
© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

lock_item (X):

 B: if LOCK (X)=0 (* item is unlocked *)
 then LOCK (X) 1 (* lock the item *)
 else begin
 wait (until lock (X)=0 and
 the lock manager wakes up the transaction);
 go to B
 end;

unlock_item (X):

 LOCK (X) 0; (* unlock the item *)
 if any transactions are waiting
 then wakeup one of the waiting transactions;

➝

➝

Figure 20.1 Lock and unlock operations for binary locks.

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

read_lock (X):

 B: if LOCK (X)="unlocked"
 then begin LOCK (X) "read-locked";
 no_of_reads(X) 1
 end
 else if LOCK(X)="read-locked"
 then no_of_reads(X) no_of _reads(X) + 1
 else begin wait (until LOCK (X)="unlocked" and
 the lock manager wakes up the transaction);
 go to B
 end;

write_lock (X):

 B: if LOCK (X)="unlocked"
 then LOCK (X) "write-locked"
 else begin
 wait (until LOCK(X)="unlocked" and
 the lock manager wakes up the transaction);
 go to B
 end;

unlock_item (X):

 if LOCK (X)="write-locked"
 then begin LOCK (X) "unlocked;"
 wakeup one of the waiting transactions, if any
 end
 else if LOCK(X)="read-locked"
 then begin
 no_of_reads(X) no_of_reads(X) – 1;
 if no_of_reads(X)=0
 then begin LOCK (X)="unlocked";
 wakeup one of the waiting transactions, if any
 end
 end;

➝

➝
➝

➝

➝

➝

Figure 20.2 Locking and unlocking operations for
two-mode (read-write or shared-exclusive) locks.

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

(a) (b)

(c)

read_lock(Y);
read_item(Y);
unlock(Y);

write_lock(X);
read_item(X);
X:=X+Y;
write_item(X);
unlock(X);

read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y:=X+Y;
write_item(Y);
unlock(Y);

Result of schedule S:
X=50, Y=50
(nonserializable)

T 2T 1

T 1

read_lock(Y);
read_item(Y);
unlock(Y);
write_lock(X);
read_item(X);
X:=X+Y;
write_item(X);
unlock(X);

T 2

read_lock(X);
read_item(X);
unlock(X);
write_lock(Y);
read_item(Y);
Y:=X+Y;
write_item(Y);
unlock(Y);

Initial values: X=20, Y=30
Result of serial schedule T1 followed by T2 :
 X=50, Y=80
Result of serial schedule T1 followed by T2 :
 X=70, Y=50

Time

Figure 20.3 Transactions that do not obey two-phase locking.
(a) Two transactions T1 and T2. (b) Results of possible serial schedules

of T1 and T2. (c) A nonserializable schedule S that uses locks.

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

T ' 1

read_lock (X);
read_item (X);
write_lock (Y);
unlock (X);
read_item (Y);
Y:=X+Y;
write_item (Y);
unlock (Y);

read_lock (Y);
read_item (Y);
write_lock (X);
unlock (Y);
read_item (X);
X:=X+Y;
write_item (X);
unlock (X);

T ' 2

Figure 20.4 Transactions T1′ and T2′, which are the same as
T1 and T2 of Figure 20.3 but which follow the two-phase
locking protocol. Note that they can produce a deadlock.

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

T ' 2T ' 1

read_lock(X);
read_item(X);

write_lock(Y);

read_lock(Y);
read_item(Y);

write_lock(X);

T ' 1 T ' 2

(a) (b)

Time

Figure 20.5 Illustrating the deadlock problem. (a) A partial
schedule of T1� and T2� that is in a state of deadlock.
(b) A wait-for graph for the partial schedule in (a).

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

(a)

(b)

Read

yes

Write

no

Read

yes

yes

Write

yes

no

Certify

no

no

Read

Read

Write

Certify no no no

Write no no

Figure 20.6 Lock compatibility tables. (a) A compatibility
table for read/write locking scheme. (b) A compatibility

table for read/write/certify locking scheme.

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

r111 ... r11j r121 ... r12j ... r1n1 ... r1nj r211 ... r21k r221 ... r22k r2m1 ... r2mk

p11 p12 p1n p21 p22 p2m

db

f2f1

...

...

...

Figure 20.7 A granularity hierarchy for
illustrating multiple granularity level locking.

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

IS

IX

S

SIX

X

yes

yes

yes

yes

no

yes

yes

no

no

no

yes

no

yes

no

no

yes

no

no

no

no

no

no

no

no

no

IS IX S SIX X

Figure 20.8 Lock compatibility matrix for multiple granularity locking.

© Addison Wesley Longman, Inc. 2000, Elmasri/Navathe, Fundamentals of Database Systems, Third Edition

T
1

IX
(d

b)

IX
(f

1)

IX
(p

11
)

X
(r

11
1)

IX
(f

1)

IX
(p

2
1)

X
(r

2
11

)

un
lo

ck
(r

2
11

)

un
lo

ck
(p

2
1)

un
lo

ck
(f

2
)

un
lo

ck
(r

11
1)

un
lo

ck
(p

11
)

un
lo

ck
(f

1)

un
lo

ck
(d

b)

T
2

IX
(d

b)

IX
(f

1)

X
(p

12
)

un
lo

ck
(p

12
)

un
lo

ck
(f

1)

un
lo

ck
(d

b)

T
3

IS
(d

b)

IS
(f

1)

IS
(p

11
)

S
(r

11
j)

S
(f

2
)

un
lo

ck
(r

11
j)

un
lo

ck
(p

11
)

un
lo

ck
(f

1)

un
lo

ck
(f

2
)

un
lo

ck
(d

b)

Figure 20.9 Lock operations to illustrate a serializable schedule.

