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Introducing Cuts into a Top-down Process for 
Checking Tree Inclusion  

Yangjun Chen and Yibin Chen 

Abstract—By the ordered tree inclusion we will check whether a pattern tree P can be included in a target tree T, where the order 

of siblings in both P and T matters. This problem has many applications in practice, such as retrieval of documents, data mining, 

and RNA structure matching. In this paper, we propose an efficient algorithm for this problem. Its time complexity is bounded by 

O(|T| min{hP, |leaves(P)|}), with O(|T| + |P|) space being used, where hP (hT) represents the height of P (resp. T) and 

leaves(P) stands for the set of the leaves of P. Up to now the best algorithm for this problem needs (|T||leaves(P)|) time and 

O(|P| + |T|) space. Extensive experiments have been done, which show that the new algorithm can perform much better than the 

existing ones in practice. 

Index Terms—Tree matching, tree inclusion, ordered trees, cuts, cut propagation  
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1 INTRODUCTION

he ordered tree inclusion is important in applications 
such as document retrieval, data mining, and RNA 

structure matching, by which we will check whether a pat-
tern tree P can be included in a target tree T, where the or-
der of siblings in both P and T counts. 

Let T be a rooted tree. We say that T is ordered and labeled 
if each node is assigned a symbol from an alphabet  and 
a left-to-right order among siblings in T is specified. Let v 
be a node different of the root in T with parent node u. De-
note by delete(T, v) the tree obtained by removing the node 
v from T, by which the children of v become part of the 
children of u as illustrated in Fig. 1. 
 

 

 
 
 
 
 

 
Given two ordered labeled trees P and T, called the pat-

tern and the target, respectively. We may ask: Can we ob-
tain pattern P by deleting some nodes from target T? That 
is, is there a sequence v1, ...,vk of nodes such that for 

 T0 = T and 
 Ti+1 = delete(Ti, vi+1) for i = 0, ..., k - 1, 

we have Tk = P? If this is the case, T is said to include P. 
Such a problem is called the tree inclusion problem [11]. 

This problem has been recognized as an important 
query primitive for XML data [14], where a structured doc-
ument database is considered as a collection of parse trees 
that represent the structure of the stored texts and tree in-
clusion is used as a means of retrieving information from 
them.  

As an example, consider the tree shown in Fig. 2, repre-
senting an XML document for the book Arts of Program-
ming authored by D. Knuth. One might want to find this 
book in an XML database by forming a pattern tree as 
shown in Fig. 3 as a query, which can be obtained by 
deleting some nodes from the tree shown in Fig. 2. Thus, a 
tree inclusion checking needs to be conducted to evaluate 
this query. 

 

Another application of this problem is to query the 
grammatical structures of English sentences, which can 
also be represented as an ordered tree since a sentence can 
always be divided into several ordered components such 
as noun phrases, verb phrases, and adverbs; and a noun 
phrase itself normally contains an article and a noun while 
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Figure 2. A XML document (target) tree 
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a verb phrase may contain a verb, a noun phrase, an ad-
verb, and so on. To check whether a concrete sentence is 
grammatically correct, we will represent it as a pattern tree 
and make a tree inclusion checking against some target 
grammatical tree structures. 

A third application of the ordered tree inclusion is the 
video content-based retrieval. According to [16], a video 
can be successfully decomposed into a hierarchical tree 
structure, in which each node represents a scene, a group, 
a shot, a frame, a feature, and so on. Especially, such a tree 
is an ordered one since the temporal order is very im-
portant for video. 

Some other areas, in which the ordered tree inclusion 
finds its applications, are computational biology, such as 
RNA structure matching [13], and data mining, such as tree 
mining discussed in [17], just to name a few. 

Up to now, the best algorithm for this problem requires 
O(|T| + |P|) space and (|T||leaves(P)|) time [2], where 
leaves(P) stands for the set of the leaves of P. 

In this paper, we propose an efficient algorithm for this 
problem. Its time and space complexities are bounded by 
O(|T|min{hP, |leaves(P)|}), and O(|T| + |P|), respec-
tively, where hP (hT) is the height of P (resp. T), defined to 
be the number of edges on the longest downward path 
from the root to a leaf node. 

The rest of the paper is organized as follows. In Section 
2, we review the related work. In Section 3, we give some 
basic definitions and describe what is a tree inclusion. In 
Section 4, we discuss the main idea of our method. Section 
5 and 6 are devoted to the algorithm description. First, in 
Section 5, a basic algorithm is presented, and then how it 
can be improved is discussed in Section 6. In Section 7, we 
analyze the computational complexities. In Section 8, we 
report the test results. Finally, a short conclusion is set forth 
in Section 9. 

2 RELATED WORK 
The ordered tree inclusion was initially introduced by 
Knuth [12], where only a sufficient condition for this prob-
lem is given. Its first polynomial time algorithm was pro-
posed by Kilpeläinen and Mannila [11] with O(|T||P|) 
time and space being used. This computational complexity 
has be slightly improved by several researchers, but none 
of them is able to break through the quadratic time bottle-
neck.  

In [15], Richter gave an algorithm using O(|a(P)||T| 
+ m(P, T)hT) time, where a(P) is the alphabet of the labels 
of P, m(P, T) is the number of matches, defined as all the 
pairs (v, w)  P  T such that label(v) = label(w), and hT 
(resp. hP) is the height of T (resp. P). Hence, if the number 
of matches is small, the time complexity of this algorithm 
is better than O(|T||P|). The space complexity of the al-
gorithm is O(|a(P)||T| + m(P, T)). In [3], Chen proposed 
a more sophisticated algorithm which requires 
O(|T||leaves(P)|) time and O(|leaves(P)| min{hT, 
|leaves(T)|} + |T| + |P|) space, where leaves(T) (resp. 
leaves(P)) stands for the set of the leaves of T (resp. P). The 
method discussed in [1] is an efficient average case algo-
rithm. Its average time complexity is O(|T| + C(P, T)|P|), 
where C(P, T) represents the number of T’s nodes that have 

been examined during the inclusion search. However, its 
worst time complexity is still O(|T||P|). Recently, Bille 
and Gørtz presented a space-economical algorithm [2]. Its 
space overhead is O(|T| + |P|), but with its time com-
plexity bounded by 

 

 

In [4], a first top-down algorithm was proposed. Its space 
requirement is bounded by O(|T| + |P|). However, its 
time complexity is not polynomial, as shown in [9]. This 
algorithm is improved by [6, 8]. The algorithm discussed 
in [6] needs O(|T||P|) time while the algorithm in [8] re-
quires O(|T|dhp) time, where d is the largest outdegree of 
a node in P. However, in both [6] and [8], no time analysis 
is delivered. The algorithm given in [7] fails to produce cor-
rect answers in some cases. 

In this paper, we revisit this issue and present a new 
top-down algorithm to remove any redundancy of [4] by 
introducing cuts into a top-down working process to get 
rid of any useless computation. Its space overhead is 
bounded by O(|T| + |P|), and its time complexity is re-
duced to O(|T|min{hP, |leaves(P)|}). 

The tree inclusion problem on unordered trees is NP-
complete (see [11]) and not discussed in this paper. 

3 BASIC DEFINITION 
In this section, we mainly define the notations that will be 
used throughout the paper. Let T be a labeled tree that is 
ordered, i.e., the order between siblings is significant. We 
denote the set of nodes and edges by V(T) and E(T), respec-
tively. By the size of T we mean the number of nodes in T, 
denoted as |T|. 

Technically, it is convenient to consider a slight gener-
alization of trees, namely forests, which are defined to be a 
set of disjoint trees. A tree T consisting of a specially desig-
nated node root(T) = t (called the root of the tree) and a for-
est <T1, ..., Tk> is denoted as <t; T1, ..., Tk>, where k  0 and 
the root of each Tj (1  j  k) is a child of t. We also call Tj (1 
 j  k) a direct subtree of t. 

Let u, v be two nodes in T. If there is path from node u 
to node v, we say, u is an ancestor of v and v is a descendant 
of u. In this paper, by ancestor (descendant), we mean a 
proper ancestor (descendant), i.e., u  v. We will use u ↝ v 
to represent that u is a proper ancestor of v. 

The ancestorship in a tree can be checked very effi-
ciently by using a kind of tree encoding [10], which labels 
each node v in a tree with an interval Iv = [av, bv], where bv 

denotes the rank of v in a post-order traversal of the tree. 
Here the ranks are assumed to begin with 1, and all the 
children of a node are assumed to be ordered and fixed 
during the traversal. Furthermore, av denotes the lowest 
rank for any node u in T[v] (the subtree rooted at v, includ-
ing v). Thus, for any node u in T[v], we have Iu  Iv since 
the post-order traversal visits a node after all its children 
have been visited. In Fig. 4, we illustrate such a tree encod-
ing, assuming that the children are ordered from left to 
right. It is easy to see that by interval containment we can 

min 

O(|T||leaves(P)|) 

O(|leaves(T)||leaves(P)|loglog|T| + |T|) 

O(|T||P|/(log|T|) + |T|log|T|) 
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check whether two nodes are on a same path. For example, 
v3 ↝ v10, since = [1, 5], = [3, 3], and [3, 3]  [1, 5]; but 
v9 is not reachable from v2 since = [10, 13], = [1, 2], 
and [1, 2]  [10, 13]. 

Let I = [l, r] be an interval. We will refer to l and r in I as 
I.l and I.r, respectively. The following lemma is from [10]. 

Lemma 1 For any two intervals I and I generated for two 
nodes in a tree T, one of four relations holds: I  I, I  I, 
I.r < I.l, or I.r < I.l.  

Based on Lemma 1, the left-to-right ordering of nodes 
can also formally be defined. A node u is said to be to the 
left of v if they are not related by the ancestor-descendant 
relationship and v follows u when we traverse T in preor-
der. Then, u is to the left of v if and only if Iu.r < Iv.l. 

 

 

 

 

 

 

 

 

In the following, we use ≺ to represent the left-to-right 
ordering. Also, v ≺ v  iff v ≺ v  or v = v. 

The following definition is due to Kilpeläinen and Man-
nila [11]. 

Definition 1 Let F and G be labeled ordered forests. We 
define an ordered embedding (, G, F) as an injective func-
tion : V(G) → V(F) such that for all nodes v, u  V(G), 
i) label(v) = label((v)); (label preservation condition) 
ii) v ↝ u iff (v) ↝ (u), i.e., Iu  Iv iff I(u)  I(v); (ancestor 

condition) 
iii) v ≺ u iff (v) ≺ (u), i.e., Iv.r < Iu.l  iff I(v).r < I(u).l. (sibling 

condition)  

If there exists such an injective function from V(G) to 
V(F), we say, F includes G, F contains G, F covers G, or say, 
G can be embedded in F. 

Fig. 5 shows an example of an ordered tree inclusion. 
 

 

 

 

 

 

 

 

 

 

Let P and T be two labeled ordered trees. An embedding 
 of P in T is said to be root-preserving if (root(P)) = root(T). 
If there is a root-preserving embedding of P in T, we say 
that the root of T is an occurrence of P. 

Fig. 5(b) also shows an example of a root preserving em-
bedding. According to Kilpeläinen and Mannila [11], re-
stricting to root-preserving embedding does not lose gen-
erality. In fact, the method to be discussed works top-down 
and always tries to find root-preserving subtree embed-
dings. 

Throughout the rest of the paper, the outdegree of v (the 
number of v’s chldren) in a tree is denoted by d(v) while 
the height of v is denoted by h(v). The height of a leaf node 
is set to be 0. In addition, we refer to the labeled ordered 
trees simply as trees. 

In the Appendix I, we show all the notations and sym-
bols used in the paper for reference. 

4 MAIN IDEA - CUTS 
The main idea of our algorithm consists in a mechanism 
called cut checking introduced into a top-down tree search 
to get rid of useless computation. 

Let T = <t; T1, ..., Tk> (k  0) be a tree and G = <P1, ..., Pq> 
(q  0) be a forest (as illustrated in Fig. 6).  

 
 
 
 
 
 
 

 
We handle G as a tree P = <G; P1, ..., Pq>, where G rep-

resents a virtual node, matching any node in T. Note that 
even when G contains only one single tree it is still consid-
ered to be a forest. So, a virtual root is added. Therefore, 
each node in G, except the virtual node, has a parent. 

Consider a node v in G with children v1, ..., vk. We use a 
pair <[i, j], v>, called an interval rooted at v, to represent an 
ordered forest <G[vi], ..., G[vj]> made up of a series of sub-
trees rooted at vi, ..., vj, respectively. 

Definition 2 Consider an interval of the form <[1, i], v>, 
representing an ordered forest containing the first i sub-
trees of v: <G[v1], ..., G[vi]>. For simplicity, it is also denoted 
as <i, v>. If v is G, or a node on the left-most path in P1, <i, 
v> is called a left-corner of G [5].  

The motivation to introduce such a concept is that our 
algorithms are designed to find left-corners. Especially, <i, 
G> is a left-corner, representing the first i subtrees in G: 
P1, ..., Pi. So, <q, G> stands for the whole G.  

In addition, we will use  vi, to represent the forest 
<G[vi+1], ..., G[vk]>, referred to as the complement of <i, v>. 
When it is clear from the context, we may use <G[vi], ..., 
G[vj]> and <[i, j], v> interchangeably without causing any 
confusion. 

Let u be a node on the left-most path in P1. Let <i, v> be 
a left-corner of G. If v = u, we say that <i, v> and u are level-
equal, denoted as <i, v>  u. If v is an ancestor of u, we say, 
<i, v> is higher than u, denoted as <i, v> ↝ u. Then, <i, v> 
↝ u represents that <i, v> is higher than or level-equal to u. 

In particular, we will use A(T, G) = <i, v> to represent a 
checking of G against T, returning a highest and widest left-
corner <i, v> in G with the following properties: 

3vI
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Figure 4. Illustratin for tree encoding 
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• If i > 0 and v is not the left-most leaf node, it shows that 
- the first i subtrees of v can be embedded in T; 
- for any i′ larger than i, <i′, v> cannot be embedded 

in T; and 
- for any v’s ancestor u on the left-most path in G, 

there exists no j > 0 such that <j, u> is able to be em-
bedded in T. 

• If i = 0 or v is the left-most leaf node of G (denoted as 

(G)), it indicates that no left-corner of G can be em-
bedded in T.    

Now we consider a tree T and a forest G shown in Fig. 
6, in which each node in T is identified with ti…j such that 
ti…jk is the kth child of ti…j. For example, t01 (simplified as t1) 
is the first child of t0, t12 is the second child of t1, and so on; 
and each node in G is identified with pl…k. Besides, each 
subtree rooted at ti…j (pl…k) is represented by Ti...j (resp. Pl…k). 

In Fig. 6, in order to check whether T includes G = <P1, 
P2>, we can first check whether T1 alone includes G. That 
is, we will perform a recursive call as follows: 

 A(T, <P1, P2>) → A(T1, <P1, P2>). 

Assume that A(T1, <P1, P2>) returns <i, v>. We may have 
one of three cases: 
Case 1: <i, v> = <2, G>. In this case, T1 contains G. 
Case 2: <i, v> = <1, G>. In this case, T1 contains only P1, and 

we will call A(T2, <P2>) in a next step. 
Case 3: v  G, but a node on the left-most path in P1. That 

is, T1 contains only a left-corner not higher than p1. 
This case is complicated and needs to be handled 
carefully, as described below. 

In Case 3, we continue to check whether T2 alone is able 
to include G (by calling A(T2, <P1, P2>). This time, however, 
we will use v (in <i, v>, the return value of A(T1, <P1, P2>)) 
to control the working process to cut off part of the com-
putation once we find that a left-corner higher than v can-
not be produced. It is because such a computation will not 
make any contribution to the final result due to the follow-
ing observation. 

Assume that A(T2, <P1, P2>) returns <i′, v′> with v = v or 
v ↝ v′. Then, in a next step, we will check T3 against <P1, 
P2> by calling A(T3, <P1, P2>). 

If its return left-corner is higher than v, then we will use 
this left-corner as the return value <i′′, v′′> of A(T, <P1, P2>). 
Then, <i′, v′> is not used, as illustared in Fig. 7(a). 

 
If <i′′, v′′> is not higher than v, we will make a supple-

ment checking of <T2, T3> against  vi,  (the complement of 
<i, v>) to see whether <T2, T3> is able to embed some sub-
trees in  vi, . Assume that <T2, T3> embeds the first j sub-
trees in  vi, . Then, the return value of A(T, <P1, P2>) 
should be <i + j, v>. It is because in this case we have T1 

cover <i, v> = <G(v1), …, G(vi)> and <T2, T3> cover 
<G(vi+1), …, G(vi+j)> in  vi, . So, <T1, T2, T3> together covers  
<G(v1), …, G(vi), G(vi+1), …, G(vi+j)>.  Again, <i′, v′> is not 
used, but without impacting the correctness according to 
the following analysis: 

If v ↝ v′, or v = v but i′ ≤ i, <i′, v′> is obviously useless 

for the final result. However, even if v = v with i′ > i, it 

is still useless since in this case, there is definitely an in-

teger j  i′ - i such that <T2, T3> embeds the first j sub-

trees in  vi, , and the supplement computation will 

find this embedding. 

The reasoning here is quite simple. If T2 alone is able to 
cover <i′, v′> with v′ = v and i′ > i, <T2, T3> can definitely 
cover a left corner not narrower than <i′, v′>, and then is 
able to cover <[i + 1, i], v′> or possibly a wider interval 
starting from i + 1. We use a supplement checking to do 
this while cut off the computation for <i′, v′> to avoid re-
dundancy. 

See Fig. 7(b) for illustration. 

The above discussion shows that if A(T2, <P1, P2>) cannot 
return a left-corner higher than v, the corresponding work 
is futile and should be avoided. However, avoiding the 
whole work seems not possible. Yet we can really effec-
tively block a significant part of the useless computation 
by using the partial results (represented as a left corner) 
obtained in the previous steps. 

The following example helps for illustration on how to 

cut off futile work. 

Example 1 Consider the tree T and the forests G shown in 

Fig. 8. 

 
 
 
 
 
 
 

 

 

 

In order to check whether T includes G, we will first 
check T1 against G = <P1, P2>. Obviously, T1 is not able to 
embed G. However, it can embed P11 and therefore the re-
turn value of this checking should be <1, p1>. In a next step, 
we will check T2 against G, and try to see if T2 alone is able 
to embed G. But this time, p1 will be utilized to control the 
process. More specifically, it will effectively block the 
checking of T2 against P11 since this checking can only pos-
sibly return a left-corner not higher than p1.  

We refer to a node like p1 in Example 1 as a cut. 

Definition 3 A cut for a call A(T, <P1, …, Pq>) (q ≥ 1) is a 
node v on the left-most in P1, indicating that only a left cor-
ner higher than v will be returned by A(T, G, v) if it is em-
beddable in T. Otherwise, A(T, <P1, …, Pq>) returns <0, 
(G)>.  

In the following, we will first, for ease of understanding, 
give an algorithm for checking tree inclusion without cuts 
in Section 5. Then, in Section 6, a complete algorithm with 
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cuts (more specifically, with cut propagation and cut check-
ing) will be presented. 

5 BASIC ALGORITHM 
In this section, we present our basic algorithm A(T, G) to 
check a tree T (= <t; T1, …, Tk>) against a forest G (= <P1, ..., 
Pq>). The algorithm works in a multiple recursive way in 
the sense that different kinds of recursive calls will be car-
ried out in terms of different characteristics of inputs. In 
general, two cases need to be recognized: 

In Case 1, we have G = <P1>; or G = <P1, ..., Pq> with q > 1, 
but |T|  |P1| + |P2|. In this case, what we can do is to 
check T against P1 since it is not possible for T to embed 
more than one subtree in G. 

In Case 2, we have G = <P1, ..., Pq> with q > , and |T| > 
|P1| + |P2|. In this case, we will check <T1, ..., Tk> against 
the whole G since in this case we may have a sequence of 
subtrees , …, with each being able to embed some 
subtrees in G.  

It seems that Case 1 is a base case while Case 2 is a gen-
eral one and needs to be reduced to Case 1 for handling. 
Due to the hierarchical structure of trees, however, when 
handling Case 1, we may meet Case 2 again. That is, these 
two cases can be interleaved in some way. For this reason, 
we define two subfunctions: -function and -function, 
used to handle Case 1 and Case 2, respectively: 

 (T, P1) = <i, v>, (1) 

where <i, v> is a highest and widest left-corner in P1, which 
can be embedded in T. 

 (<T1, ..., Tk>, G) = <j, u>, (2) 

where <j, u> is a highest and widest left-corner in G, which 
can be embedded in <T1, ..., Tk>. 

Here, our intention is quite straightforward: 

In Case 1 we will call (T, P1) and in Case 2 we will call 
(<T1, ..., Tk>, G). However, during the working process, 
they may call each other recursively. 

Additionally, in Case 2, the return value <j, u> of 
(<T1, ..., Tk>, G) needs to be further checked as follows: 

- If label(t) = label(u) and j = d(u), the return value of A(T, 
G) should be set to <1, u’s parent>, showing that T in-
cludes G[u]. Otherwise, the return value of A(T, G) is the 
same as <j, u>. (For this reason, d(G) is set to be , larger 
than the outdegree of any node in both T and G. Thus, 
in the case that T contains <P1, …, Pq>, the return value 
must be <q, vG>, not <1, vG‘s parent>.) 

- If label(t) ≠ label(u) or j ≠ d(u), the return value of A(T, 
G) is the same as <j, u>, showing that T embeds <P1, ..., 
Pj>. 

By using the -function and the -function, the algo-
rithm for A(T, G) can be described as below. 

FUNCTION 1. A(T, G) 

input: T = <t; T1, ..., Tk >, G = <P1, ..., Pq>. 
output: a left corner. 
begin 
1. if (q = 1 or |T[t]|  |G[p1]| + |G[p2]|) (*Case 1*) 
2. then return (T, P1) 
3. else  <j, u> := (<T1, ..., Tk>, G); (*Case 2*) 

4.  if (label(t) = label(u) and j = d(u) 
5. then return <1, u’s parent>;  
6. return <j, u>;  
end 

In the following, both the -function and -function will 
be discussed in great detail. 

- -function 

In order to implement the -function, we need to associate 
each node v in G with a link to the left-most leaf node in 
G[v], denoted as (v), as illustrated in Fig. 9. 

Let v' be a leaf node in G. (v') is defined to be a link to 
v' itself. So in Fig. 9, we have (v1) = (v2) = (v3) = (v4) = 
v4, (v5) = (v6) = v6, (v7) = v7, and (v8) = v8. Denote by (v') 
a set of nodes x such that for each v  x (v) = v'. Thus, in 
Fig. 9, we have (v4) = {v1, v2, v3, v4}, (v6) = {v5, v6}, (v7) = 
{v7}, and (v8) = {v8}. Let p1 be the root of P1. We also have 
(G) = (p1). 

 

 
 
 
 
 
 

 
Let T = <t; T1, …, Tk>, G = <P1, ..., Pq>. In (T, P1), alto-

gether five different cases as listed in Fig. 10 should be 
checked. 
 

 
 
 
 
 
 
 

 

 

Obviously, in Case (1-1), where t is a leaf node, we will 
check whether label(t) = label((p1)) since (p1) is the only 
left-corner which can possibly be covered by t. If it is the 
case, return <1, parent of (p1)>. Otherwise, return <0, 
(p1)>. 

In Case (1-2), where |T| > 1, but |T|  |P1| or h(t) < h(p1), 
we will make a recursive call A(T, <P11, ..., P1j>), where 
<P11, ..., P1j> is a forest containing all the direct subtrees of 
p1. The return value of A(T, <P11, ..., P1j>) is used as the re-
turn value of (T, P1). It is because in this case, T is not able 
to embed the whole P1. So we will try to find whether T is 
able to embed a left-corner within <P11, ..., P1j>. 

If |T|  |P1| and h(t)  h(p1) (but |T|  |P1| + |P2|), 
we further distinguish among three cases: Case (1-3), (1-4) 
and (1-5). 

In Case (1-3), we have label(t)  label(p1), and we will 
call (<T1, ..., Tk>, <P1>) to see whether (<T1, ..., Tk> is able 
to embed P1. 

In Case (1-4), we have label(t) = label(p1) and p1 is a leaf 
node. In this case, we return <1, p1’s parent>.  

1l
T

ml
T

v3 

v1 

v2 v8 

v5 

(v1) 

(v2) 

Figure 9. A pattern tree 
v4 v6 v7 

(v3) 
(v5) 

Figure 10. Different cases to be checked in -function 

t is a leaf node 

label(t) = label(p1) 

label(t)  label(p1) 

(1 – 1) 

(1 – 2) 

(1 – 4) 

(1 – 3) 

|T| > 1, but |T| < |P1| or h(t) < h(p1) 

|T|  |P1| and h(t)  h(p1) 

(but |T|  |P1| + |P2|) 
p1 is a leaf 

p1 is not a leaf (1 – 5) 
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In Case (1-5), we have label(t) = label(p1), but p1 is not a 
leaf node. In this case, we need to call (<T1, ..., Tk>, <P11, ..., 
P1j>). Assume that the return value of ( ) is <i, v>. We need 
to do an extra checking: 

- If label(t) = label(v) and i = d(v), the return value of A(T, 
G) is set to be <1, v’s parent>. 

- Otherwise, the return value of (T, G) is the same as <i, 
v>. 
According to the above discussion, we give the follow-

ing formal algorithm for the -function. 

FUNCTION 2. (T, P1) 

input: T = <t; T1, ..., Tk >, P1 = <p1; P11 ..., P1j>. 
output: a left corner. 
begin 
1. if (1-1) then if label(t) = label((p1)) 
2.   then return <1, (p1)’s parent> 
3.   else return <0, (p1)>;  
4. if (1-2) then return A(T, <P11, ..., P1j>); 
5. if (1-3) then return (<T1, ..., Tk>, <P1>); 
6. if (1-4) then return <1, p1’s parent>; 
7. if (1-5) then <j, u> := (<T1, ..., Tk>, <P11, ..., P1j>); 
8. if j = d(u)  label(t) = label(u) then return <1, u’s parent> 
9.  else return <j, u>; 
end 

- -function 
In comparison with the -function, the -function is more 
interesting. It is designed to handle the general Case 2. Let 
F = <T1, ..., Tk> and G = <P1, ..., Pq>. Denote by tl the root of 
Tl (l = 1, ..., k). Denote by pj the root of Pj (j = 1, ...,q). In (F, 
G), we will make a series of calls A(Tl, <

lj
P , ..., Pq>), where l 

= 1, ..., x  k, j1 = 1, j1  j2  ...  jx  q, controlled as follows. 

1. Two index variables l, j are used to scan T1, ..., Tk and 
P1, ..., Pq, respectively. (Initially, l is set to 1, and j is set to 
0.) They also indicate that <P1, ..., Pj> has been success-
fully embedded in <T1, ..., Tl>. 

2. Let <il, ul> be the return value of A(Tl, <Pj+1, ..., Pq>). If ul = 
pj+1’s parent, set j to j + il. Otherwise, j is not changed. Set 
l to l + 1. Go to (2) (i.e., repeat this step.) 

3. The loop terminates when all Tl’s or all Pj’s are examined. 
(Fig. 11 helps for illustration of this iteration process.) 

4. If j > 0 when the loop terminates, (F, G) returns <j, p1’s 
parent>, indicating that F contains P1, ..., Pj. Otherwise, j 
= 0, indicating that even P1 alone cannot be embedded 
in any  (    k) However, in this case, we need 
to continue looking for a highest and widest left-corner 
<i, u> in P1, which can be embedded in F. This can be 
done as follows. 

 i) Let <i1, v1>, ..., <ik, vk> be the return values of A(T1, 
<P1, ..., Pq>), ..., A(Tk, <P1, ..., Pq>), respectively. Since j 
= 0, each vl  ((G)) (l = 1, ..., k). 

 ii) If each il = 0, the return value of (F, G) should be <0,  

(G)>. Otherwise, there must be some vl’s with il > 0. 

We call such a node a non-zero point. Find the first 

non-zero point vf with children w1, ..., ws such that vf 

is not a descendant of any other non-zero point. Then, 

we will check <Tf+1, ..., Tk> against <P[ 1+fiw ], ..., P[ws]>. 

This can be done by a recursive call (<Tf+1, ..., Tk>, 

<P[ 1+fiw ], ..., P[ws]>). Let y be a number such that 

<P[ 1+fiw ], ..., P[ yi f
w + ]> can be embedded in <Tf+1, ..., 

Tk>. The return value of (F, G) should be set to <if + 

y, vf>.  

In the above process, (1), (2) and (3) together are re-
ferred to as a main computation while (4) alone as a supple-
ment computation. 
 
 
 
 
 
 
 
 
 
 

 
In addition, special attention should be paid to the con-

dition under which a supplement computation is con-
ducted: 

- j = 0, and 

- there exists at least a non-zero point. 

We refer to this condition as the supplement checking con-

dition (SCC-condition for short). In terms of the above dis-

cussion, we give the following formal algorithm for the -

function. 

FUNCTION 3. (F, G) 

input: F = <T1, ..., Tk>, G = < P1, ..., Pq>. 
output: a left corner. 
begin 
1. l := 1; j := 0; v := (G); f := 0;   
2. while (j < q and l  k) do (*main checking*) 
3.  <il, vl> := A(Tl, <Pj+1, ..., Pq>) 
4.  if (vl = p1’s parent and il > 0) then {j := j + il;} 
5.  else  if (vl is an ancestor of v and il > 0) 
6.   then {v := vl; f := l;}  
7.  l: = l + 1; 
8. if j > 0 then return <j, p1’s parent>; 
9. if f  = 0 then return <0, (p1)>; 
10. let w1, ..., ws be the children of vf;  
 (*supplement checking*) 
11. l := f + 1; j := if; 
12. while (j < s and l  k) do   
13.  <il, vl> := A(Tl, <G[wj+1], ..., G[ws]>); 
14.  if (vl = vf  and il > 0) then j := j + il; 
15.  l := l + 1;  
16. return <j, vf>; 
end 

In the above algorithm, we have two while-loops: one from 
line 2 to 7 and the other from line 12 to 15. In the first while-
loop, we do the main computation to find a largest j such 
that <T1, ..., Tk> embeds <P1, ..., Pj>. In the second while-loop, 
the supplement computation will be conducted when the 
SCC-condition is satisfied. 

In order to record the first non-zero point which is not 
a descendant of any other non-zero point, variable f is 
used. Initially, f is set 0. Therefore, if no non-zero point is 
found, we must have f = 0 after the main computation is 
completed. So only when j = 0 and f > 0, the SCC-condition 

 

…  

Figure 11. Illustration for an execution of -function 
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is satisfied and the supplement computation will be per-
formed (see lines 8 and 9), in which we check <Tf+1, ..., Tk> 
against <P[ 1+fiw ], ..., P[ws]>, where 1+fiw , …,  
ws are all those children of the first non-zero point vf such 
that the subtrees rooted at them are not covered by <T1, ..., 
Tf>. (Notice that <if, vf> is the return value of A(Tf, <P1, ..., 
Pq> with if > 0.) In Appendix II, we will trace an execution 
of the basic algorithm when applied to the tree T and the 
forest G shown in Fig. 8. 

- Correctness 
Concerning the correctness of this algorithm, we first give 
two lemmas, based on which a strict proof can then be es-
tablished. 

Lemma 1 If both the -function and -function return the 
correct value, then the A-function must return a correct 
value. That is, the return value of A-function must be a 
highest and widest left corner in G that can be embedded 
in T.  
Proof. Let T = <t; T1, ..., Tk >, G = <P1, ..., Pq>. In A(T, G) , we 
distinguish between two cases: (i) q = 1 or |T|  |P1| + 
|P2|, and (ii) q > 1 and |T| > |P1| + |P2|. In case (i), what 
we can do is to check T against P1 to find the highest and 
widest left corner which can be embedded in T. This is 
done by calling (T, P1). If -function is correct, then the 
return value of A-function is correct in this case. In case (ii), 
if T is able to cover <P1, ..., Pl> with 1 < l  q, then <T1, ..., Tk> 
must be able to cover <P1, ..., Pl>  since we cannot use t to 
map any node G. 

If we map t to a node, say p in G, all the nodes in <T1, ..., 
Tk> have to be mapped to the nodes in G[p], excluding p, to 
satisfy the ancestor condition in the definition. So we call 
(<T1, ..., Tk>, G) to do this task. Let <j, u> be the return value 
of (<T1, ..., Tk>, G). We further need to check whether la-
bel(u) = label(u). If it is the case, T covers <1, u’s parent>. 
Otherwise, T only covers <j, u>. Thus, in case (ii), if the -
function is correct, the return value of the A-function must 
be correct.  

In a similar way, we can prove Lemma 2. 

Lemma 2 If the A-function returns the correct value, then 
the return values of both the -function and -function 
must be correct.  
Proof. The lemma can be proven by analyzing the five cases 
in the -function, as well as the main checking and the sup-
plement checking in the -function.  

Obviously, we cannot claim the correctness of the algo-
rithm based on Lemma 1 and 2 since they are just a kind of 
circular arguments. But they can be used in the induction 
step of an induction proof  given in the following proposi-
tion if the correctness of A-function, or -function and -
function for the basic case can be established. 

Proposition 1 Let T = <t; T1, ..., Tk > and G = <P1, ..., Pq>. The 
return value of A(T, G) is the highest and wildest left-cor-
ner in G, which can be embedded in T. 
Proof. We prove the proposition by induction on the sum of 
the heights of T and G, H = hT + hG.  
Basic step. When H = 0, T is a singular t, and G is a set of 
nodes: p1, ..., pq. In this case, the algorithm returns <0, p1> or 
<1, vG>, depending on whether label(t) = label(p1). See lines 

4 - 6 in A( ). 
When H = 1, we need to consider the following two cases. 
(i) T is a tree of height 1: <t; t1, ...,tk>, and G is a set of nodes: 

<p1, ..., pq>. 
(ii) T is a singular t; but G is a set of trees of height 1. 

In case (i), we further distinguish between two cases. 

• If |T|  |P1| + |P2| = 2 (i.e., if t has at most only one child 

t1), (T, P1) will be called (see lines 1 – 2 in A( )). If label(t) 

 label(p1), we have Case (1-3) and will call (<T1>, <P1>), 

which leads to the call A(T1, <P1>) (see line 3 in ( )) and 

then to the call (T1, P1). Since T1 contains only a single 

node t1, we have Case (1-1) and returns <1, vG> or <0, p1> 

depending on whether label(t1) = label(p1) (see lines 1 – 3 

in ( )). If label(t) = label(p1), we have Case (1-4) since p1 

is a leaf, and return <1, vG>. 

• If |T  P1| + |P2| = 2, (<t1, ...,tk>, <p1, ..., pq>) will be in-

voked (see line 4 in A( )), which will find a sequence of 

integers: k1, ..., kx such that label(
ikt ) = label(pi) (i = 1, ..., 

x) (see line 3 in ( )). The return value is <x, vG> (0  x  

q). 

In case (ii), the return value is <0, p1> or <1, p1>, depending 
on whether t matches the first child of p1. See lines 1 - 2 in 
A( ), and Case (1-1) in ( ). 
Induction hypothesis. Assume that when H = h  1, the 
proposition holds. 

Consider T = <t; T1, ..., Tk> and G = <P1, ..., Pq> with H = 
hT + hG = h + 1.  

If q = 1, or q >  but |T|  |P1| + |P2|, (T, P1) will be 
invoked. If it is case (1-1), or (1-4), the proposition obvi-
ously holds. 

If it is case (1-2), A(T, <P11, ..., P1j>) will be invoked. Since 
the sum of the height of T and the height of <P11, ..., P1j> is 
equal to h, according to the induction hypothesis, the prop-
osition holds. 

If it is case (1-3), (<T1, ..., Tk>, <P1>) will be called, by 
which a series of calls A(Tl, <P1>) will be conducted, where 
l = 1, ..., x  k, j1 = 1, j1  j2  ...  jx  q. According to the in-
duction hypothesis, each A(Tl, <P1>) returns a correct value. 
Thus, in terms of Lemma 2, the return value of (<T1, ..., 
Tk>, <P1>) must be correct. 

If it is case (1-5), (<T1, ..., Tk>, <P11, ..., P1j>) will be in-
voked, by which a series of calls A(Tl, <P11, ..., P1j>) will be 
carried out. Again, the sum of the height of Tl and the 
height of <P11, ..., P1j>) equals h - 1. So, according to the in-
duction hypothesis and Lemma 2, the proposition also 
holds.  

If q >  and |T|  |P1| + |P2|, (<T1, ..., Tk>, G) will be 
called, by which a series of calls A(Tl, <

1j
P , ..., Pq>) will be 

 conducted, where l = 1, ..., x  k, j1 = 1, j1  j2  ...  jx  q. In 
the same way as (1-3) and (1-5), we can demonstrate the 
correctness of A(T, G) for this case.  

By Proposition 1, the algorithm will always return a cor-
rect answer. However, it is not an efficient algorithm since 
much useless work has to be conducted, as illustarted in 
Fig. 7. 
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6 ALGORITHM WITH CUTS 
In order to use cuts to discard useless computations, two 
issues have to be addressed: (i) how a cut is checked during 
an execution of the A-function, and (ii) how a cut is trans-
ferred between two consecutive recursive calls of the A-
function, -function, as well as -function. 

To this end, we change A(T, G) to take an extra param-
eter (i.e., a cut) v  ((G)), indicating that only a left corner 
higher than v will be returned by A(T, G, v) if it is embed-
dable in T. Otherwise, A(T, G, v) returns <0, (G)>. -func-
tion and -function will also be accordingly changed such 
that within A(T, G, v), the cut v can be transferred to both 
(T, P1, v) and (<T1, …, Tk>, G, v).  

We first slightly modify the A-function as below. Ini-
tially, the cut is set to be (G). 

FUNCTION 4. A(T, G, v) (*Initially, v is set to be (G).*) 

input: T = <t; T1, ..., Tk >, G = <P1, ..., Pq>. 
output: a left corner. 
Begin 
1. if p1’s parent is not an ancestor of v then return <0, (G)>; 
2. if (q = 1 or |T[t]|  |G[p1]| + |G[p2]|) (*Case 1*) 
3. then return (T, P1, v) 
4. else if label(t) = label(v) (*Case 2*) 
5. then <j, u> := (<T1, ..., Tk>, G, v’s first child ); 
6. else <j, u> := (<T1, ..., Tk>, G, v);  
7. if v  p1’s parent 
8. then  if (label(t) = label(u)  j = d(u) 
9. then return <1, u’s parent>;  
10. return <j, u>;  
end 

In the algorithm, (T, P1, v) and (<T1, ..., Tk>, G, v) are 
defined as follows. 

 

 

(<T1, ..., Tk>, G, v) =  
 

 
 

<j, u>, 
 

 

 

 

 
otherwise. 

 

if <j, u> is a highest and 
widest left-corner in G, 
which can be embedded in 
(<T1, ..., Tk>, higher than v; 

 

 
(4) 

 
<0,  (G)>, 
 

 
First, we note that in line 1 we check whether p1’s parent 

is an ancestor of v. If it is not the case, return <0, (G)> since 
no useful results can be produced. Otherwise, we will call 
-function for Case 1, and -function for Case 2 as in the 
basic algorithm, but with a cut transferred. 

In addition, in Case 2, depending on whether label(t) = 
label(v), we will call (<T1, ..., Tk>, G, v’s first child) or 
(<T1, ..., Tk>, G, v) (see lines 4 – 6). It is because if label(t) = 
label(v), we may have T covering G[v] if <T1, ..., Tk> is able 
to embed a forest made up of all direct subtrees of v. In this 
case, the return value of A(T, G, v) should be set to <1, v’s 
parent>, higher than v. So, the cut needs to be downgraded 
to v’s first child so that this part of computation will not be 
blocked. 

- Cut Propagation in -function 

In (T, G, v), for different cases, the cut will be propagated 
by recursive calls in different ways. 

As with the basic version of the -function, we will dis-
tinguish among five cases, i.e., Case (1–1), (1–2), (1–3), (1–
4), and (1–5). 

In Case (1–1), no recursive call is conducted and thus 
the cut u is not transferred. 

In Case (1–2), we will call A(T, <P11, ..., P1j>, v), by which 

the cut v is directly transferred to the recursive call since its 

return value will be used as the return value of (T, G, v). 

In Case (1-3), we have label(t)  label(p1). In this case, we 
will simply call (<T1, ..., Tk>, <P1>, v), by which v is directly 
transferred for the same reason as Case (1-2). 

In Case (1–4), there is no recursive call and thus no cut 

transfer. 

In Case (1-5), we will call the -function to check <T1, ..., Tk> 

against <P11, ..., P1j>). In this case, we have label(t) = la-

bel(p1). Concerning the cut transfer, we need to consider 

two subcases: 

i) p1 = v. In this case, we will call (<T1, ..., Tk>, <P11, ..., 
P1j>, p11) with the cut being set to be p11. It is because in 
this case the main checking of the -function execution 
may reveal that <T1, ..., Tk> is able to embed the whole 
<P11, ..., P1j>. In this case, the return value of (T, G, v) 
will be set to <1, p1’s parent>, higher than v. So it is a 
useful computation; and downgrading the cut from v 
= p1 to p11 will let it go through. On the other hand, p11 
will effectively prohibit any possible further supple-
ment checking in this -function execution since such 
a checking can only bring out a left corner lower than 
p11 and will not be used. 

ii) p1 ↝ v. In this case, we will call (<T1, ..., Tk>, <P11, ..., 
P1j>, v), by which v is directly transferred since we 
must have p11 ↝ v and no useful computation can be 
eliminated by cut v.  

According to the above discussion, we give the follow-

ing formal algorithm for the -function with cuts. 

FUNCTION 5. (T, P1, v) 
input: T = <t; T1, ..., Tk >, P1 = <p1; P11 ..., P1j>. 
output: a left corner. 
Begin 
1. if (1-1) then if label(t) = label((p1) 
2.  then return <1, (p1)’s parent> 
3.  else return <0, (p1)>;  
4. if (1-2) then return A(T, <P11, ..., P1j>, v); 
5. if (1-3) then return (<T1, ..., Tk>, <P1>, v);  
6. if (1-4) then return <1, p1’s parent>; 
7. if (1-5-i) then <j, u> := (<T1, ..., Tk>, <P11, ..., P1j>, p11); 
8. if (1-5-ii) then <j, u> := (<T1, ..., Tk>, <P11, ..., P1j>, v); 
9. if j = d(u) and label(t) = label(u) then return <1, u’s parent> 
10. else return <j, u>; 
end 

The only difference of the above algorithm from the 
basic version is that Case (1-5) is divided into (1-5-i) and (1-
5-ii) as aforementioned. 

 

(T, P, v) =  
 

<j, u>, 
 

if <j, u> is a highest and widest 
left-corner in P, which can be 
embedded in T, higher than v; 
 
 

<0,  (G)>, 
 

otherwise. 
 

(3) 
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-  Cut Propagation in -function  

The cut propagation conducted in the -function is consid-
ered as a kind of vertical transfer of cuts, by which a cut is 
propagated to a nested recursive call. By the -function, 
however, what we have is a kind of horizontal transfer, by 
which the local result of a recursive call will be used as a 
cut for a next parallel recursive call. 

Specifically, what we need to do is to determine the cut 
for each recursive call to check a Tl against a forest of the 
form <

lj
P , ..., Pq> with jl  1 in the main checking of (<T1, 

..., Tk>, G, v). Without loss of generality, assume that <il, vl> 
is the return value of A(Tl, <

lj
P , ..., Pq>, ul) for l = 1, ..., 

x  k with j1 = 1, j1  j2  ...  jx  q. Then, we have 

• u1 = v, a value transferred to (<T1, ..., Tk>, G, v). 

• For 2  l  x, ul is determined as follows: 

 Let s be an integer such that any of T1, ..., Ts is not able 

to embed P1, but Ts+1 embeds <P1, ..., Pj> for some j > 0. 

Then, for 2  l  s, we have 

 
 and for s + 1  l  k, we have 

 ul =
lj

p . (6) 

The formula (5) shows how the cuts are changed before 

we meet the first subtree in <T1, ..., Tk> which is able to em-

bed some subtrees P1, ..., Pj (j > 0). After such a subtree is 

found, the cuts will be determined in terms of (6). It is be-

cause for each subsequent A-function call to check a Tl 

against <
lj

P , ..., Pq>, a returned left corner lower than 
lj

p

will not be used in the subsequent computation. 

If s < k, it shows that <T1, ..., Tk> includes <P1, ..., Pm> for 

some m (1  m  q), and the supplement checking will not 

be conducted. If s = k, <T1, ..., Tk> does not include any sub-

tree in G, but some Tl’s each may include a non-empty left 

corner in P1. If it is the case and the left corner is also higher 

than cut v, then a supplement checking will be performed 

as described in Section 5. That is, when the following two 

conditions are satisfied, a supplelement checking will be 

carried out: 

- j = 0, and  

- there exists at least a non-zero point, which is higher 

than cut v. 

They are referred to as the strict supplement condition 

(strict SCC-condition for short). In comparison with the 

supplement property given in Section 5, one more condition 

with respect to cuts has to be met, i.e., the non-zero point 

must be higher than cut v. 

Besides, in a supplement computation no further sup-

plement computation will be conducted due to the way the 

cut for this is set, by which the cut is set to be the root of 

the first subtree in the forest to be checked. This will effec-

tively block any further supplement computation within a 

supplement computation. 

In terms of the above discussion, we give the following 

formal algorithm for the -function, which is similar to 

FUNCTION 3, but with the cuts integrated into the pro-

cesss to control the supplement computation. 

FUNCTION 6. (F, G, v) 
input: F = <T1, ..., Tk>, G = < P1, ..., Pq>. 
output: a left corner. 
begin 
1. l := 1; j := 0; u := v; f := 0;   
2. while (j < q and l  k) do (*main checking*) 
3.  <il, ul> := A(Tl, <Pj+1, ..., Pq>, u) 
4.  if (ul = p1’s parent and il > 0) then {j := j + il; u := pj;} 
5.  else if (ul is an ancestor of u and il > 0) 
6.   then {u := ul; f := l;}  
7.  l:= l + 1; 
8. if j > 0 then return <j, p1’s parent>; 
9. if f  = 0 then return <0, (p1)>; 
10. let w1, ..., ws be the children of uf;
 (*supplement checking*) 
11. l := f + 1; j := if; 
12. while (j < s and l  k) do   
13.  <il, vl> := A(Tl, <G[wj+1], ..., G[ws]>, wj+1); 
14.  if (vl = vf  and il > 0) then j := j + il; 
15.  l:= l + 1;  
16. return <j, uf>; 
end 

As in the basic version of the -function, we have two 

while-loops: one from line 2 to 7 and the other from line 12 

to 15. In the first while-loop, we do the main computation 

to find a largest j such that <T1, ..., Tk> embeds <P1, ..., Pj>. 

In this process, by the first A-function call we have cut v, 

which is the same as the cut propagated to (<T1, ..., Tk>, G, 

v) while by the subsequent A-function calls the cuts are 

horizontally propagated. 
In the second while-loop, we do the supplement computa-

tion, but conducted only when the strict SCC-condition is 
satisfied. 

As in Function 3, variable f is used to record the first 
non-zero point which is not a descendant of any other non-
zero point. Initially, it is set 0. Therefore, if no non-zero 
point higher than cut v is found, we must have f = 0 after 
the main computation. Thus, only when j = 0 and f > 0, the 
strict SCC-condition is satisfied and the supplement com-
putation will be performed. (See lines 8 and 9.) 

In Appendix III, we will give a sample trace of the im-
proved algorithm when applied to the tree T and the forest 
G shown in Fig. 8. In appendix IV, its correctness is for-
mally proven.  

7 COMPUTATIONAL ANALYSIS 
In this section, we mainly analyze the computational com-
plexities of the improved algorithm discussed in Section 6. 
First, we discuss its space requirement in 7.1. Then, in 7.2, 
its worst time complexity is analyzed. 

 
7.1 Space Complexity 

The space overhead of our algorithm is mainly composed 
of two parts. One part is the intervals associated with the 
nodes in both T and G to check reachability. It is obviously 
bounded by O(|T| + |G|). The other part is the space used 
for storing recursive calls of functions in the system stack. 

vl-1, 

ul-1, 

if vl-1 is an ancestor of ul-1 and il-1 > 0;  

if vl-1 is not an ancestor of ul-1 or il-1 = 0; 
(5) ul =  
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But it must be proportional to the size of a longest recursive 
function call chain L. (To know what is that, see Fig. 12(a), 
which is a chain corresponding to lines 1 – 8 in the sample 
trace given in Appendix III.) This chain is produced when 
applying our algorithm to the target tree and pattern forest 
shown in Fig. 8. Therefore, to know the size of the second 
part, we need to estimate L’s length.  

We first note that each recursive call needs only a con-
stant space. It is because a tree T can be always referred to 
by its root t while a forest <T1, …, Tk> (resp. <P1, ..., Pq>) by 
a pair <t1, k> (resp. <p1, q>). It is because any forest involved 
in a recursive call is always made up of a set of subtrees 
rooted respectively at a set of consecutive child nodes 
(starting from a specific child to the last child) of a certain 
node in T or in G. Thus, (T, P1, v) can be simply repre-
sented by (t, p1, v) while (<T1, ..., Tk>, <P1, ..., Pq>, v) by 
(t1, k, p1, q, v), which indicates that only a constant space 
is needed to record a recursive call. 

Furthermore, each A-function call is always followed by 
an -function call or a -function call in a function call 
chain, as demonstrated in Fig. 12(a). So we can merge each 
A-function call into its successor to simplify analysis and 
view L as a chain containing only two kinds of function 
calls, i.e., the calls of the form (t, p1, v), and (t1, k, p1, q, v). 
Thus, we can simply divide L into two sequences: L and 
L such that L contains only the -function calls while L 

only the -function calls. L and L are called the -sub-
chain and -subchain of L, respectively. For example, the 
chain shown in Fig. 12(a) can be divided into an -function 
call chain and a -function call chain, as shown in Fig. 12(b) 
and (c), respectively. 

 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

For L, we have the following lemma. 

Lemma 3 Let x = <t, p, v> and x = <t, p, v> be two con-
secutive function calls on an L. Then, (i) if t = t, p is a child 
of p; and (ii) if p = p, t is a child of t. 

Proof. We first prove (i). If t = t, it shows that T[t] is in-
volved in a call of the A-function during the execution of 
<t, p, v>, but checked against a forest containing the sub-
trees respectively rooted at the children of p. This occurs 
when Case (1-2) is satisfied (see line 4 in Function 5). 

Through the A-function call, <t, p, v> is invoked. There-
fore, p is a child of p. 

We illustrate this process in Fig. 13(a). This shows that 
if a node t in T is checked against two consecutive nodes p 
and p in G along a recursive call chain, p must be the par-
ent of p. 

Now we consider (ii). If p = p, it shows that G[p] is in-
volved in a second call of the -function, which happens 
when Case (1-3) is satisfied, i.e., when |T|  |P| + z, where 
z is the size of the subtree rooted at p’s right sibling, but 
|T|  |P|, h(t)  h(p), and label(t)  label(p). In this case, we 
will check the forest containing the subtrees respectively 
rooted at the children of t against <G[p]> by calling the -
function (see line 5 in Function 5), through which <t, p, 
v> is invoked. See Fig. 13(b) for illustration, which shows 
that if a node p in G is checked against two consective 
nodes t and t in T along a recursive call, t must be the par-
ent of t. This completes the proof.  

 
 
 
 
 
 
 

 
From Lemma 3, we can see that |L| is bounded by O(hT 

+ hG). 
In a similar way, we can prove that that |Lβ| is also 

bounded by O(hT + hG). 
Therefore, |L|  = |L| + |L| is in the order of O(hT + hG). 

Proposition 2 The space used by Algorithm A(T, G, (G)) 
is bounded by O(|T| + |G|). 

Proof. See the above analysis.  

7.2 Time Complexity 
Now we analyze the time complexity of the algorithm. This 
will be done in two steps. First, we show that the time used 
by the improved algorithm is bounded by O(|T|hG). 
Then, we further demonstrate that the time requirement is 
also bounded by O(|T||leaves(G)|). This indicates that 
the time complexity of our algorithm is O(|T| min{hG, 
|leaves(G)|}). 

We first notice that in a supplement checking no further 
supplement checking will be conducted. It is because in a 
supplement checking of the form (<Tf+1, …, Ts>, 
<G[wj+1], ..., G[ws]>, u) we always have u = wj+1, by which 
any further supplement checking is effectively blocked. 

In order to see that the time complexity is bounded by 
O(|T|hG), we analyze, in the worst case, how many β-
function calls each node t in T can be involved in. 

Let t be a node in T. Let t be a child of t. Assume that 
in the computation there exists a -function call of the form 
(<T[t], …>, <P1, …, Pq>, u), in whose execution 
(<T[t], …>, …, u) is invoked (possibly through an A-
function call invoked during the execution of (T[t], 
<P1, …, Pq>, u); see line 3 in FUNCTION 6.) Then, u and 
u can be in one of three relationships: 

Figure 12. A recursive call chain 

A(T, G, p111)  

(<T1, T2, T3>, G, p111) (<T1, T2, T3>, G, p111) 

A(T1, G, p111) 

(T1, P1, p111) (T1, P1, p111) 

A(T1, <P11, P12, P13>, p111)  

(T1, P11, p111) (T1, P1, p111) 

(<T11, T12>, <P111, P112>, p111) (<T11, T12>, <P111, P112>, p111) 

A(T11, <P111, P112>, p111) 

(T11, P111, p111) (T1, P1, p111) 
(a) (b) 

(c) 

(a) (b) 

Figure 13. Illustration for Lemma 3 

p = p1 

p t 

(t, p, v) 

A(t, <p1, …, pq >, v) 

(t, p, v) 
t= t1 

t 
p 

(t, p, v) 

(<t1, …, t
k 
>, <P>, v) 

(t, p, v) 
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1. u ↝ u. In this case, t can possibly be involved in a 

supplement checking, but t definitely not since the left 

corner of β(T[t], <P1, …, Pq>, u) must be higher than u. 

2. u = u. In this case, t will definitely not be involved in 
a supplement checking. It is because in the execution of 

(<T[t], …>, <P1, …, Pq>, u), the node corresponding 

to the first highest non-zero point (if any) can only be t 

or a node to the right of t (see line 4 in FUNCTION 6.) 

However, t may be involved in a supplement checking, 
depending on the results of checking the subtrees 
rooted at its left siblings against <P1, …, Pq>, as well as 

the return value of (<T[t], …>, <P1, …, Pq>, u) itself. 

3. u ↝ u (more exactly, u is the first child of u.) This 

happens when through an A-function call, a -function 
is invoked, by which the cut is downgraded (see line 5 

in FUNCTION 4); or an -function is invoked, in which 
we have Case (1-5-i) satisfied and the cut is also down-
graded (see line 7 in FUNCTION 5.) In these cases, both 

t and t may be involved in a supplement checking. Es-
pecially, during the supplement computation involving 

t, t can possibly be involved in another β-function call 
once again. 

Obviously, (3) is the worst case, by which the number 
of -function calls t is involved in is maximized. Now, we 
observe the parent t of t and assume that in the execution 
of (<T[t], …>, …, u), (T[t], <P1, …, Pq>, u) is invoked. 
Repeating the above analysis, we can see that if u ↝ u (case 
3), both t and t can also be involved in a supplement check-
ing. This shows that if we have u ↝ u ↝ u t can be in-
volved in two β-function calls, t in three β-function calls, 
and t in four β-function calls. In general, the number of β-
function calls, in which a certain node t in T is involved, 
must be bounded by hG + 1 since any sequence of cuts: u1 

↝ u2 ↝ … ↝ uz in G cannot contain more than hG nodes, 
and any recursive call with t involved corresponds to a cut 
at a different level.  

In terms of the above analysis, we have the following 
lemma. 

Lemma 4 The time complexity of the algorithm A(T, G, 
(G)) (FUNCTION 4 in Section 6) is bounded by O(|T|hG).  
Proof. We need to show that any node t in T can also be 
involved in at most O(hG) A-function calls. For this pur-
pose, we notice that between any two consecutive A-func-
tion calls along a function call chain we can have at most 
an -function and a -function. This property can be ob-
served by analyzing the basic algorithm given in Section 5, 
by which we can clearly see three kinds of A-to-A (from an 
A-function call to a next A-function call) chains: 

A →   → A (see line 2 in FUNCTION 1, line 4 in FUNC 
 TION 2) 
A →   →  → A (see line 2 in FUNCTION 1, line 5, 7 in  
 FUNCTION 2, line 3, 13 in FUNCTION 3) 
A →  → A (see line 3 in FUNCTION 1, line 3, 13 in  
 FUNCTION 3) 

Clearly, for the second and third kinds of A-to-A chains, 
the number of A-function calls is bounded by the number 
of -function calls. For the first kind of A-to-A chains, the 
number of A-function calls for each t is also bounded by 

(hG + 1) since each of such chains happens when |T[t]| < 
|G[p]| or h(t) < h(p) (Case (1-2)). In this case, a function call 
of the form A(T, <P1, …, Pq>, u) will be conducted (see line 
4 in FUNCTION 5). Thus, if t is checked for a second time, 
it must be against a descendant of p. So, the lemma holds. 
 

Lemma 5 The time complexity of the algorithm A(T, G, 
(G)) (FUNCTION 4 in Section 6) is bounded by 
O(|T||leaves(G)|).  
Proof. To show that the time complexity of the algorithm is 
also bounded by O(|T||leaves(G)|), we observe the worst 
case, i.e., case 3 (the case u ↝ u in the above discussion) 
again and assume that t is involved in a supplement 
checking (referred to as SC1) and t is involved in another 
supplement checking (referred to as SC2). Then, by SC1 T[t] 
will be checked against a forest containing a set of subtrees 
respectively rooted at some right siblings of  u while by 
SC2 T[t] will be against a forest G containing a set of sub-
trees respectively rooted at some right siblings of  u, as 
illustrated in Fig. 14. Thus, if t is checked for a second time 
during the SC1 involving t, it must be checked aginst a 
node which is to the right of G. This shows that the num-
ber of nodes in G, which are checked against t is bounded 
by O(|leaves(G)|). Therefore, for whole T, the number of 
checkings is bounded by O(|T||leaves(G)|).  
 
 
 
 
 

 

 

 

 

 

In Fig. 14, we illustrate that when t is checked during 
SC1, t can also be checked once again, but against some 
node to the right of a forest G, which is checked during 
SC2.   

In the above discussion, we should remark that in the 
proof of Lemm 4, we use cuts to explain that any node in T 
can be involved in at most O(hG) function calls while in the 
proof of Lemma 5, we show that any node in T can be 
checked against at most O(|leaves(G)|) nodes in G. 

From Lemma 3 and 4, we immediately get the following 
proposition. 

Proposition 3 The time complexity of A(T, G, (G)) is 
bounded by O(|T| min{hP, |leaves(G)|}).  
Proof. This can be derived from Lemma 4 and 5.  

8 Experiments 

In our experiments, we have tested altogether four differ-
ent methods: 

- Kilpeläinen’s algorithm [9], 

- Chen’s algorithm [3], 

u 

Figure 14. Illustration for supplement checking 

u 
… 

… 
t 

t 
… 

… 

Supplement checking SC1 

Supplement checking SC2 

T: G: 

   
… 

assume that t is 

checked for a 

second time. 

G 
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- Bille’s algorithm [2], and 

- Ours 
All the four methods are implemented in C++, compiled 

by GNU make utility with optimization of level 2. In addi-
tion, all of our experiments are performed on a 64-bit Ub-
untu operating system, run on a single core of a 2.40GHz 
Intel Xeon E5-2630 processor with 32GB RAM. 

7.1 Data Sets 

The data sets used for the tests are TreeBank data set, DBLP 
data set (both of them can be found in U of Washington 
XML Repository, http://aiweb.cs.washington.edu/ re-
search/projects/xmltk/xmldata/), and a synthetic XMark 
data set (The XML-benchmark project, http: 
//monetdb.cwi.nl/xml). The TreeBank data set is a real data 
set with a narrow and deeply recursive structure that in-
cludes multiple recursive elements. The DBLP data set is 
another real data set with high similarity in structure. It is 
in fact a wide and shallow document. The XMark (with 
scaling factors 1, 3, and 5) is a well-known benchmark data 
set, by which a document generator xmlgen is provided, 
used for scalability analysis. The important parameters of 
these data sets are summarized in Table 1. 

Table 1: Data sets for experiment evaluation 

 TreeBank DBLP XMARK 

1                 3                  5 

Data size (MB) 82 127 113             340              568 

No. of nodes (million) 2.43 3.33 1.72            5.1               8.33 

Max/average height 36/7.9 6/2.9 12/6.2 

7.2 Test Results 

For each data set, we have tested two groups of pattern 
trees. For the first group, we generate pattern trees by ran-
domly selecting subtrees of 100 nodes from the target tree. 
For the second group, each time we randomly select 200 
nodes, but with different heights. We record the numbers 
of label comparisons and elapsed times. For each execu-
tion, an average of 100 measurements is taken. 
 
- Tests on TreeBank 
In Fig. 15(a) and (b), we show the numbers of label com-
parisons and the times spent on different execution, re-
spectively. From Fig. 15(a), we can see that our method 
outperforms all the other three algorithms uniformly, and 
the Kilpeläinen’s has the worst performance. We can also 
see that the Bill’s and Chen’s are comparable. For small 
sized pattern trees, the Bille’s is slightly better than Chen’s. 
However, as the size of pattern trees increases, the Chen’s 
works better. It is because by the Bill’s algorithm extra time 
is used to check and remove useless data generated to rec-
ord intermediate results to reduce space overhead and this 
part of time matters for large pattern trees. 

In Fig. 16(a) and (b), we demonstrate the result of the 
second group test. From Fig. 16(a), we can see that the 
number of label comparisons made by our method linearly 
depends on the height of pattern trees. But the number of 
label comparisons made by the Bille’s and Chen’s algo-
rithms decreases as the height increases. The Kilpeläinen’s 
algorithm is not sensitive to the height of patterns trees. 

Again, the time spent by the Kilpeläinen’s algorithm is 
much worse than all the other three algorithms. 

In Fig. 17, we show the space overhead of the tested 
method over the treebank data. 
From this figure, we can see that our method uses much 
less space than the other three methods. Among them, the 
Kilpeläinen’s is the worst while the Bille’s is best and a lit-
tle bit better than the Chen’s. In fact, the Bille’s and the 
Chen’s methods work almost in the same way. The main 
difference is that in the Chen’s method, the siblings of a 
node in a pattern P are always handled from left to right 
while in the Bille’s method, the so-called heavy child is al-
ways handled first. By a heavy child, we mean a node v 
such that P[v] has the most leaf nodes. The other difference 
is that by the Bille’s method only the deep occurrences of 
P in a target T (i.e., the nodes u at low levels in T such that 
T[u] contains P) is checked. These arrangements can re-
duce somehow the size of intermediate results, but cannot 
bring down the space overhead by an order of magnitude. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
- Tests on DBLP 
In Fig. 18, we show the test results on the DBLP data set, 
by which only the numbers of label comparisons are 
demonstrated. Since the elapsed time is always propo-
tional to the number of label comparisons as we can see 
from Fig. 15 and 16, we show here only the number of label 
comparisons. Again, our method has the best performance 
for this test. Especially, for the patterns of different heights, 
the numbers of label comparisons are not much changed. 
It is because in all document trees most of the paths are 
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Figure 15. Results on varying sizes of patterns - treeBank 
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Figure 16. Results on varying heights of patterns - treeBank 
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quite short (on average their lenghts are bounded by 3) and 
the number of leaf nodes is large and comparable to the 
whole size of the tree itself. 

 
In Fig. 19(a), we show the space usage of the tested 

method over the DPLP data. From this figure, we can see 
that three methods, except ours, have almost the same 
space overhead. The reason for this is that the DPLP is a 
very shallow tree as mentioned above and the randomly 
generated pattern trees are also shallow. So the second dif-
ference of the Bille’s method from the Chen’s brings no sig-
nificant improvement. Again, our method uses much less 
space than all of them. 

the Bill’s is a little better than the Chen’s. Again, our 
method is uniformally better than all the other algorithms.  
However, as the height of patterns increases, we can 
clearly see the increment of the number of label compari-
sons. It confirms to our theoretical analysis. But for the 
Bille’s and Chen’s, the number of label comparions is re-
duced with higher patterns. It is because for patterns with 
a fixed number of nodes, the higher they are, the less leaf 
nodes they may have. 
 

 
 

 

 

 

 

 

 

 

 

 

- Tests on XMARK 
In Fig. 20(a) and (b), we show the number of label compar-
isons for matching patterns against the XMark data set 
with the scaling factor = 1. As by the treebank and the 
DBLP, the Kilpeläinen’s has the worst performance, and 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19. Space overhead on varying patterns - XMark 
 

 
In Fig. 19(b), we demonstrate the space overhead of the 

tested method over the XMark data. This figure shares the 
same flavour as Fig. 17, but all the methods use much less 
space than the treebank data. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
- On Scalability 
Now we test the scalability of our method by varying the 
sizes of taget tress. For this purpose, we change the scaling 
factors when generating XMark data. In Fig. 21, we report 
the test results on the XMark data with the scaling factor = 
3 while in Fig. 22, we report the results for the scaling factor 
= 5. For the scale factor equal to 3, the number of generated 
nodes is about 5.1 millions. For the scale factor equal to 5, 
the number of generated nodes is about 8.33 millions. In 
both of these two tests, our method exhibits the best per-
formance. 
 

9 Conclusion 
In this paper, a new algorithm is proposed to solve the or-
dered tree inclusion problem. Up to now, the best algo-
rithm for this problem needs quadratic time. However, 
ours requires only O(|T|min{hP, |leaves(P)|}) time and 
O(hP + hT) space (besides the space for storing T and P them-
selves), where T and P are a target and a pattern tree (for-
est), respectively; hP (hT) is the hight of P (resp. T) and 
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Figure 18. Results on varying sizes and heights of patterns – DBLP 
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leaves(P) is the set containing all the leaf nodes of P. The 
critical concepts of our algorithm are the left-corner and 
cuts, which enables us to develop a deep insight into the 
tree inclusion problem and extend it to a more general one 
to return a left corner as a result. In practice, the general 
problem seems to be more useful than the original one 
since if P cannot be embedded in T, we may want to know 
whether any part of P can be embedded in T. In addition, 
our algorithm is more efficient than any existing method 
for the problem by using cuts to skip over useless compu-
tations.  
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Appendix I Symbols and Notations 

In this appendix, we summarize all the symbols and nota-
tions used throughout the paper. 

Table 2: Symbols and notations 

 
 
 

T = <t; T1, ..., Tk > target tree with root t and its direct subtrees T1, ..., Tk 

G = <P1, ..., Pq> (q  0) pattern, which is a forest containing subtrees P1, ..., Pq 

V(T) set of nodes in T 

E(T) set of edges in T 

hT height of T 

leaves(P) all leaf nodes of P 

d(v) outdegree of node v 

G[v] subtree rooted at v 

v ≺ v v is to the left of v 

v ≺ v   v ≺ v  or v = v 

v ↝ u v is a proper ancestor of u 

: V(G) → V(F) an injective function mapping nodes in V(G) to nodes in V(F) 

(G) left-most leaf node in G 

G  virtual root of G 

<[i, j], v> an interval rooted at v, to represent an ordered forest <G[vi], ..., G[vj]> made up 
of a series of subtrees rooted at the children of v: vi, ..., vj, respectively. 

<i, v> abbreviation of <[1, i], v>. If v is G or a node on the left-most path of P1, it is 
called a left corner of G. 

 vi,  represent a forest <G[vi+1], ..., G[vk]>, referred to as the complement of <i, v> 

<i, v>  u level-equal, i.e., v = u 

<i, v>  ↝ u <i, v> is higher than u, i.e., v ↝ u 

<i, v> ↝ u <i, v> is higher than or level-equal to u 

A(T, G) a checking of G against T, returning a highest and widest left-corner <i, v> in G 

(T, P) A function returning a highest and widest left-corner in P, which can be embedded 

in T, where P is a subtree in G. 

(<T1, ..., Tk>, G) A function returning a highest and widest left-corner in P, which can be embedded 

in <T1, ..., Tk>. 

(v) a link to the left-most leaf node in G[v] 
(v') a set of nodes x such that for each v  x (v) = v' 

h(t) height of T[t] 

main computation part of -function execution process 

supplement computa-
tion 

part of -function execution process 

SCC-condition supplement checking condition 

A(T, G, v) variant of A(T, G), where v is used as a cut such that only a highest and widest 
left-corner in G is returned if it can be embedded in T and higher than v. Oth-
erwise, it returns <0, (G)>. 

(T, P, v) variant of (T, P), where v is used as a cut such that only a highest and widest 
left-corner in P is returned if it can be embedded in T and higher than v. Other-
wise, it returns <0, (G)>. 

(<T1, ..., Tk>, G, v) variant of (<T1, ..., Tk>, G), where v is used as a cut such that only a highest and 
widest left-corner in G is returned if it can be embedded in <T1, ..., Tk>  and 
higher than v. Otherwise, it returns <0, (G)>. 

strict SCC-condition strict supplement checking condition 

 


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Appendix II Sample Trace of Basic Algorithm 

In the above sample trace, since both F and G are forests 
(general Case 2), in the execution of A(F, G) (F, G) will be 
invoked, in which we will call A(T1, <P1, P2>), A(T2, <P1, 
P2>), and A(T3, <P1, P2>) in turn (see lines 3 – 20,  lines 21 – 
70, and lines 71 – 88 in the sample trace). We call A(T2, <P1, 
P2>) after A(T1, <P1, P2>) because the return value of A(T1, 
<P1, P2>) is <1, p1> (see line 20), showing that T1 is not able 
to embed P1. Since T2 is not able to include P1 (T2 contains 
only <1, p11>, see line 70), either, A(T3, <P1, P2>) will be in-
voked (see lines 71 – 88), whose return value is <0, p111>. 
So, a sumplement checking will be carried to check <T2, 
T3> against <P12, P13> (see lines 89 – 116). It is because A(T1, 
<P1, P2>) returns <1, p1>, higher than both <1, p11> (return 
value of A(T2, <P1, P2>) and <0, p111> 

(return value of A(T3, <P1, P2>)) and we need to know 
whether the left corner <1, p1> can be expanded by the sup-
plement checking, in which we will first check T2 against 
<P12, P13> (see lines 89 – 112). Since it returns <1, p1> (show-
ing that T2 covers P12), we will call A(T3, <P13>) in a next 
step (see lines 113 – 116), which also returns <1, p1> (show-
ing that T3 covers P13.) Therefore, the whole process of (F, 
G) returns <3, p1>, showing that T includes < P11, P12, P13>. 
 

In the above sample trace, if t121 were something other 
than an a, then A(T12, <P1, P2>) would return <0, p111> and 
the supplement checking (after A(T13, <P1, P2>) returns <1, 
p11>) would check <T12, T13> against <P112> since T11 in-
cludes P111. 

  

step-by-step trace: explanation: 

 
1. A(T, G) A(T, G) begins.  

2. (<T1, T2, T3>, G) since G is a forest and |T| > |P1| + |P2|, call ( ) (see line 3 in A( ).)  

3. A(T1, G) in the 1st while-loop (lines 2 – 7) of ( ), call A-functions in turn (line 3 in ( ).)  

4 (T1, P1) since |T1|≤|P1| + |P2|, call ( ) (see line 2 in A( ).)   

5 A(T1, <P11, P12, P13>) (1-2) holds (in the execution of ( ).) Call A( ) (see line 4 in ( ).)   

6 (T1, P11) since |T1|≤|P11| + |P12|, call ( ) (see line 2 in A( ).)   

7 (<T11, T12>, <P111, P112>) (1-5) holds (in the execution of ( ).) Call ( ) (see line 7 in ( ).) 

8 A(T11, <P111, P112>) in the 1st while-loop of ( ), call A-functions in turn (see line 3 in ( ).) 

9 (T11, P111) since |T11|≤|P111| + |P112|, call ( ) (see line 2 in A( ).) 

10 return <1, p11> (1-4) holds (in the execution of ( ).) Return <1, p11>. (see line 6 in ( ).) 

11 return <1, p11> return value of A(T11, <P111, P112>) (see line 2 in A( ).) 

12 A(T12, <P112>) in the 1st while-loop of ( ), call A-functions in turn (see line 3 in ( ).) 

13 (T12, P112) <P112> contains a single tree. Call ( ) (see line 2 in A( ).) 

14 return <1, p11> (1-1) holds (in the execution of ( ).) Return <1, p11> since lable(t12) = lable(p112) = b (see line 2 in ( ).) 

15 return <1, p11> return value of A(T12, <P112>) (see line 2 in A( ).) 

16 return <2, p11> the result of the 1st while-loop in the execution of (<T11, T12>, <P111, P112>). 

17 return <1, p1> return value of (T1, P11) (Since lable(p11) = lable(t1) = c and d(p11) = 2, return <1, p1>. see line 8 in ( ).) 

18 return <1, p1> return value of A(T1, <P11, P12, P13>) (see line 2 in A( ).) 

19 return <1, p1> return value of (T1, P1) (see line 4 in  ( ).) 

20 return <1, p1> return value of A(T1, G) (see line 2 in A( ).) 

21 A(T2, G) in the 1st while-loop of ( ), call A-functions in turn (see line 3 in ( ).) 

22 (T2, P1) since |T2|≤|P1| + |P2|, call ( ) (see line 2 in A( ).)   

23 A(T2, <P11, P12, P13>) (1-2) holds (in the execution of ( ).) Call A( ) (see line 4 in ( ).)   

24 (<T21, T22>, <P11, P12, P13>) |T2|> |P11| + |P12|. Call ( ) (see line 3 in A( ).)  

25 A(T21, <P11, P12, P13>) in the 1st while-loop of ( ), call A-functions in turn (line 3 in ( ).) 

26 (T21, P11) since |T21|≤|P11| + |P12|, call ( ) (line 2 in A( ).)   

27 (<T211, T212>, <P11>) (1-3) holds (in the execution of ( ).) Call ( ) (line 5 in ( ).) 

28 A(T211, <P11>) in the 1st while-loop of ( ), call A-functions in turn (see line 3 in ( ).) 

29 (T211, P11) <P11> contains a single tree. Call ( ) (see line 2 in A( ).) 

30 return <1, p11> (1-1) holds (in the execution of ( ).) Return <1, p11> since lable(t211) = lable(p111) = a  (see line 2 in ( ).) 

31 return <1, p11> return value of A(T211, <P11>) (see line 2 in A( ).) 

32 A(T212, <P11>) in the 1st while-loop of ( ), call A-functions in turn (see line 3 in ( ).) 

33 (T212, P11) <P11> contains a single tree. Call ( ) (see line 2 in A( ).) 

34 return <1, p11> (1-1) holds (in the execution of ( ).) Return <1, p11> since lable(t212) = lable(p111) = a (see line 2 in ( ). 

35 return <1, p11> return value of A(T212, <P11>) (see line 2 in A( ).) 

36 A(T212, <P112>) supplement computation (done by a series of A-function calls.) 

37 (T212, P112) <P112> contains a single tree. Call ( ) (line 2 in A( ).) 

38 return <0, p112> (1-1) holds, but lable(t212) ≠ label(t212). Return <0, p112> (line 3 in ( )). 

39 return <0, p112> return value of A(T212, <P112>) (see line 2 in A( ).) 

40 return <1, p11> result of the 2nd while-loop of ( ) (lines 12 – 16 in ( )). 

41 return <1, p11> return value of (T21, P11) (see line 5 in ( ).) 

42 return <1, p11> return value of A(T21, <P11, P12, P13>) (line 2 in A( )). 

43 A(T22, <P11, P12, P13>) in the 1st while-loop of ( ), call A-functions in turn (line 3 in ( ).) 
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90. (T22, P11) since |T22|≤|P11| + |P12|, call ( ) (line 2 in A( ).) 

91. A(T22, <P111, P112>) (1-2) holds (in the execution of ( ).) Call A( ) (see line 4 in ( ).)   

92. (T22, P111) since |T1|≤|P111| + |P112|, call ( ) (see line 2 in A( ).) 

93. (<T221>, <P111>) (1-5) holds (in the execution of ( ).) Call ( ) (see line 7 in ( ).) 

94. A(T221, <P111>) in 1st while-loop of ( ), call A-functions in turn (line 3 in ( ).) 

95. (T221, P111) <P111> contains a single tree. Call ( ) (see line 2 in A( ).) 

96. return <1, p11> (1-1) holds (in the execution of ( ).) Return <1, p11> since lable(t221) = lable(p111) = a  ( see line 2 in ( ).) 

97. return <1, p11> return value of A(T221, <P111>) (see line 2 in A( ).) 

98. return <1, p11> return value of (<T221>, <P111>) (see lines 2 – 7, 8 in ( ).) 

99. return <1, p11> return value of (T22, P111) (see line 7, 9 in ( ).) 

100. return <1, p11> return value of A(T22, <P111, P112>) (see line 2 in A( ).) 

101. return <1, p11> return value of (T22, P11) (see line 4 in ( ).) 

102. return <1, p11> return value of A(T22, <P11, P12, P13>) (see line 3, 7 in A( ).) 

103. A(T22, <P112>) supplement computation (done by a series of A-function calls.) 

104. (T22, P112) <P112> contains a single tree. Call ( ) (line 2 in A( ).) 

105. (<T221>, <P112>) (1-3) holds (in the execution of ( ).) Call ( ) (see line 5 in ( ).) 

106. A(T221, <P112>) in the1st while-loop of ( ), call A-functions in turn (line 3 in ( ).) 

107. (T221, P112) <P112> contains a single tree. Call ( ) (see line 2 in A( ).) 

108. return <0, p112> (1-1) holds, but lable(t212) ≠ lable(p112). Return <0, p112>. (line 3 in ( ).) 

109. return <0, p112> return value of A(T221, <P112>) (see line 2 in A( ).) 

110. return <0, p112> return value of (<T221>, <P112>) (see lines 2 – 7, 9 in ( ).) 

111. return <0, p112> return value of (T22, P112) (see line 5 in ( ).) 

112. return <0, p112> return value of A(T22, <P112>) (see line 2 in A( ).) 

113. return <1, p11> result of the 1st and 2nd while-loop of ( ) (see lines 2 – 7 and 12 – 16 in ( ).) 

114. return <1, p11> return value of A(T2, <P11, P12, P13>) (see lines 3, 6 in A( ). 

115. return <1, p11> return value of (T2, P1) (see line 4 in ( ).) 

116. return <1, p11> return value of A(T2, G) (see line 2 in A( ).) 

117. A(T3, G) in the 1st while-loop of ( ), call A-functions in turn (see line 3 in ( ).) 

118. (T3, P1) since |T3|≤|P1| + |P2|, call ( ) (see line 2 in A( ).) 

119. A(T3, <P11, P12, P13>) (1-2) holds (in the exec. of ( ).) Call A( ) (see line 4 in ( ).) 

120. (T3, P11) since |T3|≤|P11| + |P12|, call ( ) (see line 2 in A( ).) 

121. A(T3, <P111, P112>) (1-2) holds (in the execution of ( ).) Call A( ) (see line 4 in ( ).) 

122. (T3, P111) since |T3|≤|P111| + |P112|, call ( ) (line 2 in A( ).) 

123. (<T31>, <P111>) (1-3) holds (in the execution of ( ).) Call ( ) (see line 5 in ( ).) 

124. A(T31, <P111>) in 1st while-loop of ( ), call A-functions in turn (see line 3 in ( ).) 

125. (T31, P111) <P111> contains a single tree. Call ( ) (line 2 in A( ).) 

126. return <0, p111> (1-1) holds, but lable(t31) ≠ lable(p111). Return <0, p112> (see line 3 in ( ).) 

127. return <0, p111> return value of A(T31, <P111>) (see line 2 in A( ).) 

128. return <0, p111> return value of (<T31>, <P111>) (see lines 2 – 7, 9 in ( ).) 

129. return <0, p111> return value of (T3, P111) (see line 5 in ( ).) 

130. return <0, p111> return value of A(T3, <P111, P112>) (see line 2 in A( ).) 

131. return <0, p111> return value of (T3, P11) (see line 4 in ( ).) 

132. return <0, p111> return value of A(T3, <P11, P12, P13>) (see line 3, 6 in A( ).) 

133. return <0, p111> return value of (T3, P1) (see line 4 in ( ).) 

134. return <0, p111> return value of A(T3, G) (see line 2 in A( ).) 

135. A(T2, <P12, P13>) supplement checking (done by a series of A-function calls.) 

136. (<T21, T22>, <P12, P13>) |T2|> |P12| + |P13|. Call ( ) (line 3 in A( ).) 

137. A(T21, <P12, P13>) in the 1st while-loop of ( ), call A-functions in turn (see line 3 in ( ).) 

138. (T21, P12) since |T21|≤|P12| + |P13|, call ( ) (line 2 in A( ).) 

139. (<T211, T212>, <P121>) (1-5) holds (in the execution of ( ).) Call ( ) (see line 7 in ( ).) 

140. A(T211, <P121>) in the 1st while-loop of ( ), call A-functions in turn (see line 3 in ( ).) 

141. (T211, P121) <P121> contains a single tree. Call ( ) (line 2 in A( ).) 

142. return <1, p12> (1-1) holds (in the execution of ( ).) Return <1, p11> since lable(t211) = lable(p121) = a  (see line 2 in ( ).) 

143. return <1, p12> return value of A(T211, <P121>) (see line 2 in A( ).) 

144. return <1, p12> return value of (<T211, T212>, <P121>) (see lines 2 - 7, 8 in ( ).) 

145. return <1, p1> return value of (T21, P12) (see line 7, 9 in ( ).) 

146. return <1, p1> return value of A(T21, <P12, P13>) (see line 2 in A( ).) 

147. A(T22, <P13>) in the 1st while-loop of ( ), call A-functions in turn (see line 3 in ( ).) 

148. (T22, P13) <P13> contains a single tree. Call ( ) (see line 2 in A( ).) 

149. (<T221>, <P13>) (1-3) holds (in the execution of ( ).) Call ( ) (see line 5 in ( ).) 

150. A(T221, <P13>) in the 1st while-loop of ( ), call A-functions in turn (see line 3 in ( ).) 

151. (T221, P13) <P13> contains a single tree. Call ( ) (line 2 in A( ).) 

152. return <0, p13> (1-1) holds, but l(t221) ≠ l(p13). Return <0, p13>. (line 3 in ( ).) 

153. return <0, p13> return value of A(T221, <P13>) (see line 2 in A( ).) 

154. return <0, p13> return value of (<T221>, <P13>) (see lines 2 – 7, 9 in ( ).) 

155. return <0, p13> return value of (T22, P13). (see line 5 in ( ).) 

156. return <0, p13> return value of A(T22, <P13>). (see line 2 in A( ).) 

157. return <1, p1> return value of (<T21, T22>, <P12, P13>). (see lines 2 – 7, 8 in ( ).) 

158. return <1, p1> return value of A(T2, <P12, P13>). (see lines 3, 4 – 5 in A( ).) 

159. A(T3, <P13>) supplement checking 

160. (T3, P13) <P13> contains a single tree. Call ( ) (line 2 in A( ).) 

161. return <1, p1> (1-4) holds (in the exec. of ( ).) Return <1, p11>. (see line 6 in ( ).) 

162. return <1, p1> return value of A(T3, <P13>) (see line 2 in A( ).) 

163. return <3, p1> return value of (<T1, T2, T3>, G). (see line 14, 16 in ( ).) 

164. return <3, p1> return value of A(T, G). (see line 3, 7 in A( ).) 
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Appendix III Sample Trace of Improved Algo-
rithm 

Below we trace the execution of the improved algorithm 

when applied to the tree T and the forest G shown in Fig. 

11. As can be seen, this is a much shorter process (than the 

sample trace of the basic algorithm when applied to the 

same target and pattern trees), by which almost the whole 

computation of A(T2, G) and  A(T3, G) are discarded by us-

ing cuts. 

First, we notice that the return value of A(T1, G, p111) is 

<1, p1> (see line 20.) So the cut transferred to A(T2, G, p1) is 

p1. Then, we will have the following recursive calls (see 

lines 21, 22, and 23 in the sample trace): 

 A(T2, G, p1) → (T2, P1, p1) → A(T2, <P11, P12, P13>, p1). 

Since p11’s parent is p1 (instead of an ancestor of p1), A(T2, 
<P11, P12, P13>, p1) c annot  return a useful left corner.

 So the corresponding computation needn’t be performed 
and we simply set its return value to be <0, p111> (see line in 
the modified A-function; also see line 24 in the sample 
trace.) 

In a next step, we will call A(T3, G, p1) and the cut trans-
ferred to it is still p1. Accordingly, we have the following 
recursive calls (see lines 27, 28, and 29 in the sample trace): 

 A(T3, G, p1) → (T3, P1, p1) → A(T3, <P11, P12, P13>, p1). 

For the same reason, A(T3, <P11, P12, P13>, p1) will not be 
carried out, either, but with <0, p111> returned. 

From the above explanation, we can see that the modi-
fied algorithm will return the same result as the basic ver-
sion, but require much less running time. 

 

  

step-by-step trace: explanation: 

1. A(T, G, p111) A(T, G) begins. Initially, the cut is set to be (G) = p111. 

2. (<T1, T2, T3>, G, p111) since G is a forest and |T| > |P1| + |P2|, call ( ) and the cut is transferred to ( ) (line 4 in A( ).)  

3. A(T1, G, p111) in the 1st while-loop of ( ), call A-functions in turn and the cut is transferred to A( ) (line 3 in ( ).)  

4. (T1, P1, p111) since |T1|≤|P1| + |P2|, call ( ) and the cut is transferred to ( ) (line 3 in A( ).)   

5. A(T1, <P11, P12, P13>, p111) (1-2) holds (in the exec. of ( ).) Call A( ) and the cut is transferred to A( ) (line 4 in ( ).)   

(T1, P11, p111) since |T1|≤|P11| + |P12|, call ( ) and the cut is transferred to ( ) (line 3 in A( ).)   

6. (<T11, T12>, <P111, P112>, p111) (1-5-ii) holds (in the exec. of ( ).) Call ( ) and the cut is transferred to ( ) (line 8 in ( ).)  

7. A(T11, <P111, P112>, p111) in the 1st while-loop of ( ), call A-functions in turn and the cut is transferred to A( ) (line 3 in ( ).) 

8. (T11, P111, p111) since |T11|≤|P111| + |P112|, call ( ) and the cut is transferred to ( ) (line 3 in A( ).) 

9. return <1, p11> (1-4) holds (in the exec. of ( ).) Return <1, p11>. (line 6 in ( ).) 

10. return <1, p11> return value of A(T11, <P111, P112>, p111) (see line 3 in A( ). 

11. A(T12, <P112>, p112) in the 1st while-loop of ( ), call A-functions in turn and the cut is changed to p112 (line 3 in ( ).) 

12. (T1, P112, p112) <P112> contains a single tree. Call ( ) and the cut is transferred to ( ) (line 3 in A( ).) 

13. return <1, p11> (1-1) holds (in the execution of ( ).) Return <1, p11> since lable(t12) = lable(p112) = b (see line 2 in ( ).) 

14. return <1, p11> return value of A(T12, <P112>, p112) (see line 3 in A( ).) 

15. return <2, p11> the result of the 1st while-loop in the execution of (<T11, T12>, <P111, P112>, p111). 

16. return <1, p1> return value of (T1, P11, p111) (Since lable(p11) = lable(t1) = c and d(p11) = 2, return <1, p1>. see line 8 in ( ).) 

17. return <1, p1> return value of A(T1, <P11, P12, P13>, p111) (see line 3 in A( ).) 

18. return <1, p1> return value of (T1, P1, p111) (see line 4 in  ( ).) 

19. return <1, p1> return value of A(T1, G, p111) (see line 3 in A( ).) 

20. A(T2, G, p
1
) in the 1st while-loop of ( ), call A-functions in turn and the cut is changed to p1 (line 3 in ( ).) 

21. (T2, P1, p1
) since |T2|≤|P1| + |P2|, call ( ) and the cut is transferred to ( ) (line 3 in A( ).)   

22. A(T2, <P11, P12, P13>, p
1
) (1-2) holds (in the exec. of ( ).) Call A( ) (see line 4 in ( ).) 

23. returm <0, (P11)>  Here, the computation is cut off since p11’s parent is not an ancestor of p1 . 

24. return <0, p111> return value of (T2, P1, p1
) (see line 4 in ( ).) 

25. return <0, p111> return value of A(T2, G, p
1
) (see line 3 in A( ).) 

26. A(T3, G, p
1
) in the 1st while-loop of ( ), call A-functions in turn and the cut is still p

1
 (line 3 in ( ).) 

27. (T3, P1, p1
) since |T3|≤|P1| + |P2|, call ( ) and the cut is transferred to ( ) (line 3 in A( ).) 

28. A(T3, <P11, P12, P13>, p
1
) (1-2) holds (in the exec. of ( ).) Call A( ) (line 4 in ( ).) 

29. returm <0, (P11)> Here, the computation is cut off again since p11’s parent is not an ancestor of p1 . 

30.  return <0, p111> the return value of (T3, P1, p1
) (see line 4 in ( ).) 

31. return <0, p111> the return value of see A(T3, G, p
1
) (line 3 in A( ).) 

32. A(T2, <P12, P13>, p
12

) supplement checking (done by a series of A-function calls.) The cut is set to p
12 since T1 contains P11.   

33. (<T21, T22>, <P12, P13>, p
12

) |T2|> |P12| + |P13|. Call ( ) and the cut is transferred to ( ) (line 4 in A( ).) 

34. A(T21, <P12, P13>, p
12

) in 1st while-loop of ( ), call A-functions in turn and the cut is transferred to A( ) (line 3 in ( ).) 

35. (T21, P12, p12
) since |T21|≤|P12| + |P13|, call ( ) and the cut is transferred to ( ) (line 3 in A( ).) 

36. (<T211, T212>, <P121>, p
121

) (1-5-i) holds (in the exec. of ( ).) Call ( ) and the cut transferred to ( ) is changed to p
121

 (line 7 in ( ).) 

37. A(T211, <P121>, p
121

) in the 1st while-loop of ( ), call A-functions in turn and the cut is transferred to A( ) (line 3 in ( ).) 

38. (T211, P121, p121
)) <P121> contains a single tree. Call ( ) and the cut is transferred to ( ) (line 3 in A( ).) 

39. return <1, p12> (1-1) holds (in the exec. of ( ).) Return <1, p11> since lable(t211) = lable(p121) = a (line 2 in ( ).) 

40. return <1, p12> return value of A(T211, <P121>) (see line 2 in A( ).) 

41. return <1, p12> return value of (<T211, T212>, <P121>) (see lines 2 - 7, 8 in ( ).) 

42. return <1, p1> return value of (T21, P12) (see line 7, 9 in ( ).) 

43. return <1, p1> return value of A(T21, <P12, P13>) (see line 2 in A( ).) 
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Appendix IV Correctness of the Algorithm 
with cuts 
In this Appendix, we prove the correctness of the Algo-

rithm A(T, G, v), where T = <t; T1, ..., Tk >, G = <P1, ..., Pq>.  

Initially, v is set to be (G) and is trivially correct. 
In the subsequent execution, the cut will be changed 

and transferred from a function call to another. To see that 
it is always correctly conducted, we need to examine three 
kinds of A-to-A chains defined in the proof of Lemm 4: 
 A →   → A, 
 A →   →  → A, and 
 A →  → A. 

What we want to do is to demonstrate that by each of 
three chains the cut is both correctly changed and trans-
ferred. 

First, we notice that by A →  the cut transfer is obvi-
ously correct. (See line 3 in FUNCTION 4.) 

Next, by A → , we distinguish between two cases: 
i) label(t) = label(v), where v is the cut by the A-function 

call. (See line 4 in FUNCTION 4.) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ii) label(t) ≠ label(v). (See line 5 in FUNCTION 4.) 

In Case (i), the cut v for the β-function call is down-
graded to v’s first child. It is because if <T1, ..., Tk> is able to 
cover the forests composed of all the subtrees respectively 
rooted at all the children of v, T includes G[v]. Downgrad-
ing v to v’s first child will let the corresponding computa-
tion get through. 

In Case (ii), the cut for the β-function call is still v since 
any left corner returned by the β-function call will not be 
used by the subsequent computation if it is lower than v. 

Concerning the correctness of the cut transfer by   → 
A,   → , and  → A, we need to repeat the discussion on 
Cut Propagation in -function, as well as Cut Propagation in 
-function, in Section 6. By these discussions, we can see 
that both the cut change and cut transfer are correctly done 
in all the cases. Therefore, by each of the three chains the 
cut is either correctly changed or correctly transferred. So, 
we have the following proposition. 
Proposition 4 Let T = <t; T1, ..., Tk > and G = <P1, ..., Pq>. The 
return value of A(T, G, v) is the highest and wildest left-
corner in G, which can be embedded in T and is higher than 
v, or <0, (G)>.  
 

 
 

step-by-step trace: explanation: 

45. A(T22, <P13>, p13) in the 1st while-loop of ( ), call A-functions in turn and the cut is changed to p13 (line 3 in ( ).) 

46. (T22, P13, p13
) <P13> contains a single tree. Call ( ) and the cut is transferred to ( ) (line 3 in A( ).) 

47. (<T221>, <P13>, p
13

) (1-3) holds (in the exec. of ( ).) Call ( ) and the cut is transferred to ( ) (line 5 in ( ).) 

48. A(T221, <P13>, p13) in the 1st while-loop of ( ), call A-functions in turn and the cut is transferred to A( ) (line 3 in ( ).) 

49. (T221, P13>, p13) <P13> contains a single tree. Call ( ) and the cut is transferred to ( ) (line 3 in A( ).) 

50. return <0, p13> (1-1) holds, but l(t221) ≠ l(p13). Return <0, p13>. (line 3 in ( ).) 

51. return <0, p13> return value of A(T221, <P13>) (see line 3 in A( ).) 

52. return <0, p13> return value of (<T221>, <P13>) (see lines 2 – 7, 9 in ( ).) 

53. return <0, p13> return value of (T22, P13). (see line 5 in ( ).) 

54. return <0, p13> return value of A(T22, <P13>). (see line 2 in A( ).) 

55. return <1, p1> return value of (<T21, T22>, <P12, P13>). (see lines 2 – 7, 8 in ( ).) 

56. return <1, p1> return value of A(T2, <P12, P13>). (see lines 3, 4 – 5 in A( ).) 

57. A(T3, <P13>, p13) supplement checking (the cut transferred to A( ) is set to be p13.) 

58. (T3, P13, p13) <P13> contains a single tree. Call ( ) and the cut is transferred to ( ) (line 2 in A( ).) 

59. return <1, p1> (1-4) holds (in the exec. of ( ).) Return <1, p11>. (see line 6 in ( ).) 

60. return <1, p1> return value of A(T3, <P13>) (see line 2 in A( ).) 

61. return <3, p1> return value of (<T1, T2, T3>, G) (see line 14, 16 in ( ).) 

62. return <3, p1> return value of A(T, G). (see line 3, 7 in A( ).) 


