
Distributed DBMS

Outline

� Introduction
� Background
� Distributed DBMS Architecture
� Distributed Database Design
� Semantic Data Control
� Distributed Query Processing
� Distributed Transaction Management

➠ Data server approach
➠ Parallel architectures
➠ Parallel DBMS techniques
➠ Parallel execution models

❏ Parallel Database Systems
❏ Distributed Object DBMS
❏ Database Interoperability
❏ Concluding Remarks

Distributed DBMS

� Large volume of data use disk and large main memory
� I/O bottleneck (or memory access bottleneck)

➠ Speed(disk) << speed(RAM) << speed(microprocessor)

� Predictions
➠ (Micro-) processor speed growth : 50 % per year

➠ DRAM capacity growth : 4× every three years

➠ Disk throughput : 2× in the last ten years

� Conclusion : the I/O bottleneck worsens

The Database Problem

Distributed DBMS

� Increase the I/O bandwidth
➠ Data partitioning
➠ Parallel data access

� Origins (1980's): database machines
➠ Hardware-oriented bad cost-performance failure
➠ Notable exception : ICL's CAFS Intelligent Search Processor

� 1990's: same solution but using standard hardware
components integrated in a multiprocessor

➠ Software-oriented
➠ Standard essential to exploit continuing technology improvements

The Solution

Distributed DBMS

� High-performance with better cost-performance
than mainframe or vector supercomputer

� Use many nodes, each with good cost-
performance, communicating through network

➠ Good cost via high-volume components
➠ Good performance via bandwidth

� Trends
➠ Microprocessor and memory (DRAM): off-the-shelf
➠ Network (multiprocessor edge): custom

� The real chalenge is to parallelize applications to
run with good load balancing

Multiprocessor Objectives

Distributed DBMS

Data Server Architecture

client interface

query parsing

data server interface

communication channel

Application
server

Data
server

database

application server interface
database functions

Client

Distributed DBMS

Objectives of Data Servers

Avoid the shortcomings of the traditional DBMS
approach

➠ Centralization of data and application management
➠ General-purpose OS (not DB-oriented)

By separating the functions between
➠ Application server (or host computer)
➠ Data server (or database computer or back-end computer)

Distributed DBMS

Data Server Approach: Assessment

� Advantages
➠ Integrated data control by the server (black box)
➠ Increased performance by dedicated system
➠ Can better exploit parallelism
➠ Fits well in distributed environments

� Potential problems
➠ Communication overhead between application and data

server
� High-level interface

➠ High cost with mainframe servers

Distributed DBMS

� Three ways of exploiting high-performance
multiprocessor systems:

❶ Automatically detect parallelism in sequential programs
(e.g., Fortran, OPS5)

❷ Augment an existing language with parallel constructs
(e.g., C*, Fortran90)

❸ Offer a new language in which parallelism can be
expressed or automatically inferred

� Critique
❶ Hard to develop parallelizing compilers, limited resulting

speed-up
❷ Enables the programmer to express parallel computations

but too low-level
❸ Can combine the advantages of both (1) and (2)

Parallel Data Processing

Distributed DBMS

Data-based Parallelism
� Inter-operation

➠ p operations of the same query in parallel

op.3

op.1 op.2

op.

R

op.

R1

op.

R2

op.

R2

op.

R4

� Intra-operation
➠ the same operation in parallel on different data partitions

Distributed DBMS

� Loose definition: a DBMS implemented on a tighly
coupled multiprocessor

� Alternative extremes
➠ Straighforward porting of relational DBMS (the software vendor

edge)
➠ New hardware/software combination (the computer manufacturer

edge)

� Naturally extends to distributed databases with one
server per site

Parallel DBMS

Distributed DBMS

� Much better cost / performance than mainframe
solution

� High-performance through parallelism
➠ High throughput with inter-query parallelism
➠ Low response time with intra-operation parallelism

� High availability and reliability by exploiting data
replication

� Extensibility with the ideal goals
➠ Linear speed-up
➠ Linear scale-up

Parallel DBMS - Objectives

Distributed DBMS

Linear increase in performance for a constant DB
size and proportional increase of the system
components (processor, memory, disk)

new perf.
old perf.

ideal

components

Linear Speed-up

Distributed DBMS

Sustained performance for a linear increase of
database size and proportional increase of the
system components.

components + database size

new perf.
old perf.

Linear Scale-up

ideal

Distributed DBMS

Barriers to Parallelism

� Startup
➠ The time needed to start a parallel operation may

dominate the actual computation time
� Interference

➠ When accessing shared resources, each new process slows
down the others (hot spot problem)

� Skew
➠ The response time of a set of parallel processes is the time

of the slowest one
� Parallel data management techniques intend

to overcome these barriers

Distributed DBMS

Parallel DBMS –
Functional Architecture

RM
task n

DM
task 12

DM
task n2

DM
task n1Data MgrDM

task 11

Request MgrRM
task 1

Session Mgr

User
task 1

User
task n

Distributed DBMS

Parallel DBMS Functions

� Session manager
➠ Host interface
➠ Transaction monitoring for OLTP

� Request manager
➠ Compilation and optimization
➠ Data directory management
➠ Semantic data control
➠ Execution control

� Data manager
➠ Execution of DB operations
➠ Transaction management support
➠ Data management

Distributed DBMS

Parallel System Architectures

� Multiprocessor architecture alternatives
➠ Shared memory (shared everything)

➠ Shared disk

➠ Shared nothing (message-passing)

� Hybrid architectures
➠ Hierarchical (cluster)

➠ Non-Uniform Memory Architecture (NUMA)

Distributed DBMS

Shared-Memory Architecture

Examples: DBMS on symmetric multiprocessors (Sequent,
Encore, Sun, etc.)

➠ Simplicity, load balancing, fast communication
➠ Network cost, low extensibility

P1 Pn

Global Memory

D

interconnect

Distributed DBMS

Shared-Disk Architecture

Examples : DEC's VAXcluster, IBM's IMS/VS Data Sharing
➠ network cost, extensibility, migration from uniprocessor
➠ complexity, potential performance problem for copy

coherency

D

P1

M1

Pn

Mn

interconnect

Distributed DBMS

Shared-Nothing Architecture

Examples : Teradata (NCR), NonStopSQL (Tandem-Compaq),
Gamma (U. of Wisconsin), Bubba (MCC)

➠ Extensibility, availability
➠ Complexity, difficult load balancing

P1

M1

D1

Pn

Mn

Dn

interconnect

Distributed DBMS

� Combines good load balancing of SM with extensibility
of SN

� Alternatives
➠ Limited number of large nodes, e.g., 4 x 16 processor nodes
➠ High number of small nodes, e.g., 16 x 4 processor nodes, has

much better cost-performance (can be a cluster of workstations)

Hierarchical Architecture
P1 Pn

Global Memory

D

interconnect

P1 Pn

Global Memory

D

interconnect

Distributed DBMS

� Mixes two different aspects : addressing and
memory

➠ Addressing
� Single address space : Sequent, Encore, KSR
� Multiple address spaces : Intel, Ncube

➠ Physical memory
� Central : Sequent, Encore
� Distributed : Intel, Ncube, KSR

� NUMA : single address space on distributed
physical memory

➠ Eases application portability
➠ Extensibility

Shared-Memory vs.
Distributed Memory

Distributed DBMS

NUMA Architectures

� Cache Coherent NUMA (CC-NUMA)
➠ statically divide the main memory among the nodes

� Cache Only Memory Architecture (COMA)
➠ convert the per-node memory into a large cache of the

shared address space

Distributed DBMS

COMA Architecture

Hardware shared virtual memory

P1

Cache
Memory

Disk

P2

Cache
Memory

Disk

Pn

Cache
Memory

Disk

…

Distributed DBMS

� Data placement
➠ Physical placement of the DB onto multiple nodes
➠ Static vs. Dynamic

� Parallel data processing
➠ Select is easy
➠ Join (and all other non-select operations) is more difficult

� Parallel query optimization
➠ Choice of the best parallel execution plans
➠ Automatic parallelization of the queries and load balancing

� Transaction management
➠ Similar to distributed transaction management

Parallel DBMS Techniques

Distributed DBMS

� Each relation is divided in n partitions (subrelations),
where n is a function of relation size and access
frequency

� Implementation
➠ Round-robin

� Maps i-th element to node i mod n
� Simple but only exact-match queries

➠ B-tree index
� Supports range queries but large index

➠ Hash function
� Only exact-match queries but small index

Data Partitioning

Distributed DBMS

Partitioning Schemes

Round-Robin Hashing

Interval

••• •••

•••

•••

•••

•••

•••a-g h-m u-z

Distributed DBMS

Replicated Data Partitioning

� High-availability requires data replication
➠ simple solution is mirrored disks

� hurts load balancing when one node fails
➠ more elaborate solutions achieve load balancing

� interleaved partitioning (Teradata)
� chained partitioning (Gamma)

Distributed DBMS

Interleaved Partitioning

Node

Primary copy R1 R2 R3 R4

Backup copy r 1.1 r 1.2 r 1.3

r 2.3 r 2.1 r 2.2

r 3.2 r 3.2 r 3.1

1 2 3 4

Distributed DBMS

Chained Partitioning

Node

Primary copy R1 R2 R3 R4

Backup copy r4 r1 r2 r3

1 2 3 4

Distributed DBMS

Placement Directory

� Performs two functions
➠ F1 (relname, placement attval) = lognode-id
➠ F2 (lognode-id) = phynode-id

� In either case, the data structure for f1 and f2
should be available when needed at each node

Distributed DBMS

Join Processing

� Three basic algorithms for intra-operator
parallelism

➠ Parallel nested loop join: no special assumption
➠ Parallel associative join: one relation is declustered on join

attribute and equi-join
➠ Parallel hash join: equi-join

� They also apply to other complex operators
such as duplicate elimination, union,
intersection, etc. with minor adaptation

Distributed DBMS

Parallel Nested Loop Join

R S →=∪i=1,n(R Si)

send
partition

node 3 node 4

node 1 node 2

R1:

S1 S2

R2:

Distributed DBMS

Parallel Associative Join
node 1

node 3 node 4

node 2

R1: R2:

R S → ∪i=1,n(Ri Si)

S1 S2

Distributed DBMS

Parallel Hash Join

R S → ∪i=1,P(Ri Si)

node node node node

node 1 node 2

R1: R2: S1: S2:

Distributed DBMS

Parallel Query Optimization

The objective is to select the "best" parallel
execution plan for a query using the following
components

Search space
➠ Models alternative execution plans as operator trees
➠ Left-deep vs. Right-deep vs. Bushy trees

Search strategy
➠ Dynamic programming for small search space
➠ Randomized for large search space

Cost model (abstraction of execution system)
➠ Physical schema info. (partitioning, indexes, etc.)
➠ Statistics and cost functions

Distributed DBMS

Execution Plans as Operators Trees

R2R1

R4

Result

j2

j3
Left-deep Right-deep

j1 R3

R2R1

R4

Result

j5

j6

j4R3

R2R1

R3j7

R4

Result

j9

Zig-zag Bushyj8

Result

j10

j12

j11

R2R1 R4R3

Distributed DBMS

Equivalent Hash-Join Trees
with Different Scheduling

R3

Probe3Build3

R4

Temp2

Temp1

Build3

R4

Temp2

Probe3Build3

Probe2Build2

Probe1Build1

R2R1

R3

Temp1

Probe2Build2

Probe1Build1

R2R1

Distributed DBMS

Load Balancing

� Problems arise for intra-operator parallelism
with skewed data distributions

➠ attribute data skew (AVS)
➠ tuple placement skew (TPS)
➠ selectivity skew (SS)
➠ redistribution skew (RS)
➠ join product skew (JPS)

� Solutions
➠ sophisticated parallel algorithms that deal with skew
➠ dynamic processor allocation (at execution time)

Distributed DBMS

Data Skew Example

Join1

Res1 Res2

Join2AVS/TPS

AVS/TPS

AVS/TPS

AVS/TPS

JPS
JPS

RS/SS RS/SS

Scan1 Scan2

S2

R2

S1

R1

Distributed DBMS

� Prototypes
➠ EDS and DBS3 (ESPRIT)
➠ Gamma (U. of Wisconsin)
➠ Bubba (MCC, Austin, Texas)
➠ XPRS (U. of Berkeley)
➠ GRACE (U. of Tokyo)

� Products
➠ Teradata (NCR)
➠ NonStopSQL (Tandem-Compac)
➠ DB2 (IBM), Oracle, Informix, Ingres, Navigator

(Sybase) ...

Some Parallel DBMSs

Distributed DBMS

� Hybrid architectures
� OS support:using micro-kernels
� Benchmarks to stress speedup and scaleup under

mixed workloads
� Data placement to deal with skewed data

distributions and data replication
� Parallel data languages to specify independent

and pipelined parallelism
� Parallel query optimization to deal with mix of

precompiled queries and complex ad-hoc queries
� Support of higher functionality such as rules and

objects

Open Research Problems

