fig. 3(b)).

According to the construction of signature trees, the
searching of a signature tree can be defined as follows.
Let sq be a query signature. The ith position of sq is
denoted as sq [i]. During the traversal of a signature tree,
the inexact matching is defined as follows:

(i) Let v be the node encountered and sq [i] be the po-
sition to be checked.

(ii) If sq [i] = 1, we move to the right child of v.
(iii) If sq [i] = 0, both the right and left child of v will

be visited.

In fact, this definition just corresponds to the signa-
ture matching criterion.

Example 2. Consider the signature file and the signature
tree shown in Fig. 3 once again.

Assume sq = 000 100 100 000. Then, only part of the
signature tree (marked with thick edges in Fig. 4) will be
searched. On reaching a leaf node, the signature pointed
by the leaf node will be checked against sq . Obviously,
this process is much more efficient than a sequential
searching. For this example, only 42 bits are checked

22 Y. Chen / Information Processing Letters 99 (2006) 19–26
Fig. 4. Signature tree search.

(6 bits during the tree search and 36 bits during the sig-
nature checking). But by the scanning of the signature
file, 96 bits will be checked.

In the following, we will give a probabilistic analysis
to estimate the average number of bits to be checked
during a signature tree traversal.

3. Average number of checked bits

Denote by t a signature tree, in which the edges are
labeled with 0, or 1. Let s = s[1]s[2] . . . s[k] be a query
signature, where s[i] ∈ {0,1}. Then, 1 in s matches only
1 in t while 0 in s matches both 0 and 1 in t . We use
cs(t) to represent the cost of searching t against s. In
addition, we use s′, s′′, s′′′, . . . to designate the patterns
obtained by circularly shifting the bits of s to the left by
1,2,3, . . . positions. Obviously, if the first bit of s is 0,
we have, for the expected cost of a random string s,

cs(t) = 1 + cs′(t1) + cs′(t2), (1)

where t1 and t2 represent the two subtrees of the root
of t . See Fig. 5 for illustration.

It is because in this case, the search has to proceed
in parallel along the two subtrees with s changing cycli-
cally to s′.

If, contrariwise, the first bit in s is 1, we find

cs(t) = 1 + cs′(t2) (2)

since in this case the search proceeds only in t2.
Given n (n � 2) random nodes in t , the probability

that

|t1| = p, |t2| = n − p (3)

Fig. 5. Illustration for signature tree searching.
is given by the Bernoulli probabilities(
n

p

)(
1

2

)p(
1

2

)n−p

= 1

2n

(
n

p

)
. (4)

Let cs,n denote the expected cost of searching a tree
of size n against s. We have the following recurrences

if s starts with 0,

cs,n = 1 + 2

2n

∑
p

(
n

p

)
cs′,p, n � 2; (5)

if s starts with 1,

cs,n = 1 + 1

2n

∑
p

(
n

p

)
cs′,p, n � 2. (6)

Let λi = 1 if ith bit in s is 1, and λi = 2 if ith bit in s

is 0. The above recurrence can be rewritten as follows

cs,n = 1 + λ1

2n

∑
p

(
n

p

)
cs′,p − δn,0 − δn,1, (7)

where δn,j (j = 0,1) is equal to 1 if n = j ; otherwise
equal to 0.

Proposition 1. The exponential generating function of
the average cost cs,n

Cs(z) =
∑
n�0

cs,n

zn

n! (8)

satisfies the relation

Cs(z) = λ1ez/2Cs′
(

z

2

)
+ ez − 1 − z. (9)

Proof. In terms of Eq. (6), Cs(z) can be rewritten as
follows

Cs(z) =
∑
n�0

(
1 + λ1

(
1

2

)n ∑
p

(
n

p

)
cs′,p

− δn,0 − δn,1

)
zn

n!
=

∑
n�0

zn

n! +
∑
p

λ1

(
1

2

)n ∑
n�0

(
n

p

)
cs′,p

zn

n!

−
∑
n�0

δn,0
zn

n! −
∑
n�0

δn,1
zn

n!

= ez + λ1

∑
p

(z/2)p

p!
∑
n�p

cs′,p
(z/2)n−p

(n − p)! − 1 − z

= λ1ez/2Cs′
(

z

2

)
+ ez − 1 − z. (10)

In the same way, we will get Cs′(z),Cs′′(z), . . . , and
so on. Concretely, we will have the following equations:

Y. Chen / Information Processing Letters 99 (2006) 19–26 23
Cs(z) = λ1ez/2Cs′
(

z

2

)
+ ez − 1 − z,

Cs′(z) = λ2ez/2Cs′′
(

z

2

)
+ ez − 1 − z,

(11)

. . .

Cs(k−1) (z) = λkez/2Cs

(
z

2

)
+ ez − 1 − z.

These equations can be solved by successive transporta-
tion. For instance, when we transport the expression of
Cs′(z) given by the second equation in (11), we have

Cs(z) = a(z) + λ1ez/2a

(
z

2

)

+ λ1λ2ez/2ez/22
Cs′′

(
z

22

)
, (12)

where a(z) = ez − 1 − z.
In a next step, we transport Cs′′′ into the equation

given in (12). This kind of transformation continues un-
til the relation is only on Cs itself. Then, we have

Cs(z) = λ1λ2 . . . λk exp

[
z

(
1 − 1

2k

)]
Cs

(
z

2k

)

+
k−1∑
j=0

λ1λ2 . . . λj exp

[
z

(
1 − 1

2j

)]

×
(

exp

(
z

2j

)
− 1 − z

2j

)

= 2k−b exp

[
z

(
1 − 1

2k

)]
Cs

(
z

2k

)

+
k−1∑
j=0

λ1λ2 . . . λj exp

[
z

(
1 − 1

2j

)]

×
(

exp

(
z

2j

)
− 1 − z

2j

)
, (13)

where b is the number of 1s in s.
Let

α = 2k−b, β = 1 − 1

2k
, λ = 1

2k
and

A(z) =
k−1∑
j=0

λ1λ2 . . . λj exp

[
z

(
1 − 1

2j

)]

×
(

exp

(
z

2j

)
− 1 − z

2j

)
.

We have

Cs(z) = αeβzCs(λz) + A(z). (14)

This equation can be solved by iteration as discussed
above:
Cs(z) =
∞∑

j=0

αj exp

(
β

1 − λj

1 − λ
z

)
A(λj z)

=
∞∑

j=0

2j (k−b)
k−1∑
h=0

λ1λ2 . . . λh

[
exp(z)

− exp

(
z

(
1 − 1

2h2kj

))(
1 + z

2h2kj

)]
. (15)

Using Taylor formula to expand exp(z) and exp(z(1−
1

2h2kj))(1 + z
2h2kj) in Cs(z) given by the above sum, and

then extract the Taylor coefficients, we get

cs,n =
k−1∑
h=0

λ1λ2 . . . λh

∑
j�0

2j (k−b)Djh(n), (16)

where D00(n) = 1 and for j > 0 and h > 0,

Djh(n) = 1 − (1 − 2−kj−h)n

− x2−kj−h(1 − 2−kj−h)n−1. (17)

To estimate cs,n, we resort to the complex analysis,
which shows that cs,n ∼ n1−b/k . If b

k
= 1

2 , we have

cs,n = O(n0.5). (18)

In Appendix A, we will discuss how to evaluate cs,n

given by (16) by using contour integration of complex
variabled functions in great detail.

4. Conclusion

In this paper, the performance of signature trees is
analyzed. By a probabilistic analysis, together with the
contour integration of complex variabled functions, we
show that the average number of the checked nodes in a
signature tree is bounded by O(n1−b/k), where n is the
number of signatures in the signature file, over which
the signature tree is established, k is the length of a
query signature and b is the number of 1s appearing
in it.

Appendix A

In this appendix, we show how to evaluate cs,n.
First, we define

φ(x) =
k−1∑
h=0

λ1λ2 . . . λh

∑
j�0

2j (k−b)Djh(x) (x � 0).

(A.1)

Then, we perform the following computations to evalu-
ate φ(x):

24 Y. Chen / Information Processing Letters 99 (2006) 19–26
(1) Define the Mellin transformation of φ(x)

[6, p. 453]:

φ∗(σ) =
∞∫

0

φ(x)xσ−1 dx. (A.2)

(2) Derive an expression for φ∗(σ), which reveals some
of its singularities.

(3) Evaluate the reversal Mellin transformation

φ(x) = 1

2iπ

c+i∞∫
c−i∞

φ∗(σ)x−σ dσ,

−1 < c < −
(

1 − b

k

)
. (A.3)

The integral (A.3) is evaluated by using Cauchy’s
theorem as a sum of residues to the right of the ver-
tical line {c + iy | y ∈
}, where
 represents the set
of all real numbers. This computation method was first
proposed in [12]. The following is just an extended ex-
planation of it.

Remember that Djh(x) = 1 − (1 − 2−kj−h)x −
x2−kj−h(1 − 2−kj−h)x−1. We rewrite it under the form

Djh(x) = 1 − e−xαjh − βjhxe−xαjh (A.4)

with ajh = − log(1 − 2−kj−h) and βjh = 2−kj−h(1 −
2−kj−h)−1.

Now we consider the following expansion, which is
valid for small values of x:(− log(1 − x)

)−σ = x−σ

(
1 − xσ

2
+ O

(|σ |2x2)).

(A.5)

Let x = 2−kj−h. Then, we have (by using the above ex-
pansion)

αjh = (− log(1 − 2−kj−h)
)−(−1) ∼ (2kj+h). (A.6)

In addition, for small values 2−kj−h, we also have

βjh = 2−kj−h(1 − 2−kj−h)−1 = O(2−kj). (A.7)

Following the classical properties of Mellin transforma-
tion, we have the following proposition.

Proposition 2. Denote D∗
jh(σ) the Mellin transforma-

tion of Djh(x). We have

D∗
jh(σ) =

∞∫
0

Djh(x)xσ−1 dx

= −(αjh)
−σ 	(σ) − βjh(αjh)

−σ−1σ	(σ)

(A.8)
provided −1 < Re(σ) < 0, where 	(σ) is the Euler
Gamma function.

Proof. The following formulas are well known:

∞∫
0

(e−x − 1)xσ−1 dx = 	(σ), −1 < Re(σ) < 0,

(A.9)
∞∫

0

(xe−x)xσ−1 dx = σ	(σ), −1 < Re(σ), (A.10)

∞∫
0

f (ax)xσ−1 dx = a−σ

∞∫
0

f (x)xσ−1 dx for a > 0.

(A.11)

In terms of these formulas, we have

D∗
jh(σ) =

∞∫
0

Djh(x)xσ−1 dx

=
∞∫

0

(1 − e−xαjh)xσ−1 dx

−
∞∫

0

βjhxe−xαjhxσ−1 dx

= −(αjh)
−σ 	(σ)

− βjh(αjh)
−σ−1σ	(σ). (A.12)

Now we try to evaluate the following two sums:

ωh(σ) =
∑
j�0

2j (k−b)(αjh)
−σ ,

υh(σ) =
∑
j�0

2j (k−b)βjh(αjh)
−σ−1. (A.13)

From (A.6) and (A.7), we can see that the two sums
given by (A.13) are uniformly and absolutely conver-
gent when σ is in the following stripe:

Stripe: − 1 < Re(σ) < −
(

1 − b

k

)
. (A.14)

Furthermore, in terms of (A.6) and (A.7), both ωh(σ)

and υh(σ) can be approximated by the following sum:

ω̂h(σ) =
∑
j�0

2j (k−b)(2kj+h)σ . (A.15)

When Re(σ) < σ0 = −(1 − b
k
), this series can be

summed exactly:

Y. Chen / Information Processing Letters 99 (2006) 19–26 25
ω̂h(σ) = 2hσ 1

1 − 2k−b+kσ
. (A.16)

Thus, φ∗(σ) is defined in Stripe and can be computed
as follows:

φ∗(σ) =
∞∫

0

φ(x)xσ−1 dx

=
∞∫

0

(
k−1∑
h=0

λ1λ2 . . . λh

×
∑
j�0

2j (k−b)Djh(x)

)
xσ−1 dx

= −
k−1∑
h=0

λ1λ2 . . . λh

(
ωh(σ) + συh(σ)

)
	(σ)

= −	(σ)(1 + σ)

×
k−1∑
h=0

λ1λ2 . . . λh2hσ 1

1 − 2k−b+kσ
. (A.17)

From this, we can observe all the singularities (poles),
i.e., σ = 0, at which 	(σ) is not defined; and all those
values of σ , at which (1 − 2k(σ−σ0)) becomes 0:

σj = σ0 + 2ijπ

k log 2
(j = 0,±1,±2, . . .). (A.18)

To compute the integral in (A.3), we consider the fol-
lowing integral

φN(x) = 1

2iπ

∫
LN

φ∗(σ)x−σ dσ, (A.19)

where LN is a rectangular contour oriented clockwise
as shown in Fig. 6.

LN = L1
N + L2

N + L3
N + L4

N,

L1
N =

{
c + iu

∣∣∣∣ |u| � (2N + 1)π

k log 2

}
,

L2
N =

{
ν + i

(2N + 1)π

k log 2

∣∣∣∣ c � ν � b

3k

}
,

Fig. 6. The rectangular contour LN .
L3
N =

{
b

3k
+ iu

∣∣∣∣ |u| � (2N + 1)π

k log 2

}
,

L4
N =

{
ν − i

(2N + 1)π

k log 2

∣∣∣∣ c � ν � b

3k

}
, (A.20)

where N is an integer. This contour is of a similar type
used in [14, p. 132].

Let φi
N be the integral along Li

N (i = 1,2,3,4).
Then, φN(x) = φ1

N(x) + φ2
N(x) + φ3

N(x) + φ4
N(x). Fur-

thermore, we have the following results:

lim
N→∞φ1

N(x) = φ(x),

lim
N→∞φ2

N(x) = O(1),

∣∣φ3
N(x)

∣∣ � x−b/(3k)

∫
L∞

∣∣φ∗(σ)
∣∣dσ = O(x−b/(3k)),

and

lim
N→∞φ4

N(x) = O(1).

Thus, we have

lim
N→∞φN(x) = φ(x) + O(x−b/(3k)). (A.21)

On the other hand, limN→∞ φN(x) can be evaluated as
the sum of the residues of the integrand, i.e., φ∗(σ)x−σ ,
inside LN . Concretely, we have

lim
N→∞φN(x) = −

∑
α∈Pole(φ∗(σ))

(
φ∗(σ)x−σ , σ = α

)

= −
∑

α∈Pole(φ∗(σ))

lim
σ→α

(σ − α)φ∗(σ)x−σ .

(A.22)

Within L∞, φ∗(σ) has the following poles:

α = 0, and

α = σj = σ0 + 2ijπ

k log 2
(j = 0,±1,±2, . . .).

The contribution of the pole α = 0 is O(1); and the con-
tribution of α = σ0 is

lim
σ→σ0

(σ − σ0)φ
∗(σ)x−σ

= x−σ0
(1 + σ0)	(σ0)

k log 2

k−1∑
h=0

λ1λ2 . . . λh2hσ0 . (A.23)

Finally, the contribution of each σj (j = ±1,±2, . . .) is

lim
σ→σj

(σ − σj)φ
∗(σ)x−σ

= x−σ0 exp

(
−2ijπ

k
log2 x

)
(1 + σj)	(σj)

×
k−1∑

λ1λ2 . . . λh2hσj . (A.24)

h=0

26 Y. Chen / Information Processing Letters 99 (2006) 19–26
So we have

lim
N→∞φN(x) = x−σ0

(1 + σ0)	(σ0)

k log 2

k−1∑
h=0

λ1λ2 . . . λh2hσ0

+
−1∑

j=−∞
x−σ0 exp

(
−2ijπ

k
log2 x

)

× (1 + σj)	(σj)

k−1∑
h=0

λ1λ2 . . . λh

+
+∞∑
j=1

x−σ0 exp

(
−2ijπ

k
log2 x

)

× (1 + σj)	(σj)

k−1∑
h=0

λ1λ2 . . . λh

= x−σ0
(1 + σ0)	(σ0)

k log 2

k−1∑
h=0

λ1λ2 . . . λh2hσ0 .

(A.25)

From this, we know that

Cs,n = O(n−σ0) = O(n1−b/k). (A.26)

References

[1] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G. Moerkotte,
J. Simeon, Querying documents in object databases, Internat. J.
Digital Libraries 1 (1) (Jan. 1997) 5–19.

[2] A.V. Aho, J.E. Hopcroft, J.D. Ullman, The Design and Analy-
sis of Computer Algorithms, Addison-Wesley Publishing Com.,
London, 1974.
[3] S. Christodoulakis, C. Faloutsos, Design consideration for a mes-
sage file server, IEEE Trans. Software Eng. 10 (2) (1984) 201–
210.

[4] W.W. Chang, H.J. Schek, A signature access method for the
STARBURST database system, in: Proc. 19th VLDB Conf.,
1989, pp. 145–153.

[5] Y. Chen, Signature files and signature trees, Inform. Process.
Lett. 82 (4) (March 2002) 213–221.

[6] R.V. Churchill, Operational Mathematics, McGraw-Hill Book
Company, New York, 1958.

[7] P. Ciaccia, P. Zezula, Declustering of key-based partitioned sig-
nature files, ACM Trans. Database Systems 21 (3) (1996) 295–
338.

[8] D. Dervos, Y. Manolopoulos, P. Linardis, Comparison of signa-
ture file models with superimposed coding, J. Inform. Process.
Lett. 65 (1998) 101–106.

[9] C. Faloutsos, Access methods for text, ACM Comput.
Surv. 17 (1) (1985) 49–74.

[10] C. Faloutsos, Signature files, in: W.B. Frakes, R. Baeza-Yates
(Eds.), Information Retrieval: Data Structures & Algorithms,
Prentice-Hall, New Jersey, 1992, pp. 44–65.

[11] C. Faloutsos, R. Lee, C. Plaisant, B. Shneiderman, Incorporating
string search in hypertext system: User interface and signature
file design issues, HyperMedia 2 (3) (1990) 183–200.

[12] P. Flajolet, C. Puech, Partial Match retrieval of multidimensional
data, J. ACM 33 (2) (April 1986) 371–407.

[13] Y. Ishikawa, H. Kitagawa, N. Ohbo, Evaluation of signature files
as set access facilities in OODBs, in: Proc. of ACM SIGMOD
Int. Conf. on Management of Data, Washington D.C., May 1993,
pp. 247–256.

[14] D.E. Knuth, The Art of Computer Programming: Sorting and
Searching, Addison-Wesley Publ., London, 1973.

[15] W. Lee, D.L. Lee, Signature file methods for indexing object-
oriented database systems, in: Proc. ICIC’92—2nd Int. Conf.
on Data and Knowledge Engineering: Theory and Application,
Hongkong, Dec. 1992, pp. 616–622.

[16] H.S. Yong, S. Lee, H.J. Kim, Applying signatures for forward
traversal query processing in object-oriented databases, in: Proc.
of 10th Internat. Conf. on Data Engineering, Houston, TX, Feb.
1994, pp. 518–525.

