An Efficient Top-down Algorithm for Tree
Inclusion

Yangjun Chen and Yibin Chen
Dept. of Applied Computer Science
University of Winnipeg
Winnipeg, Canada R3B 2E9
Email: ychen2@uwinnipeg.ca

Abstract /7 Let T and Sbe ordered, labeled trees. We say
that Sis included in T if there is a sequence of delete
operations performed on T, which make T isomorphic to
S. In this paper, we propose a top-down algorithm for
this problem, which needs only O(|T|[leaves(S)|) time
and O(|T| + |S]) space.

I. INTRODUCTION
Ordered labeled trees are trees whose nodes are labeled and
in which the left-to-right order among siblingsis significant.
Given two ordered labeled trees T and S, the tree inclusion
problem is to determine whether it is possible to obtain S
from T by deleting nodes. Deleting a node v in tree T means

making the children of v become the children of the parent
of v and then removing v. If Scan be obtained from T by

deleting nodes, we say that T includes S

The ordered tree inclusion problem was initialy introduced
by Knuth [7], where only a sufficient condition for this
problem is given. The tree inclusion has been suggested as
an important primitive for expressing queries on structured
document databases [5]. A structured document database is
considered as a collection of parse trees that represent the
structure of the stored texts and tree inclusion is used as a
means of retrieving information from them. This problem
has been the attention of much research. Kilpelainen and
Mannila [6] presented the first polynomial time algorithm
using O(|T|0H) time and space. Most of the later improve-
ments are refinements of this algorithm. In [8], Richter gave
an algorithm using O(la ()| + m(S, T)IDy) time, where
a(S) isthe aphabet of the labelsof S m(S T) isthesize of a
set called matches, defined as al the pairs (v, w) O Sx T
such that label(v) = label(w), and Dt is the depth of T.

Hence, if the number of matches is small, the time complex-
ity of this algorithm is better than O(T|]5). The space com-
plexity of the algorithm is O(Ja(S)|0T| + m(S, T)). In [2], a
more complex agorithm was presented using
O(|T|leaves(§]) time and O(lleaves(§)|itin{ D,
[leaves(T)|}) space. In [1], an efficient average case algo-
rithm was discussed. Its average time complexity is O(|T| +
C(S NY), where C(S, T) represents the number of T's
nodes that have been examined during the inclusion search.
However, its worst time complexity is still O(|T|1H).

All the above algorithms work in a bottom-up way. In this
paper, we propose a top-down algorithm for this problem,
which needs only O(|T|[leaves(S)|) time. The space com-
plexity is bounded by O(|T| + |§. The top-down agorithm

does not only have better computational complexities than
the bottom-up strategies, but can also be combined with some
kinds of heuristics such as signatures [4] to speed-up query
evaluation [3].

II. ORDERINGS AND EMBEDDINGS
Let T be an ordered, rooted tree with root v and children vy,
Vo, ..., V. The postorder traversal of T(v) (the tree rooted at v)
is obtained by visiting T(v), 1 < k < i in order, recursively,
and then visiting the v. The postorder number, post(v), of a

node v O V(T) is the number of nodes preceding v in the pos-
torder traversal of T. We define an ordering of the nodes of T
given by v = v' iff post(v) < post(v'). Also,v= V' iff v—= Vv
or v=V'. Furthermore, we extend this ordering with two spe-
cial nodes [0 = v =T . Theleft relatives, Ir(v), of anode v O
V(T) is the set of nodes that are to the left of v and similarly
the right relatives, rr(v), are the set of nodes that are to the
right of v.

Definition 1. Let Sand T be rooted |abeled trees. We defined
an ordered embedding (f, S T) asaninjective function f: V(S
— V(T) such that for al nodesv, u O V(S),

i) label(v) = label(f(v)); (Iabel preservation condition)

ii) visan ancestor of u iff f(v) is an ancestor of f(u);
(ancestor condition)

iii) vistotheleft of uiff f(v) isto the left of f(u). (Sib-
ling condition) O
Fig. 1 shows an example of an ordered inclusion.

Fig. 1: Illustration of tree inclusion

In Fig. 1(a), we show that the tree on the left can be included
in the tree on the right by deleting the nodes | abeled: d, e and
b. Fig. 1(b) shows a possible embedding.

An embedding is root preserving if f(root(S)) = root(T). Fig.
1(b) shows an example of aroot preserving embedding.

[11. ALGORITHM DESCRIPTION
Our agorithm is based on the following three observations:

(1) Letr, and r, betherootsof T and S, respectively. If Tin-
cludes S and label(rq) = label(r,), we must have a root pre-
serving embedding.

(2) Let T4, ..., and Ty be the subtreesof r1. Let S, ..., and §
be the subtrees of r,. If T includes Sand label(r4) = label(ry),
Theremust exist ky, ..., kjand |y, ..., Ij (j <I) suchthat T, in-
cludes<§ ,;.,..S>@0=1,..)),where<s ;..
S, > represehts aforest containing subtrees § ., ..., and

(3) If Tincludes S, but label(r;) # label(r), there must exist
ani such that T; contains the whole S

In terms of the above observation, we devise a computation
process as below. First of al, in the case of label(rq) = la-
bel(r,), we will check whether T, includes <S;, ...,§>. The
process returns an integer i, indicating that T, includes <S;,
. §>. I1f i >0, thenwe will check whether T, includes <S4,
. §>inanext step. If i = 0, it showsthat no subtreesof T,'s
root includes any subtreesin<S;, ...,§>. Inthis case, we need
to check whether T, includes ;. It is because although no
subtrees of T,’s root includes any subtreesin<S,, ...,§>, T
may include S;. If T, includes Sy, i will be changed to 1; oth-
erwise, it remains0. However, if theroot of T, does not match
theroot of S;, we know that T, cannot include S; sincein this
casewewill haveto check the subtrees of T,'sroot against Sy;
and we have aready done that with theresult i = 0. We repeat
this processuntil wefind ak; suchthat T, containsall the re-
maining subtrees of r, or find that such ak; does not exist.
In the following algorithm tree-inclusion(T, S), Tisatreeand
Sisatreeor aforest. If Sisaforest, avirtual root for itiscon-
structed, which matches any label. Thus, we will actually
check the subtrees of T'sroot against the subtreesin S respec-
tively.

Function tree-inclusion(T, S
Input: T, S
Output: 1, if Tincludes S otherwise, 0.
begin
1. if [T|<|9then {if Sisaforest: <S,, ..., §>
2. then S:=<S,, ..., §> for somei such that
<Sp, ... S| ST <SSy, - §ur]
3. elsereturn 0;}
4. letryandr, betherootsof T and S, respectively;
5. (*If Sisaforest, construct avirtual root for it, which matches
any label.*)
6. letTy, ..., Ty bethesubtreesof rq;
7. letS,, ..., § bethesubtreesof ry;
8. if label(rq) =labe(ry)
9. then{ifryisaleaf then {if ryisnot avirtua root
then return lelsereturn O;}

10. temp :=<S§,, ..., §>;

11 =G

12. i=1j:=0,x:=0;

13. while (i <k Otemp # @) do

14. { x:=tree-inclusion(T;, temp);

15. if x>0 then temp :=temp/<§.1, ..., >}
16. else{if T; and §. have the same | abel

then {x :=tree-inclusion(T;, §+1);

temp := temp/<§,>;}}

17. =i+l j=Ej+ex)
18. if temp # @then {if ro isavirtual root then return j
19. elsereturn 0;}
20. else{if rpisavirtua root then return |
21. elsereturn 1;}}
22. else{fori=1tokdo
23. {x:=tree-inclusion(T;, S);
24, if x = number-of-forest(S) return x;
(* number-of-forest(S) returns the number of the forestsin S*)
25. return O;}
end

In Algorithm tree-inclusion(T,), line 1 checks whether [T]| <
[S. If it isthe case, the algorithm returns O if Sisatree. If Sis
aforest, we will check T against the first i subtrees such that
I<Si, ..., S| S [T] < <Sy, ..., S+1>] (seeline 2). In addition,
when we check T against aforest <S,, ..., 5>, avirtual root for
it is constructed, which matches any label. Thus, we will actu-
ally check the subtreesof T'sroot: Ty, ..., Ty against Sy, ..., and
§ to see whether they include <S, ..., 5> (seeline 5). Thisis
performed in a while-loop over T;’'s. In each step, a recursive
cal: tree-inclusion(T;, <S§ , ..., §>) (i =1, ..., j for somej) is
carried out, which returns an integer x, indicating that T; in-
cludes<§ , .., §,4_1 > (seelineld).If x=0,i.e, thesub-
trees of T;"s root do not include any subtreein § , ..., §, we
need to check whether T; include S since when we check T,
agang S , ..., §, what we have done isto check the subtrees
of check T;’sroot, not T; itself (see line 16). If Sis atree, the
agorithm return 1 if it is included; otherwise, O (see line 19
and 21). Finally, we note that if the root of T does not match
theroot of S, thealgorithm triesto find thefirst T; that contains
thewhole S (seelines 22 - 25).

In the following, we apply the algorithm to the trees shown in
Fig. 3. and trace the computation step-by step for a better un-
derstanding.

Example 1. Consider two ordered, labeled trees T and S
showninFig. 2, whereeach nodein Tisidentified with t;, such
asty, ty, t14, and so on; and each nodein Sisidentified with glfL
I(n)addition, each subtree rooted at t; (s;) is represented by T,
9-
In the following step-by-step trace, iy is used as an index vari-
ablefor scanning the subtrees of T,’sroot; j, isused to scan the
corresponding subtreesin S; and x, isused asatemporary vari-
able.

Fig. 2: Two trees

IV. CORRECTNESS
In this section, we show the correctness of Algorithm tree-in-
clusion(T, 9).
Proposition 1. If Sisatree, Algorithm tree-inclusion(T, S re-
turns 1if Tincludes S otherwise 0. If Sisaforest of the form:

Sep-by-step trace:

tree-inclusion(T, S
label (tg) = label(sg)
ig:=1;jp:=0;%:=0

tree-inclusion(Tq, <S;, S,>)

label(t;) = label (virtual-root)

i1:=1;j1:=0;x:=0

tree-inclusion(Tyy, <Sy, S,>)

[Tl < I<S, S|

remove S, from <S,, S,>

label(tq1) = label(sy)
return 1
Xj_:l;jj_:l; i1:2
tree-inclusion(Tyo,)
label(ty) # label(sy)
return 0
X1:O;j1:1; i1:3
return 1
=Ljp=1ip=2
tree-inclusion(T,, Sy)
label(t,) # label(sy)

i2:=1;j,:=0;%:=0

tree-inclusion(Tyq,)
label(ty1) # label(sy)
return 0
X2:O;j220; i2:2
tree-inclusion(Toy, S)
label (ty,) = label(sy)
return 1
X2:1;j2:1; i2:3
return 1
X=Ljp=2ip=3
return 2
return 1

Explanation:

Call tree-inclusion(T, S

Check tgagainst s,.

igisfor scanning the subtrees of ty; jq is used to record how many sub-
trees of 5y isincluded; xg is atemporary variable.

recursive call tree-inclusion(Ty, <Sj, S>).

Check t; against avirtual root. It always succeeds.

i1 isfor scanning the subtrees of ty; j; is used to record how many sub-
trees of 5y isincluded; x, is atemporary variable.

recursive call tree-inclusion(Ty4, <S;, $>).

compare the sizes of T11 and <S;, S;>.

since<S,;, S;> islarger than Tq4, remove S, from <S;, S>.

Check t11 against s;.

it returns 1, indicating that Ty4 includes S;.

i1 isincreased by 1; x; isequal to 1 and then j; isincreased by 1.
recursive call tree-inclusion(Ty,,).

Check t1, against s,.

it returns 0, indicating that T4, does not include S,.

i1isincreased by 1; x; is equal to 0 and then j4 is not increased.

it returns 1, indicating that T, includes S; of <S;, S;>.

igisincreased by 1; Xgis equal to 1 and then jyisincreased by 1.
recursive call tree-inclusion(T,, S,).

Check t, against s,. Since they do not match, all the subtrees of t, will be
checked one by one.

i12 isfor scanning the subtrees of t,; j; is used to record how many sub-
trees of 5y isincluded; x, is atemporary variable.

recursive call tree-inclusion(Tyy,).

Check ty1 against s,.

it returns 0, indicating that T»q does not include S,.

isisincreased by 1; x, is equal to 0 and then j, is not increased.
recursive call tree-inclusion(Toy,).

Check ty, against s,.

it returns 1, indicating that To, includes S,.

isisincreased by 1; x, isequal to 1 and then j,isincreased by 1.

it returns 1, indicating that T, includes S, of <S;, S;>.

igisincreased by 1; Xgis equal to 1 and then jyis not increased by 1.
sincejg = 2, tree-inclusion(T,,) returns 2.

it returns 1, indicating that T includes S O

<S,, ...,§>, Algorithm tree-inclusion(T, S) returns an integer
i, indicating that T includes <S,, ...,§>.

Proof. We prove the proposition by induction on the sum of
the heights of T and S, h. Without loss of generality, assume
that height(T) = 1 and height(S) = 1.

Basic step. When h = 2, we consider two cases.

(i) Both Tand Saresingulars: ry andr.

(ii) Tisasingular; but Sisaset of nodes.

In case (i), if ry and r, have the same label, the algorithm re-
turns 1 (see line 9); otherwise returns O (see line 25). In case
(ii), avirtua root will be constructed for S, which matches
any label. Then, we will check the subtrees of r, against all
the nodesin S. Since rq does not have any subtrees, we will
get 0 asthereturn value (seeline 9). Then, rq will be checked
against the first nodein Sand return 1 if they have the same
label; otherwise, return O (seelines 13 -17).

Induction hypothesis. Assume that when h =1, the proposition
holds.

Consider two trees T and Swith height(T) + height(S) =1 + 1.
Assume that Sisatree. Let ry and r, betherootsof Tand S
respectively. Let T4, ..., and T, be the subtreesof r;. Let S, ...,
and § bethe subtrees of r,. Then, height(T;) + height(S) <l and
height(T) + height(§) <. If 1abel(r1) = label(r), the algorithm
partitions the integer sequence: 1, ..., | into some subsequenc-
es{jo+1, ..iah, {1+ L - jat, o {ima+ L s o}, Where
jo=0andj,<I, suchthat each T; (i = 1, ..., m; m< k) includes
<S§ i1, §>bUtnot<§ L, .., S, §,,>(see
lines13 - 17). In terms of the indittion hypothesis, the parti-
tion is correct. Thus, the algorithm will return 1if j,, =1, indi-
cating that T includes S(seeline 21); otherwise O (seeline 19).
If label(rq) # label(ry), algorithm will try to find the first T
such that it includes thewhole S. In terms of the induction hy-
pothesis, the return value must be correct.

Assume that Sis aforest of the form: <S, ..., §>, avirtua
root will be constructed for it. In terms of the induction hy-
pothesis, the algorithm will find the correct integer i such that
Tincludes<S,, ..., § > (seeline 18 and 20). It completes the
proof. O

V. COMPUTATIONAL COMPLEXITIES

In this section, we discuss the computational complexity of
the top-down algorithm discussed in Section 3.

Let Toand S betwo ordered, labeled trees. Let Ty, ..., and T
be the subtrees of Ty'sroot. Let Sy, ..., and § be the subtrees
of §'sroot.

Denote Cj; the number of label comparisons for checking
whether T, contains §. Denote C, | | the number of label
comparlsonsfor checking whether T contains<§g .., § >.
Then, accordi ng to the top-down algonthm wehave

Coo<1+R(Y (i i+ PO +A(Y Ca) @

i=1 i=1
where p represents the probability that anodein T matches a
nodein S and g =1 - p. Especialy, we notice that
k

Z(Ci,li.,,l +pC; 1) (2
i=1
is the cost of executing lines 13 - 17, in which C; |
stands for the time spent on checking T, against < S, S>
(seelinel4)and C;, forthetimeon checklngT agalnst S,
(seeline 16). In addition, Cop o stands for the cost of checkmg

Toagainst §; and C; ,, for the cost of checking a T; against
S (seelines 22 - 24).

Now weconsider C; | | .LetTy, ..., T;; bethe subtreesof
Ty'sroot. In the Worst casg, the algorlthm checks Tjy, ..., and
Ti j inturnagainst S, without success, which leadsto an ex-
tra computation, i.e., the checking of T; against S, . If there
isany Ty (1< k<jj) that includes S, the corresponding com-
putation will not be doneand then, pC; , should be removed
from (1). In terms of this analyss we change (1) to thefol-
lowing form:

COO<1+

p(Z[Z(CU I)+ pCI IJ) +q(ZC| 0) (3)

=1
Interms of (3), we have the following p;roposmon
Proposition 2. Let Tyand Sobetwo ordered labeled trees. Let
Ty, ..., and Ty bethe subtrees of Ty'sroot. Let S, ..., and § be
the subtrees of S'sroot. If |Ieaves(§)| < |Ieaves(SO)|/(1 +p)
for every j, Co o < [Tolfleaves(S)|.

Proof. We prove the proposition by induction on the sum of
the heights of Ty and §,, h. Without loss of generality, assume
that height(Tg) = 1 and height(S) = 1.

Basic step. When h = 2, the proposition obviously holds.
Induction hypothesis. Assume that when h = |, the proposi-
tion holds.

Consider two trees To and Sy with height(Tg) + height(S) = |
+ 1. Then, height(T;) + height(S) < | and height(Tg) +
height(§) < I. In terms of (3) and the induction hypothesis,
we have

CO’()S 1+

k

j
p(Z Z]Tij] [Jleaves(S)|+

i=1j=1
k

p Z]Ti] [ieaves(s)|) +

|:k1

o> [Ti| fieaves(sy)) @

i=1

<1+

- (k+ 1+ p))lleaves(Sp)| +

q(|Tol - 1)|Meaves(Sy)|
< [Tolfleaves(Sy)|- O

In addition, the algorithm needs no extra space. Thus, the
space complexity ison O(|T| + [9).

VI. FURTHER IMPROVEMENT

In this section, we elaborate the algorithm discussed above.
What wewant isto replace therecursive call tree-inclusion(T;,
+1) inline 16 with a simple checking. For this purpose, we
rearrange the algorithm so that each recursive call tree-inclu-
sion(T;, <S;, ..., §>) returns a pair <num, subnum> instead of
asingle number, where numis O or an integer k to indiacte S,
.., §careincluded in Tj, and subnum s defined as follows.

Let Zy, ..., Z,, bethesubtreesof S;’sroot. If num= 0, subnum
=] >=0, indicating that Z;, ..., Z; are included in Ty, ..., T; .
Otherwise, subnumisset to 0 (and will not be used in the sub-
seguent computation).

In addition, the modified algorithm takes three arguments: T;,
<§,, ..., §>and a, where aisan integer indicating that Z, ...,
Zyareincluded in Ty, ..., Tj.;.

Function modified-inclusion(T, S, a)

Input: T, S

Output: 1, if T includs S, otherwise, O.

begin

1. if[T|<|9then {if Sisaforest: <S,, ..., §>

2. then if there existsi such that [<S, ..., §>| < [T| <

I<Sp, - 41>

3. then S:=<S§,, ..., §>;

4. else{let Z,, .. Z be the subtrees of S,;’sroot;

5 if there eX|StSJ such that
|<Za+1v s Zj>| <[T|< |<Za+1| ---| Zj+1>|
then {S:=<Zy,y, ..., Z> tag = 1}

6
7. elsereturn <0, a>;}
8. letryandr,betherootsof T and S, respectively;
9. (*If Sisaforest, construct avirtual root for it, which matches any
|abel.*)
10. let Ty, ..., T bethe subtrees of ry;
11. letS, ..., § bethe subtrees of r;
12. if label(ry) = label(ry)
13. then {if ry isaleaf then {if r,isnot avirtual root
then return 1else return <0, a>;}

14. temp :=<S,, ..., §>;
15. =6
16. i:=1,j:=0;,x:=0;

17. while (i <k Otemp # @) do

18. {x := modified-inclusion(T;, temp, a);

19. if x.num> 0 then temp = temp/<§.1, ..., Sy number™;
20. else{if T; and §, have the same label
21 then {if x.subnum = number of §,,’'s subtrees
then temp := temp/<§,1>; a := 0; x.num:= 1;}
22. elsea:=a+ x.subnum}
23. =i+l j=jex)
24. iftag=1
25. then {tag :=0;
26. if j > 0then {if ryisavirtual root then return <0, a +j>;
27. elsereturn <0, a>;}
28.
29. if temp # @then {if r, isavirtual root then return <j, 0>
30. elsereturn <0, j>;}
3L else{if ryisavirtual root then return <I, 0>
32. elsereturn <1, 0>;}}
33. ese{fori=1tokdo
34. {x:= modified-inclusion(T;, S);
35. if x.num = number-of-forest(S) return <x.num, 0>;}
36. (* number-of-forest(S) returns the number of the forestsin S*)
37. return <0, subnum>;}
end

The agorithm works in the same fashion astree-inclusion(),
but with a significant difference: modified-inclusion() re-
turns a pair <num, subnum> instead of a single number,
which leads to the following changes.

1) Inlinesl-7,wetrytofindanisuchthat |<S,, ..., §>| <
[TI<|<S, ..., §+1>. If itisnot the case, we will try to find an
j such that [<Zgyq, ..., 2| < |T| < [<Zyyq, ..., Zj41>|, Where
Zar1, - Zj+q A€ SOMe subtrees of S,. At the very beginning,
a= 0. In addition, we set tag = 1, indicating that the current
computation is to check whether T contains any subtrees of
S;. Theresult is recorded in subnum.

2) Inlines20 - 23, we handle the case that the return value
of modified-inclusion(T;, temp, a) is of the form <O, sub-
num>, It indicates that the subtrees of T;"s root do not include
any of Sy, ..., and §. However, if the labels of T;’s root and
S;’s root are the same and subnum is equal to the number of
the children of S;’sroot, we have S, included in T;. Obvious-
ly, such a check needs only a contant time. But in tree-inclu-
sion(), arecursive call of the function is performed for the
same task. Therefore, modified-inclusion() is much more ef-
ficient than tree-inclusion().

The time complexity of modified-inclusion(') can be analy-

sed asfollows.k)

Coos1+p(Z(Ci,li,,.l"' pc))+Q(Zci,o) (5)
i=1 i=1
wherec reprelsents aconstant. I
Then, we have
Cop<1+
ko]
p(z Z | Tyl [teaves(s))| + pc) +
i=1j=1
k

oY [T eaves(sy)) ®)

i=1

<1 p(Tol- 1+ ety eaves(S)| +

A([Tol - 1)|Meaves(Sp)l

< [Tolleaves(S)I-
The space complexity of modified-inclusion() is still bounded
by O(T] + 19).

VII. CONCLUSION
In this paper, a top-down algorithm for checking the tree
inclusion of Sin T is discussed. The time and space complex-
ities of the algorithm are bounded by O(|T|(leaves(S)|) and
O(|T| + |9), repectively.

ACKNOWLEDGEMENT

The work is supported by NSERC 239074-01 (242523) (Nat-
ural Sciences and Engineering Council of Canada).

REFERENCES

[1] L. Alonso and R. Schott, “On the tree inclusion prob-
lem,” In Proceedings of Mathematical Foundations of
Computer Science, pages 211-221, 1993.

[2] W. Chen, “More efficient algorithm for ordered tree
inclusion,” Journal of Algorithms, 26:370-385, 1998.

[3] Y. Chen, “Query Evauation and Web Recognition in
Document Databases,” in Proc. 7th IASED Int. Conf. on
Internet and Multimedia Systems and Applications,
Honolulu, Hawaii, USA, Aug. 13-15, 2003.

[4] C. Fadoutsos, “Signature Files,” in: Information
Retrieval: Data Sructures & Algorithms, edited by W.B.
Frakes and R. Baeza-Yates, Prentice Hall, New Jersey,
1992, pp. 44-65.

[5] H. Mannila and K.-J. Raiha, “On Query Languages for
the p-string data model,” in Information Modelling and
Knowledge Bases, (H. Kangassalo, S. Ohsuga, and H.
Jaakola, Eds), pp. 469-482, 10S Press, Amsterdam,
1990.

[6] P Kilpelainen and H. Mannila, “Ordered and unordered
tree inclusion,” SAM Journal of Computing, 24:340-
356, 1995.

[7] D.E. Knuth, The Art of Computer Programming, Vol. 1,
Addison-Wesley, Reading, MA, 1969.

[8] T. Richter, “A new algorithm for the ordered tree inclu-
sion problem,” In Proceedings of the 8th Annual Sympo-
sium on Combinatorial Pattern Matching (CPM), in
Lecture Notes of Computer Science (LNCS), volume
1264, Springer Verlag, pp. 150-166, 1997.

