
An Efficient Top-down Algorithm for Tree
Inclusion

Yangjun Chen and Yibin Chen
Dept. of Applied Computer Science

University of Winnipeg
Winnipeg, Canada R3B 2E9
Email: ychen2@uwinnipeg.ca
Abstract  Let T and S be ordered, labeled trees. We say
that S is included in T if there is a sequence of delete
operations performed on T, which make T isomorphic to
S. In this paper, we propose a top-down algorithm for
this problem, which needs only O(|T|⋅|leaves(S)|) time
and O(|T| + |S|) space.

I. INTRODUCTION
Ordered labeled trees are trees whose nodes are labeled and
in which the left-to-right order among siblings is significant.
Given two ordered labeled trees T and S, the tree inclusion
problem is to determine whether it is possible to obtain S
from T by deleting nodes. Deleting a node v in tree T means
making the children of v become the children of the parent
of v and then removing v. If S can be obtained from T by
deleting nodes, we say that T includes S.

The ordered tree inclusion problem was initially introduced
by Knuth [7], where only a sufficient condition for this
problem is given. The tree inclusion has been suggested as
an important primitive for expressing queries on structured
document databases [5]. A structured document database is
considered as a collection of parse trees that represent the
structure of the stored texts and tree inclusion is used as a
means of retrieving information from them. This problem
has been the attention of much research. Kilpelainen and
Mannila [6] presented the first polynomial time algorithm
using O(|T|⋅|S|) time and space. Most of the later improve-
ments are refinements of this algorithm. In [8], Richter gave
an algorithm using O(|α(S)|⋅|T| + m(S, T)⋅DT) time, where
α(S) is the alphabet of the labels of S, m(S, T) is the size of a
set called matches, defined as all the pairs (v, w) ∈ S × T
such that label(v) = label(w), and DT is the depth of T.
Hence, if the number of matches is small, the time complex-
ity of this algorithm is better than O(T|⋅|S|). The space com-
plexity of the algorithm is O(|α(S)|⋅|T| + m(S, T)). In [2], a
more complex algorithm was presented using
O(|T|⋅|leaves(S)|) time and O(|leaves(S)|⋅min{DT,
|leaves(T)|}) space. In [1], an efficient average case algo-
rithm was discussed. Its average time complexity is O(|T| +
C(S, T)⋅|S|), where C(S, T) represents the number of T’s
nodes that have been examined during the inclusion search.
However, its worst time complexity is still O(|T|⋅|S|).
All the above algorithms work in a bottom-up way. In this
paper, we propose a top-down algorithm for this problem,
which needs only O(|T|⋅|leaves(S)|) time. The space com-
plexity is bounded by O(|T| + |S|. The top-down algorithm
does not only have better computational complexities than
the bottom-up strategies, but can also be combined with some
kinds of heuristics such as signatures [4] to speed-up query
evaluation [3].

II. ORDERINGS AND EMBEDDINGS
Let T be an ordered, rooted tree with root v and children v1,
v2, ..., vi. The postorder traversal of T(v) (the tree rooted at v)
is obtained by visiting T(vk), 1 ≤ k ≤ i in order, recursively,
and then visiting the v. The postorder number, post(v), of a
node v ∈ V(T) is the number of nodes preceding v in the pos-
torder traversal of T. We define an ordering of the nodes of T
given by v v’ iff post(v) < post(v’). Also, v v’ iff v v’
or v = v’. Furthermore, we extend this ordering with two spe-
cial nodes ⊥ v . The left relatives, lr(v), of a node v ∈
V(T) is the set of nodes that are to the left of v and similarly
the right relatives, rr(v), are the set of nodes that are to the
right of v.
Definition 1. Let S and T be rooted labeled trees. We defined
an ordered embedding (f, S, T) as an injective function f: V(S)
→ V(T) such that for all nodes v, u ∈ V(S),

i) label(v) = label(f(v)); (label preservation condition)
ii) v is an ancestor of u iff f(v) is an ancestor of f(u);

(ancestor condition)
iii) v is to the left of u iff f(v) is to the left of f(u). (Sib-

ling condition)

Fig. 1 shows an example of an ordered inclusion.

In Fig. 1(a), we show that the tree on the left can be included
in the tree on the right by deleting the nodes labeled: d, e and
b. Fig. 1(b) shows a possible embedding.

An embedding is root preserving if f(root(S)) = root(T). Fig.
1(b) shows an example of a root preserving embedding.

a

b b

b

a

b

b

b

b

b

a
d

d

e

e b

b (a)

(b)

Fig. 1: Illustration of tree inclusion

a

III. ALGORITHM DESCRIPTION
Our algorithm is based on the following three observations:
(1) Let r1 and r2 be the roots of T and S, respectively. If T in-
cludes S and label(r1) = label(r2), we must have a root pre-
serving embedding.
(2) Let T1, ..., and Tk be the subtrees of r1. Let S1, ..., and Sl
be the subtrees of r2. If T includes S and label(r1) = label(r2),
There must exist k1, ..., kj and l1, ..., lj (j ≤ l) such that in-
cludes < , ..., > (i = 1, ..., j), where < , ...,

> represents a forest containing subtrees , ..., and
.

(3) If T includes S, but label(r1) ≠ label(r2), there must exist
an i such that Ti contains the whole S.
In terms of the above observation, we devise a computation
process as below. First of all, in the case of label(r1) = la-
bel(r2), we will check whether T1 includes <S1, ..., Sl>. The
process returns an integer i, indicating that T1 includes <S1,
..., Si>. If i > 0, then we will check whether T2 includes <Si+1,
..., Sl> in a next step. If i = 0, it shows that no subtrees of T1’s
root includes any subtrees in <S1, ..., Sl>. In this case, we need
to check whether T1 includes S1. It is because although no
subtrees of T1’s root includes any subtrees in <S1, ..., Si>, T1
may include S1. If T1 includes S1, i will be changed to 1; oth-
erwise, it remains 0. However, if the root of T1 does not match
the root of S1, we know that T1 cannot include S1 since in this
case we will have to check the subtrees of T1’s root against S1;
and we have already done that with the result i = 0. We repeat
this process until we find a kj such that contains all the re-
maining subtrees of r2, or find that such a kj does not exist.
In the following algorithm tree-inclusion(T, S), T is a tree and
S is a tree or a forest. If S is a forest, a virtual root for it is con-
structed, which matches any label. Thus, we will actually
check the subtrees of T’s root against the subtrees in S, respec-
tively.

Function tree-inclusion(T, S)
Input: T, S
Output: 1, if T includes S; otherwise, 0.
begin
1. if |T| < |S| then {if S is a forest: <S1, ..., Sl>
2. then S := <S1, ..., Si> for some i such that

|<S1, ..., Si>| ≤ |T| < |<S1, ..., Si+1>|
3. else return 0;}
4. let r1 and r2 be the roots of T and S, respectively;
5. (*If S is a forest, construct a virtual root for it, which matches

any label.*)
6. let T1, ..., Tk be the subtrees of r1;
7. let S1, ..., Sl be the subtrees of r2;
8. if label(r1) = label(r2)
9. then {if r1 is a leaf then {if r2 is not a virtual root

then return 1else return 0;}
10. temp := <S1, ..., Sl>;
11. S0 := φ;
12. i := 1; j := 0; x := 0;
13. while (i ≤ k ∧ temp ≠ φ) do
14. { x := tree-inclusion(Ti, temp);
15. if x > 0 then temp := temp/<Sj+1, ..., Sj+x>;
16. else {if Ti and Sj+1 have the same label

then {x := tree-inclusion(Ti, Sj+1);

Tki
Sli 1– 1+ Sli

Sli 1– 1+
Sli

Sli 1– 1+
Sli

Tkj
temp := temp/<Sj+x>;}}
17. i := i + 1; j := j + x;}
18. if temp ≠ φ then {if r2 is a virtual root then return j
19. else return 0;}
20. else {if r2 is a virtual root then return l
21. else return 1;}}
22. else {for i = 1 to k do
23. {x := tree-inclusion(Ti, S);
24. if x = number-of-forest(S) return x;

 (* number-of-forest(S) returns the number of the forests in S.*)
25. return 0;}
end

In Algorithm tree-inclusion(T, S), line 1 checks whether |T| <
|S|. If it is the case, the algorithm returns 0 if S is a tree. If S is
a forest, we will check T against the first i subtrees such that
|<S1, ..., Si>| ≤ |T| < |<S1, ..., Si+1>| (see line 2). In addition,
when we check T against a forest <S1, ..., Sl>, a virtual root for
it is constructed, which matches any label. Thus, we will actu-
ally check the subtrees of T’s root: T1, ..., Tk against S1, ..., and
Sl to see whether they include <S1, ..., Sl> (see line 5). This is
performed in a while-loop over Ti’s. In each step, a recursive
call: tree-inclusion(Ti, < , ..., Sl>) (i = 1, ..., j for some j) is
carried out, which returns an integer x, indicating that Ti in-
cludes < , ..., > (see line 14). If x = 0, i.e., the sub-
trees of Ti’s root do not include any subtree in , ..., Sl, we
need to check whether Ti include since when we check Ti
against , ..., Sl, what we have done is to check the subtrees
of check Ti’s root, not Ti itself (see line 16). If S is a tree, the
algorithm return 1 if it is included; otherwise, 0 (see line 19
and 21). Finally, we note that if the root of T does not match
the root of S, the algorithm tries to find the first Ti that contains
the whole S (see lines 22 - 25).
In the following, we apply the algorithm to the trees shown in
Fig. 3. and trace the computation step-by step for a better un-
derstanding.

Example 1. Consider two ordered, labeled trees T and S
shown in Fig. 2, where each node in T is identified with ti, such
as t0, t1, t11, and so on; and each node in S is identified with sj.
In addition, each subtree rooted at ti (sj) is represented by Ti
(Sj).
In the following step-by-step trace, ik is used as an index vari-
able for scanning the subtrees of Tk’s root; jk is used to scan the
corresponding subtrees in S; and xk is used as a temporary vari-
able.

IV. CORRECTNESS
In this section, we show the correctness of Algorithm tree-in-
clusion(T, S).
Proposition 1. If S is a tree, Algorithm tree-inclusion(T, S) re-
turns 1 if T includes S; otherwise 0. If S is a forest of the form:

Sli

Sli
Sli x 1–+

SliSli
Sli

t0

t1

t11 t12 t21 t22

t2

s0

s1 s2

T: S:a

b e

c e c d

c

a

d

Fig. 2: Two trees

Step-by-step trace: Explanation:
tree-inclusion(T, S) Call tree-inclusion(T, S)

label(t0) = label(s0) Check t0 against s0.
i0 := 1; j0 := 0; x0 := 0 i0 is for scanning the subtrees of t0; j0 is used to record how many sub-

trees of s0 is included; x0 is a temporary variable.
tree-inclusion(T1, <S1, S2>) recursive call tree-inclusion(T1, <S1, S2>).

label(t1) = label(virtual-root) Check t1 against a virtual root. It always succeeds.
i1 := 1; j1 := 0; x1 := 0 i1 is for scanning the subtrees of t1; j1 is used to record how many sub-

trees of s0 is included; x1 is a temporary variable.
tree-inclusion(T11, <S1, S2>) recursive call tree-inclusion(T11, <S1, S2>).

|T11| < |<S1, S2>| compare the sizes of T11 and <S1, S2>.
remove S2 from <S1, S2> since <S1, S2> is larger than T11, remove S2 from <S1, S2>.
label(t11) = label(s1) Check t11 against s1.
return 1 it returns 1, indicating that T11 includes S1.

x1 = 1; j1 = 1; i1 = 2 i1 is increased by 1; x1 is equal to 1 and then j1 is increased by 1.
tree-inclusion(T12, S2) recursive call tree-inclusion(T12, S2).

label(t12) ≠ label(s2) Check t12 against s2.
return 0 it returns 0, indicating that T12 does not include S2.

x1 = 0; j1 = 1; i1 = 3 i1 is increased by 1; x1 is equal to 0 and then j1 is not increased.
return 1 it returns 1, indicating that T1 includes S1 of <S1, S2>.

x0 = 1; j0 = 1; i0 = 2 i0 is increased by 1; x0 is equal to 1 and then j0 is increased by 1.
tree-inclusion(T2, S2) recursive call tree-inclusion(T2, S2).

label(t2) ≠ label(s2) Check t2 against s2. Since they do not match, all the subtrees of t2 will be
checked one by one.

i2 := 1; j2 := 0; x2 := 0 i12 is for scanning the subtrees of t2; j1 is used to record how many sub-
trees of s0 is included; x2 is a temporary variable.

tree-inclusion(T21, S2) recursive call tree-inclusion(T21, S2).
label(t21) ≠ label(s2) Check t21 against s2.
return 0 it returns 0, indicating that T21 does not include S2.

x2 = 0; j2 = 0; i2 = 2 i2 is increased by 1; x2 is equal to 0 and then j2 is not increased.
tree-inclusion(T22, S2) recursive call tree-inclusion(T22, S2).

label(t22) = label(s2) Check t22 against s2.
return 1 it returns 1, indicating that T22 includes S2.

x2 = 1; j2 = 1; i2 = 3 i2 is increased by 1; x2 is equal to 1 and then j2 is increased by 1.
return 1 it returns 1, indicating that T2 includes S2 of <S1, S2>.

x0 = 1; j0 = 2; i0 = 3 i0 is increased by 1; x0 is equal to 1 and then j0 is not increased by 1.
return 2 since j0 = 2, tree-inclusion(T2, S2) returns 2.

return 1 it returns 1, indicating that T includes S.
<S1, ..., Sl>, Algorithm tree-inclusion(T, S) returns an integer
i, indicating that T includes <S1, ..., Si>.
Proof. We prove the proposition by induction on the sum of
the heights of T and S, h. Without loss of generality, assume
that height(T) ≥ 1 and height(S) ≥ 1.
Basic step. When h = 2, we consider two cases.
(i) Both T and S are singulars: r1 and r2.
(ii) T is a singular; but S is a set of nodes.
In case (i), if r1 and r2 have the same label, the algorithm re-
turns 1 (see line 9); otherwise returns 0 (see line 25). In case
(ii), a virtual root will be constructed for S, which matches
any label. Then, we will check the subtrees of r1 against all
the nodes in S. Since r1 does not have any subtrees, we will
get 0 as the return value (see line 9). Then, r1 will be checked
against the first node in S and return 1 if they have the same
label; otherwise, return 0 (see lines 13 -17).
Induction hypothesis. Assume that when h = l, the proposition
holds.
Consider two trees T and S with height(T) + height(S) = l + 1.
Assume that S is a tree. Let r1 and r2 be the roots of T and S,
respectively. Let T1, ..., and Tk be the subtrees of r1. Let S1, ...,
and Sl be the subtrees of r2. Then, height(Ti) + height(S) ≤ l and
height(T) + height(Sj) ≤ l. If label(r1) = label(r2), the algorithm
partitions the integer sequence: 1, ..., l into some subsequenc-
es: {j0 + 1, ..., j1}, {j1 + 1, ..., j2}, ..., {jm-1 + 1, ..., jm}, where
j0 = 0 and jm ≤ l, such that each Ti (i = 1, ..., m; m ≤ k) includes
< , ..., > but not < , ..., , > (see
lines 13 - 17). In terms of the induction hypothesis, the parti-
tion is correct. Thus, the algorithm will return 1 if jm = l, indi-
cating that T includes S (see line 21); otherwise 0 (see line 19).
If label(r1) ≠ label(r2), algorithm will try to find the first Ti
such that it includes the whole S. In terms of the induction hy-
pothesis, the return value must be correct.

Sji 1– 1+ Sji
Sji 1– 1+ Sji

Sji 1+

Assume that S is a forest of the form: <S1, ..., Sl>, a virtual
root will be constructed for it. In terms of the induction hy-
pothesis, the algorithm will find the correct integer i such that
T includes <S1, ..., Si > (see line 18 and 20). It completes the
proof.

V. COMPUTATIONAL COMPLEXITIES
In this section, we discuss the computational complexity of
the top-down algorithm discussed in Section 3.
Let T0 and S0 be two ordered, labeled trees. Let T1, ..., and Tk
be the subtrees of T0’s root. Let S1, ..., and Sl be the subtrees
of S0’s root.
Denote Ci,j the number of label comparisons for checking
whether Ti contains Sj. Denote the number of label
comparisons for checking whether Ti contains < , ..., >.
Then, according to the top-down algorithm, we have

C0,0 ≤ 1 + p() + q() (1)

where p represents the probability that a node in T matches a
node in S, and q = 1 - p. Especially, we notice that

(2)

is the cost of executing lines 13 - 17, in which
stands for the time spent on checking Ti against < , ..., Sl>
(see line 14) and for the time on checking Ti against
(see line 16). In addition, C0,0 stands for the cost of checking
T0 against S0; and for the cost of checking a Ti against
S0 (see lines 22 - 24).
Now we consider . Let Ti1, ..., be the subtrees of
Ti’s root. In the worst case, the algorithm checks Ti1, ..., and

 in turn against without success, which leads to an ex-
tra computation, i.e., the checking of Ti against . If there
is any Tik (1≤ k ≤ ji) that includes S1, the corresponding com-
putation will not be done and then, p should be removed
from (1). In terms of this analysis, we change (1) to the fol-
lowing form:

C0,0 ≤ 1 +

p() + q() (3)

In terms of (3), we have the following proposition.
Proposition 2. Let T0 and S0 be two ordered labeled trees. Let
T1, ..., and Tk be the subtrees of T0’s root. Let S1, ..., and Sl be
the subtrees of S0’s root. If |leaves(Sj)| ≤ |leaves(S0)|/(1 + p)
for every j, C0,0 ≤ |T0|⋅|leaves(S0)|.
Proof. We prove the proposition by induction on the sum of
the heights of T0 and S0, h. Without loss of generality, assume
that height(T0) ≥ 1 and height(S0) ≥ 1.
Basic step. When h = 2, the proposition obviously holds.
Induction hypothesis. Assume that when h = l, the proposi-
tion holds.
Consider two trees T0 and S0 with height(T0) + height(S0) = l
+ 1. Then, height(Ti) + height(S0) ≤ l and height(T0) +
height(Sj) ≤ l. In terms of (3) and the induction hypothesis,
we have

Ci li… lj,
Sli

Slj

Ci li… l, pCi li,+()

i 1=

k

∑ Ci 0,

i 1=

k

∑

Ci li… l, pCi li,+()

i 1=

k

∑
Ci li… l,

Sli
Ci li, Sli

Ci 0,

Ci li… l, Tiji

Tiji
Sli

Sli

Ci li,

Cij li,()

j 1=

ji

∑ pCi li,+
 
 
 
 

i

k

∑ Ci 0,

i 1=

k

∑

C0,0 ≤ 1 +

p(+

p) +

q() (4)

≤ 1 + ((1+ p)|T0| - (k + 1 + p))|leaves(S0)| +

q(|T0| - 1)|⋅|leaves(S0)|

≤ |T0|⋅|leaves(S0)|.

In addition, the algorithm needs no extra space. Thus, the
space complexity is on O(|T| + |S|).

VI. FURTHER IMPROVEMENT
In this section, we elaborate the algorithm discussed above.
What we want is to replace the recursive call tree-inclusion(Ti,
Sj+1) in line 16 with a simple checking. For this purpose, we
rearrange the algorithm so that each recursive call tree-inclu-
sion(Ti, <S1, ..., Sl>) returns a pair <num, subnum> instead of
a single number, where num is 0 or an integer k to indiacte S1,
..., Sk are included in Ti, and subnum is defined as follows.
Let Z1, ..., Zm be the subtrees of S1’s root. If num = 0, subnum
= j >= 0, indicating that Z1, ..., Zj are included in T1, ..., Ti .
Otherwise, subnum is set to 0 (and will not be used in the sub-
sequent computation).
In addition, the modified algorithm takes three arguments: Ti,
<S1, ..., Sl> and a, where a is an integer indicating that Z1, ...,
Za are included in T1, ..., Ti-1.
Function modified-inclusion(T, S, a)
Input: T, S
Output: 1, if T includs S; otherwise, 0.
begin
1. if |T| < |S| then {if S is a forest: <S1, ..., Sl>
2. then if there exists i such that |<S1, ..., Si>| ≤ |T| <

|<S1, ..., Si+1>|
3. then S := <S1, ..., Si>;
4. else {let Z1, ..., Zm be the subtrees of S1’s root;
5. if there exists j such that

|<Za+1, ..., Zj>| ≤ |T| < |<Za+1, ..., Zj+1>|
6. then {S := <Za+1, ..., Zj>; tag = 1;}
7. else return <0, a>;}
8. let r1 and r2 be the roots of T and S, respectively;
9. (*If S is a forest, construct a virtual root for it, which matches any

label.*)
10. let T1, ..., Tk be the subtrees of r1;
11. let S1, ..., Sl be the subtrees of r2;
12. if label(r1) = label(r2)
13. then {if r1 is a leaf then {if r2 is not a virtual root

then return 1else return <0, a>;}
14. temp := <S1, ..., Sl>;
15. S0 := φ;
16. i := 1; j := 0; x := 0;
17. while (i ≤ k ∧ temp ≠ φ) do

Tij leaves Sji
()⋅

j 1=

j

∑
i 1=

k

∑

Ti leaves Sji
()⋅

i 1=

k

∑

Ti leaves S0()⋅

i 1=

k

∑

p
1 p+

18. {x := modified-inclusion(Ti, temp, a);
19. if x.num > 0 then temp := temp/<Sj+1, ..., Sj+x.number>;
20. else {if Ti and Sj+1 have the same label
21. then {if x.subnum = number of Sj+1’s subtrees

then temp := temp/<Sj+1>; a := 0; x.num := 1;}
22. else a := a + x.subnum;}
23. i := i + 1; j := j + x;}
24. if tag = 1
25. then {tag := 0;
26. if j > 0 then {if r2 is a virtual root then return <0, a + j>;
27. else return <0, a>;}
28. }
29. if temp ≠ φ then {if r2 is a virtual root then return <j, 0>
30. else return <0, j>;}
31. else {if r2 is a virtual root then return <l, 0>
32. else return <1, 0>;}}
33. else {for i = 1 to k do
34. {x := modified-inclusion(Ti, S);
35. if x.num = number-of-forest(S) return <x.num, 0>;}
36. (* number-of-forest(S) returns the number of the forests in S.*)
37. return <0, subnum>;}
end
The algorithm works in the same fashion as tree-inclusion(),
but with a significant difference: modified-inclusion() re-
turns a pair <num, subnum> instead of a single number,
which leads to the following changes.

1) In lines 1 - 7, we try to find an i such that |<S1, ..., Si>| ≤
|T| < |<S1, ..., Si+1>. If it is not the case, we will try to find an
j such that |<Za+1, ..., Zj>| ≤ |T| < |<Za+1, ..., Zj+1>|, where
Za+1, ..., Zj+1 are some subtrees of S1. At the very beginning,
a = 0. In addition, we set tag = 1, indicating that the current
computation is to check whether T contains any subtrees of
S1. The result is recorded in subnum.

2) In lines 20 - 23, we handle the case that the return value
of modified-inclusion(Ti, temp, a) is of the form <0, sub-
num>. It indicates that the subtrees of Ti’s root do not include
any of S1, ..., and Si. However, if the labels of Ti’s root and
S1’s root are the same and subnum is equal to the number of
the children of S1’s root, we have S1 included in Ti. Obvious-
ly, such a check needs only a contant time. But in tree-inclu-
sion(), a recursive call of the function is performed for the
same task. Therefore, modified-inclusion() is much more ef-
ficient than tree-inclusion().
The time complexity of modified-inclusion() can be analy-
sed as follows.

C0,0 ≤ 1 + p() + q() (5)

where c represents a constant.
Then, we have
C0,0 ≤ 1 +

p(+ pc) +

q() (6)

≤ 1 + p(|T0| - 1 +)|leaves(S0)| +

Ci li…l, pc+()

i 1=

k

∑ Ci 0,

i 1=

k

∑

Tij leaves Sji
()⋅

j 1=

j

∑
i 1=

k

∑

Ti leaves S0()⋅

i 1=

k

∑

pc
leaves S0()

q(|T0| - 1)|⋅|leaves(S0)|

≤ |T0|⋅|leaves(S0)|.
The space complexity of modified-inclusion() is still bounded
by O(|T| + |S|).

VII. CONCLUSION
In this paper, a top-down algorithm for checking the tree
inclusion of S in T is discussed. The time and space complex-
ities of the algorithm are bounded by O(|T|⋅|leaves(S)|) and
O(|T| + |S|), repectively.

ACKNOWLEDGEMENT

The work is supported by NSERC 239074-01 (242523) (Nat-
ural Sciences and Engineering Council of Canada).

REFERENCES

[1] L. Alonso and R. Schott, “On the tree inclusion prob-
lem,” In Proceedings of Mathematical Foundations of
Computer Science, pages 211-221, 1993.

[2] W. Chen, “More efficient algorithm for ordered tree
inclusion,” Journal of Algorithms, 26:370-385, 1998.

[3] Y. Chen, “Query Evaluation and Web Recognition in
Document Databases,” in Proc. 7th IASED Int. Conf. on
Internet and Multimedia Systems and Applications,
Honolulu, Hawaii, USA, Aug. 13-15, 2003.

[4] C. Faloutsos, “Signature Files,” in: Information
Retrieval: Data Structures & Algorithms, edited by W.B.
Frakes and R. Baeza-Yates, Prentice Hall, New Jersey,
1992, pp. 44-65.

[5] H. Mannila and K.-J. Raiha, “On Query Languages for
the p-string data model,” in Information Modelling and
Knowledge Bases, (H. Kangassalo, S. Ohsuga, and H.
Jaakola, Eds.), pp. 469-482, IOS Press, Amsterdam,
1990.

[6] P. Kilpelainen and H. Mannila, “Ordered and unordered
tree inclusion,” SIAM Journal of Computing, 24:340-
356, 1995.

[7] D.E. Knuth, The Art of Computer Programming, Vol. 1,
Addison-Wesley, Reading, MA, 1969.

[8] T. Richter, “A new algorithm for the ordered tree inclu-
sion problem,” In Proceedings of the 8th Annual Sympo-
sium on Combinatorial Pattern Matching (CPM), in
Lecture Notes of Computer Science (LNCS), volume
1264, Springer Verlag, pp. 150-166, 1997.

