
Distributed DBMS Page 10-12. 1

Outline
� Introduction
� Background
� Distributed DBMS Architecture
� Distributed Database Design
� Semantic Data Control
� Distributed Query Processing
❏ Distributed Transaction Management

➠ Transaction Concepts and Models
➠ Distributed Concurrency Control
➠ Distributed Reliability

❏ Parallel Database Systems
❏ Distributed Object DBMS
❏ Database Interoperability
❏ Concluding Remarks

Distributed DBMS Page 10-12. 2

Transaction

A transaction is a collection of actions that make
consistent transformations of system states while
preserving system consistency.

➠concurrency transparency
➠failure transparency

Database in a
consistent
state

Database may be
temporarily in an
inconsistent state
during execution

Begin
Transaction

End
Transaction

Execution of
Transaction

Database in a
consistent
state

Distributed DBMS Page 10-12. 3

Transaction Example –
A Simple SQL Query

Transaction BUDGET_UPDATE
begin

EXEC SQL UPDATE PROJ
SET BUDGET = BUDGET∗1.1
WHERE PNAME = “CAD/CAM”

end.

Distributed DBMS Page 10-12. 4

Example Database

Consider an airline reservation example with the
relations:

FLIGHT(FNO, DATE, SRC, DEST, STSOLD, CAP)
CUST(CNAME, ADDR, BAL)
FC(FNO, DATE, CNAME,SPECIAL)

Distributed DBMS Page 10-12. 5

Example Transaction – SQL Version

Begin_transaction Reservation
begin

input(flight_no, date, customer_name);
EXEC SQL UPDATE FLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

output(“reservation completed”)
end . {Reservation}

Distributed DBMS Page 10-12. 6

Termination of Transactions
Begin_transaction Reservation
begin

input(flight_no, date, customer_name);
EXEC SQL SELECT STSOLD,CAP

INTO temp1,temp2
FROM FLIGHT
WHERE FNO = flight_no AND DATE = date;

if temp1 = temp2 then
output(“no free seats”);
Abort

else
EXEC SQL UPDATEFLIGHT

SET STSOLD = STSOLD + 1
WHERE FNO = flight_no AND DATE = date;

EXEC SQL INSERT
INTO FC(FNO, DATE, CNAME, SPECIAL);
VALUES (flight_no, date, customer_name, null);

Commit
output(“reservation completed”)

endif
end . {Reservation}

Distributed DBMS Page 10-12. 7

Example Transaction –
Reads & Writes

Begin_transaction Reservation
begin

input(flight_no, date, customer_name);
temp ←=Read(flight_no(date).stsold);
if temp = flight(date).cap then
begin

output(“no free seats”);
Abort

end
else begin

Write(flight(date).stsold, temp + 1);
Write(flight(date).cname, customer_name);
Write(flight(date).special, null);
Commit;
output(“reservation completed”)

end
end. {Reservation}

Distributed DBMS Page 10-12. 8

Characterization

� Read set (RS)
➠ The set of data items that are read by a transaction

� Write set (WS)
➠ The set of data items whose values are changed by

this transaction
� Base set (BS)

➠ RS ∪ WS

Distributed DBMS Page 10-12. 9

Let
➠ Oij(x) be some operation Oj of transaction Ti operating on

entity x, where Oj ∈ {read,write} and Oj is atomic

➠ OSi = ∪j Oij

➠ Ni ∈ {abort,commit}

Transaction Ti is a partial order Ti = {Σi, <i} where
❶ Σi = OSi ∪={Ni }
❷ For any two operations Oij , Oik ∈=OSi , if Oij = R(x)

and Oik = W(x) for any data item x, then either
Oij <i Oik or Oik <i Oij

❸ ∀Oij ∈=OSi, Oij <i Ni

Formalization

Distributed DBMS Page 10-12. 10

Consider a transaction T:
Read(x)
Read(y)
x ←x + y
Write(x)
Commit

Then
Σ = {R(x), R(y), W(x), C}
< = {(R(x), W(x)), (R(y), W(x)), (W(x), C), (R(x), C), (R(y), C)}

Example

Distributed DBMS Page 10-12. 11

Assume
< = {(R(x),W(x)), (R(y),W(x)), (R(x), C), (R(y), C), (W(x), C)}

DAG Representation

R(x)

C

R(y)

W(x)

Distributed DBMS Page 10-12. 12

ATOMICITY
➠ all or nothing

CONSISTENCY
➠ no violation of integrity constraints

ISOLATION
➠ concurrent changes invisible È serializable

DURABILITY
➠ committed updates persist

Properties of Transactions

Distributed DBMS Page 10-12. 13

� Either all or none of the transaction's operations are
performed.

� Atomicity requires that if a transaction is
interrupted by a failure, its partial results must be
undone.

� The activity of preserving the transaction's atomicity
in presence of transaction aborts due to input errors,
system overloads, or deadlocks is called transaction
recovery.

� The activity of ensuring atomicity in the presence of
system crashes is called crash recovery.

Atomicity

Distributed DBMS Page 10-12. 14

� Internal consistency
➠ A transaction which executes alone against a

consistent database leaves it in a consistent state.
➠ Transactions do not violate database integrity

constraints.
� Transactions are correct programs

Consistency

Distributed DBMS Page 10-12. 15

Consistency Degrees

� Degree 0
➠ Transaction T does not overwrite dirty data of other

transactions
➠ Dirty data refers to data values that have been

updated by a transaction prior to its commitment
� Degree 1

➠ T does not overwrite dirty data of other transactions
➠ T does not commit any writes before EOT

Distributed DBMS Page 10-12. 16

Consistency Degrees (cont’d)

� Degree 2
➠ T does not overwrite dirty data of other transactions
➠ T does not commit any writes before EOT
➠ T does not read dirty data from other transactions

� Degree 3
➠ T does not overwrite dirty data of other transactions
➠ T does not commit any writes before EOT
➠ T does not read dirty data from other transactions
➠ Other transactions do not dirty any data read by T

before T completes.

Distributed DBMS Page 10-12. 17

Isolation

� Serializability
➠ If several transactions are executed concurrently,

the results must be the same as if they were
executed serially in some order.

� Incomplete results
➠ An incomplete transaction cannot reveal its results

to other transactions before its commitment.
➠ Necessary to avoid cascading aborts.

Distributed DBMS Page 10-12. 18

Isolation Example

� Consider the following two transactions:
T1: Read(x) T2: Read(x)

x ←x+1 x ←x+1
Write(x) Write(x)
Commit Commit

� Possible execution sequences:
T1: Read(x) T1: Read(x)
T1: x ←x+1 T1: x ←x+1
T1: Write(x) T2: Read(x)
T1: Commit T1: Write(x)
T2: Read(x) T2: x ←x+1
T2: x ←x+1 T2: Write(x)
T2: Write(x) T1: Commit
T2: Commit T2: Commit

Distributed DBMS Page 10-12. 19

SQL-92 Isolation Levels

Phenomena:
� Dirty read

➠ T1 modifies x which is then read by T2 before T1terminates; T1 aborts T2 has read value which
never exists in the database.

� Non-repeatable (fuzzy) read
➠ T1 reads x; T2 then modifies or deletes x and

commits. T1 tries to read x again but reads a
different value or can’t find it.

� Phantom
➠ T1 searches the database according to a predicate

while T2 inserts new tuples that satisfy the
predicate.

Distributed DBMS Page 10-12. 20

SQL-92 Isolation Levels (cont’d)

� Read Uncommitted
➠ For transactions operating at this level, all three

phenomena are possible.
� Read Committed

➠ Fuzzy reads and phantoms are possible, but dirty
reads are not.

� Repeatable Read
➠ Only phantoms possible.

� Anomaly Serializable
➠ None of the phenomena are possible.

Distributed DBMS Page 10-12. 21

� Once a transaction commits, the system
must guarantee that the results of its
operations will never be lost, in spite of
subsequent failures.

� Database recovery

Durability

Distributed DBMS Page 10-12. 22

Based on
➠ Application areas

� non-distributed vs. distributed
� compensating transactions
� heterogeneous transactions

➠ Timing
� on-line (short-life) vs batch (long-life)

➠ Organization of read and write actions
� two-step
� restricted
� action model

➠ Structure
� flat (or simple) transactions
� nested transactions
� workflows

Characterization of Transactions

Distributed DBMS Page 10-12. 23

Transaction Structure
� Flat transaction

➠ Consists of a sequence of primitive operations embraced
between a begin and end markers.
Begin_transaction Reservation

…
end.

� Nested transaction
➠ The operations of a transaction may themselves be

transactions.
Begin_transaction Reservation

…
Begin_transaction Airline

– …
end. {Airline}
Begin_transaction Hotel

…
end. {Hotel}

end. {Reservation}

Distributed DBMS Page 10-12. 24

� Have the same properties as their parents ➩ may
themselves have other nested transactions.

� Introduces concurrency control and recovery
concepts to within the transaction.

� Types
➠ Closed nesting

� Subtransactions begin after their parents and finish before
them.

� Commitment of a subtransaction is conditional upon the
commitment of the parent (commitment through the root).

➠ Open nesting
� Subtransactions can execute and commit independently.
� Compensation may be necessary.

Nested Transactions

Distributed DBMS Page 10-12. 25

Workflows
� “A collection of tasks organized to accomplish some

business process.” [D. Georgakopoulos]
� Types

➠ Human-oriented workflows
� Involve humans in performing the tasks.
� System support for collaboration and coordination; but no

system-wide consistency definition
➠ System-oriented workflows

� Computation-intensive & specialized tasks that can be
executed by a computer

� System support for concurrency control and recovery,
automatic task execution, notification, etc.

➠ Transactional workflows
� In between the previous two; may involve humans, require

access to heterogeneous, autonomous and/or distributed
systems, and support selective use of ACID properties

Distributed DBMS Page 10-12. 26

Workflow Example

T1 T2

T3

T4

T5

Customer
Database

Customer
Database

Customer
Database

T1: Customer request
obtained

T2: Airline reservation
performed

T3: Hotel reservation
performed

T4: Auto reservation
performed

T5: Bill generated

Distributed DBMS Page 10-12. 27

Transactions Provide…

� Atomic and reliable execution in the presence
of failures

� Correct execution in the presence of multiple
user accesses

� Correct management of replicas (if they
support it)

Distributed DBMS Page 10-12. 28

Transaction Processing Issues

� Transaction structure (usually called
transaction model)

➠ Flat (simple), nested

� Internal database consistency
➠ Semantic data control (integrity enforcement)

algorithms

� Reliability protocols
➠ Atomicity & Durability

➠ Local recovery protocols

➠ Global commit protocols

Distributed DBMS Page 10-12. 29

Transaction Processing Issues

� Concurrency control algorithms
➠ How to synchronize concurrent transaction

executions (correctness criterion)
➠ Intra-transaction consistency, Isolation

� Replica control protocols
➠ How to control the mutual consistency of replicated

data
➠ One copy equivalence and ROWA

Distributed DBMS Page 10-12. 30

Architecture Revisited

Scheduling/
Descheduling
Requests

Transaction Manager
(TM)

Distributed
Execution Monitor

With other
SCs

With other
TMs

Begin_transaction,
Read, Write,
Commit, Abort

To data
processor

Results

Scheduler
(SC)

Distributed DBMS Page 10-12. 31

Centralized Transaction Execution

Begin_Transaction,
Read, Write, Abort, EOT

Results &
User Notifications

Scheduled
Operations Results

Results

…

Read, Write,
Abort, EOT

User
Application

User
Application

Transaction
Manager

(TM)

Scheduler
(SC)

Recovery
Manager

(RM)

Distributed DBMS Page 10-12. 32

Distributed Transaction Execution

Begin_transaction,
Read, Write, EOT,
Abort

User application

Results &
User notifications

Read, Write,
EOT, Abort

TM

SC

RM

SC

RM

TM

Local
Recovery
Protocol

Distributed
Concurrency Control

Protocol

Replica Control
Protocol

Distributed
Transaction Execution

Model

Distributed DBMS Page 10-12. 33

Concurrency Control

� The problem of synchronizing concurrent
transactions such that the consistency of the
database is maintained while, at the same
time, maximum degree of concurrency is
achieved.

� Anomalies:
➠ Lost updates

� The effects of some transactions are not reflected on
the database.

➠ Inconsistent retrievals
� A transaction, if it reads the same data item more than

once, should always read the same value.

Distributed DBMS Page 10-12. 34

Execution Schedule (or History)

� An order in which the operations of a set of
transactions are executed.

� A schedule (history) can be defined as a partial
order over the operations of a set of transactions.

H1={W2(x),R1(x), R3(x),W1(x),C1,W2(y),R3(y),R2(z),C2,R3(z),C3}

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

Distributed DBMS Page 10-12. 35

A complete schedule SC(T) over a set of
transactions T={T1, …, Tn} is a partial order
SC(T)={ΣT, < T} where

❶ ΣT = ∪i Σi , for i = 1, 2, …, n

❷ < T ⊇=∪i < i , for i = 1, 2, …, n

❸ For any two conflicting operations Oij, Okl ∈ ΣT,
either Oij < T Okl or Okl < T Oij

Formalization of Schedule

Distributed DBMS Page 10-12. 36

Given three transactions
T1: Read(x) T2: Write(x) T3: Read(x)

Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit
A possible complete schedule is given as the DAG

Complete Schedule – Example

C 1

R3(x)R1(x) W2(x)

W1(x) W2(y) R3(y)

R3(z)R2(z)

C 2 C 3

Distributed DBMS Page 10-12. 37

A schedule is a prefix of a complete schedule
such that only some of the operations and only
some of the ordering relationships are included.

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

Schedule Definition

R1(x)

C 1

R3(x)R1(x) R3(x)W2(x)W2(x)

W1(x) W2(y)W2(y) R3(y)R3(y)

R3(z)R3(z) R2(z)R2(z)

C 2 C 3

Distributed DBMS Page 10-12. 38

Serial History

� All the actions of a transaction occur
consecutively.

� No interleaving of transaction operations.
� If each transaction is consistent (obeys

integrity rules), then the database is
guaranteed to be consistent at the end of
executing a serial history.

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

Hs={W2(x),W2(y),R2(z),C2,R1(x),W1(x),C1,R3(x),R3(y),R3(z),C3}

Distributed DBMS Page 10-12. 39

Serializable History
� Transactions execute concurrently, but the net

effect of the resulting history upon the database
is equivalent to some serial history.

� Equivalent with respect to what?
➠ Conflict equivalence: the relative order of

execution of the conflicting operations belonging to
unaborted transactions in two histories are the
same.

➠ Conflicting operations: two incompatible
operations (e.g., Read and Write) conflict if they both
access the same data item.

� Incompatible operations of each transaction is assumed
to conflict; do not change their execution orders.

� If two operations from two different transactions
conflict, the corresponding transactions are also said to
conflict.

Distributed DBMS Page 10-12. 40

Serializable History

The following are not conflict equivalent
Hs={W2(x),W2(y),R2(z),C2,R1(x),W1(x),C1,R3(x),R3(y),R3(z),C3}

H1={W2(x),R1(x), R3(x),W1(x),C1,W2(y),R3(y),R2(z),C2,R3(z),C3}

The following are conflict equivalent; therefore
H2 is serializable.
Hs={W2(x),W2(y),R2(z),C2,R1(x),W1(x),C1,R3(x),R3(y),R3(z),C3}

H2={W2(x),R1(x),W1(x),C1,R3(x),W2(y),R3(y),R2(z),C2,R3(z),C3}

T1: Read(x) T2: Write(x) T3: Read(x)
Write(x) Write(y) Read(y)
Commit Read(z) Read(z)

Commit Commit

Distributed DBMS Page 10-12. 41

Serializability in Distributed DBMS

� Somewhat more involved. Two histories have to be
considered:

➠ local histories
➠ global history

� For global transactions (i.e., global history) to be
serializable, two conditions are necessary:

➠ Each local history should be serializable.
➠ Two conflicting operations should be in the same relative

order in all of the local histories where they appear together.

Distributed DBMS Page 10-12. 42

Global Non-serializability

The following two local histories are individually
serializable (in fact serial), but the two transactions
are not globally serializable.

T1: Read(x) T2: Read(x)
x ←x+5 x ←x∗15
Write(x) Write(x)
Commit Commit

LH1={R1(x),W1(x),C1,R2(x),W2(x),C2}
LH2={R2(x),W2(x),C2,R1(x),W1(x),C1}

Distributed DBMS Page 10-12. 43

Concurrency Control
Algorithms

� Pessimistic
➠ Two-Phase Locking-based (2PL)

� Centralized (primary site) 2PL
� Primary copy 2PL
� Distributed 2PL

➠ Timestamp Ordering (TO)
� Basic TO
� Multiversion TO
� Conservative TO

➠ Hybrid
� Optimistic

➠ Locking-based
➠ Timestamp ordering-based

Distributed DBMS Page 10-12. 44

Locking-Based Algorithms

� Transactions indicate their intentions by
requesting locks from the scheduler (called lock
manager).

� Locks are either read lock (rl) [also called shared
lock] or write lock (wl) [also called exclusive lock]

� Read locks and write locks conflict (because Read
and Write operations are incompatible

rl wl
rl yes no
wl no no

� Locking works nicely to allow concurrent
processing of transactions.

Distributed DBMS Page 10-12. 45

Two-Phase Locking (2PL)
❶ A Transaction locks an object before using it.
❷ When an object is locked by another transaction,

the requesting transaction must wait.
❸ When a transaction releases a lock, it may not

request another lock.

Obtain lock

Release lock

Lock point

Phase 1 Phase 2

BEGIN END

N
o.

 o
f l

oc
ks

Distributed DBMS Page 10-12. 46

Strict 2PL
Hold locks until the end.

Obtain lock

Release lock

BEGIN END
Transaction
durationperiod of

data item
use

Distributed DBMS Page 10-12. 47

Centralized 2PL
� There is only one 2PL scheduler in the distributed system.
� Lock requests are issued to the central scheduler.

Data Processors at
participating sites Coordinating TM Central Site LM

Lock Request

Lock Granted

Operation

End of Operation

Release Locks

Distributed DBMS Page 10-12. 48

Distributed 2PL

� 2PL schedulers are placed at each site. Each
scheduler handles lock requests for data at that site.

� A transaction may read any of the replicated copies
of item x, by obtaining a read lock on one of the
copies of x. Writing into x requires obtaining write
locks for all copies of x.

Distributed DBMS Page 10-12. 49

Distributed 2PL Execution
Coordinating TM Participating LMs Participating DPs

Lock Request

Operation

End of Operation

Release Locks

Distributed DBMS Page 10-12. 50

Timestamp Ordering
❶ Transaction (Ti) is assigned a globally unique

timestamp ts(Ti).
❷ Transaction manager attaches the timestamp to all

operations issued by the transaction.
❸ Each data item is assigned a write timestamp (wts) and

a read timestamp (rts):
➠rts(x) = largest timestamp of any read on x
➠wts(x) = largest timestamp of any read on x

❹ Conflicting operations are resolved by timestamp order.
Basic T/O:
for Ri(x) for Wi(x)
if ts(Ti) < wts(x) if ts(Ti) < rts(x) and ts(Ti) < wts(x)
then reject Ri(x) then reject Wi(x)
else accept Ri(x) else accept Wi(x)
rts(x) ←Τts(Ti) wts(x) ←Τts(Ti)

Distributed DBMS Page 10-12. 51

� Basic timestamp ordering tries to
execute an operation as soon as it
receives it

➠ progressive
➠ too many restarts since there is no delaying

� Conservative timestamping delays each
operation until there is an assurance
that it will not be restarted

� Assurance?
➠ No other operation with a smaller

timestamp can arrive at the scheduler
➠ Note that the delay may result in the

formation of deadlocks

Conservative Timestamp
Ordering

Distributed DBMS Page 10-12. 52

Multiversion Timestamp Ordering

� Do not modify the values in the database,
create new values.

� A Ri(x) is translated into a read on one version
of x.

➠ Find a version of x (say xv) such that ts(xv) is the
largest timestamp less than ts(Ti).

� A Wi(x) is translated into Wi(xw) and accepted if
the scheduler has not yet processed any Rj(xr)
such that

ts(Ti) < ts(xr) < ts(Tj)

Distributed DBMS Page 10-12. 53

Optimistic Concurrency Control
Algorithms

Pessimistic execution

Optimistic execution

Validate Read Compute Write

ValidateRead Compute Write

Distributed DBMS Page 10-12. 54

� Transaction execution model: divide into
subtransactions each of which execute at a site

➠ Tij: transaction Ti that executes at site j

� Transactions run independently at each site
until they reach the end of their read phases

� All subtransactions are assigned a timestamp
at the end of their read phase

� Validation test performed during validation
phase. If one fails, all rejected.

Optimistic Concurrency Control
Algorithms

Distributed DBMS Page 10-12. 55

Optimistic CC Validation Test

❶ If all transactions Tk where ts(Tk) < ts(Tij)
have completed their write phase before Tij
has started its read phase, then validation
succeeds

➠ Transaction executions in serial order

Tk
R V W

R V WTij

Distributed DBMS Page 10-12. 56

Optimistic CC Validation Test

❷ If there is any transaction Tk such that ts(Tk)<ts(Tij)
and which completes its write phase while Tij is in
its read phase, then validation succeeds if
WS(Tk) ∩ RS(Tij) = Ø

➠ Read and write phases overlap, but Tij does not read data
items written by Tk

R V WTk
R V WTij

Distributed DBMS Page 10-12. 57

Optimistic CC Validation Test

❸ If there is any transaction Tk such that ts(Tk)< ts(Tij)
and which completes its read phase before Tij
completes its read phase, then validation succeeds if
WS(Tk) ∩=RS(Tij) = Ø and WS(Tk) ∩=WS(Tij) = Ø

➠ They overlap, but don't access any common data items.

R V WTk
R V WTij

Distributed DBMS Page 10-12. 58

� A transaction is deadlocked if it is blocked and will
remain blocked until there is intervention.

� Locking-based CC algorithms may cause deadlocks.
� TO-based algorithms that involve waiting may cause

deadlocks.
� Wait-for graph

➠ If transaction Ti waits for another transaction Tj to release
a lock on an entity, then Ti → Tj in WFG.

Deadlock

Ti Tj

Distributed DBMS Page 10-12. 59

Assume T1 and T2 run at site 1, T3 and T4 run at site 2.
Also assume T3 waits for a lock held by T4 which waits
for a lock held by T1 which waits for a lock held by T2
which, in turn, waits for a lock held by T3.
Local WFG

Global WFG

Local versus Global WFG

T1

Site 1 Site 2

T2

T4

T3

T1

T2

T4

T3

Distributed DBMS Page 10-12. 60

� Ignore
➠ Let the application programmer deal with it, or

restart the system
� Prevention

➠ Guaranteeing that deadlocks can never occur in
the first place. Check transaction when it is
initiated. Requires no run time support.

� Avoidance
➠ Detecting potential deadlocks in advance and

taking action to insure that deadlock will not
occur. Requires run time support.

� Detection and Recovery
➠ Allowing deadlocks to form and then finding and

breaking them. As in the avoidance scheme, this
requires run time support.

Deadlock Management

Distributed DBMS Page 10-12. 61

� All resources which may be needed by a transaction
must be predeclared.
➠ The system must guarantee that none of the resources will

be needed by an ongoing transaction.
➠ Resources must only be reserved, but not necessarily

allocated a priori
➠ Unsuitability of the scheme in database environment
➠ Suitable for systems that have no provisions for undoing

processes.
� Evaluation:

– Reduced concurrency due to preallocation
– Evaluating whether an allocation is safe leads to added

overhead.
– Difficult to determine (partial order)
+ No transaction rollback or restart is involved.

Deadlock Prevention

Distributed DBMS Page 10-12. 62

� Transactions are not required to request
resources a priori.

� Transactions are allowed to proceed unless a
requested resource is unavailable.

� In case of conflict, transactions may be
allowed to wait for a fixed time interval.

� Order either the data items or the sites and
always request locks in that order.

� More attractive than prevention in a
database environment.

Deadlock Avoidance

Distributed DBMS Page 10-12. 63

WAIT-DIE Rule: If Ti requests a lock on a data item
which is already locked by Tj, then Ti is permitted to
wait iff ts(Ti)<ts(Tj). If ts(Ti)>ts(Tj), then Ti is aborted
and restarted with the same timestamp.

➠ if ts(Ti)<ts(Tj) then Ti waits else Ti dies
➠ non-preemptive: Ti never preempts Tj
➠ prefers younger transactions

WOUND-WAIT Rule: If Ti requests a lock on a data
item which is already locked by Tj , then Ti is
permitted to wait iff ts(Ti)>ts(Tj). If ts(Ti)<ts(Tj), then
Tj is aborted and the lock is granted to Ti.

➠ if ts(Ti)<ts(Tj) then Tj is wounded else Ti waits
➠ preemptive: Ti preempts Tj if it is younger
➠ prefers older transactions

Deadlock Avoidance –
Wait-Die & Wound-Wait Algorithms

Distributed DBMS Page 10-12. 64

� Transactions are allowed to wait freely.
� Wait-for graphs and cycles.
� Topologies for deadlock detection

algorithms
➠ Centralized
➠ Distributed
➠ Hierarchical

Deadlock Detection

Distributed DBMS Page 10-12. 65

� One site is designated as the deadlock detector for
the system. Each scheduler periodically sends its
local WFG to the central site which merges them to
a global WFG to determine cycles.

� How often to transmit?
➠ Too often higher communication cost but lower delays

due to undetected deadlocks
➠ Too late higher delays due to deadlocks, but lower

communication cost
� Would be a reasonable choice if the concurrency

control algorithm is also centralized.
� Proposed for Distributed INGRES

Centralized Deadlock Detection

Distributed DBMS Page 10-12. 66

Build a hierarchy of detectors

Hierarchical Deadlock Detection

Site 1 Site 2 Site 3 Site 4

DD21 DD22 DD23 DD24

DD11 DD14

DDox

Distributed DBMS Page 10-12. 67

� Sites cooperate in detection of deadlocks.
� One example:

➠ The local WFGs are formed at each site and passed on to
other sites. Each local WFG is modified as follows:

❶ Since each site receives the potential deadlock cycles from
other sites, these edges are added to the local WFGs

❷ The edges in the local WFG which show that local
transactions are waiting for transactions at other sites are
joined with edges in the local WFGs which show that remote
transactions are waiting for local ones.

➠ Each local deadlock detector:
� looks for a cycle that does not involve the external edge. If it

exists, there is a local deadlock which can be handled locally.
� looks for a cycle involving the external edge. If it exists, it

indicates a potential global deadlock. Pass on the information
to the next site.

Distributed Deadlock Detection

Distributed DBMS Page 10-12. 68

Problem:

How to maintain

atomicity

durability

properties of transactions

Reliability

Distributed DBMS Page 10-12. 69

� Reliability
➠ A measure of success with which a system conforms

to some authoritative specification of its behavior.
➠ Probability that the system has not experienced any

failures within a given time period.
➠ Typically used to describe systems that cannot be

repaired or where the continuous operation of the
system is critical.

� Availability
➠ The fraction of the time that a system meets its

specification.
➠ The probability that the system is operational at a

given time t.

Fundamental Definitions

Distributed DBMS Page 10-12. 70

External state

Internal state

Component 2

ENVIRONMENT

SYSTEM

Stimuli Responses

Component 1

Component 3

Basic System Concepts

Distributed DBMS Page 10-12. 71

� Failure
➠ The deviation of a system from the behavior that is

described in its specification.
� Erroneous state

➠ The internal state of a system such that there exist
circumstances in which further processing, by the
normal algorithms of the system, will lead to a
failure which is not attributed to a subsequent fault.

� Error
➠ The part of the state which is incorrect.

� Fault
➠ An error in the internal states of the components of

a system or in the design of a system.

Fundamental Definitions

Distributed DBMS Page 10-12. 72

Faults to Failures

Fault Error Failure
causes results in

Distributed DBMS Page 10-12. 73

� Hard faults
➠ Permanent
➠ Resulting failures are called hard failures

� Soft faults
➠ Transient or intermittent
➠ Account for more than 90% of all failures
➠ Resulting failures are called soft failures

Types of Faults

Distributed DBMS Page 10-12. 74

Fault Classification
Permanent

fault

Incorrect
design

Unstable
environment

Operator
mistake

Transient
error

System
Failure

Unstable or
marginal

components

Intermittent
error

Permanent
error

Distributed DBMS Page 10-12. 75

Failures

Fault
occurs

Error
caused

Detection
of error

Repair Fault
occurs

Error
caused

MTBF

MTTRMTTD

Multiple errors can occur
during this period

Time

Distributed DBMS Page 10-12. 76

Reliability

R(t) = Pr{0 failures in time [0,t] | no failures at t=0}
If occurrence of failures is Poisson

R(t) = Pr{0 failures in time [0,t]}
Then

where m(t) is known as the hazard function which
gives the time-dependent failure rate of the
component and is defined as

Fault Tolerance Measures

k!
Pr(k failures in time [0,t] = e-m(t)[m(t)]k

m(t) = z(x)dx
0

t

Distributed DBMS Page 10-12. 77

Reliability
The mean number of failures in time [0, t] can be

computed as

and the variance can be be computed as
Var[k] = E[k2] - (E[k])2 = m(t)

Thus, reliability of a single component is
R(t) = e-m(t)

and of a system consisting of n non-redundant
components as

Fault-Tolerance Measures

E [k] =
k =0

∞
k k!

e-m(t)[m(t)]k
= m(t)

Rsys(t) =∏
i =1

n
Ri(t)

Distributed DBMS Page 10-12. 78

Availability
A(t) = Pr{system is operational at time t}

Assume
� Poisson failures with rate=λ

� Repair time is exponentially distributed with mean 1/µ

Then, steady-state availability

Fault-Tolerance Measures

A = lim A(t) =
t →=∞

µ
λ=+=µ

Distributed DBMS Page 10-12. 79

MTBF
Mean time between failures

MTBF =
0

∞ R(t)dt

MTTR
Mean time to repair

Availability
MTBF

MTBF + MTTR

Fault-Tolerance Measures

Distributed DBMS Page 10-12. 80

S. Mourad and D. Andrews, “The Reliability of the IBM/XA
Operating System”, Proc. 15th Annual Int. Symp. on FTCS, 1985.

Sources of Failure –
SLAC Data (1985)

Operations
57%

Software
13%

Hardware
13%

Environment
17%

Distributed DBMS Page 10-12. 81

“Survey on Computer Security”, Japan Info. Dev. Corp.,1986.

Sources of Failure –
Japanese Data (1986)

Comm.
Lines
12%

Application
SW
25%

Operations
10%

Vendor
42%

Environment
11%

Distributed DBMS Page 10-12. 82

D.A. Yaeger. 5ESS Switch Performance Metrics. Proc. Int.
Conf. on Communications, Volume 1, pp. 46-52, June 1987.

Operations
18%

Unknown
6%

Hardware
32%Software

44%

Sources of Failure –
5ESS Switch (1987)

Distributed DBMS Page 10-12. 83

Jim Gray, Why Do Computers Stop and What can be
Done About It?, Tandem Technical Report 85.7, 1985.

Operations
17%

Maintenance
25%

Environment
14% Software

26%

Hardware
18%

Sources of Failures –
Tandem Data (1985)

Distributed DBMS Page 10-12. 84

Types of Failures
� Transaction failures

➠ Transaction aborts (unilaterally or due to deadlock)
➠ Avg. 3% of transactions abort abnormally

� System (site) failures
➠ Failure of processor, main memory, power supply, …
➠ Main memory contents are lost, but secondary storage

contents are safe
➠ Partial vs. total failure

� Media failures
➠ Failure of secondary storage devices such that the

stored data is lost
➠ Head crash/controller failure (?)

� Communication failures
➠ Lost/undeliverable messages
➠ Network partitioning

Distributed DBMS Page 10-12. 85

Local Recovery Management –
Architecture

� Volatile storage
➠ Consists of the main memory of the computer system

(RAM).
� Stable storage

➠ Resilient to failures and loses its contents only in the
presence of media failures (e.g., head crashes on disks).

➠ Implemented via a combination of hardware (non-volatile
storage) and software (stable-write, stable-read, clean-up)
components.

Secondary
storage

Stable
database

Read Write

Write Read

Main memoryLocal Recovery
Manager

Database Buffer
Manager

Fetch,
Flush Database

buffers
(Volatile
database)

Distributed DBMS Page 10-12. 86

Update Strategies

� In-place update

➠ Each update causes a change in one or more data
values on pages in the database buffers

� Out-of-place update

➠ Each update causes the new value(s) of data item(s)
to be stored separate from the old value(s)

Distributed DBMS Page 10-12. 87

Database Log
Every action of a transaction must not only perform
the action, but must also write a log record to an
append-only file.

In-Place Update Recovery
Information

New
stable database

state

Database
Log

Update
Operation

Old
stable database

state

Distributed DBMS Page 10-12. 88

Logging

The log contains information used by the
recovery process to restore the consistency of a
system. This information may include

➠ transaction identifier
➠ type of operation (action)
➠ items accessed by the transaction to perform the

action
➠ old value (state) of item (before image)
➠ new value (state) of item (after image)

…

Distributed DBMS Page 10-12. 89

Why Logging?

Upon recovery:
➠ all of T1's effects should be reflected in the database

(REDO if necessary due to a failure)
➠ none of T2's effects should be reflected in the

database (UNDO if necessary)

0 t time

system
crash

T1Begin End

Begin T2

Distributed DBMS Page 10-12. 90

� REDO'ing an action means performing it again.
� The REDO operation uses the log information

and performs the action that might have been
done before, or not done due to failures.

� The REDO operation generates the new image.

REDO Protocol

Database
Log

REDO
Old

stable database
state

New
stable database

state

Distributed DBMS Page 10-12. 91

� UNDO'ing an action means to restore the
object to its before image.

� The UNDO operation uses the log information
and restores the old value of the object.

UNDO Protocol

New
stable database

state

Database
Log

UNDO
Old

stable database
state

Distributed DBMS Page 10-12. 92

When to Write Log Records
Into Stable Store

Assume a transaction T updates a page P
� Fortunate case

➠ System writes P in stable database
➠ System updates stable log for this update
➠ SYSTEM FAILURE OCCURS!... (before T commits)

We can recover (undo) by restoring P to its old state
by using the log

� Unfortunate case
➠ System writes P in stable database
➠ SYSTEM FAILURE OCCURS!... (before stable log is

updated)
We cannot recover from this failure because there is
no log record to restore the old value.

� Solution: Write-Ahead Log (WAL) protocol

Distributed DBMS Page 10-12. 93

Write–Ahead Log Protocol

� Notice:
➠ If a system crashes before a transaction is committed,

then all the operations must be undone. Only need the
before images (undo portion of the log).

➠ Once a transaction is committed, some of its actions
might have to be redone. Need the after images (redo
portion of the log).

� WAL protocol :
❶ Before a stable database is updated, the undo portion of

the log should be written to the stable log
❷ When a transaction commits, the redo portion of the log

must be written to stable log prior to the updating of
the stable database.

Distributed DBMS Page 10-12. 94

Logging Interface

Read
WriteWrite

Read

Main memory

Local Recovery
Manager

Database Buffer
Manager

Fetch,
Flush

Secondary
storage

Stable
log

Stable
database

Database
buffers
(Volatile

database)

Log
buffers

Write
Read

Distributed DBMS Page 10-12. 95

� Shadowing
➠ When an update occurs, don't change the old page, but

create a shadow page with the new values and write it
into the stable database.

➠ Update the access paths so that subsequent accesses
are to the new shadow page.

➠ The old page retained for recovery.
� Differential files

➠ For each file F maintain
� a read only part FR
� a differential file consisting of insertions part DF+ and

deletions part DF-
� Thus, F = (FR ∪ DF+) – DF-

➠ Updates treated as delete old value, insert new value

Out-of-Place Update
Recovery Information

Distributed DBMS Page 10-12. 96

Commands to consider:
begin_transaction
read
write
commit
abort
recover

Independent of execution
strategy for LRM

Execution of Commands

Distributed DBMS Page 10-12. 97

� Dependent upon
➠ Can the buffer manager decide to write some of

the buffer pages being accessed by a transaction
into stable storage or does it wait for LRM to
instruct it?

� fix/no-fix decision
➠ Does the LRM force the buffer manager to write

certain buffer pages into stable database at the
end of a transaction's execution?

� flush/no-flush decision
� Possible execution strategies:

➠ no-fix/no-flush
➠ no-fix/flush
➠ fix/no-flush
➠ fix/flush

Execution Strategies

Distributed DBMS Page 10-12. 98

� Abort
➠ Buffer manager may have written some of the updated

pages into stable database
➠ LRM performs transaction undo (or partial undo)

� Commit
➠ LRM writes an “end_of_transaction” record into the log.

� Recover
➠ For those transactions that have both a

“begin_transaction” and an “end_of_transaction” record
in the log, a partial redo is initiated by LRM

➠ For those transactions that only have a
“begin_transaction” in the log, a global undo is executed
by LRM

No-Fix/No-Flush

Distributed DBMS Page 10-12. 99

� Abort
➠ Buffer manager may have written some of the

updated pages into stable database
➠ LRM performs transaction undo (or partial undo)

� Commit
➠ LRM issues a flush command to the buffer

manager for all updated pages
➠ LRM writes an “end_of_transaction” record into the

log.
� Recover

➠ No need to perform redo
➠ Perform global undo

No-Fix/Flush

Distributed DBMS Page 10-12. 100

� Abort
➠ None of the updated pages have been written

into stable database
➠ Release the fixed pages

� Commit
➠ LRM writes an “end_of_transaction” record into

the log.
➠ LRM sends an unfix command to the buffer

manager for all pages that were previously
fixed

� Recover
➠ Perform partial redo
➠ No need to perform global undo

Fix/No-Flush

Distributed DBMS Page 10-12. 101

� Abort
➠ None of the updated pages have been written into stable

database
➠ Release the fixed pages

� Commit (the following have to be done atomically)
➠ LRM issues a flush command to the buffer manager for

all updated pages
➠ LRM sends an unfix command to the buffer manager

for all pages that were previously fixed
➠ LRM writes an “end_of_transaction” record into the log.

� Recover
➠ No need to do anything

Fix/Flush

Distributed DBMS Page 10-12. 102

� Simplifies the task of determining actions of
transactions that need to be undone or
redone when a failure occurs.

� A checkpoint record contains a list of active
transactions.

� Steps:
❶ Write a begin_checkpoint record into the log
❷ Collect the checkpoint dat into the stable storage
❸ Write an end_checkpoint record into the log

Checkpoints

Distributed DBMS Page 10-12. 103

Media Failures –
Full Architecture

Read
WriteWrite

Read

Main memory

Local Recovery
Manager

Database Buffer
Manager

Fetch,
Flush

Archive
log

Archive
database

Secondary
storage

Stable
log

Stable
database

Database
buffers
(Volatile

database)

Log
buffers

Write Write

Write
Read

Distributed DBMS Page 10-12. 104

Distributed Reliability Protocols
� Commit protocols

➠ How to execute commit command for distributed
transactions.

➠ Issue: how to ensure atomicity and durability?
� Termination protocols

➠ If a failure occurs, how can the remaining operational
sites deal with it.

➠ Non-blocking : the occurrence of failures should not force
the sites to wait until the failure is repaired to terminate
the transaction.

� Recovery protocols
➠ When a failure occurs, how do the sites where the failure

occurred deal with it.
➠ Independent : a failed site can determine the outcome of a

transaction without having to obtain remote information.
� Independent recovery � non-blocking termination

Distributed DBMS Page 10-12. 105

Two-Phase Commit (2PC)
Phase 1 : The coordinator gets the participants

ready to write the results into the database
Phase 2 : Everybody writes the results into the

database
➠ Coordinator :The process at the site where the

transaction originates and which controls the
execution

➠ Participant :The process at the other sites that
participate in executing the transaction

Global Commit Rule:
❶ The coordinator aborts a transaction if and only if at

least one participant votes to abort it.
❷ The coordinator commits a transaction if and only if

all of the participants vote to commit it.

Distributed DBMS Page 10-12. 106

Centralized 2PC

ready? yes/no commit/abort? commited/aborted

Phase 1 Phase 2

C C C

P

P

P

P

P

P

P

P

Distributed DBMS Page 10-12. 107

2PC Protocol Actions
Participant Coordinator

No

Yes

VOTE-COMMIT

Yes GLOBAL-ABORT

No

write abort
in log

Abort

Commit
ACK

ACK

INITIAL

write abort
in log

write ready
in log

write commit
in log

Type of
msg

WAIT

Ready to
Commit?

write commit
in log

Any No? write abort
in log

ABORTCOMMIT

COMMITABORT

write
begin_commit

in log

write
end_of_transaction

in log

READY

INITIAL

PREPARE

VOTE-ABORT

VOTE-COMMIT

Distributed DBMS Page 10-12. 108

Linear 2PC

Prepare VC/VA

Phase 1

Phase 2

GC/GA

VC/VA VC/VA VC/VA

VC: Vote-Commit, VA: Vote-Abort, GC: Global-commit, GA: Global-abort

1 2 3 4 5 N

GC/GA GC/GA GC/GA GC/GA

Distributed DBMS Page 10-12. 109

Distributed 2PC

prepare
vote-abort/

vote-commit

global-commit/
global-abort

decision made
independently

Phase 1

Coordinator Participants Participants

Distributed DBMS Page 10-12. 110

State Transitions in 2PC

INITIAL

WAIT

Commit command
Prepare

Vote-commit (all)
Global-commit

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

Coordinator Participants

Vote-abort
Global-abort

ABORT COMMIT COMMITABORT

Distributed DBMS Page 10-12. 111

Site Failures - 2PC Termination

� Timeout in INITIAL
➠ Who cares

� Timeout in WAIT
➠ Cannot unilaterally commit
➠ Can unilaterally abort

� Timeout in ABORT or COMMIT
➠ Stay blocked and wait for the acks

COORDINATOR

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Global-commit

ABORT COMMIT

Vote-abort
Global-abort

Distributed DBMS Page 10-12. 112

� Timeout in INITIAL
➠ Coordinator must have

failed in INITIAL state
➠ Unilaterally abort

� Timeout in READY
➠ Stay blocked

Site Failures - 2PC Termination

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

ABORT COMMIT

PARTICIPANTS

Distributed DBMS Page 10-12. 113

Site Failures - 2PC Recovery

� Failure in INITIAL
➠ Start the commit process upon recovery

� Failure in WAIT
➠ Restart the commit process upon

recovery
� Failure in ABORT or COMMIT

➠ Nothing special if all the acks have
been received

➠ Otherwise the termination protocol is
involved

COORDINATOR

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Global-commit

ABORT COMMIT

Vote-abort
Global-abort

Distributed DBMS Page 10-12. 114

� Failure in INITIAL
➠ Unilaterally abort upon recovery

� Failure in READY
➠ The coordinator has been informed

about the local decision
➠ Treat as timeout in READY state

and invoke the termination protocol
� Failure in ABORT or COMMIT

➠ Nothing special needs to be done

INITIAL

READY

Prepare
Vote-commit

Global-commit
Ack

Prepare
Vote-abort

Global-abort
Ack

ABORT COMMIT

PARTICIPANTS

Site Failures - 2PC Recovery

Distributed DBMS Page 10-12. 115

Arise due to non-atomicity of log and message send
actions

� Coordinator site fails after writing “begin_commit”
log and before sending “prepare” command

➠ treat it as a failure in WAIT state; send “prepare”
command

� Participant site fails after writing “ready” record in
log but before “vote-commit” is sent

➠ treat it as failure in READY state
➠ alternatively, can send “vote-commit” upon recovery

� Participant site fails after writing “abort” record in
log but before “vote-abort” is sent

➠ no need to do anything upon recovery

2PC Recovery Protocols –
Additional Cases

Distributed DBMS Page 10-12. 116

� Coordinator site fails after logging its final
decision record but before sending its decision to
the participants

➠ coordinator treats it as a failure in COMMIT or
ABORT state

➠ participants treat it as timeout in the READY state
� Participant site fails after writing “abort” or

“commit” record in log but before
acknowledgement is sent

➠ participant treats it as failure in COMMIT or ABORT
state

➠ coordinator will handle it by timeout in COMMIT or
ABORT state

2PC Recovery Protocols –
Additional Case

Distributed DBMS Page 10-12. 117

Problem With 2PC

� Blocking
➠ Ready implies that the participant waits for the

coordinator
➠ If coordinator fails, site is blocked until recovery
➠ Blocking reduces availability

� Independent recovery is not possible
� However, it is known that:

➠ Independent recovery protocols exist only for single
site failures; no independent recovery protocol exists
which is resilient to multiple-site failures.

� So we search for these protocols – 3PC

Distributed DBMS Page 10-12. 118

� 3PC is non-blocking.
� A commit protocols is non-blocking iff

➠ it is synchronous within one state
transition, and

➠ its state transition diagram contains
� no state which is “adjacent” to both a commit

and an abort state, and
� no non-committable state which is “adjacent”

to a commit state
� Adjacent: possible to go from one stat to

another with a single state transition
� Committable: all sites have voted to

commit a transaction
➠ e.g.: COMMIT state

Three-Phase Commit

Distributed DBMS Page 10-12. 119

State Transitions in 3PC
INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

INITIAL

READY

Prepare
Vote-commit

Prepared-to-commit
Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMIT

ABORT PRE-
COMMIT

Global commit
Ack

Distributed DBMS Page 10-12. 120

Communication Structure

C

P

P

P

P

C

P

P

P

P

C

ready? yes/no
pre-commit/
pre-abort? commit/abort

Phase 1 Phase 2

P

P

P

P

C

yes/no ack

Phase 3

Distributed DBMS Page 10-12. 121

� Timeout in INITIAL
➠ Who cares

� Timeout in WAIT
➠ Unilaterally abort

� Timeout in PRECOMMIT
➠ Participants may not be in

PRE-COMMIT, but at least in
READY

➠ Move all the participants to
PRECOMMIT state

➠ Terminate by globally
committing

Site Failures –
3PC Termination

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

Distributed DBMS Page 10-12. 122

� Timeout in ABORT or
COMMIT

➠ Just ignore and treat the
transaction as completed

➠ participants are either in
PRECOMMIT or READY
state and can follow their
termination protocols

Site Failures –
3PC Termination

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

Distributed DBMS Page 10-12. 123

� Timeout in INITIAL
➠ Coordinator must have

failed in INITIAL state
➠ Unilaterally abort

� Timeout in READY
➠ Voted to commit, but does

not know the coordinator's
decision

➠ Elect a new coordinator
and terminate using a
special protocol

� Timeout in PRECOMMIT
➠ Handle it the same as

timeout in READY state

INITIAL

READY

Prepare
Vote-commit

Prepared-to-commit
Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMIT

ABORT PRE-
COMMIT

Global commit
Ack

Site Failures –
3PC Termination

Distributed DBMS Page 10-12. 124

New coordinator can be in one of four states: WAIT,
PRECOMMIT, COMMIT, ABORT

❶ Coordinator sends its state to all of the participants asking
them to assume its state.

❷ Participants “back-up” and reply with appriate messages,
except those in ABORT and COMMIT states. Those in these
states respond with “Ack” but stay in their states.

❸ Coordinator guides the participants towards termination:
� If the new coordinator is in the WAIT state, participants can be in

INITIAL, READY, ABORT or PRECOMMIT states. New
coordinator globally aborts the transaction.

� If the new coordinator is in the PRECOMMIT state, the
participants can be in READY, PRECOMMIT or COMMIT states.
The new coordinator will globally commit the transaction.

� If the new coordinator is in the ABORT or COMMIT states, at the
end of the first phase, the participants will have moved to that
state as well.

Termination Protocol Upon
Coordinator Election

Distributed DBMS Page 10-12. 125

� Failure in INITIAL
➠ start commit process upon

recovery
� Failure in WAIT

➠ the participants may have
elected a new coordinator and
terminated the transaction

➠ the new coordinator could be
in WAIT or ABORT states
transaction aborted

➠ ask around for the fate of the
transaction

� Failure in PRECOMMIT
➠ ask around for the fate of the

transaction

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

Site Failures – 3PC Recovery

Distributed DBMS Page 10-12. 126

� Failure in COMMIT or
ABORT

➠ Nothing special if all the
acknowledgements have been
received; otherwise the
termination protocol is
involved

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Global-abort

ABORT

COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

Site Failures – 3PC Recovery

Distributed DBMS Page 10-12. 127

� Failure in INITIAL
➠ unilaterally abort upon

recovery
� Failure in READY

➠ the coordinator has been
informed about the local
decision

➠ upon recovery, ask around
� Failure in PRECOMMIT

➠ ask around to determine how
the other participants have
terminated the transaction

� Failure in COMMIT or
ABORT

➠ no need to do anything

INITIAL

READY

Prepare
Vote-commit

Prepared-to-commit
Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMIT

ABORT PRE-
COMMIT

Global commit
Ack

Site Failures – 3PC Recovery

Distributed DBMS Page 10-12. 128

� Simple partitioning
➠ Only two partitions

� Multiple partitioning
➠ More than two partitions

� Formal bounds (due to Skeen):
➠ There exists no non-blocking protocol that is

resilient to a network partition if messages are
lost when partition occurs.

➠ There exist non-blocking protocols which are
resilient to a single network partition if all
undeliverable messages are returned to sender.

➠ There exists no non-blocking protocol which is
resilient to a multiple partition.

Network Partitioning

Distributed DBMS Page 10-12. 129

Independent Recovery Protocols
for Network Partitioning

� No general solution possible
➠ allow one group to terminate while the other is

blocked
➠ improve availability

� How to determine which group to proceed?
➠ The group with a majority

� How does a group know if it has majority?
➠ centralized

� whichever partitions contains the central site should
terminate the transaction

➠ voting-based (quorum)
� different for replicated vs non-replicated databases

Distributed DBMS Page 10-12. 130

� The network partitioning problem is
handled by the commit protocol.

� Every site is assigned a vote Vi.
� Total number of votes in the system V
� Abort quorum Va, commit quorum Vc

➠ Va + Vc > V where 0 ≤ Va , Vc ≤ V
➠ Before a transaction commits, it must obtain

a commit quorum Vc

➠ Before a transaction aborts, it must obtain an
abort quorum Va

Quorum Protocols for
Non-Replicated Databases

Distributed DBMS Page 10-12. 131

State Transitions in
Quorum Protocols

INITIAL

WAIT

Commit command
Prepare

Vote-commit
Prepare-to-commit

Coordinator

Vote-abort
Prepare-to-abort

ABORT COMMIT

PRE-
COMMIT

Ready-to-commit
Global commit

INITIAL

READY

Prepare
Vote-commit

Prepare-to-commit
Ready-to-commit

Prepare
Vote-abort

Global-abort
Ack

Participants

COMMITABORT

PRE-
COMMIT

Global commit
Ack

PRE-
ABORT

Prepared-to-abortt
Ready-to-abort

PRE-
ABORT

Ready-to-abort
Global-abort

Distributed DBMS Page 10-12. 132

� Network partitioning is handled by the
replica control protocol.

� One implementation:
➠ Assign a vote to each copy of a replicated data

item (say Vi) such that Σi Vi = V
➠ Each operation has to obtain a read quorum (Vr)

to read and a write quorum (Vw) to write a data
item

➠ Then the following rules have to be obeyed in
determining the quorums:

� Vr + Vw > V a data item is not read and written
by two transactions concurrently

� Vw > V/2 two write operations from two
transactions cannot occur
concurrently on the same data item

Quorum Protocols for
Replicated Databases

Distributed DBMS Page 10-12. 133

� Simple modification of the ROWA rule:
➠ When the replica control protocol attempts to read

or write a data item, it first checks if a majority of
the sites are in the same partition as the site that
the protocol is running on (by checking its votes).
If so, execute the ROWA rule within that
partition.

� Assumes that failures are “clean” which
means:

➠ failures that change the network's topology are
detected by all sites instantaneously

➠ each site has a view of the network consisting of
all the sites it can communicate with

Use for Network Partitioning

Distributed DBMS Page 10-12. 134

Open Problems

� Replication protocols
➠ experimental validation
➠ replication of computation and communication

� Transaction models
➠ changing requirements

� cooperative sharing vs. competitive sharing
� interactive transactions
� longer duration
� complex operations on complex data

➠ relaxed semantics
� non-serializable correctness criteria

Distributed DBMS Page 10-12. 135

Transaction Model Design Space
Object complexity

Transaction
structureflat closed

nesting
open
nesting

mixed

simple
data

ADT +
complex
objects

ADT
instances

active
objects

