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Distributed DBMS

� Large volume of data use disk and large main memory
� I/O bottleneck (or memory access bottleneck)

➠ Speed(disk) << speed(RAM) << speed(microprocessor)

� Predictions
➠ (Micro-) processor speed growth : 50 % per year

➠ DRAM capacity growth : 4× every three years

➠ Disk throughput : 2× in the last ten years

� Conclusion : the I/O bottleneck worsens

The Database Problem
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� Increase the I/O bandwidth
➠ Data partitioning
➠ Parallel data access

� Origins (1980's): database machines
➠ Hardware-oriented bad cost-performance failure
➠ Notable exception : ICL's CAFS Intelligent Search Processor

� 1990's: same solution but using standard hardware 
components integrated in a multiprocessor

➠ Software-oriented
➠ Standard essential to exploit continuing technology improvements

The Solution
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� High-performance with better cost-performance 
than mainframe or vector supercomputer

� Use many nodes, each with good cost-
performance, communicating through network

➠ Good cost via high-volume components
➠ Good performance via bandwidth

� Trends
➠ Microprocessor and memory (DRAM): off-the-shelf
➠ Network (multiprocessor edge): custom

� The real chalenge is to parallelize applications to 
run with good load balancing

Multiprocessor Objectives
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Data Server Architecture
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Objectives of Data Servers

Avoid the shortcomings of the traditional DBMS 
approach

➠ Centralization of data and application management
➠ General-purpose OS (not DB-oriented)

By separating the functions between
➠ Application server (or host computer)
➠ Data server (or database computer or back-end computer)
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Data Server Approach: Assessment

� Advantages
➠ Integrated data control by the server (black box)
➠ Increased performance by dedicated system
➠ Can better exploit parallelism
➠ Fits well in distributed environments

� Potential problems
➠ Communication overhead between application and data 

server
� High-level interface

➠ High cost with mainframe servers



Distributed DBMS

� Three ways of exploiting high-performance 
multiprocessor systems:

❶ Automatically detect parallelism in sequential programs 
(e.g., Fortran, OPS5)

❷ Augment an existing language with parallel constructs 
(e.g., C*, Fortran90)

❸ Offer a new language in which parallelism can be 
expressed or automatically inferred

� Critique
❶ Hard to develop parallelizing compilers, limited resulting 

speed-up
❷ Enables the programmer to express parallel computations 

but too low-level
❸ Can combine the advantages of both (1) and (2)

Parallel Data Processing
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Data-based Parallelism
� Inter-operation

➠ p operations of the same query in parallel
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� Intra-operation
➠ the same operation in parallel on different data partitions
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� Loose definition: a DBMS implemented on a tighly 
coupled multiprocessor

� Alternative extremes
➠ Straighforward porting of  relational DBMS (the software vendor 

edge)
➠ New hardware/software combination (the computer manufacturer 

edge)

� Naturally extends to distributed databases with one 
server per site

Parallel DBMS
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� Much better cost / performance than mainframe 
solution

� High-performance through parallelism
➠ High throughput with inter-query parallelism
➠ Low response time with intra-operation parallelism

� High availability and reliability by exploiting data 
replication

� Extensibility with the ideal goals
➠ Linear speed-up
➠ Linear scale-up

Parallel DBMS - Objectives
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Linear increase in performance for a constant DB 
size and proportional increase of the system 
components (processor, memory, disk)

new perf.
old perf.

ideal

components

Linear Speed-up
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Sustained performance for a linear increase of 
database size and proportional increase of the 
system components.

components + database size

new perf.
old perf.

Linear Scale-up

ideal
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Barriers to Parallelism

� Startup
➠ The time needed to start a parallel operation may 

dominate the actual computation time
� Interference

➠ When accessing shared resources, each new process slows 
down the others (hot spot problem)

� Skew
➠ The response time of a set of parallel processes is the time 

of the slowest one
� Parallel data management techniques intend 

to overcome these barriers
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Parallel DBMS –
Functional Architecture 
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Parallel DBMS Functions

� Session manager
➠ Host interface
➠ Transaction monitoring for OLTP

� Request manager
➠ Compilation and optimization
➠ Data directory management
➠ Semantic data control 
➠ Execution control

� Data manager
➠ Execution of DB operations
➠ Transaction management support
➠ Data management
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Parallel System Architectures

� Multiprocessor architecture alternatives
➠ Shared memory (shared everything)

➠ Shared disk

➠ Shared nothing (message-passing)

� Hybrid architectures
➠ Hierarchical (cluster)

➠ Non-Uniform Memory Architecture (NUMA)
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Shared-Memory Architecture

Examples: DBMS on symmetric multiprocessors (Sequent, 
Encore, Sun, etc.)

➠ Simplicity, load balancing, fast communication
➠ Network cost, low extensibility
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Shared-Disk Architecture

Examples : DEC's VAXcluster, IBM's IMS/VS Data Sharing
➠ network cost, extensibility, migration from uniprocessor
➠ complexity, potential performance problem for copy 

coherency
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Shared-Nothing Architecture

Examples : Teradata (NCR), NonStopSQL (Tandem-Compaq), 
Gamma (U. of Wisconsin), Bubba (MCC)

➠ Extensibility, availability
➠ Complexity, difficult load balancing
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� Combines good load balancing of SM with extensibility 
of SN

� Alternatives
➠ Limited number of large nodes, e.g., 4 x 16 processor nodes
➠ High number of small nodes, e.g., 16 x 4 processor nodes, has 

much better cost-performance (can be a cluster of workstations)

Hierarchical Architecture
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� Mixes two different aspects : addressing and 
memory

➠ Addressing
� Single address space : Sequent, Encore, KSR
� Multiple address spaces : Intel, Ncube

➠ Physical memory
� Central : Sequent, Encore
� Distributed : Intel, Ncube, KSR

� NUMA : single address space on distributed 
physical memory

➠ Eases application portability
➠ Extensibility

Shared-Memory vs. 
Distributed Memory
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NUMA Architectures

� Cache Coherent NUMA (CC-NUMA)
➠ statically divide the main memory among the nodes

� Cache Only Memory Architecture (COMA)
➠ convert the per-node memory into a large cache of the 

shared address space
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COMA Architecture

Hardware shared virtual memory
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� Data placement
➠ Physical placement of the DB onto multiple nodes
➠ Static vs. Dynamic

� Parallel data processing
➠ Select is easy
➠ Join (and all other non-select operations) is more difficult

� Parallel query optimization
➠ Choice of the best parallel execution plans
➠ Automatic parallelization of the queries and load balancing

� Transaction management
➠ Similar to distributed transaction management

Parallel DBMS Techniques
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� Each relation is divided in n partitions (subrelations), 
where n is a function of relation size and access 
frequency

� Implementation
➠ Round-robin

� Maps i-th element to node i mod n
� Simple but only exact-match queries

➠ B-tree index
� Supports range queries but large index

➠ Hash function
� Only exact-match queries but small index

Data Partitioning
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Partitioning Schemes

Round-Robin Hashing
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Replicated Data Partitioning

� High-availability requires data replication
➠ simple solution is mirrored disks

� hurts load balancing when one node fails
➠ more elaborate solutions achieve load balancing

� interleaved partitioning (Teradata)
� chained partitioning (Gamma)
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Interleaved Partitioning

Node

Primary copy            R1           R2            R3           R4     

Backup copy                           r 1.1          r 1.2      r 1.3

r 2.3                          r 2.1        r 2.2

r 3.2        r 3.2              r 3.1

1 2 3 4
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Chained Partitioning

Node

Primary copy            R1           R2            R3           R4     

Backup copy            r4             r1             r2         r3    

1 2 3 4
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Placement Directory

� Performs two functions
➠ F1 (relname, placement attval) = lognode-id 
➠ F2 (lognode-id) = phynode-id

� In either case, the data structure for f1 and f2
should be available when needed at each node
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Join Processing

� Three basic algorithms for intra-operator 
parallelism

➠ Parallel nested loop join: no special assumption
➠ Parallel associative join: one relation is declustered on join 

attribute and equi-join 
➠ Parallel hash join: equi-join 

� They also apply to other complex operators 
such as duplicate elimination, union, 
intersection, etc. with minor adaptation
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Parallel Nested Loop Join

R S →=∪i=1,n(R Si)

send
partition
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Parallel Associative Join
node 1

node 3 node 4

node 2

R1: R2:

R S → ∪i=1,n(Ri Si)

S1 S2
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Parallel Hash Join

R S → ∪i=1,P(Ri Si)

node node node node

node 1 node 2

R1: R2: S1: S2:
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Parallel Query Optimization

The objective is to select the "best" parallel 
execution plan for a query using the following 
components

Search space
➠ Models alternative execution plans as operator trees
➠ Left-deep vs. Right-deep vs. Bushy trees

Search strategy
➠ Dynamic programming for small search space
➠ Randomized for large search space

Cost model (abstraction of execution system)
➠ Physical schema info. (partitioning, indexes, etc.)
➠ Statistics and cost functions
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Execution Plans as Operators Trees
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Equivalent Hash-Join Trees 
with Different Scheduling
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Load Balancing

� Problems arise for intra-operator parallelism 
with skewed data distributions

➠ attribute data skew (AVS)
➠ tuple placement skew (TPS)
➠ selectivity skew (SS)
➠ redistribution skew (RS)
➠ join product skew (JPS)

� Solutions
➠ sophisticated parallel algorithms that deal with skew
➠ dynamic processor allocation (at execution time)
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Data Skew Example
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� Prototypes
➠ EDS and DBS3 (ESPRIT)
➠ Gamma (U. of Wisconsin)
➠ Bubba (MCC, Austin, Texas)
➠ XPRS (U. of Berkeley)
➠ GRACE (U. of Tokyo)

� Products
➠ Teradata (NCR)
➠ NonStopSQL (Tandem-Compac)
➠ DB2 (IBM), Oracle, Informix, Ingres, Navigator 

(Sybase) ...

Some Parallel DBMSs
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� Hybrid architectures
� OS support:using micro-kernels
� Benchmarks to stress speedup and scaleup under 

mixed workloads
� Data placement to deal with skewed data 

distributions and data replication
� Parallel data languages to specify independent 

and pipelined parallelism
� Parallel query optimization to deal with mix of 

precompiled queries and complex ad-hoc queries
� Support of higher functionality such as rules and 

objects

Open Research Problems




