An Efficient Top-down Algorithm for Tree Inclusion

Yangjun Chen and Yibin Chen Dept. of Applied Computer Science University of Winnipeg Winnipeg, Canada R3B 2E9 Email: ychen2@uwinnipeg.ca

Abstract — Let T and S be ordered, labeled trees. We say that S is included in T if there is a sequence of delete operations performed on T, which make T isomorphic to S. In this paper, we propose a top-down algorithm for this problem, which needs only $O(|T| \cdot |\text{leaves}(S)|)$ time and O(|T| + |S|) space.

I. INTRODUCTION

Ordered labeled trees are trees whose nodes are labeled and in which the left-to-right order among siblings is significant. Given two ordered labeled trees T and S, the *tree inclusion problem* is to determine whether it is possible to obtain S from T by deleting nodes. Deleting a node v in tree T means making the children of v become the children of the parent of v and then removing v. If S can be obtained from T by deleting nodes, we say that T includes S.

The ordered tree inclusion problem was initially introduced by Knuth [7], where only a sufficient condition for this problem is given. The tree inclusion has been suggested as an important primitive for expressing queries on structured document databases [5]. A structured document database is considered as a collection of parse trees that represent the structure of the stored texts and tree inclusion is used as a means of retrieving information from them. This problem has been the attention of much research. Kilpelainen and Mannila [6] presented the first polynomial time algorithm using $O(|T| \cdot |S|)$ time and space. Most of the later improvements are refinements of this algorithm. In [8], Richter gave an algorithm using $O(|\alpha(S)| \cdot |T| + m(S, T) \cdot D_T)$ time, where $\alpha(S)$ is the alphabet of the labels of S, m(S, T) is the size of a set called *matches*, defined as all the pairs $(v, w) \in S \times T$ such that label(v) = label(w), and D_T is the depth of T. Hence, if the number of matches is small, the time complexity of this algorithm is better than $O(T|\cdot|S|)$. The space complexity of the algorithm is $O(|\alpha(S)| \cdot |T| + m(S, T))$. In [2], a algorithm more complex was presented $O(|\overline{leaves}(S)| \cdot min\{D_T,$ $O(|T| \cdot |leaves(S)|)$ time and ||leaves(T)||) space. In [1], an efficient average case algorithm was discussed. Its average time complexity is O(|T| + $C(S, T) \cdot |S|$, where C(S, T) represents the number of T's nodes that have been examined during the inclusion search. However, its worst time complexity is still $O(|T| \cdot |S|)$.

All the above algorithms work in a bottom-up way. In this paper, we propose a top-down algorithm for this problem, which needs only $O(|T|\cdot|\text{leaves}(S)|)$ time. The space complexity is bounded by O(|T| + |S|). The top-down algorithm

does not only have better computational complexities than the bottom-up strategies, but can also be combined with some kinds of heuristics such as *signatures* [4] to speed-up query evaluation [3].

II. ORDERINGS AND EMBEDDINGS

Let T be an ordered, rooted tree with root v and children v_1 , v_2 , ..., v_i . The *postorder* traversal of T(v) (the tree rooted at v) is obtained by visiting $T(v_k)$, $1 \le k \le i$ in order, recursively, and then visiting the v. The *postorder number*, post(v), of a node $v \in V(T)$ is the number of nodes preceding v in the postorder traversal of T. We define an ordering of the nodes of T given by v - v iff post(v) < post(v'). Also, v = v iff v - v or v = v'. Furthermore, we extend this ordering with two special nodes $\bot - v - \bot$. The *left relatives*, lr(v), of a node $v \in V(T)$ is the set of nodes that are to the left of v and similarly the *right relatives*, rr(v), are the set of nodes that are to the right of v.

Definition 1. Let *S* and *T* be rooted labeled trees. We defined an ordered embedding (f, S, T) as an injective function $f: V(S) \rightarrow V(T)$ such that for all nodes $v, u \in V(S)$,

- i) label(v) = label(f(v)); (label preservation condition)
- ii) v is an ancestor of u iff f(v) is an ancestor of f(u); (ancestor condition)
 - iii) v is to the left of u iff f(v) is to the left of f(u). (Sibling condition)

Fig. 1 shows an example of an ordered inclusion.

Fig. 1: Illustration of tree inclusion

In Fig. 1(a), we show that the tree on the left can be included in the tree on the right by deleting the nodes labeled: d, e and b. Fig. 1(b) shows a possible embedding.

An embedding is *root preserving* if f(root(S)) = root(T). Fig. 1(b) shows an example of a root preserving embedding.

III. ALGORITHM DESCRIPTION

Our algorithm is based on the following three observations:

(1) Let r_1 and r_2 be the roots of T and S, respectively. If T includes S and label (r_1) = label (r_2) , we must have a root preserving embedding.

- (2) Let T_1 , ..., and T_k be the subtrees of r_1 . Let S_1 , ..., and S_l There must exist $k_1,...,k_j$ and $l_1,...,l_j$ $(j \le l)$ such that T_{k_i} includes $S_{l_{i-1}+1},...,S_{l_i} > (i=1,...,j)$, where $S_{l_{i-1}+1},...,S_{l_i} > (i=1,...,j)$ and $S_{l_{i-1}+1},...,S_{l_i} > (i=1,...,j)$ be the subtrees of r_2 . If T includes S and label (r_1) = label (r_2) ,
- (3) If T includes S, but label $(r_1) \neq \text{label}(r_2)$, there must exist an i such that T_i contains the whole S.

In terms of the above observation, we devise a computation process as below. First of all, in the case of $label(r_1) = la$ bel (r_2) , we will check whether T_1 includes $\langle S_1, ..., S_i \rangle$. The process returns an integer i, indicating that T_1 includes $\langle S_1, ..., S_i \rangle$. If i > 0, then we will check whether T_2 includes $\langle S_{i+1}, ..., S_i \rangle$ in a next step. If i = 0, it shows that no subtrees of T_1 's restricted and convert here S_1 in S_1 . In this case, we have root includes any subtrees in $\langle S_1, ..., S_l \rangle$. In this case, we need to check whether T_1 includes S_1 . It is because although no subtrees of T_1 's root includes any subtrees in $\langle S_1, ..., S_i \rangle$, T_1 may include S_1 . If T_1 includes S_1 , i will be changed to 1; otherwise, it remains 0. However, if the root of T_1 does not match the root of S_1 , we know that T_1 cannot include S_1 since in this case we will have to check the subtrees of T_1 's root against S_1 ; and we have already done that with the result i = 0. We repeat this process until we find a k_i such that T_{k_i} contains all the remaining subtrees of r_2 , or find that such $\tilde{a} k_i$ does not exist.

In the following algorithm tree-inclusion(T, S), T is a tree and S is a tree or a forest. If S is a forest, a virtual root for it is constructed, which matches any label. Thus, we will actually check the subtrees of T's root against the subtrees in S, respectively.

Function tree-inclusion(T, S)

```
Input: T, S
```

16.

```
Output: 1, if T includes S; otherwise, 0.
begin
1.
      if |T| < |S| then {if S is a forest: < S_1, ..., S_l >
2.
                           then S := \langle S_1, ..., S_i \rangle for some i such that
                           |<\!\!S_1,\,...,\,S_i\!\!>|\leq|T|<|<\!\!S_1,\,...,\,S_{i+1}\!\!>|
3.
                           else return 0;}
4.
      let r_1 and r_2 be the roots of T and S, respectively;
5.
      (*If S is a forest, construct a virtual root for it, which matches
         any label.*)
      let T_1, ..., T_k be the subtrees of r_1;
6.
      let S_1, ..., S_l be the subtrees of r_2;
7.
8.
      if label(r_1) = label(r_2)
      then {if r_1 is a leaf then {if r_2 is not a virtual root
                                        then return 1else return 0;}
10.
               temp := \langle S_1, ..., S_l \rangle;
11.
               S_0 := \phi;
               i := 1; j := 0; x := 0;
12.
13.
               while (i \le k \land temp \ne \emptyset) do
14.
                      \{ x := tree-inclusion(T_i, temp); \}
15.
                        if x > 0 then temp := temp / < S_{j+1}, ..., S_{j+x} >;
```

else {**if** T_i and S_{i+1} have the same label

then $\{x := tree-inclusion(T_i, S_{i+1});$

```
temp := temp/\langle S_{j+x}\rangle; \} \}
17.
                      i := i + 1; j := j + x;
18.
              if temp \neq \emptyset then {if r_2 is a virtual root then return j
19.
                                    else return 0;}
20.
              else { if r_2 is a virtual root then return l
                     else return 1;}}
21.
22. else { for i = 1 to k do
23.
              {x := tree - inclusion(T_i, S);}
24.
               if x = number-of-forest(S) return x;
       (* number-of-forest(S) returns the number of the forests in S.*)
25.
             return 0;}
```

In Algorithm tree-inclusion(T, S), line 1 checks whether |T| < |S|. If it is the case, the algorithm returns 0 if S is a tree. If S is a forest, we will check T against the first i subtrees such that $|\langle S_1, ..., S_i \rangle| \le |T/\langle |\langle S_1, ..., S_{i+1} \rangle|$ (see line 2). In addition, when we check T against a forest $\langle S_1, ..., S_l \rangle$, a virtual root for it is constructed, which matches any label. Thus, we will actually check the subtrees of T's root: $T_1, ..., T_k$ against $S_1, ...,$ and S_l to see whether they include $\langle S_1, ..., S_l \rangle$ (see line 5). This is performed in a while-loop over T_i 's. In each step, a recursive call: tree-inclusion($T_i, \langle S_l, ..., S_l \rangle$) (i = 1, ..., j for some j) is carried out, which returns an integer x, indicating that T_i includes $\langle S_{l_i}, ..., S_{l_i+x-1} \rangle$ (see line 14). If x = 0, i.e., the subtrees of T_i 's root do not include any subtree in S_{l_i} , ..., S_{l_i} we need to check whether T_i include S_l since when we check T_i against S_1 , ..., S_l , what we have done is to check the subtrees of check T_i 's root, not T_i itself (see line 16). If S is a tree, the algorithm return 1 if it is included; otherwise, 0 (see line 19 and 21). Finally, we note that if the root of T does not match the root of S, the algorithm tries to find the first T_i that contains the whole S (see lines 22 - 25).

In the following, we apply the algorithm to the trees shown in Fig. 3. and trace the computation step-by step for a better understanding.

Example 1. Consider two ordered, labeled trees T and S shown in Fig. 2, where each node in T is identified with t_i , such as t_0, t_1, t_{11} , and so on; and each node in S is identified with s_i . In addition, each subtree rooted at t_i (s_i) is represented by T_i (S_i) .

In the following step-by-step trace, i_k is used as an index variable for scanning the subtrees of T_k 's root; j_k is used to scan the corresponding subtrees in S; and x_k is used as a temporary vari-

Fig. 2: Two trees

IV. CORRECTNESS

In this section, we show the correctness of Algorithm tree-inclusion(T, S).

Proposition 1. If S is a tree, Algorithm tree-inclusion(T, S) returns 1 if *T* includes *S*; otherwise 0. If *S* is a forest of the form:

```
Step-by-step trace:
                                                            Explanation:
tree-inclusion(T, S)
                                                            Call tree-inclusion(T, S)
  label(t_0) = label(s_0)
                                                            Check t_0 against s_0.
  i_0 := 1; j_0 := 0; x_0 := 0
                                                             i_0 is for scanning the subtrees of t_0; j_0 is used to record how many sub-
                                                            trees of s_0 is included; x_0 is a temporary variable.
  tree-inclusion(T_1, \langle S_1, S_2 \rangle)
                                                            recursive call tree-inclusion(T_1, \langle S_1, S_2 \rangle).
      label(t_1) = label(virtual-root)
                                                            Check t_1 against a virtual root. It always succeeds.
      i_1 := 1; j_1 := 0; x_1 := 0
                                                            i_1 is for scanning the subtrees of i_1; i_1 is used to record how many sub-
                                                            trees of s_0 is included; x_1 is a temporary variable.
      tree-inclusion(T_{11}, \langle S_1, S_2 \rangle)
                                                            recursive call tree-inclusion(T_{11}, \langle S_1, S_2 \rangle).
           |T_{11}| < |< S_1, S_2 > |
                                                            compare the sizes of T_{11} and \langle S_1, S_2 \rangle.
           remove S_2 from \langle S_1, S_2 \rangle
                                                             since \langle S_1, S_2 \rangle is larger than T_{11}, remove S_2 from \langle S_1, S_2 \rangle.
           label(t_{11}) = label(s_1)
                                                            Check t_{11} against s_1.
                                                            it returns 1, indicating that T_{11} includes S_1.
      x_1 = 1; j_1 = 1; i_1 = 2
                                                            i_1 is increased by 1; x_1 is equal to 1 and then j_1 is increased by 1.
      tree-inclusion(T_{12}, S_2)
                                                            recursive call tree-inclusion(T_{12}, S_2).
           label(t_{12}) \neq label(s_2)
                                                            Check t_{12} against s_2.
                                                            it returns 0, indicating that T_{12} does not include S_2.
           return 0
      x_1 = 0; j_1 = 1; i_1 = 3
                                                            i_1 is increased by 1; x_1 is equal to 0 and then j_1 is not increased.
      return 1
                                                            it returns 1, indicating that T_1 includes S_1 of \langle S_1, S_2 \rangle.
  x_0 = 1; j_0 = 1; i_0 = 2
                                                            i_0 is increased by 1; x_0 is equal to 1 and then j_0 is increased by 1.
  tree\text{-}inclusion(T_2,S_2)
                                                            recursive call tree-inclusion(T_2, S_2).
      label(t_2) \neq label(s_2)
                                                            Check t_2 against s_2. Since they do not match, all the subtrees of t_2 will be
                                                            checked one by one.
      i_2 := 1; j_2 := 0; x_2 := 0
                                                            i_{12} is for scanning the subtrees of t_2; j_1 is used to record how many sub-
                                                            trees of s_0 is included; x_2 is a temporary variable.
                                                            recursive call tree-inclusion(T_{21}, S_2).
      tree-inclusion(T_{21}, S_2)
            label(t_{21}) \neq label(s_2)
                                                            Check t_{21} against s_2.
           return 0
                                                            it returns 0, indicating that T_{21} does not include S_2.
      x_2 = 0; j_2 = 0; i_2 = 2
                                                            i_2 is increased by 1; x_2 is equal to 0 and then j_2 is not increased.
      tree-inclusion(T_{22}, S_2)
                                                            recursive call tree-inclusion(T_{22}, S_2).
           label(t_{22}) = label(s_2)
                                                            Check t_{22} against s_2.
           return 1
                                                            it returns 1, indicating that T_{22} includes S_2.
      x_2 = 1; i_2 = 1; i_2 = 3
                                                            i_2 is increased by 1; x_2 is equal to 1 and then j_2 is increased by 1.
                                                            it returns 1, indicating that T_2 includes S_2 of \langle S_1, S_2 \rangle.
      return 1
                                                            i_0 is increased by 1; x_0 is equal to 1 and then j_0 is not increased by 1.
  x_0 = 1; j_0 = 2; i_0 = 3
  return 2
                                                            since j_0 = 2, tree-inclusion(T_2, S_2) returns 2.
return 1
                                                            it returns 1, indicating that T includes S.
```

< $S_1, ..., S_l>$, Algorithm tree-inclusion(T, S) returns an integer i, indicating that T includes < $S_1, ..., S_l>$.

Proof. We prove the proposition by induction on the sum of the heights of T and S, h. Without loss of generality, assume that height(T) ≥ 1 and height(S) ≥ 1 .

Basic step. When h = 2, we consider two cases.

- (i) Both T and S are singulars: r_1 and r_2 .
- (ii) *T* is a singular; but *S* is a set of nodes.

In case (i), if r_1 and r_2 have the same label, the algorithm returns 1 (see line 9); otherwise returns 0 (see line 25). In case (ii), a virtual root will be constructed for S, which matches any label. Then, we will check the subtrees of r_1 against all the nodes in S. Since r_1 does not have any subtrees, we will get 0 as the return value (see line 9). Then, r_1 will be checked against the first node in S and return 1 if they have the same label; otherwise, return 0 (see lines 13 -17).

Induction hypothesis. Assume that when h = l, the proposition holds.

Consider two trees T and S with height(T) + height(S) = l+1. Assume that S is a tree. Let r_1 and r_2 be the roots of T and S, respectively. Let T_1 , ..., and T_k be the subtrees of r_1 . Let S_1 , ..., and S_l be the subtrees of r_2 . Then, height(T_l) + height(S) $\leq l$ and height(T) + height(S_j) $\leq l$. If label(r_1) = label(r_2), the algorithm partitions the integer sequence: 1, ..., l into some subsequences: $\{j_0+1,...,j_1\}$, $\{j_1+1,...,j_2\}$, ..., $\{j_{m-1}+1,...,m_m\}$, where $j_0=0$ and $j_m \leq l$, such that each T_i (i=1,...,m; $m \leq k$) includes $< S_{j_{i-1}+1}$, ..., S_{j_i} but not $< S_{j_{i-1}+1}$, ..., S_{j_i} , S_{j_i+1} > (see lines 13-17). In terms of the induction hypothesis, the partition is correct. Thus, the algorithm will return 1 if $j_m = l$, indicating that T includes S (see line 21); otherwise 0 (see line 19). If label(r_1) \neq label(r_2), algorithm will try to find the first T_i such that it includes the whole S. In terms of the induction hypothesis, the return value must be correct.

Assume that S is a forest of the form: $\langle S_1, ..., S_l \rangle$, a virtual root will be constructed for it. In terms of the induction hypothesis, the algorithm will find the correct integer i such that T includes $\langle S_1, ..., S_i \rangle$ (see line 18 and 20). It completes the proof.

V. COMPUTATIONAL COMPLEXITIES

In this section, we discuss the computational complexity of the top-down algorithm discussed in Section 3.

Let T_0 and S_0 be two ordered, labeled trees. Let T_1 , ..., and T_k be the subtrees of T_0 's root. Let S_1 , ..., and S_l be the subtrees of S_0 's root.

Denote $C_{i,j}$ the number of label comparisons for checking whether T_i contains S_j . Denote $C_{i,l_i...l_j}$ the number of label comparisons for checking whether T_i contains $< S_{l_i}$, ..., $S_{l_j} >$. Then, according to the top-down algorithm, we have

$$C_{0,0} \le 1 + p(\sum_{i=1}^{n} (C_{i,l_i...l} + pC_{i,l_i})) + q(\sum_{i=1}^{n} C_{i,0})$$
 (1)

where p represents the probability that a node in T matches a node in S, and q = 1 - p. Especially, we notice that

$$\sum_{i=1} (C_{i, l_i \dots l} + p C_{i, l_i})$$
 (2)

is the cost of executing lines 13 - 17, in which $C_{i,l_i...l}$ stands for the time spent on checking T_i against $\langle S_{l_i}, ..., S_{l_i} \rangle$ (see line 14) and C_{i,l_i} for the time on checking T_i against S_{l_i} (see line 16). In addition, $C_{0,0}$ stands for the cost of checking T_0 against S_0 ; and $C_{i,0}$ for the cost of checking a T_i against S_0 (see lines 22 - 24).

Now we consider $C_{i,l_i...l}$. Let T_{i1} , ..., T_{ij_i} be the subtrees of T_i 's root. In the worst case, the algorithm checks T_{i1} , ..., and T_{ij_i} in turn against S_{l_i} without success, which leads to an extra computation, i.e., the checking of T_i against S_{l_i} . If there is any T_{ik} ($1 \le k \le j_i$) that includes S_1 , the corresponding computation will not be done and then, $p \ C_{i,l_i}$ should be removed from (1). In terms of this analysis, we change (1) to the following form:

$$C_{0,0} \le 1 + p(\sum_{i=1}^{k} \left(\sum_{j_i=1}^{j_i} (C_{ij,l_i}) + pC_{i,l_i} \right) + q(\sum_{i=1}^{k} C_{i,0})$$
(3)

In terms of (3), we have the following proposition.

Proposition 2. Let T_0 and S_0 be two ordered labeled trees. Let T_1 , ..., and T_k be the subtrees of T_0 's root. Let S_1 , ..., and S_l be the subtrees of S_0 's root. If $|\text{leaves}(S_j)| \leq |\text{leaves}(S_0)|/(1+p)$ for every j, $C_{0,0} \leq |T_0| \cdot |\text{leaves}(S_0)|$.

Proof. We prove the proposition by induction on the sum of the heights of T_0 and S_0 , h. Without loss of generality, assume that height(T_0) ≥ 1 and height(S_0) ≥ 1 .

Basic step. When h = 2, the proposition obviously holds.

Induction hypothesis. Assume that when h = l, the proposition holds.

Consider two trees T_0 and S_0 with height(T_0) + height(S_0) = l + 1. Then, height(T_i) + height(S_0) $\leq l$ and height(T_0) + height(S_j) $\leq l$. In terms of (3) and the induction hypothesis, we have

$$p(\sum_{i=1}^{k} \sum_{j=1}^{j} |T_{ij}| \cdot |\text{leaves}(S_{j_i})| +$$

$$p\sum_{i=k}^{k} |T_i| \cdot |\text{leaves}(S_{j_i})|) +$$

$$q(\sum_{i=1}^{k} |T_i| \cdot |\text{leaves}(S_0)|)$$

$$(4)$$

$$\leq 1 + \frac{p}{1+p} ((1+p)|T_0| - (k+1+p))|\text{leaves}(S_0)| + q(|T_0| - 1)|\cdot|\text{leaves}(S_0)|$$

$$\leq |T_0| \cdot |\text{leaves}(S_0)|.$$

In addition, the algorithm needs no extra space. Thus, the space complexity is on O(|T| + |S|).

VI. FURTHER IMPROVEMENT

In this section, we elaborate the algorithm discussed above. What we want is to replace the recursive call tree-inclusion(T_i , S_{j+1}) in line 16 with a simple checking. For this purpose, we rearrange the algorithm so that each recursive call tree-inclusion(T_i , S_1 , ..., S_i) returns a pair S_1 , ..., S_2 subnum is 10 or an integer S_1 , ..., S_k are included in S_1 , and S_1 , and S_2 subnum is defined as follows.

Let $Z_1, ..., Z_m$ be the subtrees of S_1 's root. If num = 0, subnum = j >= 0, indicating that $Z_1, ..., Z_j$ are included in $T_1, ..., T_i$. Otherwise, subnum is set to 0 (and will not be used in the subsequent computation).

In addition, the modified algorithm takes three arguments: T_i , $\langle S_1, ..., S_l \rangle$ and a, where a is an integer indicating that Z_1 , ..., Z_a are included in T_1 , ..., T_{i-1} .

Function modified-inclusion(T, S, a)

Input: *T*, *S*

 $C_{0.0} \le 1 +$

Output: 1, if *T* includs *S*; otherwise, 0.

while $(i \le k \land temp \ne \emptyset)$ do

```
if |T| < |S| then {if S is a forest: \langle S_1, ..., S_l \rangle
                                   then if there exists i such that |\langle S_1, ..., S_i \rangle| \le |T| <
                                               |< S_1, ..., S_{i+1}>|
                                             then S := \langle S_1, ..., S_i \rangle;
else {let Z_1, ..., Z_m be the subtrees of S_1's root;
3.
4.
                                                    if there exists j such that
                                                   \begin{aligned} |< Z_{a+1},...,Z_{j^{n}}| &\leq |T| < |< Z_{a+1},...,Z_{j+1}>|\\ \textbf{then } \{S:= < Z_{a+1},...,Z_{j^{n}};\ tag=1;\}\\ \textbf{else } \text{return } < 0,\ a>; \} \end{aligned}
7.
         let r_1 and r_2 be the roots of T and S, respectively;
8.
         (*If S is a forest, construct a virtual root for it, which matches any
10.
        let T_1, ..., T_k be the subtrees of r_1;
11.
         let S_1, ..., S_l be the subtrees of r_2;
         \textbf{if } label(r_1) = label(r_2)
12.
         then {if r_1 is a leaf then {if r_2 is not a virtual root
                                                 then return 1else return <0, a>;}
14.
                   temp := \langle S_1, ..., S_l \rangle;
15.
                   i := 1; j := 0; x := 0;
16.
```

```
18.
                  {x := modified\text{-}inclusion(T_i, temp, a);}
                   if x.num > 0 then temp := temp/\langle S_{j+1}, ..., S_{j+x.number} \rangle;
19.
20.
                   else { if T_i and S_{i+1} have the same label
21.
                         then {if x.subnum = number \ of \ S_{j+1}'s subtrees
                                 then temp := temp / \langle S_{j+1} \rangle; a := 0; x.num := 1;}
22.
                                 else a := a + x.subnum;
23.
                   i := i + 1; j := j + x;
24.
              if tag = 1
              then \{tag := 0;
25.
                      if j > 0 then {if r_2 is a virtual root then return <0, a + j>;
26.
27.
                                      else return <0, a>;}
28.
29.
                if temp \neq \emptyset then {if r_2 is a virtual root then return \langle j, 0 \rangle
30.
                                     else return <0, i>;
                else { if r_2 is a virtual root then return < l, 0 >
31.
32.
                       else return <1, 0>;}
33.
      else { for i = 1 to k do
34.
              {x := modified\text{-}inclusion(T_i, S);}
35.
              if x.num = number-of-forest(S) return \langle x.num, 0 \rangle;
36.
              (* number-of-forest(S) returns the number of the forests in S.*)
37.
              return <0, subnum>;}
end
```

The algorithm works in the same fashion as *tree-inclusion()*, but with a significant difference: *modified-inclusion()* returns a pair *<num*, *subnum>* instead of a single number, which leads to the following changes.

- 1) In lines 1 7, we try to find an i such that $|<S_1,...,S_i>| \le |T| < |<S_1,...,S_{i+1}>$. If it is not the case, we will try to find an j such that $|<Z_{a+1},...,Z_j>| \le |T| < |<Z_{a+1},...,Z_{j+1}>|$, where $Z_{a+1},...,Z_{j+1}$ are some subtrees of S_1 . At the very beginning, a=0. In addition, we set tag=1, indicating that the current computation is to check whether T contains any subtrees of S_1 . The result is recorded in subnum.
- 2) In lines 20 23, we handle the case that the return value of modified-inclusion(T_i , temp, a) is of the form <0, sub-num>. It indicates that the subtrees of T_i 's root do not include any of S_1 , ..., and S_i . However, if the labels of T_i 's root and S_1 's root are the same and subnum is equal to the number of the children of S_1 's root, we have S_1 included in T_i . Obviously, such a check needs only a contant time. But in tree-inclusion(), a recursive call of the function is performed for the same task. Therefore, modified-inclusion() is much more efficient than tree-inclusion().

The time complexity of *modified-inclusion()* can be analysed as follows.

$$C_{0,0} \le 1 + p(\sum_{i=1} (C_{i,l_i...l} + pc)) + q(\sum_{i=1} C_{i,0})$$
 (5)

where c represents a constant.

Then, we have

$$C_{0,0} \leq 1 + \sum_{k = 1}^{k} \left| T_{ij} \right| \cdot \left| \operatorname{leaves}(S_{j_i}) \right| + pc + 1$$

$$q(\sum_{i=1}^{k} \left| T_i \right| \cdot \left| \operatorname{leaves}(S_0) \right|)$$

$$\leq 1 + p(|T_0| - 1 + \frac{pc}{|\operatorname{leaves}(S_0)|}) |\operatorname{leaves}(S_0)| + 1$$
(6)

$$q(|T_0| - 1)|\cdot|\text{leaves}(S_0)|$$

 $\leq |T_0| \cdot |\text{leaves}(S_0)|$.

The space complexity of *modified-inclusion*() is still bounded by O(|T| + |S|).

VII. CONCLUSION

In this paper, a top-down algorithm for checking the tree inclusion of S in T is discussed. The time and space complexities of the algorithm are bounded by $O(|T| \cdot |\text{leaves}(S)|)$ and O(|T| + |S|), repectively.

ACKNOWLEDGEMENT

The work is supported by NSERC 239074-01 (242523) (Natural Sciences and Engineering Council of Canada).

REFERENCES

- [1] L. Alonso and R. Schott, "On the tree inclusion problem," In *Proceedings of Mathematical Foundations of Computer Science*, pages 211-221, 1993.
- [2] W. Chen, "More efficient algorithm for ordered tree inclusion," *Journal of Algorithms*, 26:370-385, 1998.
- [3] Y. Chen, "Query Evaluation and Web Recognition in Document Databases," in *Proc. 7th IASED Int. Conf. on Internet and Multimedia Systems and Applications*, Honolulu, Hawaii, USA, Aug. 13-15, 2003.
- [4] C. Faloutsos, "Signature Files," in: *Information Retrieval: Data Structures & Algorithms*, edited by W.B. Frakes and R. Baeza-Yates, Prentice Hall, New Jersey, 1992, pp. 44-65.
- [5] H. Mannila and K.-J. Raiha, "On Query Languages for the p-string data model," in *Information Modelling and Knowledge Bases*, (H. Kangassalo, S. Ohsuga, and H. Jaakola, Eds.), pp. 469-482, IOS Press, Amsterdam, 1990.
- [6] P. Kilpelainen and H. Mannila, "Ordered and unordered tree inclusion," SIAM Journal of Computing, 24:340-356, 1995.
- [7] D.E. Knuth, *The Art of Computer Programming, Vol. 1*, Addison-Wesley, Reading, MA, 1969.
- [8] T. Richter, "A new algorithm for the ordered tree inclusion problem," In *Proceedings of the 8th Annual Symposium on Combinatorial Pattern Matching (CPM)*, in Lecture *Notes of Computer Science (LNCS)*, volume 1264, Springer Verlag, pp. 150-166, 1997.