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Abstract In this paper, we propose a new algorithm for
computing recursive closures. The main idea behind this al-
gorithm is tree labeling and graph decomposition, based on
which the transitive closure of a directed graph can be com-
puted in O(e⋅dmax⋅dout) time and in O(n⋅dmax⋅dout) space,
where n is the number of the nodes of the graph, e is the
numbers of the edges, dmax is the maximal indegree of the
nodes, and dout is the average outdegree of the nodes. Espe-
cially, this method can be used to efficiently compute recur-
sive relationships of a directed graph in a relational
environment. 

1. Introduction
Let G = (V, E) be a directed graph (digraph for short). Di-
graph G* = (V, E*) is the reflexive, transitive closure of G if
(v, w) ∈  E* iff there is a path from v to w in G. In this paper,
we present a new algorithm for computing the transitive
closure of a digraph efficiently. 

There are several well-known algorithms for computing the
transitive closure of a directed graph [Wa62, Eb81, Sc83,
Wa75, IRW93]. All of them have, however, the worst-case
time complexity O(n⋅e), where n is the number of the nodes
of the digraph, and e is the number of the edges. These
methods were further improved by some other researchers
such as the algorithms proposed by Italiano [It86], and La
Poutre and Leeuwen [LL88]. Their algorithms maintain the
transitive closure of a directed graph in O(n⋅e) time and
O(n2) space. In 1997, Abdeddaim proposed an algorithm to
compute transitive closures incrementally, which is espe-
cially suited for alignment of DNA sequences [Ab97]. This
algorithm, however, needs knowing a spanning set of dis-
joined paths (each node is in one and only one path), which
cover all the nodes of a digraph. Based on the knowledge of
the spanning set, this algorithm can compute the transitive
closure of a digraph in O(k2⋅e + n⋅min{n, e}) time and
O(k⋅n) space, where k is the number of disjoined paths and
is equal to the breadth of the digraph.

Recently, the implementation of transitive closures in a
disk-based environment has been received an extensive at-
tention. A lot of researches have been directed to the effi-
cient implementation and performance evaluation using or
modifying the classical algorithms and different data struc-
tures aiming at the reduction of I/O traffic [ADJ90, AJ89,
AJ90, DR94, IRW93, Ji90]. However, from an algorithmic
point of view, the performance of transitive closures has not
been improved per se since it is limited by the algorithms
used. In 1996, Teuhola proposed a method to encode ances-
tor-descendant relationship and to speed-up recursion in re-
lational databases [Te96]. However, this encoding method
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cannot be used to develop efficient algorithm for computing
recursive closures. Moreover, in the case of acyclic digraphs
(DAGs), a graph needs to be decomposed into a series of
trees; but no formal decomposition was proposed in [Te96].

In this paper, we introduce a new way to compute transitive
closures of acyclic digraphs based on tree labeling and graph
decomposition. Instead of storing all the descendants for a
node in the result, we store a set of nodes S in the decom-
posed trees; and each node v in S represents a subtree rooted
at v in one of the decomposed trees. In this way, the transitive
closure of a DAG G can be stored using O(n⋅dmax⋅dout)
space, where dmax is the maximal indegree of the nodes, and
dout is the average outdegree of the nodes. Accordingly, the
time complexity can be reduced to O(e⋅dmax⋅dout). This com-
putational complexity is superior to any existing ones. In ad-
dition, this method can be applied to a digraph containing
cycles by using Tarjan’s algorithm for identifying strongly
connected components (SCCs) [Ta72].

The rest of the paper is organized as follows. In Section 2, we
discuss tree labeling and graph decomposition, which are
needed to develop our algorithm. In Section 3, we show a
new strategy for computing recursive closures in great detail.
In Section 4, we discuss briefly how to use graph labeling to
speed-up recursion in relational databases. Section 5 reports
test results. Finally, a short conclusion is set forth in Section
6.

2. Tree labeling and graph decomposition
In this section, we mainly discuss the concepts of tree label-
ing and graph decomposition, based on which our algorithm
is designed.

For any directed tree T, we can label it as follows.

By traversing T in preorder, each node v will obtain a num-
ber pre(v) to record the order in which the nodes of the tree
are visited. In a similar way, by traversing T in postorder,
each node v will get another number post(v). These two num-
bers can be used to characterize the ancestor-descendant re-
lationship as below.

Proposition 1. Let v and v’ be two nodes of a tree T. Then,
v’ is a descendant of v iff pre(v’) > pre(v) and post(v’) <
post(v).

Proof. See [Kn73].

The following example helps for illustration.

Example 1. See the pairs associated with the nodes of the di-
rected tree shown in Fig. 1. The first element of each pair is
the preorder number of the corresponding node and the sec-
ond is its postorder number. Using such labels, the ancestor-
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descendant relationship can be easily checked. 

For instance, by checking the label associated with b against
the label for f, we know that b is an ancestor of f in terms of
Proposition 1. We can also see that since the pairs associated
with g and c do not satisfy the condition given in Proposition
1, g must not be an ancestor of c and vice versa.

For two pairs (p, q) and (p’, q’) associated with u and v, re-
spectively, we say that (p, q) is subsumed by (p’, q’), denot-
ed (p, q)  (p’, q’), if p > p’ and q < q’. Then, u is a
descendant of v if (p, q) is subsumed by (p’, q’).

For a given acyclic digraph (DAG) G, we want to decom-
pose it into a series of directed trees so that the above prop-
erty can be used to speed up the computation of transitive
closures.

First, we choose arbitrarily a root r1 (a node with indegree =
0) in G and traverse G from r1 in such a way that each en-
countered node is accessed only once. This can be done by
searching G in a depth-first manner and marking the nodes
when they are first encountered. We denote such a tree
Tmax(G). Then, we remove Tmax(G) and subsequently all
isolated nodes from G, getting another digraph G1 = (V1, E1).
Next, we construct a directed tree w.r.t. G1: Tmax(G1). We re-
peat this process until the remaining graph becomes empty.
It is therefore easy to see that all Tmax(Gi)’s can be obtained
in O(m(n + e)) time by repeating graph search procedure m
times, where m is the maximal indegree of the nodes. How-
ever, this time complexity can be reduced to O(n + e) by im-
plementing an algorithm which computes such a sequence in
a single-scan.

For a DAG G0 = (V0, E0), we represent the sequence of the
directed trees Tmax(Gi) (i = 0, 1, ..., m - 1) as follows:

Tmax(G0) = (V1, E1), G1 = G0 - Tmax(G0),
Tmax(G1) = (V2, E2), G2 = G1 - Tmax(G1),

... ...
Tmax(Gm-2) = (Vm-1, Em-1), Gm-1 = Gm-2 - Tmax(Gm-2),

Tmax(Gm-1) = (Vm, Em), Gm = Gm-1 - Tmax(Gm-1) = ∅;
where Tmax(Gi) (i = 1, ..., m - 1) represents a directed tree ob-
tained by traversing Gi from a root ri in Gi, and k is the larg-
est indegree of the nodes of G0. 

In the following, we give a linear time algorithm to compute
all Tmax(Gi)’s.

The main idea is to construct all E1, E2, ... Em in a single
scan. During the graph search we compute, for each edge e
being scanned, the i satisfying e ∈  Ei. Such i can be defined
to be the smallest such that if e is put in Ei, the condition:
each node in any Ej (j = 1, ..., i) is visited only once, is not
violated, where Ei denotes the edge sets constructed so far.
In the algorithm, we always choose an unvisited edge e that
is adjacent to edge e’ ∈  Ei with the largest i. To do that, we
associate each node v with a label l(v): l(v) = i indicates that
v has been reached by an edge of the tree Tmax(Gi-1) = (Vi,
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Fig. 1. Labeling a tree
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Ei). In the following algorithm, we assume that the nodes are
numbered in terms of the depth-first search.

Algorithm find-forest
input: G = (V, E)
output: E1, E2, ..., Em

begin
E1 := E2 := ... := Em := ∅ ;
Mark all nodes v ∈ V and all edges e ∈ E “unvisited”;
l(v) := 0 for all v ∈ V;
while there exist “unvisited” nodes do

begin
choose an “unvisited” node v ∈ V with the largest l

and the smallest “depth-first” number;
for each “unvisited” edge e incident to v do

begin
Let u be the other end node of e (≠ v);

* El(u)+1 := El(u)+1 ∪  {e};
** l(u) := l(u) + 1;
*** if l(v) < l(u) then l(v) := l(u) -1;

Mark e “visited”;
end

Mark x “visited”;
end

end
For example, by applying the above algorithm to the graph
shown in Fig. 2(a), we will obtain three directed trees shown
in Fig. 2(b). In Appendix A, we will trace the execution of the
algorithm against Fig. 2(a) for a better understanding. 

In the above algorithm, each edge is visited exactly once.
Therefore, the time complexity of the algorithm is bounded
by O(n + e). In the following, we prove a proposition to es-
tablish the correctness of the algorithm.

Proposition 2. Applying Algorithm “find-forest” to a DAG
G, a sequence of directed trees w.r.t. G will be found, which
covers all of its edges.

Proof. First, we note that by the algorithm each edge will be
visited exactly once and put in some Ei. Therefore, the union
of all Ei’s will contains all edges of G. To prove the proposi-
tion, we need now to specify that in every Ei, except the root
of Ei, each node can be reached along only one path, or say,
visited exactly one time w.r.t. Ei. Pay attention to the lines
marked with * and **. If a node u is visited several times
along different edges, such edges will be put in different Ei’s.
Therefore, in each Ei, u can be visited only once. By the line
marked with ***, if an edge (v, u) is put in some Ei, then an
unvisited edge reaching v afterwards will be put in Ei or Ei+1.
If in Ei there is no edge reach v up to now (in this case, l(v) <
l(u) holds), the label of v will be changed to i - 1. Then, if af-
terwards an unvisited edge reaches v, it will be put in Ei. Oth-
erwise, l(v) = l(u) and there must already be an edge in Ei
reaching v. Thus, if afterwards an unvisited edge reaches v, it
will be put in Ei+1. In this way, in Ei, v can be visited only
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Fig. 2. DAG and its node-disjunct maxiaml trees 
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once, which completes the proof.

Now we can label each Ei in the same way as discussed in
the previous section. In addition, we notice that a node may
appear in several Ei’s. For example, in Fig. 2(b) node g ap-
pears in E1 and E2 while node e occurs in all the three direct-
ed trees. Then, after labeling each Ei, each node v will get a
pair sequence of the form: ( , ). ( , ). ...
( , ), where for each ik ∈ {1, ..., m} (m is the larg-
est indegree of the nodes) ( , ) stands for the pre-
order number and postorder number of v w.r.t .

Example 2. The directed trees shown in Fig. 2(b) can be la-
beled as shown in Fig. 3(a). Then, each node in the digraph
shown in Fig. 2(a) is associated with a sequence of pairs as
shown in Fig. 3(b).

Note that the integers for numbering Ei start from |Vi-1| + ...
+ |V1| + 1. For instance, in Fig. 3(a), E2 is numbered using
integers from 8 and E3 is from 10.

3. Computation of transitive closure
Now we begin to discuss how to compute transitive closures
using the pair sequences associated with the nodes. First, we
consider DAGs in 3.1. Then, the case of digraphs containing
cycles is discussed in 3.2.

3.1 Transitive closure of DAGs
As with labels for a tree, what we want is to use the sequenc-
es of pairs to identify ancestor-descendant relationships in a
DAG. Assume that (p1, q1), ..., (pg, qg) and (p1’, q1’), ...,
(ph’, qh’) are two sequences of pairs associated with v and
v’, respectively. If there exist i and j (1 ≤ i ≤ g, 1 ≤ j ≤ h) such
that (pi, qi)  (pj’, qj’), then v is a descendant of v’. To find
correct pair sequences for the nodes in a DAG G = (V, E), we
sort the nodes topologically, i.e., (vi, vj) ∈ Ε implies that vj
appears before vi in the sequence of the nodes. We scan the
topological sequence of the nodes from the beginning to the
end and merge, at each step, the pair sequence of each of a
node’s children  into its pair sequence. To speed up the
merging operation, we stored the pairs for a node v in a link
list Av.

Let v be the node being considered. Let v1, ..., vk be the chil-
dren of v. Merge Av with each  (i = 1, ..., k) as follows.
Assume that Av = (p1, q1) → ... → (pg, qg) and = (p1’,
q1’) → ... → (ph’, qh’) are two pair sequences stored as link
lists as shown in Fig. 4. Assume that both Av and  are in-

creasingly ordered. (We say a pair p is larger than another
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pair p’, denoted α > β if α.pre > β.pre and α.post > β.post.)

We step through both Av and  from left to right. Let (pi, qi)
and (pj’, qj’) be the pairs encountered. We’ll make the follow-
ing checkings.

(1) If pi > pj’ and qi > qj’, insert (pj’, qj’) into Av after (pi-1,
qi-1) and before (pi, qi), and move to (pj+1’, qj+1’). 

(2) If pi > pj’ and qi < qj’, remove (pi, qi) from Av and move
to (pi+1, qi+1). ((pi, qi) is subsumed by (pj’, qj’).)

(3) If pi < pj’ and qi > qj’, ignore (pj’, qj’) and move to (pj+1’,
qj+1’). ((pj’, qj’) is subsumed by (pi, qi).)

(4) If pi < pj’ and qi < qj’, ignore (pi, qi) and move to (pi+1,
qi+1). 

(5) If pi = pj’ and qi = qj’, ignore both (pi, qi) and (pj’, qj’),
and move to (pi+1, qi+1) and (pj+1’, qj+1’), respectively.

In terms of the above discussion, we have the following algo-
rithm to merge two pair sequences together.

Algorithm pair-sequence-merge(A1, A2)
Input: A1 and A2 - two link lists associated with v1 and v2.
Output: A - modified A1, obtained by merging A2 into A1, con-
taining all the pairs in A1 and A2 with all the subsumed pairs
removed.
begin
1 p ← first-pair(A1);
2 q ← first-pair(A1);
3 while p ≠ nil do{
4 while q ≠ nil do{
5 if (p.pre > q.pre ∧  p.post > q.post) then
6 {insert q into A1 before p;
7 q ← q.next;}
8 else if (p.pre > q.pre ∧  p.post < q.post) then 
9 {temp ← p; (*p is subsumed by q; remove p from A1.*)
10 remove p from A1;
11 p ← temp.next;}
12 else if (p.pre < q.pre ∧  p.post > q.post) then
13 {q ← q.next;}

(*q is subsumed by p; move to the next element of q.*)
14 else if (p.pre < q.pre ∧  p.post < q.post) then
15 {p ← p.next;}
16 else if (p.pre = q.pre ∧  p.post = q.post) then
17 {p ← p.next; q ← q.next;}
16 if p = nil ∧ q ≠ nil then {attach the rest of A2 to the end of A1;}
end

In the following, we establish several propositions to clarify
the properties of the above algorithm. We say a pair p is larger
another pair p’, denoted p > p’ if p.pre > p’.pre and p.post >
p’.post.

Proposition 3. Let A1 and A2 be two pair sequences sorted in
increasing order. Let A be the result of merging A2 into A1 us-
ing Algorithm pair-sequence-merge. Then, A is also sorted in
increasing order.

Proof. During the execution of the algorithm, some pairs may
be removed from A1 and some pair of A2 may be inserted into
A1. Let q be a pair of A2 inserted into A1. It may be inserted
into A1 in line 6 or in line 18. If it is inserted into A1 in line 6,
there must be pair p in A1 such that p > q. Consider the pair p’
before p. We have p’ < q; otherwise, q will be inserted before
p’ or will not be inserted A1 into at all. In this case, the prop-
osition holds. If q is inserted into A1 in line 18, all the pairs in
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A1 must be used up before this line is executed. We notice
that at this moment, all the pairs in A1 are increasingly or-
dered and smaller than all the remaining pairs in A2, which
are also increasingly ordered. Therefore, in this case, the
proposition holds, too.

Proposition 4. Let A1 and A2 be two pair sequences sorted
in increasing order. Let A be the result obtained by merging
A2 into A1 using Algorithm pair-sequence-merge( ). If v is
a node in a subtree of Gr, which is rooted at some node la-
beled with a pair in A2, then there must be a pair in A such
that the subtree rooted at it contains v.

Proof. Assume that v is in a subtree rooted at u labeled with
(pre, post) that appears in A2. If (pre, post) appears in A, the
proposition holds. Suppose that (pre, post) does not appear
in A. In this case, there must be a pair (pre’, post’) in A1,
which subsumes (pre, post). Notice that (pre’, post’) cannot
be subsumed by any pair in A2 since it subsumes (pre, post).
Otherwise, we will have a pair (pre’’, post’’) in A2 such that
pre’’ < pre’ and post’’ > post’. But we have (pre, post) <
(pre’’, post’’) or (pre, post) > (pre’’, post’’). In the former
case, we have pre < pre’’ < pre’. It contradicts the fact that
(pre’, post’) subsumes (pre, post). In the latter case, we have
post > post’’ > post’. It also contradicts the fact that (pre’,
post’) subsumes (pre, post). Therefore, (pre’, post’) will ap-
pear in A. Since v is in the subtree rooted at (pre, post), it
must be in the subtree rooted at (pre’, post’). Thus, the prop-
osition holds.

Proposition 5. Let A1 and A2 be two pair sequences sorted
in increasing order. Let A be the result obtained by merging
A2 into A1 using Algorithm pair-sequence-merge( ). If v is
a node in a subtree of Gr, which is rooted at some node la-
beled with a pair in A1, then there must be a pair in A such
that the subtree rooted at it contains v.

 Proof. Similar to Proposition 3.

Proposition 6. The time complexity of Algorithm pair-se-
quence-merge is bounded by O(max{|A1|, |A2|}).

Proof. During the execution of the algorithm, each pair in
A1 and A2 is visited at most once.

Based on the merging operation, the pair sequences for all
the nodes of a DAG can be computed using the following
algorithm.
Algorithm transitive-closure
begin
1 Let vn, vn-1, ..., v1 be the topological sequence of the nodes of G;
2 for i from n downto 1 do
3 {let , ...,  be the child nodes of vi;
4 for j from 1 to k do
5 call pair-sequence-merge(Ai, Aj);
6 }
end

Example 3. A possible topological sequence of the exem-
plary digraph is shown in Fig. 5(a). Each of the nodes in the
sequence is associated with a sequence of pairs that are ob-
tained by labeling the trees shown in Fig. 2(b). Applying Al-
gorithm transitive-closure to the topological sequence, each
node will be associated with a pair sequence as shown in
Fig. 5(b). 
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The above algorithm can be considered as a new way to com-
pute transitive closures with a different representation of re-
sults. In a traditional method, a result is represented as the set
of all the nodes of a digraph with each associated with a set
containing all its descendants. In our method, the result is
also the set of all nodes of a digraph, but with each associated
with a set of pointers to some subtrees rooted at some nodes
in decomposed directed trese.

Now we consider the computational complexity of the pro-
posed algorithm. First, we have the following Proposition.

Proposition 7. For a DAG, the length of a pair sequence as-
sociated with a node v of DAG is bounded by d⋅m, where d
is the outdegree of v and m is the largest indegree of the nodes
of the DAG, respectively.

Proof. First, we note that a DAG can be decomposed into m
directed trees, where m represents the largest indegree of the
nodes of the DAG. Assume that during the merging process,
a node v gets a pair sequence of length d⋅m, in which a pair is
not subsumed by anyone else Then, we have exactly d pairs
w.r.t. each decomposed tree in the pair sequence. Assume
that a new pair is being inserted into the pair sequence. This
pair must be subsumed by one of the pairs in the sequence or
it subsumes one of them. Therefore, the numbers of pairs as-
sociated with v cannot be larger than d⋅m.

Based on the above observation, we have the following two
propositions.

Proposition 8. The time complexity of Algorithm transitive-
closure is bounded by O(e⋅dmax⋅dout), where e is the number
of the edges of the DAG, dmax is the maximal indegree of the
nodes, and dout are the average outdegree of the nodes.

Proof. During the execution of the algorithm, each node in
the topological sequence is visited exactly once. To generate
the pair sequence for a node vi, di merging operations will be
performed, where di represents the outdegree of vi. In terms
of Proposition 3, the length of a pair sequence is bounded by
k. Therefore, the time complexity of Algorithm transitive-
closure is bounded by

O( ) = O(e⋅⋅dmax⋅dout)
 

Proposition 9. The space complexity of Algorithm transi-
tive-closure is bounded by O(n⋅dmax⋅dout), where e is the
number of the edges of the DAG, dmax is the maximal inde-
gree of the nodes, and dout are the average outdegree of the
nodes.

Proof. It is obvious.

Since the decomposition and the labeling of a DAG need
only O(e) time and O(e) space, the whole time complexity of
our algorithm is bounded by O(e⋅dmax⋅dout) according to
Proposition 8, and the space complexity is bounded by
O(n⋅dmax⋅dout) according to Proposition 9. This computation-

Fig. 5. Pair sequence generation along a topological order 
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al complexity is superior to any existing ones.

Proposition 10. Let v be a node G. Any descendant u of v
must be in a subtree of Gr rooted at a node labelled with a
pair in Av constructed by Algorithm transitive-closure.

proof. Assume that vn → vn-1 → ... → v1 is a topological se-
quence of G. We prove the proposition by induction on the
ordinal number m in the topological sequence of the nodes.

Basis. When m = 1, vn is a leaf node in G and its link list con-
tains only one label associated with vn. The proposition
holds.

Hypothesis. Suppose that when m ≤ k the proposition holds.
That is, each link list Ai associated with vi (i = n, ..., n - k)
contains all the pairs covering all the descendants of vi.

Consider m = k + 1. According to the property of the topo-
logical sequence, all the child nodes of vn-k-1 must appear in
{vn, vn-1, ..., vn-k}. Then, from lines 3 - 6 of Algorithm tran-
sitive-closure, as well as Proposition 2, 3 and 4, we can see
that the link list An-k-1 associated with vn-k-1 must contain all
the pairs covering all the descendants of vn-k-1 . It completes
the proof.

3.2 Transitive closure of cyclic graphs
Based on the method discussed in the previous subsection,
we can easily develop an algorithm to compute transitive
closure for digraphs containing cycles. First, we use Tar-
jan’s algorithm for identifying strongly connected compo-
nents (SCCs) to find cycles of a cyclic graph [Ta72] (which
needs only O(n + e) time). Then, we take each SCC as a sin-
gle node (i.e., condense each SCC to a node) and transform
a cyclic graph into a DAG. Obviously, applying the algo-
rithm find_forest( ) to this DAG, we will get a set of directed
trees. For each of these trees, we can associate each of its
nodes with a pair as discussed above. In this way, all nodes
in an SCC will be assigned the same pair (or the same pair
sequence). 

Finally, we notice that the time complexity of the algorithm
for handling cycles remains O(e⋅dmax⋅dout) since Tarjan’s al-
gorithm runs in O(n + e) time [Ta72]. 

4. Computing recursion in relational databases
The transitive closure computed using the above algorithm
is stored as a set of separated trees with a set of pointers as-
sociated with each node in a digraph. Then, the union of all
the trees pointed by the pointers associated with a node con-
tains all the descendants of the node. In addition, this algo-
rithm hints a new way to speed-up recursion in a relational
database.

We define the following relational schema:
Node(Node_id, label_sequence1, label_sequence2, Node_rest),

where Node_id is used for node identifiers,
label_sequence1 for the label pair sequences obtained by la-
beling the decomposed trees, label_sequence2 for the label
pair sequences constructed by running Algorithm transi-
tive-closure, and Node_rest for the other information relat-
ed to the nodes of a digraph. Then, to retrieve the
descendants of node x, we issue two queries. The first query
is very simple as shown below:

Q1: SELECT label_seqnence2
FROM Node
WHERE Node_id =  x
Let the label sequence obtained by evaluating the above que-
ry be y. Then, the second query will be of the following form:

Q2: SELECT *
FROM Node
WHERE F(label_sequence1, y),

where F(s1, s2) is a boolean function. If there exists a pair p
in s1 and a pair q in s2 such that p  q, then f(s1, s2) returns
true; otherwise false. The function F can be implemented as
follows.

Let s1 = (p1, q1), ..., (pk, qk) and s2 =  (p1’, q1’), ..., (pl’, ql’) be
two sequences of pairs associated with v and v’, respectively.
To see whether v is subsumed by v’ or vice versa, we do the
following checkings when we step through both the sequenc-
es from left to right. Let (pi , qi) and (pj’, qj’) be the pairs en-
countered. 

(1) If pi > pj’ and qi > qj’, move to (pj+1’, qj+1’). 

(2) If pi > pj’ and qi < qj’, v is subsumed by v’, and return true.

(3) If pi < pj’ and qi > qj’, v’ is subsumed by v, and return
false.

(4) If pi < pj’ and qi < qj’, move to (pi+1, qi+1).

(5) If pi = pj’ and qi = qj’, return true.

(6) If all the above conditions are not satisfied, return false.

From this, we can see that each execution of F function needs
only O(max{k, l}) time.

In comparison with Teuhola’s method [Te96], our method has
the following advantages.

(1) In Teuhola’s method, each node in a tree is associated
with an interval [α, β] in such a way that the interval
[α’, β’] of any descendant of the node belongs to its in-
terval, where α, β, α’or β’ is a long bit string, called
signature, which is produced using a a set of hash
functions. Therefore, there exists the so-called signa-
ture conflict problem. Such a problem does not exist in
our method.

(2) In the case of trees, the length of signatures changes
according to the outdegrees of the nodes and the
height of the trees. In our method, the label for a node
is always a pair of integers.

(3) In the case of DAGs, a digraph needs to be decom-
posed into a series of ‘spanning’ trees to use Teuhola’s
method; but no formal method is proposed to conduct
such a decomposition in [Te96]. In our method, the
graph decomposition is explicitly defined. 

5. Experiment results
We have implemented a test bed in C++, with our own buffer
management (with first-in-first-out replacement policy) and
B+-tree structure. The computer was Intel Pentium III, run-
ning standalone.

We have tested two methods: the method based on signatures
(Teuhola’s [Te96]), and the method based on graph labeling
(the one discussed in this paper).

We used two structure types: Trees and DAGs, and measured
the physical I/O quota as well as the cpu time. We did not
check cyclic digraphs since in [Te96] no formal method was
suggested to handle this case using signatures. In fact, even
for DAGs, it was not explicitly discussed in [Te96] how to de-
compose a digraph into a set of ‘spanning’ trees (as defined



in the article). We code for the specific data setting described
in [Te96]; but it is not a general strategy.

As done in [Te96], we first test the following two cases:

(1) a forest of 18 trees with three children per nonleaf; eight
levels, 59040 nodes, and 59022 connections;

(2)  a DAG of 640 roots with three children per nonleaf; two
parents per nonroot, eight levels, 31525 nodes and
61770 connections.

For the two methods tested, the data files are designed a little
bit differently as shown in Fig. 6. In both the data files, a node
is represented by a node identifier that is in fact an integer
represented as a bit sequence. The file for testing Teuhola’s
method contains, for each node, 32 bits for its signature plus
4 bits for the level, at which the node appears. In this file,
only the low value (a signature) of the interval associated
with a node is stored; and the high value of the interval can
be calculated using the low value and the corresponding level
number. The file for testing the graph-labeling method con-
tains a preorder number and a postorder number for each
node. Each of them is 18 bits long.

The results are gathered in Table 1.

From Table 1, we can see that in the case of trees, if the sig-
natures of Teuhola’s method have the same length as the la-
bels of the graph-lebeling method, they have almost the same
performance. However, in the case of DGAs, Teuhola’s
method is much worse than ours. It is because one has to de-
compose a DAG into a series of spanning trees to use Teuho-
la’s method. For each decomposed tree, the signatures
associated with the nodes can be used to check descendants;
but the child signature of each accessed connection must be
checked. If it is outside the [Low, High] range of the signa-
tures of the current tree, then the child belongs to another
tree, and a new query is issued against it. This leads to a lot
of extra page accesses. For the graph-labeling method, we
notice that in the DAG case, although the number of page ac-
cesses of this method is not much larger than the case of
trees, the time difference of these two cases is relatively big.
It is because for a DAG each node is associated with a se-
quence of label pairs and each check of label pair sequences
needs more time.

The following case is tested to see the impact of the outde-
grees of the nodes in a tree to the performance. 

3) a forest of 18 trees with 4 children per nonleaf; eight lev-

Table 1: Test results 

structure node 
accessed

Teuhola’s
page    cpu time

accesses    (sec.)    

graph-labeling
page    cpu time

   accesses    (sec.)

Forest 3280  117           3.5      117            2

DAG 3041  1851         39      322            9

Fig. 6. File structures

24 bits 8 bits 32 bits 4 bits

node identifier signature level

file structure used for 
testing Teuhola’s method:

24 bits 8 bits 18 bits 18 bits

node identifier pre-number
file structure used for 
testing graph-labelling method: post-number
els, 1197648 nodes.

For this case, the file for testing Teuhola’s method contains,
for each node, 64 bits for its signature plus 4 bits for the level.
In the file for testing the graph-labeling method, the preorder
number and the postorder number for each node are 22 bits
long, respectively.

The results are shown in Table 2.

From Table 2, we can see that in the case of large outdegrees,
signatures become longer and the performance of Teuhola’s
degrades. It also shows the main drawback of Teuhola’s meth-
od: sensitivity to the outdegree of nodes. If at some level of a
tree there exists a node with a large outdegree, one has to use
a long bit string to code the signature pieces for all the nodes
at that level. If each level has a node with a large outdegree,
the signatures associated with the nodes of the tree must be
long enough to differentiate from each other. In contrast, the
length of the codes for our labels depends only on the number
of the nodes in a graph. Therefore, the code length for integer
labels is averagely shorter than signatures. Fig. 7 shows the
times elapsed to compute the recursion of a root in a forest
containing 18 trees containing 59040. We change the outde-
gree of the nodes for each run and adjust the signatures so that
each time the signatures have different length. In contrast, the
label length of our algorithm remains unchanged. This ar-
rangement is reasonable since the length of the nodes’ signa-
tures at a level (of a tree) depends on the largest outdegree at
this level. If there is a node at a level has a large outdegree, the
signatures for all the nodes at that level must be set very long
according to the signature construction proposed in [Te96].
However, the length of labels used in ours depends only on
the labels’ values. The largest label is equal to the number of
the nodes in a graph.

6. Conclusion
In this paper, a new technique for labeling a digraph has been
proposed. Using this technique, the recursion w.r.t. a tree hi-
erarchy can be computed very efficiently. In addition, we
have devised an algorithm to decompose a DAG into a series
of directed trees, which requires only linear time. Together
with the labeling technique, this method enables us to develop
an efficient algorithm to compute recursive closures for
DAGs as well as digraphs containing cycles in O(e⋅dmax⋅dout)
time and O(n⋅dmax⋅dout), where e is the number of the edges
of a digraph, n is the number of the nodes, dmax is the maximal
indegree of the nodes, and dout is the average outdegree of the

Table 2: Test results 

structure node 
accessed

Teuhola’s
page    cpu time

accesses    (sec.)    

graph-labeling
page    cpu time

    accesses   (sec.)

Forest 66536 3746         79       2726       41

6

2

4

8

2 4 8 16

time (sec.)

outdegree

Teuhola’s

graph-labeling

Fig. 7. Comparison of Teuhola’s
and Graph-labeling



nodes. Especially, this method hints a new approach to mate-
rialize transitive closures in relational databases.
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Appendix A. Sample trace of graph decomposition
In this Appendix, we trace the algorithm find-forest against



the tree shown in Fig. 2(a).

See Fig. 6. At the beginning, every l(u) is set to 0. After the
first loop, the l-value of node a l(a) remains 0. But the l-val-
ues of b, g, and h are changed to 1. Moreover, node a, and
edge (a, b), (a, g) and (a, h) are marked with “v” to indicate
that have been visited. In addition, part of E1 has been gener-
ated. The rest steps are listed in Fig. 7, 8, 9 and 10.
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Fig. 6. The first execution step of find-node-disjunct-forest 
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Fig. 7. The second and third execution step of find-forest  
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Fig. 8. The fourth and fifth execution step of find-forest  
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Fig. 9. The fourth and fifth execution step of find-forest 
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Fig. 10. The sixth and seventh execution step of find-forest  
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