Graph Decomposition and Recursive
Closures

Yangjun Chen*

Dept. Business Computing, Winnipeg University,
515 Portage Ave. Winnipeg, Manitoba, Canada R3B 2E9
ychen2@uwinnipeg.ca

Abstract. In this paper, we propose a new a gorithm for computing recursive closures.
The main ideabehind thisistreelabeling and graph decomposition, based on which the
transitive closure of adirected graph can be computed in O(eb) time and O(nb) space,
where n isthe number of the nodes of the graph, e isthe numbers of the edges, and b is
the graph’s breadth. It isabetter computational complexity than any existing algorithms
for this problem.

1. Introduction

Let G=(V, E) beadirected graph (digraph for short). Digraph G* = (V, E*) isthereflexive, tran-
sitive closure of G if (v, w) O E* iff there is a path from vto win G In this paper, we present a
new algorithm for computing the transitive closure of a digraph efficiently.

2. Treelabeling

In this section, we mainly discuss the concepts of tree labeling and graph decomposition, based
on which our algorithm is designed. For any directed tree T, we can label it asfollows. By travers-
ing T in preorder, each node v will obtain anumber pre(v) to record the order in which the nodes
of thetree are visited. In asimilar way, by traversing T in postorder, each node v will get another
number post(v). These two numbers can be used to characterize the ancestor-descendant relation-
ships of nodes asfollows.

Proposition 1. Let v and V' be two nodes of atree T. Then, V' is a descendant of v iff pre(v') >
pre(v) and post(v') < post(v).

Proof. See [Kn73].

If v is adescendant of v, then we know that pre(v') > pre(v) according to the preorder search.
Now we assume that post(v') > post(v). Then, according to the postorder search, either V' isin
some subtree on the right side of v, or v isin the subtree rooted at V', which contradicts the fact
that v’ is adescendant of v. Therefore, post(v') must be less than post(v).

The following example helps for illustration.

Example 1. Seethe pairs associated with the nodes of the directed tree shown in Fig. 1. Thefirst
element of each pair is the preorder number of the corresponding node and the second isits pos-
torder number. Using such labels, the ancestor-descendant relationships of nodes can be easily
checked. For instance, by checking the label associated with b against the label for f, we know
that b is an ancestor of f in terms of Proposition 1. We can also see that since the pairs associated
with g and ¢ do not satisfy the condition given in Proposition 1, g must not be an ancestor of ¢
and vice versa.

Let (p,) and (p', q') be two pairs associated with nodes u and v. We say that (p, q) is subsumed
by (p', q'), denoted (p, q) < (p', q'), if p>p andg<(q'. Then, uisadescendant of vif (p, g) is
subsumed by (p’,).

3. Branchings and graph decomposition

Now we discuss how to recogni ze the ancestor-descendant rel ationshipsw.r.t. agenera structure:
aDAG or agraph containing cycles. First, we address the problem of DAGsin 3.1. Then, cyclic
graphs will be discussed in 3.2.

* The author is supported by NSERC 239074-01 (242523) (Natural Sciences and Engineering Council of Can-

3.1 Recursion w.r.t. DAGs

What we want is to apply the technique discussed above to a DAG. To this end, we establish a
branching of the DAG as follows.

Definition 2. (branching [Ta77]) A subgraph B=(V, E’) of adigraph G = (V, E) iscalled abranch-
ing if it is cycle-free and djpgegree(V) < 1 for every vO V.

Clearly, if for only onenoder, dingegree(r) = 0, and for all the rest of the nodes, v, dipgeqree(V) = 1,
then the branching is a directed tree with root r. Normally, a branching is a set of directed trees.
Now, we assign each edge e a same cost (e.g., let cost c(e) = 1 for every edge). We will find a
branching for which the sum of the edge costs, C(e) IS maximum.

17 r
’/C?\~ b; //o\
7.6 ¢ a -
@9 @(6 ® () .9 ds /\ ‘b
¢ e J od
31 A
@ @ (4’3) e f

V
® 62 @ ©
Fig. 1. Labeling atree Fig. 2. A DAG and its branching

For example, the trees shown in Fig. 2(b) are amaximal branching of the graph shownin Fig. 2(a)
if each edge has a same cost.

Assume that the maximal branching for G = (V, E) isaset of trees Ty withroot r; (i = 1, ..., m). We
introduce a virtual root r for the branching and an edger - r; for each T;, obtaining a tree G,
called the representation of G. For instance, the tree shown in Fig. 2(c) isthe representation of the
graph shown in Fig. 2(a). Using Tarjan’'s algorithm for finding optimum branchings [Ta77], we
can alwaysfind amaximal branching for adirected graph in O(|E|) timeif the cost for every edge
is equal to each other. Therefore, the representative tree for a DAG can be constructed in linear
time.

By traversing G; in preorder, each node v will obtain a number pre(v); and by traversing G, in
postorder, each node v will get another number post(v). These two numbers can be used to recog-
nize the ancestor-descendant relationships of all G,’s nodes as discussed in Section 2.

InaG; (for some G), anode v can be considered as a representation of the subtree rooted at v,
denoted Tg,,(V); and the pair (pre, post) associated with v can be considered as apointer tov, and
thusto Tq,(V). (In practice, we can associate a pointer with such apair to point to the correspond-
ing node in G;.) In the following, what we want is to construct a pair sequence: (pre;, posty), ...,
(prey, posty) for each nodevin G, representing the union of the subtrees (in G;) rooted respectiivey
a (pre;, posty) (j =1, ..., k), which contains all the descendants of v. In thisway, the space overhead
for storing the deﬂ:endants of anodeisdramatically reduced. Later we will shown that apair se-
guence contains at most O(b) pairs, where b is the breadth of G

Example 2. The representative tree G, of the DAG G shown in Fig. 2(a) can be labeled as shown
in Fig. 3(a). Then, each of the generated pairs can be considered as arepresentation of some sub-
treein G,. For instance, pair (3, 3) represents the subtree rooted at c in Fig. 3(a).

If we can construct, for each node v, a pair sequence as shown in Fig. 3(b), whereit is stored asa
link list, the descendants of the nodes can be represented in an economical way. Let L = (prey,
posty), ..., (prey, posty) be a pair sequence and each (pre;, post;) isapair labeing v; (i = 1, ..., K).
Then, L corresponds to the union of the subtrees Tg (V) , ..., and Tgyp(v). For example, the pair
sequence (4, 1)(5, 2)(6, 4)(8, 6) associated with d in Fig. 3(b) represents a union of 4 subtrees:
Taun(©): Taun(), Teup(@) and Tgyp(d), which contains all the descendants of din G, O

The question is how to construct such apair sequence for each node v so that it correspondsto a
union of subtrees in G;, which contains &l the descendants of vin G

First, we notice that by labeling G;, each nodein G = (V, E) will beinitially associated with a pair

asillustrated in Fig. 4. That is, if anode v is labeled with (pre, post) in G;, it will be initialy la-
beled with the same pair (pre, post) in G

(2,5 Ay
a be (7.7
VA e
33 (6, 4) S (8, 6) A
W [
e(zl, 1) &2
Fig. 4. Graph labeling Fig. 5. Link lists associated with nodesin G
»\(1, 8) a 25 - — — — = Ty
a s b = Taup(®) U Teun(f) O Teyn(@) U Taun(b)
/\(i5) }; 0D ¢ @mEn - — — — = Tw©
Col3,3) % 9 4l (8, 6) d += Taun(®) O Tan(f) O Taun(9) O Taun(d)
,/\' 64" e EI - — — — -= T
s sub!
el N f f - — — — = Ty
@y 62 9 [EAFE20E40 — = Top(® O Tap® O Tan(@)
€Y (b)

Fig. 3. Treelabeling and illustration for transitive closure representation

To compute the pair sequence for each node, we sort the nodes of G topologically, i.e., (v, v;) O
Eimplies that v; appears before v; in the sequence of the nodes. The pairs to be generated for a
node v are simply stored in alink list A, Initialy, each A, contains only one pair produced by
labeling G;.

We scan the topol ogical sequence of the nodes from the beginning to the end and at each step we
do the following:

Let v be the node being considered. Let vy, ..., v be the children of v. Merge A, with each
A, forthechildnodev; (i =1, ..., k) asfollows. AssumeA,=p; - pp - ... »pgand A, =
01 - G — .. —0p, asshownin Fig. 5. Assume that both A, are A, increas ng?y ordered.
(We say apair pislarger than another pair p’, denoted p > p’ if p.pre> p’ .pre and p.post >
p .post.)

We step through both A, and A, from Ieft toright. Let p; and ¢; be the pairs encountered. We'll

make the following checkings.

(1) If p.pre > g;.pre and p;.post > g.post, insert g into A, after p;_; and before p; and move to

(2 ?Hroli.pre> gj-pre and p;.post < g;.post, remove p; from A, and move to p;.1. (*p; is subsumed
by q.*

3 Ifypiq.Jpr()a < ¢-preand p;.post > ¢.post, ignore g; and moveto gj,1. (* g issubsumed by p;; but
it should not be removed from A,,)

(4) If p.pre < gj.preand p;.post < g;.post, ignore p; and move to pj.;.

(5 Ifp=p and g =g, ignore both (p;, ¢;) and (p;’, g;"), and move to (P41, Gi+1) and (Pj+1’
0j+1'), respectively.

In terms of the above discussion, we have the following algorithm to merge two pair sequences

together.

Algorithm pair-sequence-merge(Aq, Ay)

Input: A; and A, - two link lists associated with v4 and v,.

Output: A - modified A, containing all the pairsin A; and A, with al the subsumed pairs re-

moved.

begin

1 p - first-element(A);

2 g ~ first-element(Ay);

3 whilep#nil dof

4 while g # nil dof

5 if (p.pre> g.pre Op.post > g.post) then

6 {insert g into A, before p;

7 g — next(g);} (*next(q) representsthe pair next to g in Ay.*)

8 dseif (p.pre> q.pre 0O p.post < g.post) then

9 {p’ < p; (*pissubsumed by g; remove p from A;.*)

10 remove p from Aq;

11 p — next(p');} (*next(p’) represents the pair nextto p’ in
A .*

12 elseif (p.pre < g.pre dp.post > g.post) then

13 {q < next(q);} (*qissubsumed by p; moveto the

next element of g.*)

14 elseif (p.pre < g.pre dp.post < g.post) then

15 {p ~ next(p):}

16 eseif (p.pre=qg.pre Odp.post = g.post)

17 then {p — next(p); g — next(q);}

18 if p=nil Oq Znil then {attach the rest of A,to the end of A;;}

end

The following example helps for illustration.

Example 3. Assumethat A; = (7, 7)(11, 8) and A, = (4, 3)(8, 5)(10, 11). Then, A = pair-sequence-
merge(Aq, Ao) = (4, 3)(7, 7)(10, 11). Fig. 6 shows the entire merging process.

P p P
v 1]

Ay (7f7)(11, 8) (4,3)(7,7)(11,8) (4.9)(7,7(11,8)
Ay (4,3)(85)(10,11) (43(85(10,11) (43)8 5)(10,11) A _abranching

: a v ol

@ : (b) | © @/ LR -
@37, 7)(1f g (437 7)(10p1:1)nII A = _(107)___T L I
2)7,) N g - N .
(4,3)(8,5)(10,12) (4,3)(85)(10,11) Ayl d 9 Z(\l\s) AITITY]

§ 4

@ © Fig. 7. lllustration of mering two pair

Fig. 6. An entire merging process sequencees

In each step, the Aq-pair pointed by p and the A>-pair pointed by ¢ are coompared. In thefirst step,
(7, 7) in Aq will be checked against (4, 3) in A, (see Fig. 6(8)). Since (4, 3) is smaller than (7, 7),
it will be inserted into A, before (7, 7) (see Fig. 6(b)). In the second step, (7, 7) in A, will be
checked against (8, 5) in Ay. Since (8, 5) is subsumed by (7, 7), we move to (10, 11) in A, (see
Fig. 6(c)). In the third step, (7, 7) is smaller than (10, 11) and we move to (11, 8) in A; (see Fig.
6(d)). Inthefourth step, (11, 8) in A is checked against (10, 11) in A,. Since (11, 8) is subsumed
by (10, 11), it will be removed from A, and p becomes nil (see Fig. 6(€)). In this case, (10, 11)
will be attached to A; (seeline 18 of Algorithm pair-sequence-merge()), forming theresult A=
(4, 3)(7, 7)(10, 11) (seeFig. 6(€)). Fig. 7 isapictorial illustration of the result of merging A; and
Ao

Along the topological order of a graph, we can generate the pair sequences for all the nodes,
which computes the transitive closure of the graph using O(eb) time.

References

Kn73 D.E. Knuth, The Art of Computer Programming: Sorting and Searching, Addison-Wes-
ley Pub. London, 1973.
Tar7 J. Tarjan, Finding Optimum Branching, Networks, 7. 1977, pp. 25 -35.

	Graph Decomposition and Recursive Closures Yangjun Chen*

