
Distributed DBMS Page 5. 1

Outline
� Introduction
� Background
� Distributed DBMS Architecture
❏ Distributed Database Design

➠ Fragmentation
➠ Data Location

❏ Semantic Data Control
❏ Distributed Query Processing
❏ Distributed Transaction Management
❏ Parallel Database Systems
❏ Distributed Object DBMS
❏ Database Interoperability
❏ Current Issues

Distributed DBMS Page 5. 2

Design Problem

� In the general setting :
Making decisions about the placement of data and
programs across the sites of a computer network as
well as possibly designing the network itself.

� In Distributed DBMS, the placement of
applications entails

➠ placement of the distributed DBMS software; and

➠ placement of the applications that run on the
database

Distributed DBMS Page 5. 3

Dimensions of the Problem

Level of sharing

Level of knowledge

Access pattern behavior

partial
information

dynamic
static

data

data +
program

complete
information

Distributed DBMS Page 5. 4

Distribution Design

� Top-down
➠ mostly in designing systems from scratch

➠ mostly in homogeneous systems

� Bottom-up
➠ when the databases already exist at a number of

sites

Distributed DBMS Page 5. 5

Top-Down Design

User Input
View Integration

User Input

Requirements
Analysis

Objectives

Conceptual
Design

View Design

Access
Information ES’sGCS

Distribution
Design

Physical
Design

LCS’s

LIS’s

Distributed DBMS Page 5. 6

Distribution Design Issues

❶ Why fragment at all?

❷ How to fragment?

❸ How much to fragment?

❹ How to test correctness?

❺ How to allocate?

❻ Information requirements?

Distributed DBMS Page 5. 7

Fragmentation

� Can't we just distribute relations?
� What is a reasonable unit of distribution?

➠ relation

 views are subsets of relations ��locality

 extra communication

➠ fragments of relations (sub-relations)

 concurrent execution of a number of transactions that

access different portions of a relation

 views that cannot be defined on a single fragment will

require extra processing

 semantic data control (especially integrity

enforcement) more difficult

Distributed DBMS Page 5. 8

PROJ1 : projects with budgets
less than $200,000

PROJ2 : projects with budgets
greater than or equal to
$200,000

PROJ1

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

P4 Maintenance 310000 Paris

P5 CAD/CAM 500000 Boston

PNO PNAME LOC

P1 Instrumentation 150000 Montreal

P2 Database Develop. 135000 New York

BUDGET

PROJ2

Fragmentation Alternatives –
Horizontal

New York
New York

PROJ

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

New York
New York

Distributed DBMS Page 5. 9

Fragmentation Alternatives –
Vertical

PROJ1: information about
project budgets

PROJ2: information about
project names and
locations

PNO BUDGET

P1 150000

P3 250000
P2 135000

P4 310000
P5 500000

PNO PNAME LOC

P1 Instrumentation Montreal

P3 CAD/CAM New York
P2 Database Develop. New York

P4 Maintenance Paris
P5 CAD/CAM Boston

PROJ1 PROJ2

New York
New York

PROJ

PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal

P3 CAD/CAM 250000
P2 Database Develop. 135000

P4 Maintenance 310000 Paris
P5 CAD/CAM 500000 Boston

New York
New York

Distributed DBMS Page 5. 10

Degree of Fragmentation

Finding the suitable level of partitioning
within this range

tuples
or

attributes

relations

finite number of alternatives

Distributed DBMS Page 5. 11

� Completeness
➠ Decomposition of relation R into fragments R1, R2, ..., Rn is

complete if and only if each data item in R can also be found in
some Ri

� Reconstruction
➠ If relation R is decomposed into fragments R1, R2, ..., Rn, then

there should exist some relational operator ∇such that
R = ∇1≤i≤nRi=

� Disjointness
➠ If relation R is decomposed into fragments R1, R2, ..., Rn, and

data item di is in Rj, then di should not be in any other
fragment Rk (k ≠ j).

Correctness of Fragmentation

Distributed DBMS Page 5. 12

Allocation Alternatives

� Non-replicated
➠ partitioned : each fragment resides at only one site

� Replicated
➠ fully replicated : each fragment at each site
➠ partially replicated : each fragment at some of the

sites
� Rule of thumb:

If replication is advantageous,

otherwise replication may cause problems

read - only queries
update quries ≥==1

Distributed DBMS Page 5. 13

Comparison of
Replication Alternatives

Full-replication Partial-replication Partitioning

QUERY
PROCESSING Easy Same Difficulty

Same DifficultyDIRECTORY
MANAGEMENT

Easy or
Non-existant

CONCURRENCY
CONTROL EasyDifficultModerate

RELIABILITY Very high High Low

REALITY Possible
application Realistic Possible

application

Distributed DBMS Page 5. 14

� Four categories:

➠ Database information
➠ Application information
➠ Communication network information
➠ Computer system information

Information Requirements

Distributed DBMS Page 5. 15

� Horizontal Fragmentation (HF)
➠ Primary Horizontal Fragmentation (PHF)

➠ Derived Horizontal Fragmentation (DHF)

� Vertical Fragmentation (VF)

� Hybrid Fragmentation (HF)

Fragmentation

Distributed DBMS Page 5. 16

� Database Information
➠ relationship

➠ cardinality of each relation: card(R)

PHF – Information Requirements

TITLE, SAL

SKILL

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC

ENO, PNO, RESP, DUR

EMP PROJ

ASG

L 1

L 2 L 3

Distributed DBMS Page 5. 17

� Application Information
➠ simple predicates : Given R[A1, A2, …, An], a simple

predicate pj is
pj : Ai θ=Value

where θ∈{=,<,≤,>,≥,≠}, Value∈Di and Di is the domain of Ai.
For relation R we define Pr = {p1, p2, …,pm}
Example :

PNAME = "Maintenance"
BUDGET ≤ 200000

➠ minterm predicates : Given R and Pr={p1, p2, …,pm}
define M={m1,m2,…,mr} as

M={ mi|mi = ∧pj∈Pr===pj* }, 1≤j≤m, 1≤i≤z
where pj* = pj or pj* = ¬(pj).

PHF - Information Requirements

Distributed DBMS Page 5. 18

Example
m1: PNAME="Maintenance"∧ BUDGET≤200000

m2: NOT(PNAME="Maintenance")∧ BUDGET≤200000

m3: PNAME= "Maintenance"∧ NOT(BUDGET≤200000)

m4: NOT(PNAME="Maintenance")∧ NOT(BUDGET≤200000)

PHF – Information Requirements

Distributed DBMS Page 5. 19

� Application Information
➠ minterm selectivities: sel(mi)

 The number of tuples of the relation that would be
accessed by a user query which is specified according
to a given minterm predicate mi.

➠ access frequencies: acc(qi)

 The frequency with which a user application qi

accesses data.

 Access frequency for a minterm predicate can also be

defined.

PHF – Information Requirements

Distributed DBMS Page 5. 20

Definition :
Rj = σFj

=(R), 1 ≤ j ≤ w
where Fj is a selection formula, which is (preferably) a
minterm predicate.

Therefore,
A horizontal fragment Ri of relation R consists of all the
tuples of R which satisfy a minterm predicate mi.

Given a set of minterm predicates M, there are as many
horizontal fragments of relation R as there are minterm
predicates.
Set of horizontal fragments also referred to as minterm
fragments.

Primary Horizontal Fragmentation

Distributed DBMS Page 5. 21

Given: A relation R, the set of simple predicates Pr
Output: The set of fragments of R = {R1, R2,…,Rw}

which obey the fragmentation rules.

Preliminaries :
➠Pr should be complete

➠Pr should be minimal

PHF – Algorithm

Distributed DBMS Page 5. 22

� A set of simple predicates Pr is said to be
complete if and only if the accesses to the
tuples of the minterm fragments defined on Pr
requires that two tuples of the same minterm
fragment have the same probability of being
accessed by any application.

� Example :
➠Assume PROJ[PNO,PNAME,BUDGET,LOC] has two

applications defined on it.
➠Find the budgets of projects at each location. (1)
➠Find projects with budgets less than $200000. (2)

Completeness of Simple Predicates

Distributed DBMS Page 5. 23

According to (1),
Pr={LOC=“Montreal”,LOC=“New York”,LOC=“Paris”}

which is not complete with respect to (2).

Modify
Pr ={LOC=“Montreal”,LOC=“New York”,LOC=“Paris”,

BUDGET≤200000,BUDGET>200000}

which is complete.

Completeness of Simple Predicates

Distributed DBMS Page 5. 24

� If a predicate influences how fragmentation is
performed, (i.e., causes a fragment f to be
further fragmented into, say, fi and fj) then
there should be at least one application that
accesses fi and fj differently.

� In other words, the simple predicate should be
relevant in determining a fragmentation.

� If all the predicates of a set Pr are relevant,
then Pr is minimal.

acc(mi)
–––––
card(fi)

acc(mj)
–––––
card(fj)

≠

Minimality of Simple Predicates

Distributed DBMS Page 5. 25

Example :
Pr ={LOC=“Montreal”,LOC=“New York”, LOC=“Paris”,

BUDGET≤200000,BUDGET>200000}

is minimal (in addition to being complete).
However, if we add

PNAME = “Instrumentation”

then Pr is not minimal.

Minimality of Simple Predicates

Distributed DBMS Page 5. 26

Given: a relation R and a set of simple
predicates Pr

Output: a complete and minimal set of simple
predicates Pr' for Pr

Rule 1: a relation or fragment is partitioned into
at least two parts which are accessed
differently by at least one application.

COM_MIN Algorithm

Distributed DBMS Page 5. 27

❶ Initialization :
� find a pi ∈=Pr such that pi partitions R according to

Rule 1
� set Pr' = pi ; Pr ←=Pr – pi ; F ←=fi

❷ Iteratively add predicates to Pr' until it is
complete

� find a pj ∈=Pr such that pj partitions some fk defined
according to minterm predicate over Pr' according to
Rule 1

� set Pr' = Pr' ∪ pi ; Pr ←=Pr – pi; F ←= F ∪ fi

� if ∃=pk ∈=Pr' which is nonrelevant then
Pr' ←= Pr' – pk
F ←= F – fk

COM_MIN Algorithm

Distributed DBMS Page 5. 28

Makes use of COM_MIN to perform fragmentation.
Input: a relation R and a set of simple

predicates Pr
Output: a set of minterm predicates M according

to which relation R is to be fragmented

❶ Pr' ←= COM_MIN (R,Pr)
❷ determine the set M of minterm predicates
❸ determine the set I of implications among pi ∈ Pr
❹ eliminate the contradictory minterms from M

PHORIZONTAL Algorithm

Distributed DBMS Page 5. 29

� Two candidate relations : PAY and PROJ.
� Fragmentation of relation PAY

➠ Application: Check the salary info and determine raise.
➠ Employee records kept at two sites application run at

two sites
➠ Simple predicates

p1 : SAL ≤ 30000
p2 : SAL > 30000
Pr = {p1,p2} which is complete and minimal Pr'=Pr

➠ Minterm predicates
m1 : (SAL ≤ 30000)
m2 : NOT(SAL ≤ 30000) = (SAL > 30000)

PHF – Example

Distributed DBMS Page 5. 30

PHF – Example

TITLE

Mech. Eng.
Programmer

SAL

27000
24000

PAY1 PAY2

TITLE

Elect. Eng.
Syst. Anal.

SAL

40000
34000

Distributed DBMS Page 5. 31

� Fragmentation of relation PROJ
➠ Applications:

 Find the name and budget of projects given their no.
✔Issued at three sites

 Access project information according to budget
✔one site accesses ≤200000 other accesses >200000

➠ Simple predicates
➠ For application (1)

p1 : LOC = “Montreal”
p2 : LOC = “New York”
p3 : LOC = “Paris”

➠ For application (2)
p4 : BUDGET ≤ 200000
p5 : BUDGET > 200000

➠ Pr = Pr' = {p1,p2,p3,p4,p5}

PHF – Example

Distributed DBMS Page 5. 32

� Fragmentation of relation PROJ continued
➠ Minterm fragments left after elimination

m1 : (LOC = “Montreal”) ∧ (BUDGET ≤ 200000)
m2 : (LOC = “Montreal”) ∧ (BUDGET > 200000)
m3 : (LOC = “New York”) ∧ (BUDGET ≤ 200000)
m4 : (LOC = “New York”) ∧ (BUDGET > 200000)
m5 : (LOC = “Paris”) ∧ (BUDGET ≤ 200000)
m6 : (LOC = “Paris”) ∧ (BUDGET > 200000)

PHF – Example

Distributed DBMS Page 5. 33

PHF – Example

PROJ1

PNO PNAME BUDGET LOC PNO PNAME BUDGET LOC

P1 Instrumentation 150000 Montreal P2 Database
Develop. 135000 New York

PROJ2

PROJ4 PROJ6

PNO PNAME BUDGET LOC

P3 CAD/CAM 250000 New York

PNO PNAME BUDGET LOC

MaintenanceP4 310000 Paris

Distributed DBMS Page 5. 34

� Completeness
➠ Since Pr' is complete and minimal, the selection

predicates are complete

� Reconstruction
➠ If relation R is fragmented into FR = {R1,R2,…,Rr}

R = ∪∀Ri ∈FR Ri

� Disjointness
➠ Minterm predicates that form the basis of fragmentation

should be mutually exclusive.

PHF – Correctness

Distributed DBMS Page 5. 35

� Defined on a member relation of a link
according to a selection operation specified on
its owner.

➠ Each link is an equijoin.
➠ Equijoin can be implemented by means of semijoins.

Derived Horizontal Fragmentation

TITLE,SAL

SKILL

ENO, ENAME, TITLE PNO, PNAME, BUDGET, LOC

ENO, PNO, RESP, DUR

EMP PROJ

ASG

L1

L2 L3

Distributed DBMS Page 5. 36

Given a link L where owner(L)=S and member(L)=R,
the derived horizontal fragments of R are defined as

Ri = R ��F Si, 1≤i≤w

where w is the maximum number of fragments that
will be defined on R and

Si = σFi
=(S)

where Fi is the formula according to which the
primary horizontal fragment Si is defined.

DHF – Definition

Distributed DBMS Page 5. 37

Given link L1 where owner(L1)=SKILL and member(L1)=EMP
EMP1 = EMP � SKILL1
EMP2 = EMP � SKILL2

where
SKILL1 = σ

=SAL≤30000=(SKILL)
SKILL2 = σSAL>30000=(SKILL)

DHF – Example

ENO ENAME TITLE

E3 A. Lee Mech. Eng.
E4 J. Miller Programmer
E7 R. Davis Mech. Eng.

EMP1

ENO ENAME TITLE

E1 J. Doe Elect. Eng.
E2 M. Smith Syst. Anal.
E5 B. Casey Syst. Anal.

EMP2

E6 L. Chu Elect. Eng.
E8 J. Jones Syst. Anal.

Distributed DBMS Page 5. 38

� Completeness
➠ Referential integrity
➠ Let R be the member relation of a link whose owner is

relation S which is fragmented as FS = {S1, S2, ..., Sn}.
Furthermore, let A be the join attribute between R
and S. Then, for each tuple t of R, there should be a
tuple t' of S such that

t[A]=t'[A]
� Reconstruction

➠ Same as primary horizontal fragmentation.
� Disjointness

➠ Simple join graphs between the owner and the
member fragments.

DHF – Correctness

Distributed DBMS Page 5. 39

� Has been studied within the centralized
context

➠ design methodology
➠ physical clustering

� More difficult than horizontal, because more
alternatives exist.
Two approaches :

➠ grouping

 attributes to fragments

➠ splitting

 relation to fragments

Vertical Fragmentation

Distributed DBMS Page 5. 40

� Overlapping fragments
➠ grouping

� Non-overlapping fragments
➠ splitting

We do not consider the replicated key attributes to be
overlapping.
Advantage:

Easier to enforce functional dependencies
(for integrity checking etc.)

Vertical Fragmentation

Distributed DBMS Page 5. 41

� Application Information
➠ Attribute affinities

 a measure that indicates how closely related the
attributes are

 This is obtained from more primitive usage data
➠ Attribute usage values

 Given a set of queries Q = {q1, q2,…, qq} that will run on
the relation R[A1, A2,…, An],

use(qi,•) can be defined accordingly

VF – Information Requirements

=use(qi,Aj) =
1 if attribute Aj is referenced by query qi

0 otherwise
�=

=

Distributed DBMS Page 5. 42

Consider the following 4 queries for relation PROJ
q1: SELECT BUDGET q2: SELECT PNAME,BUDGET

FROM PROJ FROM PROJ
WHERE PNO=Value

q3: SELECT PNAME q4: SELECT SUM(BUDGET)
FROM PROJ FROM PROJ
WHERE LOC=Value WHERE LOC=Value

Let A1= PNO, A2= PNAME, A3= BUDGET, A4= LOC

VF – Definition of use(qi,Aj)

q1

q2

q3

q4

A1

1 0 1 0

0 01 1

0 01 1

0 0 1 1

A2 A3 A4

Distributed DBMS Page 5. 43

The attribute affinity measure between two
attributes Ai and Aj of a relation R[A1, A2, …, An]
with respect to the set of applications
Q = (q1, q2, …, qq) is defined as follows :

VF – Affinity Measure aff(Ai,Aj)

aff (Ai, Aj) = (query access)all queries that access Ai and Aj

query access = access frequency of a query ∗ access
executionall sites

Distributed DBMS Page 5. 44

Assume each query in the previous example
accesses the attributes once during each
execution.

Also assume the access
frequencies

Then
aff(A1, A3) = 15*1 + 20*1+10*1

= 45
and the attribute affinity matrix

AA is

VF – Calculation of aff(Ai, Aj)

q1

q2

q3

q4

S1 S2 S3

15 20 10

5 0 0

25 2525

3 0 0

A A A A1 2 3 4

A
A
A
A

1

2

3

4

45 0 45 0
0 80 5 75

45 5 53 3
0 75 3 78

Distributed DBMS Page 5. 45

� Take the attribute affinity matrix AA and
reorganize the attribute orders to form clusters
where the attributes in each cluster
demonstrate high affinity to one another.

� Bond Energy Algorithm (BEA) has been used
for clustering of entities. BEA finds an
ordering of entities (in our case attributes)
such that the global affinity measure

is maximized.

VF – Clustering Algorithm

AM = (affinity of Ai and Aj with their neighbors)
ji

Distributed DBMS Page 5. 46

Input: The AA matrix
Output: The clustered affinity matrix CA which

is a perturbationof AA
❶ Initialization: Place and fix one of the columns of

AA in CA.
❷ Iteration: Place the remaining n-i columns in the

remaining i+1 positions in the CA matrix. For each
column, choose the placement that makes the most
contribution to the global affinity measure.

❸ Row order:Order the rows according to the column
ordering.

Bond Energy Algorithm

Distributed DBMS Page 5. 47

“Best” placement? Define contribution of a placement:

cont(Ai, Ak, Aj) = 2bond(Ai, Ak)+2bond(Ak, Al) –2bond(Ai, Aj)

where

Bond Energy Algorithm

bond(Ax,Ay) = aff(Az,Ax)aff(Az,Ay)
z ==1

n

ς

Distributed DBMS Page 5. 48

Consider the following AA matrix and the corresponding CA matrix
where A1 and A2 have been placed. Place A3:

Ordering (0-3-1) :
cont(A0,A3,A1) = 2bond(A0 , A3)+2bond(A3 , A1)–2bond(A0 , A1)

= 2* 0 + 2* 4410 – 2*0 = 8820
Ordering (1-3-2) :

cont(A1,A3,A2) = 2bond(A1 , A3)+2bond(A3 , A2)–2bond(A1,A2)
= 2* 4410 + 2* 890 – 2*225 = 10150

Ordering (2-3-4) :
cont (A2,A3,A4) = 1780

A A A A1 2 3 4

A
A
A
A

1

2

3

4

45 0 5 0
0 80 5 75

45 5 53 3
0 75 3 78

AA=

A A1 2

45 0
0 80

45 5
0 75

CA=

BEA – Example

Distributed DBMS Page 5. 49

Therefore, the CA matrix has to form

BEA – Example

A1 A2A3

45

0

45

0

45

5

53

3

0

80

5

75

Distributed DBMS Page 5. 50

When A4 is placed, the final form of the CA
matrix (after row organization) is

BEA – Example

A AA A1 23 4

A

A

A

A

1

2

3

4

45

45

0

0

45

53

5

3

0

5

80

75

0

3

75

78

Distributed DBMS Page 5. 51

How can you divide a set of clustered attributes
{A1, A2, …, An} into two (or more) sets {A1, A2, …, Ai}
and {Ai, …, An} such that there are no (or minimal)
applications that access both (or more than one) of
the sets.

VF – Algorithm

A1
A2

Ai

Ai+1

Am

…A1 A2 A3 Ai Ai+1 Am

BA

. . .

. . .
. . . TA

Distributed DBMS Page 5. 52

Define
TQ = set of applications that access only TA
BQ = set of applications that access only BA
OQ = set of applications that access both TA and BA

and
CTQ = total number of accesses to attributes by applications

that access only TA
CBQ = total number of accesses to attributes by applications

that access only BA
COQ = total number of accesses to attributes by applications

that access both TA and BA
Then find the point along the diagonal that maximizes

VF – ALgorithm

CTQ∗=CBQ−=COQ2

Distributed DBMS Page 5. 53

Two problems :
❶ Cluster forming in the middle of the CA matrix

➠ Shift a row up and a column left and apply the algorithm
to find the “best” partitioning point

➠ Do this for all possible shifts
➠ Cost O(m2)

❷ More than two clusters
➠ m-way partitioning
➠ try 1, 2, …, m–1 split points along diagonal and try to find

the best point for each of these
➠ Cost O(2m)

VF – Algorithm

Distributed DBMS Page 5. 54

A relation R, defined over attribute set A and key K, generates the
vertical partitioning FR = {R1, R2, …, Rr}.

� Completeness
➠ The following should be true for A:

A =∪ ARi

� Reconstruction
➠ Reconstruction can be achieved by

R = ����K Ri ∀Ri ∈FR

� Disjointness
➠ TID's are not considered to be overlapping since they are maintained

by the system
➠ Duplicated keys are not considered to be overlapping

VF – Correctness

Distributed DBMS Page 5. 55

Hybrid Fragmentation

R

HFHF

R1

VF VFVFVFVF

R11 R12 R21 R22 R23

R2

�

� �

�����

Distributed DBMS Page 5. 56

Fragment Allocation
� Problem Statement

Given
F = {F1, F2, …, Fn} fragments
S ={S1, S2, …, Sm} network sites
Q = {q1, q2,…, qq} applications

Find the "optimal" distribution of F to S.
� Optimality

➠ Minimal cost

 Communication + storage + processing (read & update)

 Cost in terms of time (usually)

➠ Performance
Response time and/or throughput

➠ Constraints

 Per site constraints (storage & processing)

Distributed DBMS Page 5. 57

Information Requirements
� Database information

➠ selectivity of fragments
➠ size of a fragment

� Application information
➠ access types and numbers
➠ access localities

� Communication network information
➠ unit cost of storing data at a site
➠ unit cost of processing at a site

� Computer system information
➠ bandwidth
➠ latency
➠ communication overhead

Distributed DBMS Page 5. 58

File Allocation (FAP) vs Database Allocation (DAP):
➠ Fragments are not individual files

 relationships have to be maintained

➠ Access to databases is more complicated

 remote file access model not applicable

 relationship between allocation and query processing

➠ Cost of integrity enforcement should be considered

➠ Cost of concurrency control should be considered

Allocation

Distributed DBMS Page 5. 59

Allocation – Information
Requirements

� Database Information
➠ selectivity of fragments
➠ size of a fragment

� Application Information
➠ number of read accesses of a query to a fragment
➠ number of update accesses of query to a fragment
➠ A matrix indicating which queries updates which fragments
➠ A similar matrix for retrievals
➠ originating site of each query

� Site Information
➠ unit cost of storing data at a site
➠ unit cost of processing at a site

� Network Information
➠ communication cost/frame between two sites
➠ frame size

Distributed DBMS Page 5. 60

General Form
min(Total Cost)

subject to
response time constraint
storage constraint
processing constraint

Decision Variable

Allocation Model

xij = 1 if fragment Fi is stored at site Sj
0 otherwise
�=
�=
=

Distributed DBMS Page 5. 61

� Total Cost

� Storage Cost (of fragment Fj at Sk)

� Query Processing Cost (for one query)
processing component + transmission component

Allocation Model

(unit storage cost at Sk) ∗ (size of Fj) ∗xjk

query processing cost +
all queries

cost of storing a fragment at a site
all fragmentsall sites

Distributed DBMS Page 5. 62

� Query Processing Cost
Processing component

access cost + integrity enforcement cost + concurrency control cost
➠ Access cost

➠ Integrity enforcement and concurrency control costs

 Can be similarly calculated

Allocation Model

(no. of update accesses+ no. of read accesses) ∗
all fragmentsall sites

xij=∗local processing cost at a site

Distributed DBMS Page 5. 63

� Query Processing Cost
Transmission component

cost of processing updates + cost of processing retrievals
➠ Cost of updates

➠ Retrieval Cost

Allocation Model

update message cost +
all fragmentsall sites

acknowledgment cost
all fragmentsall sites

(minall sitesall fragments
cost of retrieval command +

cost of sending back the result)

Distributed DBMS Page 5. 64

� Constraints
➠ Response Time

execution time of query ≤ max. allowable response time
for that query

➠ Storage Constraint (for a site)

➠ Processing constraint (for a site)

Allocation Model

storage requirement of a fragment at that site ≤
all fragments

storage capacity at that site

processing load of a query at that site ≤
all queries

processing capacity of that site

Distributed DBMS Page 5. 65

� Solution Methods
➠ FAP is NP-complete
➠ DAP also NP-complete

� Heuristics based on
➠ single commodity warehouse location (for FAP)
➠ knapsack problem
➠ branch and bound techniques
➠ network flow

Allocation Model

Distributed DBMS Page 5. 66

� Attempts to reduce the solution space

➠ assume all candidate partitionings known; select the
“best” partitioning

➠ ignore replication at first

➠ sliding window on fragments

Allocation Model

