
On the Designing of Popular Packages

Yangjun Chen1, Wei Shi2

Dept. Applied Computer Science

University of Winnipeg, Canada
1y.chen@uwinnipeg.ca, 2shiwei8980923@gmail.com

Abstract— By the package design problem we are given a set of

queries (referred to as a query log) with each being a bit string

indicating the favourite activities or items of customers and

required to design a package of activities (or items) to satisfy as

many customers as possible. It is a typical problem of data

mining. In this paper, we address this problem and propose two

algorithms to find most popular packages based on the signature

techniques. One is for finding single packages while the second is

devoted to the design of multiple packages, by which a binary

tree for a query log is constructed in a way as a signature tree for

a signature file. Extensive experiments have also been conducted,

which show that our method for this problem is promising.

Key words: Data mining; Single package design; multiple package

designs; Signature files; Signature trees

I. INTRODUCTION

Over the last decade, with the rapid development of

science and technology, economy and society have greatly

progressed. In the meantime, it produces large amounts of

data in various fields, such as the human exploration of space,

the daily bank transaction data, just to name a few. People

were beneficial from exploration and analysis of these data to

get useful information. However, although the development of

the database technology makes quick data process possible,

the face of ever-increasing flood of data is no longer satisfied

with its query capabilities. There is a deep-seated problem:

whether we can improve the efficiency of extracting

information or knowledge over data, which is critical to

decision making by managers.

In this paper, we discuss two interesting problems: Single

Package Design problem (SPD for short) and Multiple

Package Design problem (MPD for short), both related to the

information extraction [13 – 20]. We will be given a set of

activities or items A = {a1, ..., am}, like hot spring, riding

horse, glacier, hiking, airlines, boating and so on (by a travel

agency), referred to as an attribute, an elements, or a feature;

and a query log Q = {q1…qn} with each qi (i = 1, …, n) being

a string of length m: ci1ci2 … cim (cij  {0, 1, ?}, j = 1, …, m).

Here, cij = 1 indicates that aj is selected, and cij = 0 indicates

that aj is not selected while ‘?’ means ‘don’t care’. By the SPD,

we will design a bit tuple t (or say a bit string with each bit

corresponding to an activity) such that the number of satisfied

queries is maximized. We will refer to t as a new package.

Thus, what we want is to ensure that the new package satisfies

as many queries as possible [6]. For example, for the above

vacation package, clients give their preferences by specifying

yes, no, or ‘don’t care’ for each element to form a query log.

The design of a new package is to pick a sub-set of these

elements to meet as many queries’ requirements as possible.

By the multiple package design (MPD) problem, we will

find a minimum set of packages to meet all the queries’ needs.

That is, instead of a single package, we will find a minimal

number of packages to satisfy all the queries in a query log.

In this paper, we address this issue, and propose two new

algorithms, based on the signature trees discussed in [7] to

evaluate the SPD and MPD, respectively. Concretely, the

main idea of our methods can be summarised as follows.

- Signature trees are extended to handle three values: 0, 1,

and ? (don’t care).

- The search of a signature tree is integrated into the

construction of the signature tree. In this way, not only

much space (for storing a signature tree), but also much

running time can be saved by the pruning of search space.

A lot of experiments have been conducted, which show

that our methods are much better than the existing method for

this problem..

The remainder of the paper is organized as follows. In

Section II, we briefly describe what is a signature file and a

signature tree, based on which our methods are established.

Then, in Section III and IV, the algorithms for evaluating the

SPD and the MPD will be discussed, respectively. Section V

is devoted to the test results. Finally, a short conclusion is set

forth in Section VI.

II. SIGNATURE FILES AND SIGNATURE TREES

In the advent of WWW, large sets of data need to be
manipulated efficiently. Especially, we need to handle
complex data structures with set-valued attributes which can
be represented as bit strings called signatures in some areas,
such as digital libraries, data-mining, and hypertext and
multimedia systems. A group of signatures can be stored in a
file called a signature file [25 – 30], as illustrated in Fig. 1(a).

Fig. 1: A Signature file and a signature tree

0 0 1 0 1 1 1 1 0

1 0 0 0 1 1 1 1 0

0 1 0 1 0 0 0 1 1

1 0 0 0 0 1 1 0 1

1 0 0 1 1 0 0 0 1

0 0 1 0 0 1 1 1 0

1 0 0 1 0 0 0 1 1

(a) (b)

a

g

a

c

a

$

s1:

s2:

s3:

s4:

s5:

s6:

s7:

1

2 4

5 5

7
s1 s6

s2 s7

s3 s4

s5

mailto:y.chen@uwinnipeg.ca
mailto:shiwei8980923@gmail.com

A signature tree for a signature file S = s1. s2 . . . sn, where

si ≠ sj for i ≠ j and |sk| = m for k = 1, …, n, is a binary tree T

such that [7 - 12]

1. For each internal node of T, the left edge leaving it is

always labeled with 0 and the right edge is always labeled

with 1.

2. T has n leaves labeled 1, 2, ... , n, used as pointers to n

different signatures: s1, s2, …, sn in S. Let v be a leaf node.

Denote p(v) the pointer to the corresponding signature.

3. Each internal node v is associated with a number, denoted

by k(v), to tell which bit will be checked.

4. Let j1,…, jh be the numbers associated with the nodes on a

path from the root to a leaf v labeled i (then, this leaf node

is a pointer to the ith signature in S, i.e., p(v) = i). Let p1,…,

ph be the sequence of labels of edges on this path. Then, (j1,

p1) …. (jh, ph) makes up a signature identifier for si;

si(j1, … , jh) since it must be unique for si.

As an example, see the signature tree shown in Fig. 1(b),
which is constructed over the signature file shown in Fig. 1(a).
In the signature tree, each root-to-leaf path is an identifier for
a signature in the signature file shown in Fig. 1(a).

III. ALGORITHM FOR THE SPD

Consider a vacation package recommended by a tourist

agent, which may contain a set of activities, like hot spring,

riding horse, glacier, hiking, airlines, boating and so on. Such

a package can be represented as a tuple of the form: A =

{a1…am}, where each ai (i = 1, …, m) stands for an activity.

Accordingly, a query qj is a string of the form: qj1qj2 … qjm

with each qjk  {0, 1, ?}, where qjk = 1 indicates that ak is

selected, and qjk = 0 indicates that ak is not selected while ‘?’

means ‘don’t care’.

The general package design problem can then be described

as follows. Given a query log (or say, a query set or a

workload) Q, design a bit tuple t (or say a bit string with each

bit corresponding to an activity) such that the number of

satisfied queries is maximized. t is referred to as a new

package. Thus, what we want is to ensure that the new

package satisfies as many customers as possible. For example,

for the above vacation package, clients give their preferences

by specifying yes, no, or ‘don’t care’ for each element to form

a query log. t should be a sub-set of activities to meet as many

customers’ needs as possible.

For example, Table 1 shows a query log for a vacation

package application. It contains S = 6 queries, M = 6 attributes

(activities), and each query represents a user’s favourites. For

instance, the query q1 = (1, ?, 0, ?, 1 ,?), indicates that hot

spring and airlines are q1’s favourites, but glacier is not.

Table 1: A query log Q
QueryId Hot Spring Ride Glacier Hiking Airlines Boating

q1 1 ? 0 ? 1 ?

q2 1 0 1 ? ? ?

q3 ? 0 0 1 1 ?

q4 0 ? 1 ? 1 ?

q5 ? 0 0 ? ? 0

q6 ? 1 ? 0 ? 1

Furthermore, q1 does not care about whether riding, hiking

or boating is available or not.

A. Basic algorithm

Our basic method works in two steps. In the first step, we

construct a signature-tree-like structure, called a SPD-tree.

Then, in the second step, we search the SPD-tree to find a best

popular package.

Let Q = {q1, …, qm} be a query log. We use qi[j] to

represent the value of the jth attribute in qi (i = 1, …, m).

Starting from the first attribute value, we divide all queries in

Q into two branches. For query qi (1 ≤ j ≤ M), if qi[1] = ‘0’,

we put qi into the left branch. If qi[1] = ‘1’, it is put into the

right branch. However, if qi[1] = ‘?’, we will put it in both left

and right branches, showing a quite different behavior from a

traditional signature tree construction [6].

In a next step, we will split both left and right branches in

the same way as above.

Repeating this process until all the attributes are checked,

we will establish a binary tree, as shown in Fig. 2.

The following is a formal description of this working

process (Algorithm 1 and Algorithm 2).

ALGORITHM 1. SPD-tree Construction

Input: a query log Q = {q1, …, qm}, represented as a matrix.

Output: an SPD-tree.

begin

1. create the root node v;

2. call method ConstructSPDTree(v, Q, 1);

end

ALGORITHM 2. ConstrucSPDTree(p, Q, j)

Input: current parent node p, query log Q, and an integer j to

indicate the jth attribute.

Output: an SPD-tree.

begin

1. m ← Q.size;

2. for i ← 1 to m

3. {

4. if Q[i][j] = ‘?’ then add Q[i] into l and r

5. else

6. if Q[i][j] = 0 then add Q[i] into l else add Q[i] into r;

7. }

8. if l.size > 0 then

9. {create a new node v; p.LeftChild ← v; v.ParentNode ← p;
10. if j + 1 < m then call ConstructSPDTree(v, l, j + 1);
11. else { v.LeftChild ← ∅; v.RightChild ← ∅; v.sig ← l; }
12. }

13. if r.size > 0 then

14. {Create a new node w; p.RightChild ← w; w.ParentNode

← p;

15. if j + 1 < m then call ConstructSPDTree(w, r, j+1);

16. else {w.LeftChild ← ∅; w.RightChild ← ∅; w.sig ← r;}

17. }

end

In the above algorithm, p, l, r represent the parent, left

child, and right child of the current node v, respectively. Once

a SPD-tree is constructed, the best popular package can be

easily found by checking all the leaf nodes. During the

process, for each encountered leaf node v we compute how

many queries are satisfied by the node and return the node

with the maximum count, denoted as v.C. We can establish

the corresponding best popular package by traversing the path

from v up to the root and assigning attribute values

accordingly (see Algorithm 3).

ALGORITHM 3. packageSearch

Input: the root node p of a SPD-tree.

Output: the best popular package P.

begin

1. let v1, v2, …, vk be all the leaf nodes;

2. find all those leaf nodes vj such that vj.C is maximum;

3. for each vj return the labels on the path from vj to the root;

end

In Fig. 2, we demonstrate the construction of the SPD tree

over the query log shown in Table 1.

From this figure, we can see that the leaf node S66 has the

largest size and the path from the root to it shows a best

package: {hot spring, hiking, airlines}.

In the following, we analyze the computational complexity

of the above algorithm.

First, we notice that an SPD-tree will have exactly m

levels, where m is the length of each query in Q. So, in the

worst case, the number of nodes in an SPD-tree is bounded by

O(2m-1). Since each node represents a subset of Q, the whole

size of it is bounded by O(2m-1|Q|) = O(2m-1n). Accordingly,

the time for constructing an SPD-tree and the time for

searching an SPD-tree are both bounded by O(2m-1n). It is

because in the worst case each node in an SPD-tree will be

accessed.

B. Approximate algorithm and heuristics

According to [6, 21], the package design problem is NP-hard

and its running time is exponential in the number of attributes

in a query log Q. Thus, when the number of attributes is large,

to find an optimal solution to the problem is not feasible. We

have to resort to approximation. For this purpose, we integrate

the SPD-tree construction with the SPD-tree search to have a

heuristic algorithm. By doing this, we can achieve the

following advantages.

1. By recording the best results up to now, we need only to

dynamically maintain a single path currently being

explored.

2. Lots of subtrees can be cut off by checking whether a

subtree possibly contains a best popular package or not.

3. We can establish some kinds of heuristics to guide us to

explore the most promising paths or reduce the whole

searching time.

If we want to find only one most popular package, at any

point of time, we need only to record a path corresponding to

the best result up to now, and maintain a current path to

explore. So the space requirement is reduced to O(mn).

However, if we need to keep all the possible most popular

packages, in the worst case, we have to use O() space

to record them.

In order to prune all the possible futile subtrees, we use the

following general rule:

If the number of queries in any branch in a subtree is

smaller than the number of queries in the candidate result,

the subtree can be simply pruned.

From this general rule, a set of rules can be derived to handle

different specific cases.

i) If for all the queries represented by a node v, the attribute

to be checked contains only ‘0’, or ‘?’, the subtree rooted

at the right child of v can be pruned.

ii) If for all the queries represented by a node v, the attribute

to be checked does not contains ‘0’, and at least one of

them contains ‘1’, the subtree rooted at the left child of v

can be cut off.

iii) If for all the queries represented by a node v, the attribute

to be checked contains only ‘?’, we cut off the subtree

rooted at the right child of v. (Notice that we can also

prune the subtree rooted at the left child of v. But the result

will be same.)

Finally, identifying a good splitting attribute (node) is

important as this can make the tree either balanced or skewed.

For this, our heuristic is:

0

0 0 0 0 0 1 1 1 1 1

1 0 1 0

1

0 0 0 0 0

0 0 0

0

S61 S62 S63 S64 S65 S66 S67 S68 S69

S50 S52 S53 S54 S55 S56 S57 S58 S59

S40 S41 S42 S43 S44 S45 S46 S47

S30 S31 S32 S34 S35 S36 S37

S20 S21 S22 S23

S0

S10 S11

S33

S60

S51

0 0 0 0 1 1 1 1

1 1 1 1

1 1 1 1 1

S0 = {q1, q2, q3, q4, q5, q6} S10 = {q3, q4, q5, q6} S11 = {q1, q2, q3, q5, q6}

S20 = {q3, q4, q5} S21 = {q4, q5} S22 = {q1, q2, q3, q5} S23 = {q1, q5}

S30 = {q3, q5} S31 = {q4} S32 = {q6} S33 = {q4, q6} S34 = {q1, q3, q5} S35 = {q2} S36 = {q1, q6} S37 = {q6}

S40 = {q3} S41 = {q4, q5} S42 = {q4, q6} S43 = {q4} S44 = {q1, q5} S45 = {q1, q3, q5} S46 = {q1, q6} S47 = {q1}

S50 = {q3} S51 = {q3, q5} S52 = {q6} S53 = {q4, q6} S54 = {q5} S55 = {q1, q5} S56 = {q5} S57 = {q1, q3, q5}

S58 = {q1} S59 = {q1, q6}

S68 = {q1} S69 = {q1, q6}

S60 = {q3, q5} S61 = {q3} S62 = {q4} S63 = {q4, q6} S64 = {q1, q5} S65 = {q1} S67 = {q1, q3} S66 = {q1, q3, q5}

Fig. 2: An SPD tree

• Choose the attribute with the minimum number of “?”

values to minimize the selection for don’t care.

• If more than one column contains the same number of ‘?’,

we continually calculate the number of 1s and the number

of 0s in them. We select the column in which the number

of 1s and the number of 0s are mostly closed to each

other to keep the tree balanced.

Example 1 Generating the SPD tree for the query log shown

in Table 1, but integrated with the search for a best package,

we will get a set of attributes {hot spring, hiking, airline},

satisfying three queries: q1, q3, and q5. In Fig. 3, we show the

whole working process with the pruning rule being applied.

In the first step, we find the third column which contains

the minimum number of ‘?’. Set this column to be the dividing

position, and create a new node v, marked with <S0, 3>. At

the same time, all those queries qi (1 ≤ j ≤ n) with qi[3] = ‘?’

or qi[3] = ‘0’ will be put in its left child. They are S10 = {q1, q3,

q5, q6} while all those with qi[3] = ‘?’ or qi[3] = ‘1’, i.e., S11 =

{q2, q4, q6}, will be put in its right child. We notice that S10 

S11   (empty set).

In the next step, because the number of the queries in the

right node v2 is not greater than that in the left node v1, the

whole subtree rooted at v2 can directly be pruned. But the left

child v1 representing S10 can further be split according to the

second column in Q (query log), generating two children of v1:

v11 and v12, representing S20 = {q1, q3, q5} and S21 = {q1, q6},

respectively. Again, the subtree rooted at v12, the node

representing S21 can be completely pruned since S21 is smaller

than S20. In step 3, we will decompose S20 in terms of the fifth

column in Q, which contains minimal number of ‘?’. Since

this column also contains no ‘0’, v11 has only a right child,

representing S31 = {q1, q3, q5}. Continuing this process, we will

explore a path as shown in Fig. 2, reaching a node

representing S51 = {q1, q3, q5}. Splitting S51 in terms of the sixth

column, we will create only the left child of this node since

this column in S51 does not contain ‘1’. Finally, we get the

package result when the SPD tree is constructed. Along the

path generated, we have a3 = 0, a2 = 0, a5 = 1, a1 = 1, a4 = 1, a6

= 0, showing a popular package p = [1 0 0 1 1 0].

The time complexity of this modified SPD tree generating

algorithm can be analyzed as follows. At each tree level, the

number of checked bits is O(nm), where n, m are the queries

and attributes, respectively. The SPD tree is of m levels. So

the time complexity is bounded by O(nm2).

IV. ALGORITHM FOR THE MPD

By the multiple package design (MPD) problem, we will

find a minimum set of packages to meet all the customers’

needs. That is, instead of a single package, we will find a

minimal number of packages to satisfy all the queries in a

query log. Below is the definition of the problem:

Multiple Package Design Problem (MPD): Given a query log

Q with a set of attributes (activities), design a minimal number

of packages such that for each query in Q there exists a

package satisfying it.

An Algorithm for the MPD includes a multiple application

of the algorithm for the SPD. Two methods for the MPD will

be presented. One is based on the signature tree method for

the SPD while the other is based on the heuristic signature tree

method for the SPD.

For both of them, the following process will be carried out:

(1) We execute the algorithms for the SPD and add the found

most popular package P to the result.

(2) Then, we delete all those queries Q from the query log,

which are satisfied by the package found in the first step.

(3) Repeat the above two steps until no further queries or

attributes are left.

1

1 1 0

S10

S0, 3

Fig. 3: A sample trace

0

S20 S21

S10, 2 S11

S0, 3

0

S11

1

1 0

S20, 5 S21

S10, 2 S11, 1

S0, 3

0 1

S22 S23

0

1

S31

1

1 0

S20, 5 S21

S10, 2 S11, 1

S0, 3

0 1

S22 S23

0

1

S31, 1

1

S41

S41, 4

S51

1

1

1 0

S20, 5 S21

S10, 2 S11, 1

S0, 3

0 1

S22 S23

0

1

S31, 1

1

S41, 4

S51, 6

1

1

1 0

S20, 5 S21

S10, 2 S11, 1

S0, 3

0 1

S22 S23

0

1

S31, 1

1

S60

0

Step 1: Step 2:

Step 3:
Step 4:

Step 5: Step 6:

S0 = {q1, q2, q3, q4, q5, q6}

S10 = {q1, q3, q5, q6}

S11 = {q2, q4, q6}

S20 = {q1, q3, q5}

S21 = {q1, q5}

S22 = {q4, q6}

S23 = {q2, q6}

S31 = {q1, q3, q5}

S41 = {q1, q3, q5}

S51 = {q1, q3, q5} S60 = {q1, q3, q5}

Below is the first algorithm for the MPD, designed

according to the above general strategy.

ALGORITHM 4. MPD based on signature trees

Input: a set of queries Q.

Output: a set of most popular packages P.

begin

while (Q ≠ 0)

1. { create the root node v;

2. call method ConstructSPDTree(v, Q, 1);

3. {P’, Q’}← searchPackage (v);

4. Q ← Q\Q’;

5. P = P  P’;

6. }

end

It is an approximate algorithm and in the set of packages

we may have some packages with uncertain values (for

attributes).

The second algorithm is an approximate algorithm, based

on the heuristic method discussed in Subsection B of Section

III..

ALGORITHM 5. MPD based on modified signature trees

Input: a set of queries Q.

Output: a set of most popular packages P.

begin

while (Q ≠ 0)

1. { create the root node v;

2. {P, Q}← ConstructSPD(v, Q, 1);

3. Q ← Q\Q;

4. P = P  P;
5. }

end

V. EXPERIMENTS

In this section, we report the experiment results. We have

mainly implemented three different methods: the signature-

based method, its modified version, and the method proposed

in [6].

The performance measurement mainly focuses on the

response time and the output quality. For the SPD, the output

quality is measured by the number of queries satisfying the

corresponding created package. For the MPD, the output

quality is measured by the number of packages in the set

found by the algorithms.

The experiments are organized in two categories. The first

category is to evaluate the algorithms for finding an optimal

single package design while the second category is for finding

an optimal multiple package design.

All the experiments are performed on a Sony notebook

with a 2.53Ghz Inter Core i3 CPU, with 300 GB hard disk and

8.0GB of memory. The code is written in C++ and run on

Windows 7 professional with 32-bit operating system.

- Data sets

Our experiments are conducted on a real data set and a

collection of synthetic data sets (query logs). For the real

query log, we collected 100 customers’ favorites at a Chinese

restaurant and surveyed them during a large party. The

investigation was designed with 10 attributes such as lemon

chicken, ginger beef, honey garlic shrimp, broccoli with

seafood and so on. The customers respond “yes”, “no”, or

“don’t care” to each attribute to provide their preferences.

Finally, we found that for each attribute the percentage of

answers ‘yes’, ‘no’, or ‘don’t care’ each is almost 1/3 on

average. Because the real query log is very small, the

response time and the output quality of the algorithms cannot

be really observed. We then generated a collection of larger

synthetic data sets (query logs) containing up to 10000 queries

with up to 30 attributes. Each query is represented by a string

with each position being ‘0’, ‘1’, or ‘?’, evenly populated. We

may increase the number of ‘ ?’ to obtain different

experimental results.

- Tested methods

In the experiment, we have tested three methods:

- Signature tree for SPD - It works in two steps. In the first

step, we construct a signature-tree-like structure, call a

SPD-tree. Then, in the second step, we search the SPD-

tree to find the best popular package.

- Heuristic signature tree for SPD - The basic algorithm

presented in Subsection A of Section III can be

dramatically improved by integrating the SPD-tree

construction and the SPD-tree search into a single process.

By doing this, we can achieve an optimization in both

response time and package quality.

- Heuristic SPD - This algorithm was proposed by Miah [6].

This is in fact an algorithm to find an approximate solution

to an NP-complete problem, the so-called MINSAT

problem: Given a set U of Boolean variables and a

collection of disjunctive clauses over U, a truth assignment

was found that minimizes the number of satisfied

disjunctive clauses. In [6], this algorithm is referred to as

MINSAT HeuristicPD.

- In addition, all the above three algorithms are extended in

a way described in Section IV to solve the MPD problem.

A. Experiments on SPD

- Test results for real data sets on SPD

In this subsection, we show the test results for the SPD

problem on the real data which contains only 100 queries with

10 attributes.

Figures 3, 4 and 5 show the performance and quality of the

algorithms for the real query log. Obviously, the signature tree

SPD is much slower than the other two algorithms as shown

in Fig. 3. However, the signature tree SPD and the heuristic

signature tree SPD have the same optimal quality (see Fig. 3),

better than the Heuristic SPD. The reason for this is that the

Heuristic SPD is just an approximate algorithm. The heuristic

signature tree SPD requires much less time than the signature

tree SPD since the number of the nodes generated by it is

significantly less than the signature tree SPD as shown in Fig.

5, which also shows that much less memory space is required.

So, the heuristic signature tree SPD has a better overall

performance than the other two methods.

Fig. 3: Quality for Real data sets

Fig. 4: Time cost for Real data sets

Fig. 5: Space requirement for Real data sets

- Test results for varying attributes on SPD

In Figures 6 to 8, we show the results of this test with varying

numbers of attributes. From these figures, we see that both the

signature tree SPD and the heuristic signature tree SPD again

have higher quality than the heuristic SPD. The Fig. 5 displays

that the number of satisfied queries decreases as the total

number of attributes increases. The reason for this is that as

more attributes are added, the queries become more selective

and then more difficult to be satisfied. In general, the

signature tree SPD needs too much time while the heuristic

SPD has too low quality to be used in practice although the

time required by heuristic SPD is the best among the three

methods. As we can see from Fig. 7, the space requirement of

our heuristic signature tree method is also very low.

Fig. 6: Quality for varying of attributes for 100 queries

Fig. 7: Time cost for varying attributes for 100 queries

Fig. 8: Space requirement for varying attributes for 100 queries

- Test results for varying query log size on SPD
In this subsection, we show the test results for varying

sizes of query logs.

Figure 9, 10, and 11 show the results with varying query

log sizes. From these figures, we see that the heuristic

signature tree SPD is still more efficient than the other two

methods. Similar to the previous experiment, the heuristic

SPD method uses the least time, but has the worst quality. The

heuristic signature tree SPD performs better overall.

Fig. 9: Quality for varying of query log sizes with 15 attributes

Fig.10 : Time cost for varying of query log sizes with 15 attributes4

Fig. 11: Space requirement for varying of query log sizes with 15 attributes

B. Experiments for MPD

The MPD problem is an NP-complete problem. Therefore,

it is not feasible to try to find an optimal solution to it. First,

the number of possible candidate packages is exponential in

the number of attributes. Secondly, the number of different

combinations of packages is also exponential in the number of

packages. So we will only provide the experiment results of

some approximate algorithms for MPD. For the MPD problem,

instead of designing a single package as in SPD, we need to

find a minimum set of packages to satisfy all the customers’

needs. Therefore, a better quality of MPD will have a smaller

number of package counts. As shown in Fig. 5, the number of

satisfied queries decreases as the total number of attributes

increases since more attributes in a query makes the query

more selective and difficult to be satisfied.

- Test results on real data sets for MPD

In this subsection, we report the test results on the real data

for MPD.

Fig. 12 and 13 show the performance and the quality of the

three algorithms for the real data set, respectively. Again, the

signature tree MPD is much slower than the other two

algorithms as shown in Fig.13. However, the signature tree

MPD and the heuristic signature tree MPD are relatively

similar in quality. The heuristic MPD requires the least time,

but it has the worst quality.

Fig. 12: Quality for Real data sets for MPD

- Test results on varying attributes for MPD

Now we show the test results on varying attributes for

MPD.

From Fig.14 and 15, we can see almost the same results as

the previous experiment. That is, the signature tree MPD and

the heuristic signature tree MPD are relatively similar in

quality, better than the Heuristic MPD. Fig. 13 shows that the

number of packages counts increases as the total number of

attributes increases, and Fig. 15 shows that the time used by

the heuristic SPD is just a little bit better than the heuristic

signature tree MPD.

Fig. 13: Time for Real data sets for MPD

Fig. 14: Quality on varying of attributes for 100 queries for MPD

Fig. 15: Time on varying attributes for 100 queries for MPD

- Test results on varying query log sizes for MPD

In this subsection, we show the test results on varying

query log sizes for the MPD.

Fig. 16 and 17 show the results of this rest. Unlike the

above two tests, the signature tree MPD has the best quality

and less time than the heuristic signature tree method. That is

because each time the heuristic signature tree MPD completes

a search, only part of the queries from the query log is deleted,

and for the remaining queries a new tree needs to be

reconstructed. So, more time is required. However, the

signature tree MPD method needs to build only one tree, and

then complete the search. It does not need to construct the tree

for several times. Similar to the previous tests the heuristic

MPD still takes less time, but has the worst quality.

VI. CONCLUSION

In this paper, we presented two new methods to solve the

Package Design (SPD) problem and the Multiple Package

Design (MPD) problem, respectively, based on the signature

tree techniques. The motivation of this work is to select, from

a given set, a subset of the elements according to a query log

to satisfy as many customers as possible and to overcome the

limitation of the current packages design methods.

Our work mainly comprises two parts. The first part is for

the SPD, by which we will find a single package which can

satisfy a maximum group of customers. The second part is for

the MPD, by which we try to figure out a minimum set of

packages to satisfy all the customers’ needs. We have

proposed two algorithms to solve each of them. One is based

on the traditional signature tree algorithm and the other is

based on a modified signature tree algorithm.

Extensive experiments have been conducted, which show

that in general our algorithms are able to find better packages

by using almost the same time as the exiting method for this

problem.

Fig. 16: Quality on varying of query log sizes with 15 attributes

Fig.17: Time for varying of query log size for 15 attributes

REFERENCES

[1] M. G Ceruti, B. Thuraisingham. Dependable objects for databases,

middleware and methodologies, in Proc. Fifth International Workshop
on Object-Oriented Real-Time Dependable Systems, 1999, IEEE, 1999:

75-78.

[2] D C. Hand, J. Lamartine, G. M Essenfelder, Z.Kibar, et al., Mutations
in GJB6 cause hidrotic ectodermal dysplasia, Nature genetics, 2000,

26(2): 142-144.

[3] W. Han, Campbell, Data Mining: Concepts and Techniques:

Mechanical Engineering, I Press, Beijing, 2001 : 232-233 .

[4] T. M. Connolly and C. E. Begg, Database Systems, Addison Wesley,

233 Spring Verlag, New York, 2002.
[5] M. Liu, Data mining technology and its application, Defence Industry

Press , 2001.

[6] M. Miah. Most Popular Package Design, in Proc. Conference for
Information Systems Applied Research, 2011 Conisar Proceedings.

[7] Y. Chen and Yibin Chen, On the Signature Tree Construction and

Analysis, IEEE Trans. Knowl. Data Eng. 18(9), 2006.
[8] Y. Chen, Signature files and signature trees, Information Processing

Letters, 82(4):213-221, 2002.

[9] Y. Chen and Y.B. Chen, Signature File Hierarchies and Signature
Graphs: A New Indexing Method for Object-Oriented Databases, Proc.

ACM Symp. Applied Computing (SAC ’04), pp. 724-728, 2004.

[10] Y. Chen, On the signature trees and balanced signature trees. In Proc.
of 21th Conference on Data Engineering, pages 742-753, Tokyo, Japan,

April 2005.

[11] Y. Chen, On the general signature trees, in Proc. Database and Expert
Systems Applications, Springer Verlag, Berlin Heidelberg, 2005: 207-

219.

[12] Y. Chen. On the cost of searching signature trees, Inf. Process. Lett.
99(1): 19-26 (2006).

[13] A. D. Shocker and V. Shrinivasan, A consumer-based methodology

for the identification of new product ideas, Management Science, 20, 6
(Feb 1974), 921-937.

[14] S. Albers and K. Brockhoff, A procedure for new product positioning

in an attribute space, European Journal of Operational Research, 1, 4
(Jul 1977), 230-238.

[15] S. Albers and K. Brockhoff, Optimal Product Attributes in Single

Choice Models, Journal of the Operational Research Society, (1980)
31, 647–655.

[16] S. Albers, and K. Brockhoff, A procedure for new product positioning

in an attribute space. European Journal of Operational Re-search. 1, 4

(Jul 1977), 230-238.

[17] D. M. Albritton and P. R. McMullen, Optimal product design using a

colony of virtual ants, European Journal of Operational Research, 176,
1 (Jan 2007), 498-520.

[18] B. Gavish, D. Horsky, and K. Srikanth, An Approach to the Optimal
Positioning of a New Product, Management Science, 29, 11 (Nov

1983), 1277-1297.

[19] T. S. Gruca and B. R. Klemz, Optimal new product positioning: A
genetic algorithm approach, European Journal of Operational Re-

search, 146, 3, 2003, 621-633.

[20] R. Kohli and R. Krishnamurti, Optimal product design using conjoint
analysis: Computational complexity and algorithms, European Journal

of Operational Research, 40.2, 1989.

[21] R. Kohli, R. Krishnamurti, and P. Mirchandani, The Minimum
Satisfiability Problem, SIAM J. Discrete Math, 1994.

[22] C. Li, B. C. Ooi, A. K. H. Tung, and H. Wang, DADA: a Data Cube

for Dominant Relationship Analysis, SIGMOD 2006.
[23] C. Li, A. K. H. Tung, W. Jin, and M. Ester, On Dominating Your

Neighborhood Profitably, VLDB 2007, 818-829.

[24] M. Miah, G. Das, V. Hristidis, and H. Mannila, Standing Out in a
Crowd: Selecting Attributes for Maximum Visibility, ICDE 2008: 356-

365.

[25] J. K. Kim and J. W. Chang, A new parallel signature file method for
efficient information retrieval. In Proceedings of the 1995

International Conference on Information and Knowledge Management

(CIKM '95), Baltimore, USA.
[26] E. Tousidou, A. Nanopoulos, and Y. Manolopoulos, Signature-Based

Structures for Objects with Set-Values Attributes, Information Systems,

vol. 27, no. 2, pp. 93-121, 2002.
[27] D. L. Lee, Y. M. Kim, and G. Patel, Efficient signature file methods for

text retrieval, IEEE Transactions on Knowledge and Data Engineering,

7(3):423-435, 1995.
[28] F. Grandi, P. Tiberio, and P. Zezula, Frame-sliced partitioned parallel

signature files. In Proceedings of the 15th Annual International ACM

SIGIR Conference on Research and Development in Information
Retrieval, pp. 286-297, Copenhagen, Denmark, June 1992.

[29] Z. Lin and C. Faloutsos. Frame-sliced signature files. IEEE

Transactions on Knowledge and Data Engineering, 4(3):281{289, 1992.

[30] D. L. Lee and C. W. Leng, Partitioned signature files: Design issues

and performance evaluation, ACM Transaction on Information Systems,

7:158-180, 1989.

