
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO.X, XXXX 2018 1

Introducing Cuts into a Top-down Process for
Checking Tree Inclusion

Yangjun Chen and Yibin Chen

Abstract—By the ordered tree inclusion we will check whether a pattern tree P can be included in a target tree T, where the order

of siblings in both P and T matters. This problem has many applications in practice, such as retrieval of documents, data mining,

and RNA structure matching. In this paper, we propose an efficient algorithm for this problem. Its time complexity is bounded by

O(|T| min{hP, |leaves(P)|}), with O(|T| + |P|) space being used, where hP (hT) represents the height of P (resp. T) and

leaves(P) stands for the set of the leaves of P. Up to now the best algorithm for this problem needs (|T||leaves(P)|) time and

O(|P| + |T|) space. Extensive experiments have been done, which show that the new algorithm can perform much better than the

existing ones in practice.

Index Terms—Tree matching, tree inclusion, ordered trees, cuts, cut propagation

—————————— ◆ ——————————

1 INTRODUCTION

he ordered tree inclusion is important in applications
such as document retrieval, data mining, and RNA

structure matching, by which we will check whether a pat-
tern tree P can be included in a target tree T, where the or-
der of siblings in both P and T counts.

Let T be a rooted tree. We say that T is ordered and labeled
if each node is assigned a symbol from an alphabet  and
a left-to-right order among siblings in T is specified. Let v
be a node different of the root in T with parent node u. De-
note by delete(T, v) the tree obtained by removing the node
v from T, by which the children of v become part of the
children of u as illustrated in Fig. 1.

Given two ordered labeled trees P and T, called the pat-

tern and the target, respectively. We may ask: Can we ob-
tain pattern P by deleting some nodes from target T? That
is, is there a sequence v1, ...,vk of nodes such that for

 T0 = T and
 Ti+1 = delete(Ti, vi+1) for i = 0, ..., k - 1,

we have Tk = P? If this is the case, T is said to include P.
Such a problem is called the tree inclusion problem [11].

This problem has been recognized as an important
query primitive for XML data [14], where a structured doc-
ument database is considered as a collection of parse trees
that represent the structure of the stored texts and tree in-
clusion is used as a means of retrieving information from
them.

As an example, consider the tree shown in Fig. 2, repre-
senting an XML document for the book Arts of Program-
ming authored by D. Knuth. One might want to find this
book in an XML database by forming a pattern tree as
shown in Fig. 3 as a query, which can be obtained by
deleting some nodes from the tree shown in Fig. 2. Thus, a
tree inclusion checking needs to be conducted to evaluate
this query.

Another application of this problem is to query the
grammatical structures of English sentences, which can
also be represented as an ordered tree since a sentence can
always be divided into several ordered components such
as noun phrases, verb phrases, and adverbs; and a noun
phrase itself normally contains an article and a noun while

xxxx-xxxx/0x/$xx.00 © 2018 IEEE Published by the IEEE Computer Society

T

————————————————

• Y. Chen is with the Dept. Applied Computer Science, Uni. of Winnipeg,
Canada. E-mail: y.chen@uwinnipeg.ca.

• Y. B. Chen is with Intel Corp. E-mail: chenyibin@gmail.com.

The paper is a modification and extension of two conference papers: Y. Chen and
Y. B. Chen, Tree Inclusion Checking Revisited, 5th Int.Conf. DATA2013, July
24 – 26, 2015, Lisbon, Portugal, pp. 301 – 308; Chen and Y. B. Chen, On the Tree
Inclusion Problem,Int. Conf. ICCNCE2013, May 23-24, Beijing, China, pp. 131
– 135.

v deleting v

u u

Figure 1. Illustration of node deletion

Figure 2. A XML document (target) tree

book

T A P Y Pre C-1

N

FN

T: title

A: author
P: publisher
Y: year
Pre: preface

 FN: first name

M: Mid-initial

LN: last name

C-1: Chapter 1

Arts of Pro-
gramming

LN M

Addison-
Wesley

1969

Donald Pra: Pra: paragraph

Pra

E Knuth

… …

… …

book

A P Y

LN Addison-
Wesley

1969

Knuth

Figure 3. A pattern tree

Legend:

2 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO.X, XXXX 2018

a verb phrase may contain a verb, a noun phrase, an ad-
verb, and so on. To check whether a concrete sentence is
grammatically correct, we will represent it as a pattern tree
and make a tree inclusion checking against some target
grammatical tree structures.

A third application of the ordered tree inclusion is the
video content-based retrieval. According to [16], a video
can be successfully decomposed into a hierarchical tree
structure, in which each node represents a scene, a group,
a shot, a frame, a feature, and so on. Especially, such a tree
is an ordered one since the temporal order is very im-
portant for video.

Some other areas, in which the ordered tree inclusion
finds its applications, are computational biology, such as
RNA structure matching [13], and data mining, such as tree
mining discussed in [17], just to name a few.

Up to now, the best algorithm for this problem requires
O(|T| + |P|) space and (|T||leaves(P)|) time [2], where
leaves(P) stands for the set of the leaves of P.

In this paper, we propose an efficient algorithm for this
problem. Its time and space complexities are bounded by
O(|T|min{hP, |leaves(P)|}), and O(|T| + |P|), respec-
tively, where hP (hT) is the height of P (resp. T), defined to
be the number of edges on the longest downward path
from the root to a leaf node.

The rest of the paper is organized as follows. In Section
2, we review the related work. In Section 3, we give some
basic definitions and describe what is a tree inclusion. In
Section 4, we discuss the main idea of our method. Section
5 and 6 are devoted to the algorithm description. First, in
Section 5, a basic algorithm is presented, and then how it
can be improved is discussed in Section 6. In Section 7, we
analyze the computational complexities. In Section 8, we
report the test results. Finally, a short conclusion is set forth
in Section 9.

2 RELATED WORK
The ordered tree inclusion was initially introduced by
Knuth [12], where only a sufficient condition for this prob-
lem is given. Its first polynomial time algorithm was pro-
posed by Kilpeläinen and Mannila [11] with O(|T||P|)
time and space being used. This computational complexity
has be slightly improved by several researchers, but none
of them is able to break through the quadratic time bottle-
neck.

In [15], Richter gave an algorithm using O(|a(P)||T|
+ m(P, T)hT) time, where a(P) is the alphabet of the labels
of P, m(P, T) is the number of matches, defined as all the
pairs (v, w)  P  T such that label(v) = label(w), and hT
(resp. hP) is the height of T (resp. P). Hence, if the number
of matches is small, the time complexity of this algorithm
is better than O(|T||P|). The space complexity of the al-
gorithm is O(|a(P)||T| + m(P, T)). In [3], Chen proposed
a more sophisticated algorithm which requires
O(|T||leaves(P)|) time and O(|leaves(P)| min{hT,
|leaves(T)|} + |T| + |P|) space, where leaves(T) (resp.
leaves(P)) stands for the set of the leaves of T (resp. P). The
method discussed in [1] is an efficient average case algo-
rithm. Its average time complexity is O(|T| + C(P, T)|P|),
where C(P, T) represents the number of T’s nodes that have

been examined during the inclusion search. However, its
worst time complexity is still O(|T||P|). Recently, Bille
and Gørtz presented a space-economical algorithm [2]. Its
space overhead is O(|T| + |P|), but with its time com-
plexity bounded by

In [4], a first top-down algorithm was proposed. Its space
requirement is bounded by O(|T| + |P|). However, its
time complexity is not polynomial, as shown in [9]. This
algorithm is improved by [6, 8]. The algorithm discussed
in [6] needs O(|T||P|) time while the algorithm in [8] re-
quires O(|T|dhp) time, where d is the largest outdegree of
a node in P. However, in both [6] and [8], no time analysis
is delivered. The algorithm given in [7] fails to produce cor-
rect answers in some cases.

In this paper, we revisit this issue and present a new
top-down algorithm to remove any redundancy of [4] by
introducing cuts into a top-down working process to get
rid of any useless computation. Its space overhead is
bounded by O(|T| + |P|), and its time complexity is re-
duced to O(|T|min{hP, |leaves(P)|}).

The tree inclusion problem on unordered trees is NP-
complete (see [11]) and not discussed in this paper.

3 BASIC DEFINITION
In this section, we mainly define the notations that will be
used throughout the paper. Let T be a labeled tree that is
ordered, i.e., the order between siblings is significant. We
denote the set of nodes and edges by V(T) and E(T), respec-
tively. By the size of T we mean the number of nodes in T,
denoted as |T|.

Technically, it is convenient to consider a slight gener-
alization of trees, namely forests, which are defined to be a
set of disjoint trees. A tree T consisting of a specially desig-
nated node root(T) = t (called the root of the tree) and a for-
est <T1, ..., Tk> is denoted as <t; T1, ..., Tk>, where k  0 and
the root of each Tj (1  j  k) is a child of t. We also call Tj (1
 j  k) a direct subtree of t.

Let u, v be two nodes in T. If there is path from node u
to node v, we say, u is an ancestor of v and v is a descendant
of u. In this paper, by ancestor (descendant), we mean a
proper ancestor (descendant), i.e., u  v. We will use u ↝ v
to represent that u is a proper ancestor of v.

The ancestorship in a tree can be checked very effi-
ciently by using a kind of tree encoding [10], which labels
each node v in a tree with an interval Iv = [av, bv], where bv

denotes the rank of v in a post-order traversal of the tree.
Here the ranks are assumed to begin with 1, and all the
children of a node are assumed to be ordered and fixed
during the traversal. Furthermore, av denotes the lowest
rank for any node u in T[v] (the subtree rooted at v, includ-
ing v). Thus, for any node u in T[v], we have Iu  Iv since
the post-order traversal visits a node after all its children
have been visited. In Fig. 4, we illustrate such a tree encod-
ing, assuming that the children are ordered from left to
right. It is easy to see that by interval containment we can

min

O(|T||leaves(P)|)

O(|leaves(T)||leaves(P)|loglog|T| + |T|)

O(|T||P|/(log|T|) + |T|log|T|)

CHEN AND YIBIN CHEN.: INTRODUCING CUTS INTO A TOP-DOWN PROCESS FOR CHECKING TREE INCLUSION 3

check whether two nodes are on a same path. For example,
v3 ↝ v10, since = [1, 5], = [3, 3], and [3, 3]  [1, 5]; but
v9 is not reachable from v2 since = [10, 13], = [1, 2],
and [1, 2]  [10, 13].

Let I = [l, r] be an interval. We will refer to l and r in I as
I.l and I.r, respectively. The following lemma is from [10].

Lemma 1 For any two intervals I and I generated for two
nodes in a tree T, one of four relations holds: I  I, I  I,
I.r < I.l, or I.r < I.l. 

Based on Lemma 1, the left-to-right ordering of nodes
can also formally be defined. A node u is said to be to the
left of v if they are not related by the ancestor-descendant
relationship and v follows u when we traverse T in preor-
der. Then, u is to the left of v if and only if Iu.r < Iv.l.

In the following, we use ≺ to represent the left-to-right
ordering. Also, v ≺ v iff v ≺ v or v = v.

The following definition is due to Kilpeläinen and Man-
nila [11].

Definition 1 Let F and G be labeled ordered forests. We
define an ordered embedding (, G, F) as an injective func-
tion : V(G) → V(F) such that for all nodes v, u  V(G),
i) label(v) = label((v)); (label preservation condition)
ii) v ↝ u iff (v) ↝ (u), i.e., Iu  Iv iff I(u)  I(v); (ancestor

condition)
iii) v ≺ u iff (v) ≺ (u), i.e., Iv.r < Iu.l iff I(v).r < I(u).l. (sibling

condition) 

If there exists such an injective function from V(G) to
V(F), we say, F includes G, F contains G, F covers G, or say,
G can be embedded in F.

Fig. 5 shows an example of an ordered tree inclusion.

Let P and T be two labeled ordered trees. An embedding
 of P in T is said to be root-preserving if (root(P)) = root(T).
If there is a root-preserving embedding of P in T, we say
that the root of T is an occurrence of P.

Fig. 5(b) also shows an example of a root preserving em-
bedding. According to Kilpeläinen and Mannila [11], re-
stricting to root-preserving embedding does not lose gen-
erality. In fact, the method to be discussed works top-down
and always tries to find root-preserving subtree embed-
dings.

Throughout the rest of the paper, the outdegree of v (the
number of v’s chldren) in a tree is denoted by d(v) while
the height of v is denoted by h(v). The height of a leaf node
is set to be 0. In addition, we refer to the labeled ordered
trees simply as trees.

In the Appendix I, we show all the notations and sym-
bols used in the paper for reference.

4 MAIN IDEA - CUTS
The main idea of our algorithm consists in a mechanism
called cut checking introduced into a top-down tree search
to get rid of useless computation.

Let T = <t; T1, ..., Tk> (k  0) be a tree and G = <P1, ..., Pq>
(q  0) be a forest (as illustrated in Fig. 6).

We handle G as a tree P = <G; P1, ..., Pq>, where G rep-

resents a virtual node, matching any node in T. Note that
even when G contains only one single tree it is still consid-
ered to be a forest. So, a virtual root is added. Therefore,
each node in G, except the virtual node, has a parent.

Consider a node v in G with children v1, ..., vk. We use a
pair <[i, j], v>, called an interval rooted at v, to represent an
ordered forest <G[vi], ..., G[vj]> made up of a series of sub-
trees rooted at vi, ..., vj, respectively.

Definition 2 Consider an interval of the form <[1, i], v>,
representing an ordered forest containing the first i sub-
trees of v: <G[v1], ..., G[vi]>. For simplicity, it is also denoted
as <i, v>. If v is G, or a node on the left-most path in P1, <i,
v> is called a left-corner of G [5]. 

The motivation to introduce such a concept is that our
algorithms are designed to find left-corners. Especially, <i,
G> is a left-corner, representing the first i subtrees in G:
P1, ..., Pi. So, <q, G> stands for the whole G.

In addition, we will use  vi, to represent the forest
<G[vi+1], ..., G[vk]>, referred to as the complement of <i, v>.
When it is clear from the context, we may use <G[vi], ...,
G[vj]> and <[i, j], v> interchangeably without causing any
confusion.

Let u be a node on the left-most path in P1. Let <i, v> be
a left-corner of G. If v = u, we say that <i, v> and u are level-
equal, denoted as <i, v> u. If v is an ancestor of u, we say,
<i, v> is higher than u, denoted as <i, v> ↝ u. Then, <i, v>
↝ u represents that <i, v> is higher than or level-equal to u.

In particular, we will use A(T, G) = <i, v> to represent a
checking of G against T, returning a highest and widest left-
corner <i, v> in G with the following properties:

3vI
10vI

2vI
9vI



v10

Figure 4. Illustratin for tree encoding

c f

f a

a

d

d

m

p [1, 1]

[1, 2] [3, 3]

[1, 4]

[1, 5]

[6, 7]

[6, 8]

[1, 9]

[10, 12]

[10, 13]

v0

v1 v2

v3 v4 v5

v6 v7

v9

v13

b v11 p [10, 10]

[10, 11] v8

v12 [6, 6]



m

b

(a)

(b)

Figure 5: (a) The tree on the left can be included in the tree on
the right by deleting the nodes labeled: f and e; (b) the embed-
ding corresponding to (a).

a

b d

a

f e b

c c d

a

b
d

a

f e
b

c c d

Figure 6. A tree and a forest

p1 P2

t0

t1 t3
t2

t21 t2j t22

T: G:

t11 t12 t1i

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO.X, XXXX 2018

• If i > 0 and v is not the left-most leaf node, it shows that
- the first i subtrees of v can be embedded in T;
- for any i′ larger than i, <i′, v> cannot be embedded

in T; and
- for any v’s ancestor u on the left-most path in G,

there exists no j > 0 such that <j, u> is able to be em-
bedded in T.

• If i = 0 or v is the left-most leaf node of G (denoted as

(G)), it indicates that no left-corner of G can be em-
bedded in T.

Now we consider a tree T and a forest G shown in Fig.
6, in which each node in T is identified with ti…j such that
ti…jk is the kth child of ti…j. For example, t01 (simplified as t1)
is the first child of t0, t12 is the second child of t1, and so on;
and each node in G is identified with pl…k. Besides, each
subtree rooted at ti…j (pl…k) is represented by Ti...j (resp. Pl…k).

In Fig. 6, in order to check whether T includes G = <P1,
P2>, we can first check whether T1 alone includes G. That
is, we will perform a recursive call as follows:

 A(T, <P1, P2>) → A(T1, <P1, P2>).

Assume that A(T1, <P1, P2>) returns <i, v>. We may have
one of three cases:
Case 1: <i, v> = <2, G>. In this case, T1 contains G.
Case 2: <i, v> = <1, G>. In this case, T1 contains only P1, and

we will call A(T2, <P2>) in a next step.
Case 3: v  G, but a node on the left-most path in P1. That

is, T1 contains only a left-corner not higher than p1.
This case is complicated and needs to be handled
carefully, as described below.

In Case 3, we continue to check whether T2 alone is able
to include G (by calling A(T2, <P1, P2>). This time, however,
we will use v (in <i, v>, the return value of A(T1, <P1, P2>))
to control the working process to cut off part of the com-
putation once we find that a left-corner higher than v can-
not be produced. It is because such a computation will not
make any contribution to the final result due to the follow-
ing observation.

Assume that A(T2, <P1, P2>) returns <i′, v′> with v = v or
v ↝ v′. Then, in a next step, we will check T3 against <P1,
P2> by calling A(T3, <P1, P2>).

If its return left-corner is higher than v, then we will use
this left-corner as the return value <i′′, v′′> of A(T, <P1, P2>).
Then, <i′, v′> is not used, as illustared in Fig. 7(a).

If <i′′, v′′> is not higher than v, we will make a supple-

ment checking of <T2, T3> against  vi, (the complement of
<i, v>) to see whether <T2, T3> is able to embed some sub-
trees in  vi, . Assume that <T2, T3> embeds the first j sub-
trees in  vi, . Then, the return value of A(T, <P1, P2>)
should be <i + j, v>. It is because in this case we have T1

cover <i, v> = <G(v1), …, G(vi)> and <T2, T3> cover
<G(vi+1), …, G(vi+j)> in  vi, . So, <T1, T2, T3> together covers
<G(v1), …, G(vi), G(vi+1), …, G(vi+j)>. Again, <i′, v′> is not
used, but without impacting the correctness according to
the following analysis:

If v ↝ v′, or v = v but i′ ≤ i, <i′, v′> is obviously useless

for the final result. However, even if v = v with i′ > i, it

is still useless since in this case, there is definitely an in-

teger j  i′ - i such that <T2, T3> embeds the first j sub-

trees in  vi, , and the supplement computation will

find this embedding.

The reasoning here is quite simple. If T2 alone is able to
cover <i′, v′> with v′ = v and i′ > i, <T2, T3> can definitely
cover a left corner not narrower than <i′, v′>, and then is
able to cover <[i + 1, i], v′> or possibly a wider interval
starting from i + 1. We use a supplement checking to do
this while cut off the computation for <i′, v′> to avoid re-
dundancy.

See Fig. 7(b) for illustration.

The above discussion shows that if A(T2, <P1, P2>) cannot
return a left-corner higher than v, the corresponding work
is futile and should be avoided. However, avoiding the
whole work seems not possible. Yet we can really effec-
tively block a significant part of the useless computation
by using the partial results (represented as a left corner)
obtained in the previous steps.

The following example helps for illustration on how to

cut off futile work.

Example 1 Consider the tree T and the forests G shown in

Fig. 8.

In order to check whether T includes G, we will first
check T1 against G = <P1, P2>. Obviously, T1 is not able to
embed G. However, it can embed P11 and therefore the re-
turn value of this checking should be <1, p1>. In a next step,
we will check T2 against G, and try to see if T2 alone is able
to embed G. But this time, p1 will be utilized to control the
process. More specifically, it will effectively block the
checking of T2 against P11 since this checking can only pos-
sibly return a left-corner not higher than p1. 

We refer to a node like p1 in Example 1 as a cut.

Definition 3 A cut for a call A(T, <P1, …, Pq>) (q ≥ 1) is a
node v on the left-most in P1, indicating that only a left cor-
ner higher than v will be returned by A(T, G, v) if it is em-
beddable in T. Otherwise, A(T, <P1, …, Pq>) returns <0,
(G)>. 

In the following, we will first, for ease of understanding,
give an algorithm for checking tree inclusion without cuts
in Section 5. Then, in Section 6, a complete algorithm with

If <i, v> is at the
same level as <i,

v> with i > i,
<T2, T3> can defi-
nitely cover a left
corner not nar-

rower than <i,

v>. So, <i, v>
will not be used.

<i, v>

<i, v>

<i, v>

Figure 7. Illustration for cutting computation

p1

<i, v>

If <i, v> is higher

than v, <i, v> will

not be used.

p1

(a) (b)

i i

t
31
 t12

t11

p1

p

t12

t121

p13

p
p12

p

t3
t2 t1

b a
a

c e d f

T:

Figure 8. A target treeand a pattern forest

G:

a
a

b

h

f

t

p11

p

T121

p111

p

p112

p

p2

p

e

d d

a
a

a
a

c
t12

a

p21

pb

a

p
121

t
122

a

 b

CHEN AND YIBIN CHEN.: INTRODUCING CUTS INTO A TOP-DOWN PROCESS FOR CHECKING TREE INCLUSION 5

cuts (more specifically, with cut propagation and cut check-
ing) will be presented.

5 BASIC ALGORITHM
In this section, we present our basic algorithm A(T, G) to
check a tree T (= <t; T1, …, Tk>) against a forest G (= <P1, ...,
Pq>). The algorithm works in a multiple recursive way in
the sense that different kinds of recursive calls will be car-
ried out in terms of different characteristics of inputs. In
general, two cases need to be recognized:

In Case 1, we have G = <P1>; or G = <P1, ..., Pq> with q > 1,
but |T|  |P1| + |P2|. In this case, what we can do is to
check T against P1 since it is not possible for T to embed
more than one subtree in G.

In Case 2, we have G = <P1, ..., Pq> with q > , and |T| >
|P1| + |P2|. In this case, we will check <T1, ..., Tk> against
the whole G since in this case we may have a sequence of
subtrees , …, with each being able to embed some
subtrees in G.

It seems that Case 1 is a base case while Case 2 is a gen-
eral one and needs to be reduced to Case 1 for handling.
Due to the hierarchical structure of trees, however, when
handling Case 1, we may meet Case 2 again. That is, these
two cases can be interleaved in some way. For this reason,
we define two subfunctions: -function and -function,
used to handle Case 1 and Case 2, respectively:

 (T, P1) = <i, v>, (1)

where <i, v> is a highest and widest left-corner in P1, which
can be embedded in T.

 (<T1, ..., Tk>, G) = <j, u>, (2)

where <j, u> is a highest and widest left-corner in G, which
can be embedded in <T1, ..., Tk>.

Here, our intention is quite straightforward:

In Case 1 we will call (T, P1) and in Case 2 we will call
(<T1, ..., Tk>, G). However, during the working process,
they may call each other recursively.

Additionally, in Case 2, the return value <j, u> of
(<T1, ..., Tk>, G) needs to be further checked as follows:

- If label(t) = label(u) and j = d(u), the return value of A(T,
G) should be set to <1, u’s parent>, showing that T in-
cludes G[u]. Otherwise, the return value of A(T, G) is the
same as <j, u>. (For this reason, d(G) is set to be , larger
than the outdegree of any node in both T and G. Thus,
in the case that T contains <P1, …, Pq>, the return value
must be <q, vG>, not <1, vG‘s parent>.)

- If label(t) ≠ label(u) or j ≠ d(u), the return value of A(T,
G) is the same as <j, u>, showing that T embeds <P1, ...,
Pj>.

By using the -function and the -function, the algo-
rithm for A(T, G) can be described as below.

FUNCTION 1. A(T, G)

input: T = <t; T1, ..., Tk >, G = <P1, ..., Pq>.
output: a left corner.
begin
1. if (q = 1 or |T[t]|  |G[p1]| + |G[p2]|) (*Case 1*)
2. then return (T, P1)
3. else <j, u> := (<T1, ..., Tk>, G); (*Case 2*)

4. if (label(t) = label(u) and j = d(u)
5. then return <1, u’s parent>;
6. return <j, u>;
end

In the following, both the -function and -function will
be discussed in great detail.

- -function

In order to implement the -function, we need to associate
each node v in G with a link to the left-most leaf node in
G[v], denoted as (v), as illustrated in Fig. 9.

Let v' be a leaf node in G. (v') is defined to be a link to
v' itself. So in Fig. 9, we have (v1) = (v2) = (v3) = (v4) =
v4, (v5) = (v6) = v6, (v7) = v7, and (v8) = v8. Denote by (v')
a set of nodes x such that for each v  x (v) = v'. Thus, in
Fig. 9, we have (v4) = {v1, v2, v3, v4}, (v6) = {v5, v6}, (v7) =
{v7}, and (v8) = {v8}. Let p1 be the root of P1. We also have
(G) = (p1).

Let T = <t; T1, …, Tk>, G = <P1, ..., Pq>. In (T, P1), alto-

gether five different cases as listed in Fig. 10 should be
checked.

Obviously, in Case (1-1), where t is a leaf node, we will
check whether label(t) = label((p1)) since (p1) is the only
left-corner which can possibly be covered by t. If it is the
case, return <1, parent of (p1)>. Otherwise, return <0,
(p1)>.

In Case (1-2), where |T| > 1, but |T|  |P1| or h(t) < h(p1),
we will make a recursive call A(T, <P11, ..., P1j>), where
<P11, ..., P1j> is a forest containing all the direct subtrees of
p1. The return value of A(T, <P11, ..., P1j>) is used as the re-
turn value of (T, P1). It is because in this case, T is not able
to embed the whole P1. So we will try to find whether T is
able to embed a left-corner within <P11, ..., P1j>.

If |T|  |P1| and h(t)  h(p1) (but |T|  |P1| + |P2|),
we further distinguish among three cases: Case (1-3), (1-4)
and (1-5).

In Case (1-3), we have label(t)  label(p1), and we will
call (<T1, ..., Tk>, <P1>) to see whether (<T1, ..., Tk> is able
to embed P1.

In Case (1-4), we have label(t) = label(p1) and p1 is a leaf
node. In this case, we return <1, p1’s parent>.

1l
T

ml
T

v3

v1

v2 v8

v5

(v1)

(v2)

Figure 9. A pattern tree
v4 v6 v7

(v3)
(v5)

Figure 10. Different cases to be checked in -function

t is a leaf node

label(t) = label(p1)

label(t)  label(p1)

(1 – 1)

(1 – 2)

(1 – 4)

(1 – 3)

|T| > 1, but |T| < |P1| or h(t) < h(p1)

|T|  |P1| and h(t)  h(p1)

(but |T|  |P1| + |P2|)
p1 is a leaf

p1 is not a leaf (1 – 5)

6 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO.X, XXXX 2018

In Case (1-5), we have label(t) = label(p1), but p1 is not a
leaf node. In this case, we need to call (<T1, ..., Tk>, <P11, ...,
P1j>). Assume that the return value of () is <i, v>. We need
to do an extra checking:

- If label(t) = label(v) and i = d(v), the return value of A(T,
G) is set to be <1, v’s parent>.

- Otherwise, the return value of (T, G) is the same as <i,
v>.
According to the above discussion, we give the follow-

ing formal algorithm for the -function.

FUNCTION 2. (T, P1)

input: T = <t; T1, ..., Tk >, P1 = <p1; P11 ..., P1j>.
output: a left corner.
begin
1. if (1-1) then if label(t) = label((p1))
2. then return <1, (p1)’s parent>
3. else return <0, (p1)>;
4. if (1-2) then return A(T, <P11, ..., P1j>);
5. if (1-3) then return (<T1, ..., Tk>, <P1>);
6. if (1-4) then return <1, p1’s parent>;
7. if (1-5) then <j, u> := (<T1, ..., Tk>, <P11, ..., P1j>);
8. if j = d(u)  label(t) = label(u) then return <1, u’s parent>
9. else return <j, u>;
end

- -function
In comparison with the -function, the -function is more
interesting. It is designed to handle the general Case 2. Let
F = <T1, ..., Tk> and G = <P1, ..., Pq>. Denote by tl the root of
Tl (l = 1, ..., k). Denote by pj the root of Pj (j = 1, ...,q). In (F,
G), we will make a series of calls A(Tl, <

lj
P , ..., Pq>), where l

= 1, ..., x  k, j1 = 1, j1  j2  ...  jx  q, controlled as follows.

1. Two index variables l, j are used to scan T1, ..., Tk and
P1, ..., Pq, respectively. (Initially, l is set to 1, and j is set to
0.) They also indicate that <P1, ..., Pj> has been success-
fully embedded in <T1, ..., Tl>.

2. Let <il, ul> be the return value of A(Tl, <Pj+1, ..., Pq>). If ul =
pj+1’s parent, set j to j + il. Otherwise, j is not changed. Set
l to l + 1. Go to (2) (i.e., repeat this step.)

3. The loop terminates when all Tl’s or all Pj’s are examined.
(Fig. 11 helps for illustration of this iteration process.)

4. If j > 0 when the loop terminates, (F, G) returns <j, p1’s
parent>, indicating that F contains P1, ..., Pj. Otherwise, j
= 0, indicating that even P1 alone cannot be embedded
in any  (    k) However, in this case, we need
to continue looking for a highest and widest left-corner
<i, u> in P1, which can be embedded in F. This can be
done as follows.

 i) Let <i1, v1>, ..., <ik, vk> be the return values of A(T1,
<P1, ..., Pq>), ..., A(Tk, <P1, ..., Pq>), respectively. Since j
= 0, each vl  ((G)) (l = 1, ..., k).

 ii) If each il = 0, the return value of (F, G) should be <0,

(G)>. Otherwise, there must be some vl’s with il > 0.

We call such a node a non-zero point. Find the first

non-zero point vf with children w1, ..., ws such that vf

is not a descendant of any other non-zero point. Then,

we will check <Tf+1, ..., Tk> against <P[1+fiw], ..., P[ws]>.

This can be done by a recursive call (<Tf+1, ..., Tk>,

<P[1+fiw], ..., P[ws]>). Let y be a number such that

<P[1+fiw], ..., P[yi f
w +]> can be embedded in <Tf+1, ...,

Tk>. The return value of (F, G) should be set to <if +

y, vf>. 

In the above process, (1), (2) and (3) together are re-
ferred to as a main computation while (4) alone as a supple-
ment computation.

In addition, special attention should be paid to the con-

dition under which a supplement computation is con-
ducted:

- j = 0, and

- there exists at least a non-zero point.

We refer to this condition as the supplement checking con-

dition (SCC-condition for short). In terms of the above dis-

cussion, we give the following formal algorithm for the -

function.

FUNCTION 3. (F, G)

input: F = <T1, ..., Tk>, G = < P1, ..., Pq>.
output: a left corner.
begin
1. l := 1; j := 0; v := (G); f := 0;
2. while (j < q and l  k) do (*main checking*)
3. <il, vl> := A(Tl, <Pj+1, ..., Pq>)
4. if (vl = p1’s parent and il > 0) then {j := j + il;}
5. else if (vl is an ancestor of v and il > 0)
6. then {v := vl; f := l;}
7. l: = l + 1;
8. if j > 0 then return <j, p1’s parent>;
9. if f = 0 then return <0, (p1)>;
10. let w1, ..., ws be the children of vf;
 (*supplement checking*)
11. l := f + 1; j := if;
12. while (j < s and l  k) do
13. <il, vl> := A(Tl, <G[wj+1], ..., G[ws]>);
14. if (vl = vf and il > 0) then j := j + il;
15. l := l + 1;
16. return <j, vf>;
end

In the above algorithm, we have two while-loops: one from
line 2 to 7 and the other from line 12 to 15. In the first while-
loop, we do the main computation to find a largest j such
that <T1, ..., Tk> embeds <P1, ..., Pj>. In the second while-loop,
the supplement computation will be conducted when the
SCC-condition is satisfied.

In order to record the first non-zero point which is not
a descendant of any other non-zero point, variable f is
used. Initially, f is set 0. Therefore, if no non-zero point is
found, we must have f = 0 after the main computation is
completed. So only when j = 0 and f > 0, the SCC-condition

…

Figure 11. Illustration for an execution of -function

T1

… … … … …

Tl Tl+1 Tk Pq

embed

embed

If <T1, …, Tl> includes <P1, …, >,

Tl+1 will be checked against < , …, Pq>.

F: G:

P
1

CHEN AND YIBIN CHEN.: INTRODUCING CUTS INTO A TOP-DOWN PROCESS FOR CHECKING TREE INCLUSION 7

is satisfied and the supplement computation will be per-
formed (see lines 8 and 9), in which we check <Tf+1, ..., Tk>
against <P[1+fiw], ..., P[ws]>, where 1+fiw , …,
ws are all those children of the first non-zero point vf such
that the subtrees rooted at them are not covered by <T1, ...,
Tf>. (Notice that <if, vf> is the return value of A(Tf, <P1, ...,
Pq> with if > 0.) In Appendix II, we will trace an execution
of the basic algorithm when applied to the tree T and the
forest G shown in Fig. 8.

- Correctness
Concerning the correctness of this algorithm, we first give
two lemmas, based on which a strict proof can then be es-
tablished.

Lemma 1 If both the -function and -function return the
correct value, then the A-function must return a correct
value. That is, the return value of A-function must be a
highest and widest left corner in G that can be embedded
in T.
Proof. Let T = <t; T1, ..., Tk >, G = <P1, ..., Pq>. In A(T, G) , we
distinguish between two cases: (i) q = 1 or |T|  |P1| +
|P2|, and (ii) q > 1 and |T| > |P1| + |P2|. In case (i), what
we can do is to check T against P1 to find the highest and
widest left corner which can be embedded in T. This is
done by calling (T, P1). If -function is correct, then the
return value of A-function is correct in this case. In case (ii),
if T is able to cover <P1, ..., Pl> with 1 < l  q, then <T1, ..., Tk>
must be able to cover <P1, ..., Pl> since we cannot use t to
map any node G.

If we map t to a node, say p in G, all the nodes in <T1, ...,
Tk> have to be mapped to the nodes in G[p], excluding p, to
satisfy the ancestor condition in the definition. So we call
(<T1, ..., Tk>, G) to do this task. Let <j, u> be the return value
of (<T1, ..., Tk>, G). We further need to check whether la-
bel(u) = label(u). If it is the case, T covers <1, u’s parent>.
Otherwise, T only covers <j, u>. Thus, in case (ii), if the -
function is correct, the return value of the A-function must
be correct. 

In a similar way, we can prove Lemma 2.

Lemma 2 If the A-function returns the correct value, then
the return values of both the -function and -function
must be correct.
Proof. The lemma can be proven by analyzing the five cases
in the -function, as well as the main checking and the sup-
plement checking in the -function. 

Obviously, we cannot claim the correctness of the algo-
rithm based on Lemma 1 and 2 since they are just a kind of
circular arguments. But they can be used in the induction
step of an induction proof given in the following proposi-
tion if the correctness of A-function, or -function and -
function for the basic case can be established.

Proposition 1 Let T = <t; T1, ..., Tk > and G = <P1, ..., Pq>. The
return value of A(T, G) is the highest and wildest left-cor-
ner in G, which can be embedded in T.
Proof. We prove the proposition by induction on the sum of
the heights of T and G, H = hT + hG.
Basic step. When H = 0, T is a singular t, and G is a set of
nodes: p1, ..., pq. In this case, the algorithm returns <0, p1> or
<1, vG>, depending on whether label(t) = label(p1). See lines

4 - 6 in A().
When H = 1, we need to consider the following two cases.
(i) T is a tree of height 1: <t; t1, ...,tk>, and G is a set of nodes:

<p1, ..., pq>.
(ii) T is a singular t; but G is a set of trees of height 1.

In case (i), we further distinguish between two cases.

• If |T|  |P1| + |P2| = 2 (i.e., if t has at most only one child

t1), (T, P1) will be called (see lines 1 – 2 in A()). If label(t)

 label(p1), we have Case (1-3) and will call (<T1>, <P1>),

which leads to the call A(T1, <P1>) (see line 3 in ()) and

then to the call (T1, P1). Since T1 contains only a single

node t1, we have Case (1-1) and returns <1, vG> or <0, p1>

depending on whether label(t1) = label(p1) (see lines 1 – 3

in ()). If label(t) = label(p1), we have Case (1-4) since p1

is a leaf, and return <1, vG>.

• If |T  P1| + |P2| = 2, (<t1, ...,tk>, <p1, ..., pq>) will be in-

voked (see line 4 in A()), which will find a sequence of

integers: k1, ..., kx such that label(
ikt) = label(pi) (i = 1, ...,

x) (see line 3 in ()). The return value is <x, vG> (0  x 

q).

In case (ii), the return value is <0, p1> or <1, p1>, depending
on whether t matches the first child of p1. See lines 1 - 2 in
A(), and Case (1-1) in ().
Induction hypothesis. Assume that when H = h  1, the
proposition holds.

Consider T = <t; T1, ..., Tk> and G = <P1, ..., Pq> with H =
hT + hG = h + 1.

If q = 1, or q >  but |T|  |P1| + |P2|, (T, P1) will be
invoked. If it is case (1-1), or (1-4), the proposition obvi-
ously holds.

If it is case (1-2), A(T, <P11, ..., P1j>) will be invoked. Since
the sum of the height of T and the height of <P11, ..., P1j> is
equal to h, according to the induction hypothesis, the prop-
osition holds.

If it is case (1-3), (<T1, ..., Tk>, <P1>) will be called, by
which a series of calls A(Tl, <P1>) will be conducted, where
l = 1, ..., x  k, j1 = 1, j1  j2  ...  jx  q. According to the in-
duction hypothesis, each A(Tl, <P1>) returns a correct value.
Thus, in terms of Lemma 2, the return value of (<T1, ...,
Tk>, <P1>) must be correct.

If it is case (1-5), (<T1, ..., Tk>, <P11, ..., P1j>) will be in-
voked, by which a series of calls A(Tl, <P11, ..., P1j>) will be
carried out. Again, the sum of the height of Tl and the
height of <P11, ..., P1j>) equals h - 1. So, according to the in-
duction hypothesis and Lemma 2, the proposition also
holds.

If q >  and |T|  |P1| + |P2|, (<T1, ..., Tk>, G) will be
called, by which a series of calls A(Tl, <

1j
P , ..., Pq>) will be

 conducted, where l = 1, ..., x  k, j1 = 1, j1  j2  ...  jx  q. In
the same way as (1-3) and (1-5), we can demonstrate the
correctness of A(T, G) for this case. 

By Proposition 1, the algorithm will always return a cor-
rect answer. However, it is not an efficient algorithm since
much useless work has to be conducted, as illustarted in
Fig. 7.

8 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO.X, XXXX 2018

6 ALGORITHM WITH CUTS
In order to use cuts to discard useless computations, two
issues have to be addressed: (i) how a cut is checked during
an execution of the A-function, and (ii) how a cut is trans-
ferred between two consecutive recursive calls of the A-
function, -function, as well as -function.

To this end, we change A(T, G) to take an extra param-
eter (i.e., a cut) v  ((G)), indicating that only a left corner
higher than v will be returned by A(T, G, v) if it is embed-
dable in T. Otherwise, A(T, G, v) returns <0, (G)>. -func-
tion and -function will also be accordingly changed such
that within A(T, G, v), the cut v can be transferred to both
(T, P1, v) and (<T1, …, Tk>, G, v).

We first slightly modify the A-function as below. Ini-
tially, the cut is set to be (G).

FUNCTION 4. A(T, G, v) (*Initially, v is set to be (G).*)

input: T = <t; T1, ..., Tk >, G = <P1, ..., Pq>.
output: a left corner.
Begin
1. if p1’s parent is not an ancestor of v then return <0, (G)>;
2. if (q = 1 or |T[t]|  |G[p1]| + |G[p2]|) (*Case 1*)
3. then return (T, P1, v)
4. else if label(t) = label(v) (*Case 2*)
5. then <j, u> := (<T1, ..., Tk>, G, v’s first child);
6. else <j, u> := (<T1, ..., Tk>, G, v);
7. if v  p1’s parent
8. then if (label(t) = label(u)  j = d(u)
9. then return <1, u’s parent>;
10. return <j, u>;
end

In the algorithm, (T, P1, v) and (<T1, ..., Tk>, G, v) are
defined as follows.

(<T1, ..., Tk>, G, v) =

<j, u>,

otherwise.

if <j, u> is a highest and
widest left-corner in G,
which can be embedded in
(<T1, ..., Tk>, higher than v;

(4)

<0, (G)>,

First, we note that in line 1 we check whether p1’s parent

is an ancestor of v. If it is not the case, return <0, (G)> since
no useful results can be produced. Otherwise, we will call
-function for Case 1, and -function for Case 2 as in the
basic algorithm, but with a cut transferred.

In addition, in Case 2, depending on whether label(t) =
label(v), we will call (<T1, ..., Tk>, G, v’s first child) or
(<T1, ..., Tk>, G, v) (see lines 4 – 6). It is because if label(t) =
label(v), we may have T covering G[v] if <T1, ..., Tk> is able
to embed a forest made up of all direct subtrees of v. In this
case, the return value of A(T, G, v) should be set to <1, v’s
parent>, higher than v. So, the cut needs to be downgraded
to v’s first child so that this part of computation will not be
blocked.

- Cut Propagation in -function

In (T, G, v), for different cases, the cut will be propagated
by recursive calls in different ways.

As with the basic version of the -function, we will dis-
tinguish among five cases, i.e., Case (1–1), (1–2), (1–3), (1–
4), and (1–5).

In Case (1–1), no recursive call is conducted and thus
the cut u is not transferred.

In Case (1–2), we will call A(T, <P11, ..., P1j>, v), by which

the cut v is directly transferred to the recursive call since its

return value will be used as the return value of (T, G, v).

In Case (1-3), we have label(t)  label(p1). In this case, we
will simply call (<T1, ..., Tk>, <P1>, v), by which v is directly
transferred for the same reason as Case (1-2).

In Case (1–4), there is no recursive call and thus no cut

transfer.

In Case (1-5), we will call the -function to check <T1, ..., Tk>

against <P11, ..., P1j>). In this case, we have label(t) = la-

bel(p1). Concerning the cut transfer, we need to consider

two subcases:

i) p1 = v. In this case, we will call (<T1, ..., Tk>, <P11, ...,
P1j>, p11) with the cut being set to be p11. It is because in
this case the main checking of the -function execution
may reveal that <T1, ..., Tk> is able to embed the whole
<P11, ..., P1j>. In this case, the return value of (T, G, v)
will be set to <1, p1’s parent>, higher than v. So it is a
useful computation; and downgrading the cut from v
= p1 to p11 will let it go through. On the other hand, p11
will effectively prohibit any possible further supple-
ment checking in this -function execution since such
a checking can only bring out a left corner lower than
p11 and will not be used.

ii) p1 ↝ v. In this case, we will call (<T1, ..., Tk>, <P11, ...,
P1j>, v), by which v is directly transferred since we
must have p11 ↝ v and no useful computation can be
eliminated by cut v.

According to the above discussion, we give the follow-

ing formal algorithm for the -function with cuts.

FUNCTION 5. (T, P1, v)
input: T = <t; T1, ..., Tk >, P1 = <p1; P11 ..., P1j>.
output: a left corner.
Begin
1. if (1-1) then if label(t) = label((p1)
2. then return <1, (p1)’s parent>
3. else return <0, (p1)>;
4. if (1-2) then return A(T, <P11, ..., P1j>, v);
5. if (1-3) then return (<T1, ..., Tk>, <P1>, v);
6. if (1-4) then return <1, p1’s parent>;
7. if (1-5-i) then <j, u> := (<T1, ..., Tk>, <P11, ..., P1j>, p11);
8. if (1-5-ii) then <j, u> := (<T1, ..., Tk>, <P11, ..., P1j>, v);
9. if j = d(u) and label(t) = label(u) then return <1, u’s parent>
10. else return <j, u>;
end

The only difference of the above algorithm from the
basic version is that Case (1-5) is divided into (1-5-i) and (1-
5-ii) as aforementioned.

(T, P, v) =

<j, u>,

if <j, u> is a highest and widest
left-corner in P, which can be
embedded in T, higher than v;

<0, (G)>,

otherwise.

(3)

CHEN AND YIBIN CHEN.: INTRODUCING CUTS INTO A TOP-DOWN PROCESS FOR CHECKING TREE INCLUSION 9

- Cut Propagation in -function

The cut propagation conducted in the -function is consid-
ered as a kind of vertical transfer of cuts, by which a cut is
propagated to a nested recursive call. By the -function,
however, what we have is a kind of horizontal transfer, by
which the local result of a recursive call will be used as a
cut for a next parallel recursive call.

Specifically, what we need to do is to determine the cut
for each recursive call to check a Tl against a forest of the
form <

lj
P , ..., Pq> with jl  1 in the main checking of (<T1,

..., Tk>, G, v). Without loss of generality, assume that <il, vl>
is the return value of A(Tl, <

lj
P , ..., Pq>, ul) for l = 1, ...,

x  k with j1 = 1, j1  j2  ...  jx  q. Then, we have

• u1 = v, a value transferred to (<T1, ..., Tk>, G, v).

• For 2  l  x, ul is determined as follows:

 Let s be an integer such that any of T1, ..., Ts is not able

to embed P1, but Ts+1 embeds <P1, ..., Pj> for some j > 0.

Then, for 2  l  s, we have

 and for s + 1  l  k, we have

 ul =
lj

p . (6)

The formula (5) shows how the cuts are changed before

we meet the first subtree in <T1, ..., Tk> which is able to em-

bed some subtrees P1, ..., Pj (j > 0). After such a subtree is

found, the cuts will be determined in terms of (6). It is be-

cause for each subsequent A-function call to check a Tl

against <
lj

P , ..., Pq>, a returned left corner lower than
lj

p

will not be used in the subsequent computation.

If s < k, it shows that <T1, ..., Tk> includes <P1, ..., Pm> for

some m (1  m  q), and the supplement checking will not

be conducted. If s = k, <T1, ..., Tk> does not include any sub-

tree in G, but some Tl’s each may include a non-empty left

corner in P1. If it is the case and the left corner is also higher

than cut v, then a supplement checking will be performed

as described in Section 5. That is, when the following two

conditions are satisfied, a supplelement checking will be

carried out:

- j = 0, and

- there exists at least a non-zero point, which is higher

than cut v.

They are referred to as the strict supplement condition

(strict SCC-condition for short). In comparison with the

supplement property given in Section 5, one more condition

with respect to cuts has to be met, i.e., the non-zero point

must be higher than cut v.

Besides, in a supplement computation no further sup-

plement computation will be conducted due to the way the

cut for this is set, by which the cut is set to be the root of

the first subtree in the forest to be checked. This will effec-

tively block any further supplement computation within a

supplement computation.

In terms of the above discussion, we give the following

formal algorithm for the -function, which is similar to

FUNCTION 3, but with the cuts integrated into the pro-

cesss to control the supplement computation.

FUNCTION 6. (F, G, v)
input: F = <T1, ..., Tk>, G = < P1, ..., Pq>.
output: a left corner.
begin
1. l := 1; j := 0; u := v; f := 0;
2. while (j < q and l  k) do (*main checking*)
3. <il, ul> := A(Tl, <Pj+1, ..., Pq>, u)
4. if (ul = p1’s parent and il > 0) then {j := j + il; u := pj;}
5. else if (ul is an ancestor of u and il > 0)
6. then {u := ul; f := l;}
7. l:= l + 1;
8. if j > 0 then return <j, p1’s parent>;
9. if f = 0 then return <0, (p1)>;
10. let w1, ..., ws be the children of uf;
 (*supplement checking*)
11. l := f + 1; j := if;
12. while (j < s and l  k) do
13. <il, vl> := A(Tl, <G[wj+1], ..., G[ws]>, wj+1);
14. if (vl = vf and il > 0) then j := j + il;
15. l:= l + 1;
16. return <j, uf>;
end

As in the basic version of the -function, we have two

while-loops: one from line 2 to 7 and the other from line 12

to 15. In the first while-loop, we do the main computation

to find a largest j such that <T1, ..., Tk> embeds <P1, ..., Pj>.

In this process, by the first A-function call we have cut v,

which is the same as the cut propagated to (<T1, ..., Tk>, G,

v) while by the subsequent A-function calls the cuts are

horizontally propagated.
In the second while-loop, we do the supplement computa-

tion, but conducted only when the strict SCC-condition is
satisfied.

As in Function 3, variable f is used to record the first
non-zero point which is not a descendant of any other non-
zero point. Initially, it is set 0. Therefore, if no non-zero
point higher than cut v is found, we must have f = 0 after
the main computation. Thus, only when j = 0 and f > 0, the
strict SCC-condition is satisfied and the supplement com-
putation will be performed. (See lines 8 and 9.)

In Appendix III, we will give a sample trace of the im-
proved algorithm when applied to the tree T and the forest
G shown in Fig. 8. In appendix IV, its correctness is for-
mally proven.

7 COMPUTATIONAL ANALYSIS
In this section, we mainly analyze the computational com-
plexities of the improved algorithm discussed in Section 6.
First, we discuss its space requirement in 7.1. Then, in 7.2,
its worst time complexity is analyzed.

7.1 Space Complexity

The space overhead of our algorithm is mainly composed
of two parts. One part is the intervals associated with the
nodes in both T and G to check reachability. It is obviously
bounded by O(|T| + |G|). The other part is the space used
for storing recursive calls of functions in the system stack.

vl-1,

ul-1,

if vl-1 is an ancestor of ul-1 and il-1 > 0;

if vl-1 is not an ancestor of ul-1 or il-1 = 0;
(5) ul =

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO.X, XXXX 2018

But it must be proportional to the size of a longest recursive
function call chain L. (To know what is that, see Fig. 12(a),
which is a chain corresponding to lines 1 – 8 in the sample
trace given in Appendix III.) This chain is produced when
applying our algorithm to the target tree and pattern forest
shown in Fig. 8. Therefore, to know the size of the second
part, we need to estimate L’s length.

We first note that each recursive call needs only a con-
stant space. It is because a tree T can be always referred to
by its root t while a forest <T1, …, Tk> (resp. <P1, ..., Pq>) by
a pair <t1, k> (resp. <p1, q>). It is because any forest involved
in a recursive call is always made up of a set of subtrees
rooted respectively at a set of consecutive child nodes
(starting from a specific child to the last child) of a certain
node in T or in G. Thus, (T, P1, v) can be simply repre-
sented by (t, p1, v) while (<T1, ..., Tk>, <P1, ..., Pq>, v) by
(t1, k, p1, q, v), which indicates that only a constant space
is needed to record a recursive call.

Furthermore, each A-function call is always followed by
an -function call or a -function call in a function call
chain, as demonstrated in Fig. 12(a). So we can merge each
A-function call into its successor to simplify analysis and
view L as a chain containing only two kinds of function
calls, i.e., the calls of the form (t, p1, v), and (t1, k, p1, q, v).
Thus, we can simply divide L into two sequences: L and
L such that L contains only the -function calls while L

only the -function calls. L and L are called the -sub-
chain and -subchain of L, respectively. For example, the
chain shown in Fig. 12(a) can be divided into an -function
call chain and a -function call chain, as shown in Fig. 12(b)
and (c), respectively.

For L, we have the following lemma.

Lemma 3 Let x = <t, p, v> and x = <t, p, v> be two con-
secutive function calls on an L. Then, (i) if t = t, p is a child
of p; and (ii) if p = p, t is a child of t.

Proof. We first prove (i). If t = t, it shows that T[t] is in-
volved in a call of the A-function during the execution of
<t, p, v>, but checked against a forest containing the sub-
trees respectively rooted at the children of p. This occurs
when Case (1-2) is satisfied (see line 4 in Function 5).

Through the A-function call, <t, p, v> is invoked. There-
fore, p is a child of p.

We illustrate this process in Fig. 13(a). This shows that
if a node t in T is checked against two consecutive nodes p
and p in G along a recursive call chain, p must be the par-
ent of p.

Now we consider (ii). If p = p, it shows that G[p] is in-
volved in a second call of the -function, which happens
when Case (1-3) is satisfied, i.e., when |T|  |P| + z, where
z is the size of the subtree rooted at p’s right sibling, but
|T|  |P|, h(t)  h(p), and label(t)  label(p). In this case, we
will check the forest containing the subtrees respectively
rooted at the children of t against <G[p]> by calling the -
function (see line 5 in Function 5), through which <t, p,
v> is invoked. See Fig. 13(b) for illustration, which shows
that if a node p in G is checked against two consective
nodes t and t in T along a recursive call, t must be the par-
ent of t. This completes the proof. 

From Lemma 3, we can see that |L| is bounded by O(hT

+ hG).
In a similar way, we can prove that that |Lβ| is also

bounded by O(hT + hG).
Therefore, |L| = |L| + |L| is in the order of O(hT + hG).

Proposition 2 The space used by Algorithm A(T, G, (G))
is bounded by O(|T| + |G|).

Proof. See the above analysis. 

7.2 Time Complexity
Now we analyze the time complexity of the algorithm. This
will be done in two steps. First, we show that the time used
by the improved algorithm is bounded by O(|T|hG).
Then, we further demonstrate that the time requirement is
also bounded by O(|T||leaves(G)|). This indicates that
the time complexity of our algorithm is O(|T| min{hG,
|leaves(G)|}).

We first notice that in a supplement checking no further
supplement checking will be conducted. It is because in a
supplement checking of the form (<Tf+1, …, Ts>,
<G[wj+1], ..., G[ws]>, u) we always have u = wj+1, by which
any further supplement checking is effectively blocked.

In order to see that the time complexity is bounded by
O(|T|hG), we analyze, in the worst case, how many β-
function calls each node t in T can be involved in.

Let t be a node in T. Let t be a child of t. Assume that
in the computation there exists a -function call of the form
(<T[t], …>, <P1, …, Pq>, u), in whose execution
(<T[t], …>, …, u) is invoked (possibly through an A-
function call invoked during the execution of (T[t],
<P1, …, Pq>, u); see line 3 in FUNCTION 6.) Then, u and
u can be in one of three relationships:

Figure 12. A recursive call chain

A(T, G, p111)

(<T1, T2, T3>, G, p111) (<T1, T2, T3>, G, p111)

A(T1, G, p111)

(T1, P1, p111) (T1, P1, p111)

A(T1, <P11, P12, P13>, p111)

(T1, P11, p111) (T1, P1, p111)

(<T11, T12>, <P111, P112>, p111) (<T11, T12>, <P111, P112>, p111)

A(T11, <P111, P112>, p111)

(T11, P111, p111) (T1, P1, p111)
(a) (b)

(c)

(a) (b)

Figure 13. Illustration for Lemma 3

p = p1

p t

(t, p, v)

A(t, <p1, …, pq >, v)

(t, p, v)
t= t1

t
p

(t, p, v)

(<t1, …, t
k
>, <P>, v)

(t, p, v)

CHEN AND YIBIN CHEN.: INTRODUCING CUTS INTO A TOP-DOWN PROCESS FOR CHECKING TREE INCLUSION 11

1. u ↝ u. In this case, t can possibly be involved in a

supplement checking, but t definitely not since the left

corner of β(T[t], <P1, …, Pq>, u) must be higher than u.

2. u = u. In this case, t will definitely not be involved in
a supplement checking. It is because in the execution of

(<T[t], …>, <P1, …, Pq>, u), the node corresponding

to the first highest non-zero point (if any) can only be t

or a node to the right of t (see line 4 in FUNCTION 6.)

However, t may be involved in a supplement checking,
depending on the results of checking the subtrees
rooted at its left siblings against <P1, …, Pq>, as well as

the return value of (<T[t], …>, <P1, …, Pq>, u) itself.

3. u ↝ u (more exactly, u is the first child of u.) This

happens when through an A-function call, a -function
is invoked, by which the cut is downgraded (see line 5

in FUNCTION 4); or an -function is invoked, in which
we have Case (1-5-i) satisfied and the cut is also down-
graded (see line 7 in FUNCTION 5.) In these cases, both

t and t may be involved in a supplement checking. Es-
pecially, during the supplement computation involving

t, t can possibly be involved in another β-function call
once again.

Obviously, (3) is the worst case, by which the number
of -function calls t is involved in is maximized. Now, we
observe the parent t of t and assume that in the execution
of (<T[t], …>, …, u), (T[t], <P1, …, Pq>, u) is invoked.
Repeating the above analysis, we can see that if u ↝ u (case
3), both t and t can also be involved in a supplement check-
ing. This shows that if we have u ↝ u ↝ u t can be in-
volved in two β-function calls, t in three β-function calls,
and t in four β-function calls. In general, the number of β-
function calls, in which a certain node t in T is involved,
must be bounded by hG + 1 since any sequence of cuts: u1

↝ u2 ↝ … ↝ uz in G cannot contain more than hG nodes,
and any recursive call with t involved corresponds to a cut
at a different level.

In terms of the above analysis, we have the following
lemma.

Lemma 4 The time complexity of the algorithm A(T, G,
(G)) (FUNCTION 4 in Section 6) is bounded by O(|T|hG).
Proof. We need to show that any node t in T can also be
involved in at most O(hG) A-function calls. For this pur-
pose, we notice that between any two consecutive A-func-
tion calls along a function call chain we can have at most
an -function and a -function. This property can be ob-
served by analyzing the basic algorithm given in Section 5,
by which we can clearly see three kinds of A-to-A (from an
A-function call to a next A-function call) chains:

A →  → A (see line 2 in FUNCTION 1, line 4 in FUNC
 TION 2)
A →  →  → A (see line 2 in FUNCTION 1, line 5, 7 in
 FUNCTION 2, line 3, 13 in FUNCTION 3)
A →  → A (see line 3 in FUNCTION 1, line 3, 13 in
 FUNCTION 3)

Clearly, for the second and third kinds of A-to-A chains,
the number of A-function calls is bounded by the number
of -function calls. For the first kind of A-to-A chains, the
number of A-function calls for each t is also bounded by

(hG + 1) since each of such chains happens when |T[t]| <
|G[p]| or h(t) < h(p) (Case (1-2)). In this case, a function call
of the form A(T, <P1, …, Pq>, u) will be conducted (see line
4 in FUNCTION 5). Thus, if t is checked for a second time,
it must be against a descendant of p. So, the lemma holds.


Lemma 5 The time complexity of the algorithm A(T, G,
(G)) (FUNCTION 4 in Section 6) is bounded by
O(|T||leaves(G)|).
Proof. To show that the time complexity of the algorithm is
also bounded by O(|T||leaves(G)|), we observe the worst
case, i.e., case 3 (the case u ↝ u in the above discussion)
again and assume that t is involved in a supplement
checking (referred to as SC1) and t is involved in another
supplement checking (referred to as SC2). Then, by SC1 T[t]
will be checked against a forest containing a set of subtrees
respectively rooted at some right siblings of u while by
SC2 T[t] will be against a forest G containing a set of sub-
trees respectively rooted at some right siblings of u, as
illustrated in Fig. 14. Thus, if t is checked for a second time
during the SC1 involving t, it must be checked aginst a
node which is to the right of G. This shows that the num-
ber of nodes in G, which are checked against t is bounded
by O(|leaves(G)|). Therefore, for whole T, the number of
checkings is bounded by O(|T||leaves(G)|). 

In Fig. 14, we illustrate that when t is checked during
SC1, t can also be checked once again, but against some
node to the right of a forest G, which is checked during
SC2.

In the above discussion, we should remark that in the
proof of Lemm 4, we use cuts to explain that any node in T
can be involved in at most O(hG) function calls while in the
proof of Lemma 5, we show that any node in T can be
checked against at most O(|leaves(G)|) nodes in G.

From Lemma 3 and 4, we immediately get the following
proposition.

Proposition 3 The time complexity of A(T, G, (G)) is
bounded by O(|T| min{hP, |leaves(G)|}).
Proof. This can be derived from Lemma 4 and 5. 

8 Experiments

In our experiments, we have tested altogether four differ-
ent methods:

- Kilpeläinen’s algorithm [9],

- Chen’s algorithm [3],

u

Figure 14. Illustration for supplement checking

u
…

…
t

t
…

…

Supplement checking SC1

Supplement checking SC2

T: G:

…

assume that t is

checked for a

second time.

G

12 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO.X, XXXX 2018

- Bille’s algorithm [2], and

- Ours
All the four methods are implemented in C++, compiled

by GNU make utility with optimization of level 2. In addi-
tion, all of our experiments are performed on a 64-bit Ub-
untu operating system, run on a single core of a 2.40GHz
Intel Xeon E5-2630 processor with 32GB RAM.

7.1 Data Sets

The data sets used for the tests are TreeBank data set, DBLP
data set (both of them can be found in U of Washington
XML Repository, http://aiweb.cs.washington.edu/ re-
search/projects/xmltk/xmldata/), and a synthetic XMark
data set (The XML-benchmark project, http:
//monetdb.cwi.nl/xml). The TreeBank data set is a real data
set with a narrow and deeply recursive structure that in-
cludes multiple recursive elements. The DBLP data set is
another real data set with high similarity in structure. It is
in fact a wide and shallow document. The XMark (with
scaling factors 1, 3, and 5) is a well-known benchmark data
set, by which a document generator xmlgen is provided,
used for scalability analysis. The important parameters of
these data sets are summarized in Table 1.

Table 1: Data sets for experiment evaluation

 TreeBank DBLP XMARK

1 3 5

Data size (MB) 82 127 113 340 568

No. of nodes (million) 2.43 3.33 1.72 5.1 8.33

Max/average height 36/7.9 6/2.9 12/6.2

7.2 Test Results

For each data set, we have tested two groups of pattern
trees. For the first group, we generate pattern trees by ran-
domly selecting subtrees of 100 nodes from the target tree.
For the second group, each time we randomly select 200
nodes, but with different heights. We record the numbers
of label comparisons and elapsed times. For each execu-
tion, an average of 100 measurements is taken.

- Tests on TreeBank
In Fig. 15(a) and (b), we show the numbers of label com-
parisons and the times spent on different execution, re-
spectively. From Fig. 15(a), we can see that our method
outperforms all the other three algorithms uniformly, and
the Kilpeläinen’s has the worst performance. We can also
see that the Bill’s and Chen’s are comparable. For small
sized pattern trees, the Bille’s is slightly better than Chen’s.
However, as the size of pattern trees increases, the Chen’s
works better. It is because by the Bill’s algorithm extra time
is used to check and remove useless data generated to rec-
ord intermediate results to reduce space overhead and this
part of time matters for large pattern trees.

In Fig. 16(a) and (b), we demonstrate the result of the
second group test. From Fig. 16(a), we can see that the
number of label comparisons made by our method linearly
depends on the height of pattern trees. But the number of
label comparisons made by the Bille’s and Chen’s algo-
rithms decreases as the height increases. The Kilpeläinen’s
algorithm is not sensitive to the height of patterns trees.

Again, the time spent by the Kilpeläinen’s algorithm is
much worse than all the other three algorithms.

In Fig. 17, we show the space overhead of the tested
method over the treebank data.
From this figure, we can see that our method uses much
less space than the other three methods. Among them, the
Kilpeläinen’s is the worst while the Bille’s is best and a lit-
tle bit better than the Chen’s. In fact, the Bille’s and the
Chen’s methods work almost in the same way. The main
difference is that in the Chen’s method, the siblings of a
node in a pattern P are always handled from left to right
while in the Bille’s method, the so-called heavy child is al-
ways handled first. By a heavy child, we mean a node v
such that P[v] has the most leaf nodes. The other difference
is that by the Bille’s method only the deep occurrences of
P in a target T (i.e., the nodes u at low levels in T such that
T[u] contains P) is checked. These arrangements can re-
duce somehow the size of intermediate results, but cannot
bring down the space overhead by an order of magnitude.

- Tests on DBLP
In Fig. 18, we show the test results on the DBLP data set,
by which only the numbers of label comparisons are
demonstrated. Since the elapsed time is always propo-
tional to the number of label comparisons as we can see
from Fig. 15 and 16, we show here only the number of label
comparisons. Again, our method has the best performance
for this test. Especially, for the patterns of different heights,
the numbers of label comparisons are not much changed.
It is because in all document trees most of the paths are

(b) (a)

No. of nodes in a pattern tree

No. of label comparisons ( M)

Figure 15. Results on varying sizes of patterns - treeBank

0

50

100

150

200

10 20 40 60 80

Kilpeläinen Chen

Bille ours

No. of nodes in a pattern tree

time (s)

0

10

20

30

10 20 40 60 80

time (s)

(b) (a)

0

40

80

120

160

200

2 4 6 8 10

Height of pattern trees Height of pattern trees

No. of label comparisons ( M)

Figure 16. Results on varying heights of patterns - treeBank

0

100

200

300

400

500

2 4 6 8 10

Kelpeläinen Chen Bille ours

http://aiweb.cs.washington.edu/%20research/
http://aiweb.cs.washington.edu/%20research/
http://monetdb.cwi.nl/
http://monetdb.cwi.nl/

CHEN AND YIBIN CHEN.: INTRODUCING CUTS INTO A TOP-DOWN PROCESS FOR CHECKING TREE INCLUSION 13

quite short (on average their lenghts are bounded by 3) and
the number of leaf nodes is large and comparable to the
whole size of the tree itself.

In Fig. 19(a), we show the space usage of the tested

method over the DPLP data. From this figure, we can see
that three methods, except ours, have almost the same
space overhead. The reason for this is that the DPLP is a
very shallow tree as mentioned above and the randomly
generated pattern trees are also shallow. So the second dif-
ference of the Bille’s method from the Chen’s brings no sig-
nificant improvement. Again, our method uses much less
space than all of them.

the Bill’s is a little better than the Chen’s. Again, our
method is uniformally better than all the other algorithms.
However, as the height of patterns increases, we can
clearly see the increment of the number of label compari-
sons. It confirms to our theoretical analysis. But for the
Bille’s and Chen’s, the number of label comparions is re-
duced with higher patterns. It is because for patterns with
a fixed number of nodes, the higher they are, the less leaf
nodes they may have.

- Tests on XMARK
In Fig. 20(a) and (b), we show the number of label compar-
isons for matching patterns against the XMark data set
with the scaling factor = 1. As by the treebank and the
DBLP, the Kilpeläinen’s has the worst performance, and

Figure 19. Space overhead on varying patterns - XMark

In Fig. 19(b), we demonstrate the space overhead of the

tested method over the XMark data. This figure shares the
same flavour as Fig. 17, but all the methods use much less
space than the treebank data.

- On Scalability
Now we test the scalability of our method by varying the
sizes of taget tress. For this purpose, we change the scaling
factors when generating XMark data. In Fig. 21, we report
the test results on the XMark data with the scaling factor =
3 while in Fig. 22, we report the results for the scaling factor
= 5. For the scale factor equal to 3, the number of generated
nodes is about 5.1 millions. For the scale factor equal to 5,
the number of generated nodes is about 8.33 millions. In
both of these two tests, our method exhibits the best per-
formance.

9 Conclusion
In this paper, a new algorithm is proposed to solve the or-
dered tree inclusion problem. Up to now, the best algo-
rithm for this problem needs quadratic time. However,
ours requires only O(|T|min{hP, |leaves(P)|}) time and
O(hP + hT) space (besides the space for storing T and P them-
selves), where T and P are a target and a pattern tree (for-
est), respectively; hP (hT) is the hight of P (resp. T) and

No. of nodes in a pattern tree
Figure 17. Space overhead on varying patterns - treeBank

Space ( Mbytes)

No. of nodes in a pattern tree Height of pattern trees

Figure 20. Results on varying sizes and heights of patterns - XMark

(b) (a)

0

100

200

300

400

2 4 6 8 10

Kilpeläinen Chen Bille ours

No. of nodes in a pattern tree Height of pattern trees

No. of label comparisons ( M)

Figure 18. Results on varying sizes and heights of patterns – DBLP

0

100

200

300

10 20 40 60 80

Kilpeläinen Chen

Bille ours

No. of label comparisons ( M)

0

40

80

120

160

200

2 4 6 8 10

Kilpeläinen Chen Bille ours

No. of label comparisons ( M)

0

50

100

150

200

10 20 40 60 80

Kilpeläinen Chen

Bille ours

0

40

80

120

160

10 20 40 60 80

Kilpeläinen Chen

Bille ours

0

50

100

150

200

10 20 40 60 80

Kilpeläinen Chen

Bille ours

No. of label comparisons ( M)

(a) (b)

0

30

60

90

120

150

10 20 40 60 80

Space ( Mbytes)

No. of nodes in a pattern tree

(a)

(a) (b)

No. of nodes in a pattern tree

Space ( Mbytes)

14 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO.X, XXXX 2018

leaves(P) is the set containing all the leaf nodes of P. The
critical concepts of our algorithm are the left-corner and
cuts, which enables us to develop a deep insight into the
tree inclusion problem and extend it to a more general one
to return a left corner as a result. In practice, the general
problem seems to be more useful than the original one
since if P cannot be embedded in T, we may want to know
whether any part of P can be embedded in T. In addition,
our algorithm is more efficient than any existing method
for the problem by using cuts to skip over useless compu-
tations.

10 REFERENCES

[1] L. Alonso and R. Schott. On the tree inclusion problem. In Pro-

ceedings of Mathematical Foundations of Computer Science, pages

211-221, 1993.

[2] P. Bille and I.L. Gørtz, The Tree Inclusion Problem: In Linear

Space and Faster, ACM Transaction on Algorithms, Vol. 7, No. 3,

Article 38, July 2011, pp. 38:1-38:47.

[3] W. Chen. More efficient algorithm for ordered tree inclu-

sion.Journal of Algorithms, 26:370-385, 1998.

[4] Y. Chen and Y.B. Chen, A New Tree Inclusion Algorithm, Infor-

mation Processing Letters 98(2006) 253-262, Elsevier Science B.V.

[5] Y. Chen and Y.B. Chen: Decomposing DAGs into spanning trees:

A new way to compress transitive closures, in Proc. 27th Int. Conf.

on Data Engineering (ICDE 2011), IEEE, April 2011, pp. 1007-1018.

[6] Y. Chen and Y.B. Chen, A Linear-Space Top-down Algorithm for

Tree Inclusion Problem, in: Proc. 2nd Int. Conf. on Computer Science

and Service System (CSSS2012), April 2012, Nanjing, China, April

2012, IEEE, pp. 2127-2131.

[7] Y. Chen and Y.B. Chen, On the Tree Inclusion Problem, in Proc.

ICCNCE2013, pp. 131 – 135.

[8] Y. Chen and Y.B. Chen, A Time and Space Efficient Algorithm for

Tree Inclusion Problem, in: Proc. International Conference on Fu-

ture Communication, Information and Computer Science (FCICS

2014), Beijing, China, May 22-23, 2014.

[9] H.L Cheng and B.F Wang, On Chen and Chen's new tree inclu-

sion algorithm, Information Processing Letters, 2007, Vol. 103, 14-

18, Elsevier Science B.V.

[10] P. F. Dietz. Maintaining order in a linked list. In Proc. STOC,

1982.

[11] P. Kilpeläinen and H. Mannila. Ordered and unordered tree in-

clusion. SIAM J. Comput, 24:340-356, 1995.

[12] D.E. Knuth, The Art of Computer Programming, Vol. 1 (1st edition),

Addison-Wesley, Reading, MA, 1969.

[13] R.B. Lyngs, M. Zuker& C.N.S. Pedersen, Internal loops in RNA

secondary structure prediction, in Proceedings of the 3rd annual in-

ternational conference on computational molecular biology (RE-

COMB), 260-267 (1999).

[14] H. Mannila and K.-J.Räiha, On Query Languages for the p-string

data model, in “Information Modelling and Knowledge Bases”

(H. Kangassalo, S. Ohsuga, and H. Jaakola, Eds.), pp. 469-482,

IOS Press, Amsterdam, 1990.

[15] Thorsten Richter. A new algorithm for the ordered tree inclusion

problem. In Proceedings of the 8th Annual Symposium on Com-

binatorial Pattern Matching (CPM), in LectureNotes of Computer

Science (LNCS), volume 1264, pages 150-166. Springer, 1997.

[16] Y. Rui, T.S. Huang, and S. Mehrotra, Constructing table-of-con-

tent for videos, ACM Multimedia Systems Journal, Special Issue

Multimedia Systems on Video Libraries, 7(5):359-368, Sept 1999.

[17] M. Zaki. Efficiently mining frequent trees in a forest. In Proc. of
KDD, 2002.

Dr. Yangjun Chen got his PhD in Computer Science from
the University of Kaiserslautern, Germany, in 1995. He is

now a professor in Dept. Applied
Computer Science, University of Win-
nipeg, Canada. He has about 200 pub-
lications in Computer Science and
Computer engineering.

Mr. Yibin Chen received his BS and
master degree from the Department of
Electrical and Computer Engineering,
University of Waterloo, and in the De-
partment of Electrical and Computer
Engineering, University of Toronto,
Canada, respectively. Now he is a
software engineer.

(a) (b)
Figure 21. Results on varying sizes and heights of patterns - XMark

No. of label comparisons ( M)

No. of nodes in a pattern tree Height of a pattern tree

No. of nodes in a pattern tree Height of a pattern tree

(b) (a)
Figure 22. Results on varying sizes and heights of patterns - XMark

No. of label comparisons ( M)

No. of label comparisons ( M)

No. of label comparisons ( M)

0

200

400

600

800

1000

10 20 40 60 80

Kilpeläinen Chen

Bille ours

0

100

200

300

400

500

600

10 20 40 60 80

Kilpeläinen Chen

Bill ours

0

200

400

600

2 4 6 8 10

Kilpeläinen Chen Bill ours

0

200

400

600

800

1000

2 4 6 8 10

Kilpeläinen Chen Bill ours

http://ion.uwinnipeg.ca/~ychen2/conferencePapers/DE110024.pdf
http://ion.uwinnipeg.ca/~ychen2/conferencePapers/DE110024.pdf
http://ion.uwinnipeg.ca/~ychen2/conferencePapers/DE110024.pdf

CHEN AND YIBIN CHEN.: INTRODUCING CUTS INTO A TOP-DOWN PROCESS FOR CHECKING TREE INCLUSION 15

Appendix I Symbols and Notations

In this appendix, we summarize all the symbols and nota-
tions used throughout the paper.

Table 2: Symbols and notations

T = <t; T1, ..., Tk > target tree with root t and its direct subtrees T1, ..., Tk

G = <P1, ..., Pq> (q  0) pattern, which is a forest containing subtrees P1, ..., Pq

V(T) set of nodes in T

E(T) set of edges in T

hT height of T

leaves(P) all leaf nodes of P

d(v) outdegree of node v

G[v] subtree rooted at v

v ≺ v v is to the left of v

v ≺ v v ≺ v or v = v

v ↝ u v is a proper ancestor of u

: V(G) → V(F) an injective function mapping nodes in V(G) to nodes in V(F)

(G) left-most leaf node in G

G virtual root of G

<[i, j], v> an interval rooted at v, to represent an ordered forest <G[vi], ..., G[vj]> made up
of a series of subtrees rooted at the children of v: vi, ..., vj, respectively.

<i, v> abbreviation of <[1, i], v>. If v is G or a node on the left-most path of P1, it is
called a left corner of G.

 vi, represent a forest <G[vi+1], ..., G[vk]>, referred to as the complement of <i, v>

<i, v> u level-equal, i.e., v = u

<i, v> ↝ u <i, v> is higher than u, i.e., v ↝ u

<i, v> ↝ u <i, v> is higher than or level-equal to u

A(T, G) a checking of G against T, returning a highest and widest left-corner <i, v> in G

(T, P) A function returning a highest and widest left-corner in P, which can be embedded

in T, where P is a subtree in G.

(<T1, ..., Tk>, G) A function returning a highest and widest left-corner in P, which can be embedded

in <T1, ..., Tk>.

(v) a link to the left-most leaf node in G[v]
(v') a set of nodes x such that for each v  x (v) = v'

h(t) height of T[t]

main computation part of -function execution process

supplement computa-
tion

part of -function execution process

SCC-condition supplement checking condition

A(T, G, v) variant of A(T, G), where v is used as a cut such that only a highest and widest
left-corner in G is returned if it can be embedded in T and higher than v. Oth-
erwise, it returns <0, (G)>.

(T, P, v) variant of (T, P), where v is used as a cut such that only a highest and widest
left-corner in P is returned if it can be embedded in T and higher than v. Other-
wise, it returns <0, (G)>.

(<T1, ..., Tk>, G, v) variant of (<T1, ..., Tk>, G), where v is used as a cut such that only a highest and
widest left-corner in G is returned if it can be embedded in <T1, ..., Tk> and
higher than v. Otherwise, it returns <0, (G)>.

strict SCC-condition strict supplement checking condition



16 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO.X, XXXX 2018

Appendix II Sample Trace of Basic Algorithm

In the above sample trace, since both F and G are forests
(general Case 2), in the execution of A(F, G) (F, G) will be
invoked, in which we will call A(T1, <P1, P2>), A(T2, <P1,
P2>), and A(T3, <P1, P2>) in turn (see lines 3 – 20, lines 21 –
70, and lines 71 – 88 in the sample trace). We call A(T2, <P1,
P2>) after A(T1, <P1, P2>) because the return value of A(T1,
<P1, P2>) is <1, p1> (see line 20), showing that T1 is not able
to embed P1. Since T2 is not able to include P1 (T2 contains
only <1, p11>, see line 70), either, A(T3, <P1, P2>) will be in-
voked (see lines 71 – 88), whose return value is <0, p111>.
So, a sumplement checking will be carried to check <T2,
T3> against <P12, P13> (see lines 89 – 116). It is because A(T1,
<P1, P2>) returns <1, p1>, higher than both <1, p11> (return
value of A(T2, <P1, P2>) and <0, p111>

(return value of A(T3, <P1, P2>)) and we need to know
whether the left corner <1, p1> can be expanded by the sup-
plement checking, in which we will first check T2 against
<P12, P13> (see lines 89 – 112). Since it returns <1, p1> (show-
ing that T2 covers P12), we will call A(T3, <P13>) in a next
step (see lines 113 – 116), which also returns <1, p1> (show-
ing that T3 covers P13.) Therefore, the whole process of (F,
G) returns <3, p1>, showing that T includes < P11, P12, P13>.


In the above sample trace, if t121 were something other
than an a, then A(T12, <P1, P2>) would return <0, p111> and
the supplement checking (after A(T13, <P1, P2>) returns <1,
p11>) would check <T12, T13> against <P112> since T11 in-
cludes P111.

step-by-step trace: explanation:

1. A(T, G) A(T, G) begins.

2. (<T1, T2, T3>, G) since G is a forest and |T| > |P1| + |P2|, call () (see line 3 in A().)

3. A(T1, G) in the 1st while-loop (lines 2 – 7) of (), call A-functions in turn (line 3 in ().)

4 (T1, P1) since |T1|≤|P1| + |P2|, call () (see line 2 in A().)

5 A(T1, <P11, P12, P13>) (1-2) holds (in the execution of ().) Call A() (see line 4 in ().)

6 (T1, P11) since |T1|≤|P11| + |P12|, call () (see line 2 in A().)

7 (<T11, T12>, <P111, P112>) (1-5) holds (in the execution of ().) Call () (see line 7 in ().)

8 A(T11, <P111, P112>) in the 1st while-loop of (), call A-functions in turn (see line 3 in ().)

9 (T11, P111) since |T11|≤|P111| + |P112|, call () (see line 2 in A().)

10 return <1, p11> (1-4) holds (in the execution of ().) Return <1, p11>. (see line 6 in ().)

11 return <1, p11> return value of A(T11, <P111, P112>) (see line 2 in A().)

12 A(T12, <P112>) in the 1st while-loop of (), call A-functions in turn (see line 3 in ().)

13 (T12, P112) <P112> contains a single tree. Call () (see line 2 in A().)

14 return <1, p11> (1-1) holds (in the execution of ().) Return <1, p11> since lable(t12) = lable(p112) = b (see line 2 in ().)

15 return <1, p11> return value of A(T12, <P112>) (see line 2 in A().)

16 return <2, p11> the result of the 1st while-loop in the execution of (<T11, T12>, <P111, P112>).

17 return <1, p1> return value of (T1, P11) (Since lable(p11) = lable(t1) = c and d(p11) = 2, return <1, p1>. see line 8 in ().)

18 return <1, p1> return value of A(T1, <P11, P12, P13>) (see line 2 in A().)

19 return <1, p1> return value of (T1, P1) (see line 4 in  ().)

20 return <1, p1> return value of A(T1, G) (see line 2 in A().)

21 A(T2, G) in the 1st while-loop of (), call A-functions in turn (see line 3 in ().)

22 (T2, P1) since |T2|≤|P1| + |P2|, call () (see line 2 in A().)

23 A(T2, <P11, P12, P13>) (1-2) holds (in the execution of ().) Call A() (see line 4 in ().)

24 (<T21, T22>, <P11, P12, P13>) |T2|> |P11| + |P12|. Call () (see line 3 in A().)

25 A(T21, <P11, P12, P13>) in the 1st while-loop of (), call A-functions in turn (line 3 in ().)

26 (T21, P11) since |T21|≤|P11| + |P12|, call () (line 2 in A().)

27 (<T211, T212>, <P11>) (1-3) holds (in the execution of ().) Call () (line 5 in ().)

28 A(T211, <P11>) in the 1st while-loop of (), call A-functions in turn (see line 3 in ().)

29 (T211, P11) <P11> contains a single tree. Call () (see line 2 in A().)

30 return <1, p11> (1-1) holds (in the execution of ().) Return <1, p11> since lable(t211) = lable(p111) = a (see line 2 in ().)

31 return <1, p11> return value of A(T211, <P11>) (see line 2 in A().)

32 A(T212, <P11>) in the 1st while-loop of (), call A-functions in turn (see line 3 in ().)

33 (T212, P11) <P11> contains a single tree. Call () (see line 2 in A().)

34 return <1, p11> (1-1) holds (in the execution of ().) Return <1, p11> since lable(t212) = lable(p111) = a (see line 2 in ().

35 return <1, p11> return value of A(T212, <P11>) (see line 2 in A().)

36 A(T212, <P112>) supplement computation (done by a series of A-function calls.)

37 (T212, P112) <P112> contains a single tree. Call () (line 2 in A().)

38 return <0, p112> (1-1) holds, but lable(t212) ≠ label(t212). Return <0, p112> (line 3 in ()).

39 return <0, p112> return value of A(T212, <P112>) (see line 2 in A().)

40 return <1, p11> result of the 2nd while-loop of () (lines 12 – 16 in ()).

41 return <1, p11> return value of (T21, P11) (see line 5 in ().)

42 return <1, p11> return value of A(T21, <P11, P12, P13>) (line 2 in A()).

43 A(T22, <P11, P12, P13>) in the 1st while-loop of (), call A-functions in turn (line 3 in ().)

CHEN AND YIBIN CHEN.: INTRODUCING CUTS INTO A TOP-DOWN PROCESS FOR CHECKING TREE INCLUSION 17

90. (T22, P11) since |T22|≤|P11| + |P12|, call () (line 2 in A().)

91. A(T22, <P111, P112>) (1-2) holds (in the execution of ().) Call A() (see line 4 in ().)

92. (T22, P111) since |T1|≤|P111| + |P112|, call () (see line 2 in A().)

93. (<T221>, <P111>) (1-5) holds (in the execution of ().) Call () (see line 7 in ().)

94. A(T221, <P111>) in 1st while-loop of (), call A-functions in turn (line 3 in ().)

95. (T221, P111) <P111> contains a single tree. Call () (see line 2 in A().)

96. return <1, p11> (1-1) holds (in the execution of ().) Return <1, p11> since lable(t221) = lable(p111) = a (see line 2 in ().)

97. return <1, p11> return value of A(T221, <P111>) (see line 2 in A().)

98. return <1, p11> return value of (<T221>, <P111>) (see lines 2 – 7, 8 in ().)

99. return <1, p11> return value of (T22, P111) (see line 7, 9 in ().)

100. return <1, p11> return value of A(T22, <P111, P112>) (see line 2 in A().)

101. return <1, p11> return value of (T22, P11) (see line 4 in ().)

102. return <1, p11> return value of A(T22, <P11, P12, P13>) (see line 3, 7 in A().)

103. A(T22, <P112>) supplement computation (done by a series of A-function calls.)

104. (T22, P112) <P112> contains a single tree. Call () (line 2 in A().)

105. (<T221>, <P112>) (1-3) holds (in the execution of ().) Call () (see line 5 in ().)

106. A(T221, <P112>) in the1st while-loop of (), call A-functions in turn (line 3 in ().)

107. (T221, P112) <P112> contains a single tree. Call () (see line 2 in A().)

108. return <0, p112> (1-1) holds, but lable(t212) ≠ lable(p112). Return <0, p112>. (line 3 in ().)

109. return <0, p112> return value of A(T221, <P112>) (see line 2 in A().)

110. return <0, p112> return value of (<T221>, <P112>) (see lines 2 – 7, 9 in ().)

111. return <0, p112> return value of (T22, P112) (see line 5 in ().)

112. return <0, p112> return value of A(T22, <P112>) (see line 2 in A().)

113. return <1, p11> result of the 1st and 2nd while-loop of () (see lines 2 – 7 and 12 – 16 in ().)

114. return <1, p11> return value of A(T2, <P11, P12, P13>) (see lines 3, 6 in A().

115. return <1, p11> return value of (T2, P1) (see line 4 in ().)

116. return <1, p11> return value of A(T2, G) (see line 2 in A().)

117. A(T3, G) in the 1st while-loop of (), call A-functions in turn (see line 3 in ().)

118. (T3, P1) since |T3|≤|P1| + |P2|, call () (see line 2 in A().)

119. A(T3, <P11, P12, P13>) (1-2) holds (in the exec. of ().) Call A() (see line 4 in ().)

120. (T3, P11) since |T3|≤|P11| + |P12|, call () (see line 2 in A().)

121. A(T3, <P111, P112>) (1-2) holds (in the execution of ().) Call A() (see line 4 in ().)

122. (T3, P111) since |T3|≤|P111| + |P112|, call () (line 2 in A().)

123. (<T31>, <P111>) (1-3) holds (in the execution of ().) Call () (see line 5 in ().)

124. A(T31, <P111>) in 1st while-loop of (), call A-functions in turn (see line 3 in ().)

125. (T31, P111) <P111> contains a single tree. Call () (line 2 in A().)

126. return <0, p111> (1-1) holds, but lable(t31) ≠ lable(p111). Return <0, p112> (see line 3 in ().)

127. return <0, p111> return value of A(T31, <P111>) (see line 2 in A().)

128. return <0, p111> return value of (<T31>, <P111>) (see lines 2 – 7, 9 in ().)

129. return <0, p111> return value of (T3, P111) (see line 5 in ().)

130. return <0, p111> return value of A(T3, <P111, P112>) (see line 2 in A().)

131. return <0, p111> return value of (T3, P11) (see line 4 in ().)

132. return <0, p111> return value of A(T3, <P11, P12, P13>) (see line 3, 6 in A().)

133. return <0, p111> return value of (T3, P1) (see line 4 in ().)

134. return <0, p111> return value of A(T3, G) (see line 2 in A().)

135. A(T2, <P12, P13>) supplement checking (done by a series of A-function calls.)

136. (<T21, T22>, <P12, P13>) |T2|> |P12| + |P13|. Call () (line 3 in A().)

137. A(T21, <P12, P13>) in the 1st while-loop of (), call A-functions in turn (see line 3 in ().)

138. (T21, P12) since |T21|≤|P12| + |P13|, call () (line 2 in A().)

139. (<T211, T212>, <P121>) (1-5) holds (in the execution of ().) Call () (see line 7 in ().)

140. A(T211, <P121>) in the 1st while-loop of (), call A-functions in turn (see line 3 in ().)

141. (T211, P121) <P121> contains a single tree. Call () (line 2 in A().)

142. return <1, p12> (1-1) holds (in the execution of ().) Return <1, p11> since lable(t211) = lable(p121) = a (see line 2 in ().)

143. return <1, p12> return value of A(T211, <P121>) (see line 2 in A().)

144. return <1, p12> return value of (<T211, T212>, <P121>) (see lines 2 - 7, 8 in ().)

145. return <1, p1> return value of (T21, P12) (see line 7, 9 in ().)

146. return <1, p1> return value of A(T21, <P12, P13>) (see line 2 in A().)

147. A(T22, <P13>) in the 1st while-loop of (), call A-functions in turn (see line 3 in ().)

148. (T22, P13) <P13> contains a single tree. Call () (see line 2 in A().)

149. (<T221>, <P13>) (1-3) holds (in the execution of ().) Call () (see line 5 in ().)

150. A(T221, <P13>) in the 1st while-loop of (), call A-functions in turn (see line 3 in ().)

151. (T221, P13) <P13> contains a single tree. Call () (line 2 in A().)

152. return <0, p13> (1-1) holds, but l(t221) ≠ l(p13). Return <0, p13>. (line 3 in ().)

153. return <0, p13> return value of A(T221, <P13>) (see line 2 in A().)

154. return <0, p13> return value of (<T221>, <P13>) (see lines 2 – 7, 9 in ().)

155. return <0, p13> return value of (T22, P13). (see line 5 in ().)

156. return <0, p13> return value of A(T22, <P13>). (see line 2 in A().)

157. return <1, p1> return value of (<T21, T22>, <P12, P13>). (see lines 2 – 7, 8 in ().)

158. return <1, p1> return value of A(T2, <P12, P13>). (see lines 3, 4 – 5 in A().)

159. A(T3, <P13>) supplement checking

160. (T3, P13) <P13> contains a single tree. Call () (line 2 in A().)

161. return <1, p1> (1-4) holds (in the exec. of ().) Return <1, p11>. (see line 6 in ().)

162. return <1, p1> return value of A(T3, <P13>) (see line 2 in A().)

163. return <3, p1> return value of (<T1, T2, T3>, G). (see line 14, 16 in ().)

164. return <3, p1> return value of A(T, G). (see line 3, 7 in A().)

18 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO.X, XXXX 2018

Appendix III Sample Trace of Improved Algo-
rithm

Below we trace the execution of the improved algorithm

when applied to the tree T and the forest G shown in Fig.

11. As can be seen, this is a much shorter process (than the

sample trace of the basic algorithm when applied to the

same target and pattern trees), by which almost the whole

computation of A(T2, G) and A(T3, G) are discarded by us-

ing cuts.

First, we notice that the return value of A(T1, G, p111) is

<1, p1> (see line 20.) So the cut transferred to A(T2, G, p1) is

p1. Then, we will have the following recursive calls (see

lines 21, 22, and 23 in the sample trace):

 A(T2, G, p1) → (T2, P1, p1) → A(T2, <P11, P12, P13>, p1).

Since p11’s parent is p1 (instead of an ancestor of p1), A(T2,
<P11, P12, P13>, p1) c annot return a useful left corner.

 So the corresponding computation needn’t be performed
and we simply set its return value to be <0, p111> (see line in
the modified A-function; also see line 24 in the sample
trace.)

In a next step, we will call A(T3, G, p1) and the cut trans-
ferred to it is still p1. Accordingly, we have the following
recursive calls (see lines 27, 28, and 29 in the sample trace):

 A(T3, G, p1) → (T3, P1, p1) → A(T3, <P11, P12, P13>, p1).

For the same reason, A(T3, <P11, P12, P13>, p1) will not be
carried out, either, but with <0, p111> returned.

From the above explanation, we can see that the modi-
fied algorithm will return the same result as the basic ver-
sion, but require much less running time.

step-by-step trace: explanation:

1. A(T, G, p111) A(T, G) begins. Initially, the cut is set to be (G) = p111.

2. (<T1, T2, T3>, G, p111) since G is a forest and |T| > |P1| + |P2|, call () and the cut is transferred to () (line 4 in A().)

3. A(T1, G, p111) in the 1st while-loop of (), call A-functions in turn and the cut is transferred to A() (line 3 in ().)

4. (T1, P1, p111) since |T1|≤|P1| + |P2|, call () and the cut is transferred to () (line 3 in A().)

5. A(T1, <P11, P12, P13>, p111) (1-2) holds (in the exec. of ().) Call A() and the cut is transferred to A() (line 4 in ().)

(T1, P11, p111) since |T1|≤|P11| + |P12|, call () and the cut is transferred to () (line 3 in A().)

6. (<T11, T12>, <P111, P112>, p111) (1-5-ii) holds (in the exec. of ().) Call () and the cut is transferred to () (line 8 in ().)

7. A(T11, <P111, P112>, p111) in the 1st while-loop of (), call A-functions in turn and the cut is transferred to A() (line 3 in ().)

8. (T11, P111, p111) since |T11|≤|P111| + |P112|, call () and the cut is transferred to () (line 3 in A().)

9. return <1, p11> (1-4) holds (in the exec. of ().) Return <1, p11>. (line 6 in ().)

10. return <1, p11> return value of A(T11, <P111, P112>, p111) (see line 3 in A().

11. A(T12, <P112>, p112) in the 1st while-loop of (), call A-functions in turn and the cut is changed to p112 (line 3 in ().)

12. (T1, P112, p112) <P112> contains a single tree. Call () and the cut is transferred to () (line 3 in A().)

13. return <1, p11> (1-1) holds (in the execution of ().) Return <1, p11> since lable(t12) = lable(p112) = b (see line 2 in ().)

14. return <1, p11> return value of A(T12, <P112>, p112) (see line 3 in A().)

15. return <2, p11> the result of the 1st while-loop in the execution of (<T11, T12>, <P111, P112>, p111).

16. return <1, p1> return value of (T1, P11, p111) (Since lable(p11) = lable(t1) = c and d(p11) = 2, return <1, p1>. see line 8 in ().)

17. return <1, p1> return value of A(T1, <P11, P12, P13>, p111) (see line 3 in A().)

18. return <1, p1> return value of (T1, P1, p111) (see line 4 in  ().)

19. return <1, p1> return value of A(T1, G, p111) (see line 3 in A().)

20. A(T2, G, p
1
) in the 1st while-loop of (), call A-functions in turn and the cut is changed to p1 (line 3 in ().)

21. (T2, P1, p1
) since |T2|≤|P1| + |P2|, call () and the cut is transferred to () (line 3 in A().)

22. A(T2, <P11, P12, P13>, p
1
) (1-2) holds (in the exec. of ().) Call A() (see line 4 in ().)

23. returm <0, (P11)> Here, the computation is cut off since p11’s parent is not an ancestor of p1 .

24. return <0, p111> return value of (T2, P1, p1
) (see line 4 in ().)

25. return <0, p111> return value of A(T2, G, p
1
) (see line 3 in A().)

26. A(T3, G, p
1
) in the 1st while-loop of (), call A-functions in turn and the cut is still p

1
 (line 3 in ().)

27. (T3, P1, p1
) since |T3|≤|P1| + |P2|, call () and the cut is transferred to () (line 3 in A().)

28. A(T3, <P11, P12, P13>, p
1
) (1-2) holds (in the exec. of ().) Call A() (line 4 in ().)

29. returm <0, (P11)> Here, the computation is cut off again since p11’s parent is not an ancestor of p1 .

30. return <0, p111> the return value of (T3, P1, p1
) (see line 4 in ().)

31. return <0, p111> the return value of see A(T3, G, p
1
) (line 3 in A().)

32. A(T2, <P12, P13>, p
12

) supplement checking (done by a series of A-function calls.) The cut is set to p
12 since T1 contains P11.

33. (<T21, T22>, <P12, P13>, p
12

) |T2|> |P12| + |P13|. Call () and the cut is transferred to () (line 4 in A().)

34. A(T21, <P12, P13>, p
12

) in 1st while-loop of (), call A-functions in turn and the cut is transferred to A() (line 3 in ().)

35. (T21, P12, p12
) since |T21|≤|P12| + |P13|, call () and the cut is transferred to () (line 3 in A().)

36. (<T211, T212>, <P121>, p
121

) (1-5-i) holds (in the exec. of ().) Call () and the cut transferred to () is changed to p
121

 (line 7 in ().)

37. A(T211, <P121>, p
121

) in the 1st while-loop of (), call A-functions in turn and the cut is transferred to A() (line 3 in ().)

38. (T211, P121, p121
)) <P121> contains a single tree. Call () and the cut is transferred to () (line 3 in A().)

39. return <1, p12> (1-1) holds (in the exec. of ().) Return <1, p11> since lable(t211) = lable(p121) = a (line 2 in ().)

40. return <1, p12> return value of A(T211, <P121>) (see line 2 in A().)

41. return <1, p12> return value of (<T211, T212>, <P121>) (see lines 2 - 7, 8 in ().)

42. return <1, p1> return value of (T21, P12) (see line 7, 9 in ().)

43. return <1, p1> return value of A(T21, <P12, P13>) (see line 2 in A().)

CHEN AND YIBIN CHEN.: INTRODUCING CUTS INTO A TOP-DOWN PROCESS FOR CHECKING TREE INCLUSION 19

Appendix IV Correctness of the Algorithm
with cuts
In this Appendix, we prove the correctness of the Algo-

rithm A(T, G, v), where T = <t; T1, ..., Tk >, G = <P1, ..., Pq>.

Initially, v is set to be (G) and is trivially correct.
In the subsequent execution, the cut will be changed

and transferred from a function call to another. To see that
it is always correctly conducted, we need to examine three
kinds of A-to-A chains defined in the proof of Lemm 4:
 A →  → A,
 A →  →  → A, and
 A →  → A.

What we want to do is to demonstrate that by each of
three chains the cut is both correctly changed and trans-
ferred.

First, we notice that by A →  the cut transfer is obvi-
ously correct. (See line 3 in FUNCTION 4.)

Next, by A → , we distinguish between two cases:
i) label(t) = label(v), where v is the cut by the A-function

call. (See line 4 in FUNCTION 4.)

ii) label(t) ≠ label(v). (See line 5 in FUNCTION 4.)

In Case (i), the cut v for the β-function call is down-
graded to v’s first child. It is because if <T1, ..., Tk> is able to
cover the forests composed of all the subtrees respectively
rooted at all the children of v, T includes G[v]. Downgrad-
ing v to v’s first child will let the corresponding computa-
tion get through.

In Case (ii), the cut for the β-function call is still v since
any left corner returned by the β-function call will not be
used by the subsequent computation if it is lower than v.

Concerning the correctness of the cut transfer by  →
A,  → , and  → A, we need to repeat the discussion on
Cut Propagation in -function, as well as Cut Propagation in
-function, in Section 6. By these discussions, we can see
that both the cut change and cut transfer are correctly done
in all the cases. Therefore, by each of the three chains the
cut is either correctly changed or correctly transferred. So,
we have the following proposition.
Proposition 4 Let T = <t; T1, ..., Tk > and G = <P1, ..., Pq>. The
return value of A(T, G, v) is the highest and wildest left-
corner in G, which can be embedded in T and is higher than
v, or <0, (G)>. 

step-by-step trace: explanation:

45. A(T22, <P13>, p13) in the 1st while-loop of (), call A-functions in turn and the cut is changed to p13 (line 3 in ().)

46. (T22, P13, p13
) <P13> contains a single tree. Call () and the cut is transferred to () (line 3 in A().)

47. (<T221>, <P13>, p
13

) (1-3) holds (in the exec. of ().) Call () and the cut is transferred to () (line 5 in ().)

48. A(T221, <P13>, p13) in the 1st while-loop of (), call A-functions in turn and the cut is transferred to A() (line 3 in ().)

49. (T221, P13>, p13) <P13> contains a single tree. Call () and the cut is transferred to () (line 3 in A().)

50. return <0, p13> (1-1) holds, but l(t221) ≠ l(p13). Return <0, p13>. (line 3 in ().)

51. return <0, p13> return value of A(T221, <P13>) (see line 3 in A().)

52. return <0, p13> return value of (<T221>, <P13>) (see lines 2 – 7, 9 in ().)

53. return <0, p13> return value of (T22, P13). (see line 5 in ().)

54. return <0, p13> return value of A(T22, <P13>). (see line 2 in A().)

55. return <1, p1> return value of (<T21, T22>, <P12, P13>). (see lines 2 – 7, 8 in ().)

56. return <1, p1> return value of A(T2, <P12, P13>). (see lines 3, 4 – 5 in A().)

57. A(T3, <P13>, p13) supplement checking (the cut transferred to A() is set to be p13.)

58. (T3, P13, p13) <P13> contains a single tree. Call () and the cut is transferred to () (line 2 in A().)

59. return <1, p1> (1-4) holds (in the exec. of ().) Return <1, p11>. (see line 6 in ().)

60. return <1, p1> return value of A(T3, <P13>) (see line 2 in A().)

61. return <3, p1> return value of (<T1, T2, T3>, G) (see line 14, 16 in ().)

62. return <3, p1> return value of A(T, G). (see line 3, 7 in A().)

