
BWT Arrays and Mismatching Trees: A New Way
for String Matching with k Mismatches

Yangjun Chen1, Yujia Wu2

Dept. Applied Computer Science
University of Winnipeg, Canada

1y.chen@uwinnipeg.ca, 2wyj1128@yahoo.com

Abstract— In this paper, we discuss an efficient and effective
index mechanism to do the string matching with k mismatches,
by which we will find all the substrings in a target string s having
at most k positions different from a pattern string r. The main
idea is to transform s to a BWT-array as index, denoted as
BWT(s), and search r against it. During the process, the
precomputed mismatch information of r will be utilized to speed
up the BWT(s)’s navigation. In this way, the time complexity can
be reduced to O(kn�� + n + mlogm), where m = |r|, n = |s|, and n� is
the number of leaf nodes of a tree structure, called a mismatching
tree, produced during a search of BWT(s). Extensive experiments
have been conducted, which show that our method for this
problem is promising.

Key words: String matching; DNA sequences; tries; BWT-
transformation

I. INTRODUCTION

By the string matching with k mismatches, we mean a
problem to find all the occurrences of a pattern string r in a
target string s with each occurrence having up to k positions
different between r and s. This problem is important for DNA
databases to support the biological research, where we need to
locate all the appearances of a read (a short DNA sequence) in
a genome (a very long NDA sequence) for disease diagnosis
or some other purposes. Due to polymorphisms or mutations
among individuals or even sequencing errors, the read may
disagree in some positions at any of its occurrences in the
genome.

As an example, consider a target s = ccacacagaagcc, and a
pattern r = aaaaacaaac. Assume that k = 4. Let us see whether
there is an occurrence of r with k mismatches that starts at the
third position in s.

At only four locations s and r have different characters,

implying an occurrence of r starting at the third position of s.
Note that the case k = 0 is the extensively studied string

matching problem.
This topic has received much attention in the research

community and many efficient algorithms have been proposed,
such as [2, 14, 21, 29, 34, 43]. Among them, [21] and [29] are
two on-line algorithms (using no indexes) with the worst-case
time complexities bounded by O(kn + mlogm), where n = |s|

and m = |r|. By these two methods, the mismatch information
among substrings of r is used to speed up the working process.
The methods discussed in [2] and [43] are also on-line
strategies, but with a slightly better time complexity
O(n k logk) by utilizing the periodicity within r. Only the
algorithms discussed in [14, 34] are index-based. By the
method discussed in [14], a (compressed) suffix tree over s is
created. Then, a brute-force tree searching is conducted to find
all the possible string matchings with k mismatches. Its time
complexity is bounded by O(m + n + (clogn)k/k!), where c is a
very large constant. For DNA databases, this time complexity
can be much worse than O(nk) since n tends to be very large
and k is often set to be larger than 10. By the method
discussed in [34], s is transformed to a BWT-array (denoted
BWT(s)) as an index [30]. In comparison with suffix trees,
BWT(s) uses much less space [19]. However, the time
complexity of [34] is bounded by O(mn� + n), where n� is the
number of leaf nodes of a tree (forest) produced during the
search of BWT(s). Again, this time requirement can also be
much worse than the best on-line algorithm for large patterns.
Thus, simply indexing s is not always helpful for k
mismatches. The reason for this is that in both the above
index-based methods neither mismatch information nor
periodicity within r is employed, leading to a lot of
redundancy, which shadows the benefits brought by indexes.
However, to use such information efficiently and effectively
in an indexing environment is very challenging since in this
case s will no longer be scanned character by character and
the auxiliary information extracted from r cannot be simply
integrated into an index searching process.

In this paper, we address this issue, and propose a new
method for the k-mismatch problem, based on a BWT-
transformation, but with the mismatching information within r
being effectively utilized.

Specifically, two techniques are introduced, which will be
combined with a BWT-array scanning:
� An efficient method to calculate the mismatches between

r[i .. m] and r[j .. m] (i, j � {1, …, m}, i � j), where r[i .. m]
represents a substring of r starting from position i and
ending at position m. The mismatches between them is
stored in an array R such that if R[p] = q then we have r[i
+ q - 1] � r[j + q - 1] and it is their pth mismatch.

a a a a a c a a a c

c c a c a c a g a a g c c

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.98

401

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.98

401

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.98

401

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.98

387

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.98

387

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.98

387

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.98

387

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.98

387

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.98

387

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.98

399

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.98

399

2017 IEEE 33rd International Conference on Data Engineering

2375-026X/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDE.2017.98

399

� A new tree (forest) structure D to store the mismatches
between r and different segments of s. In D, each node v
stores an integer i, indicating that there are some positions
i1, i2, …, il in s such that s[iq + i - 1] � r[i] (q = 1, …, l). If v
is at the pth level of D, it also shows that it is the pth
mismatch between each s[iq .. iq + i - 1] and r.
By using these two techniques, the time complexity can be

reduced to O(kn� + n). Our experiment shows that n� n.
The remainder of the paper is organized as follows. In

Section II, we review the related work. In Section III, we
briefly describe how a BWT-transformation can be used to
speed up string matches. In Section IV, we discuss our
algorithm to find all the occurrences of r in s, but up to k
mismatches. Section V is devoted to the test results. Finally,
we conclude with a short summary and a brief discussion on
the future work in Section VI.

II. RELATED WORK

The string matching problem has always been one of the
main focuses in computer science. A huge number of
algorithms have been proposed. Roughly speaking, all of them
can be divided into two categories: exact matching and
inexact matching. By the former, all the occurrences of a
pattern string r in a target string s will be searched. By the
latter, a best alignment between r and s (i.e., a correspondence
with the highest score) is searched in terms of a given distance
function or a score matrix M, which is established to indicate
the relevance between different characters.

- Exact matching
The first interesting algorithm for this problem is the

famous Knuth-Morris-Pratt’s algorithm [26], which scans
both r and s from left to right and uses an auxiliary next-table
(for r) containing the so-called shift information (or say,
failure function values) to indicate how far to shift the pattern
from right to left when the current character in r fails to match
the current character in s. Its time complexity is bounded by
O(m + n). The Boyer-Moore’s approach [9] works a little bit
better than the Knuth-Morris-Pratt’s. In addition to the next-
table, a skip-table (also for r) is kept. For a large alphabet and
small pattern, the expected number of character comparisons
is about n/m, and is O(m + n) in the worst case. Although
these two algorithms have never been used in practice [42],
they sparked a series of subsequent research on this problem,
and improved by different researchers in different ways, such
as the algorithms discussed in [1, 31]. However, the worst-
case time complexity remains unchanged. In addition, the idea
of the ‘shift information’ has also been adopted by Aho and
Corasick [1] for the multiple-string matching, by which s is
searched for an occurrence of any one of a set of x patterns:

{r1, r2, …, rx}. Their algorithm needs only O(|r|
x

i
i�

�1
+ n) time.

In situations where a fixed string s is to be searched
repeatedly, it is worthwhile constructing an index over s, such
as suffix trees [41, 51], suffix arrays [39], and more recently
the BWT-transformation [10, 12, 13, 19, 35, 46]. A suffix tree
is in fact a trie structure [25] over all the suffixes of s; and by
using the Weiner’s algorithm it can be built in O(n) time [41].

However, in comparison with the BWT-transformation, a
suffix tree needs much more space. Especially, for DNA
sequences the BWT-transformation works highly efficiently
due to the small alphabet � of DNA strings. By the BWT, the
smaller � is, the less space will be occupied by the
corresponding indexes. According to a survey done by Li and
Homer [36] on sequence alignment algorithms for next-
generation sequencing, the average space required for each
character is 12 - 17 bytes for suffix trees while only 0.5 -
2 bytes for the BWT. The experiments reported in [12] also
confirm this distinction. For example, the file size of
chromosome 1 of human is 270 Mb. But its suffix tree is of 26
Gb in size while its BWT needs only 390 Mb – 1 Gb for
different compression rates of auxiliary arrays, completely
handleable on PC or laptop machines.

By the hash-table-based algorithms [22, 24], short
substrings called 'seeds' will be first extracted from a pattern r
and a signature (a bit string) for each of them will be created.
The search of a target string s is similar to that of the Brute
Force searching, but rather than directly comparing the pattern
at successive positions in s, their respective signatures are
compared. Then, stick each matching seed together to form a
complete alignment. Its expected time is O(m + n), but in the
worst case, which is extremely unlikely, it takes O(mn) time.
The hash technique has also been extensively used in the
DNA sequence research [23, 32, 33, 38, 45]. However, almost
all experiments show that they are generally inferior to the
suffix tree and the BWT index in both running time and space
requirements.

- Inexact matching
By the inexact matching, we will find, for a certain pattern

r and an integer k, all the substrings s� of s such that d(s�, r) 	
k, where d is a distance function. In terms of different distance
functions, we distinguish between two kinds of inexact
matches: string matching with k mismatches and string
matching with k errors. A third kind of inexact matching is
that involving Don’t Care, or wild-card symbols which match
any single symbol, including another Don’t Care.

k mismatches When the distance function is the Hamming
distance, the problem is known as the string matching with k
mismatches [4]. By the Hamming distance, the number of
differences between r and the corresponding substring s� is
counted. There are a lot of algorithms proposed for this
problem, such as [2, 4, 5, 21, 28, 29, 43, 48, 49]. They are all
on-line algorithms. Except those discussed in [2, 21, 29, 43],
all the other methods have the worst-case time complexity
O(mn). The methods discussed in [21] and [29], however,
require only O(kn + mlogm) time, by which the mismatch
arrays for r are precomputed and exploited to speed up the
search of s. The methods discussed in [2, 43] work slightly
better, by which the periodicity within r is utilized. Their time
complexity is bounded by O(n k logk). The algorithm
discussed in [34] is index-based, by which s is transformed to
a BWT-array, used as an index. Its time complexity is
bounded by O(mn� + n), where n� is the number of leaf nodes
of a tree produced during the search of BWT(s). If m is large,
it can be worse than all those on-line methods discussed in [2,

402402402388388388388388388400400400

21, 29, 43]. Another index-based method is based on a brute-
force searching of suffix trees [14]. Its time complexity is
bounded by O(m + n + (clogn)k/k!), where c is a very large
constant. It can also be worse than an on-line algorithm when
n is large and k is larger than a certain constant.

k errors When the distance function is the Levenshtein
distance, the problem is known as the string matching with k
errors [6]. By the Levenshtein distance, we have

di,j = min{di-1,j + w(ri,
), di,j-1 + w(
, sj�), di-1,j-1 + w(ri, sj�)},
where di,j represents the distance between r[1 .. i] and s�[1 .. j],
ri (sj�) the ith character in r (jth character in s�),
 an empty
character, and w(ri, sj�) the cost to transform ri into sj�.

Also, many algorithms have been proposed for this
problem [6, 11, 18, 50]. They are all some kinds of variants of
the dynamic programming paradigm [17] with the worst-case
time complexity bounded by O(mn). However, by the
algorithm discussed in [11], the expected time can reach O(kn).
don’t care As a different kind of inexact matching, the string
matching with Don’t-Cares has been a third active research
topic for decades, by which we may have wild-cards in r, in s,
or in both of them. A wild card matches any character. Due to
this property, the ‘match’ relation is no longer transitive,
which precludes straightforward adaption of the shift
information used by Knuth-Morris-Pratt and Boyer-Moore.
Therefore, all the methods proposed to solve this problem
seem not so skillful and in general need a quadratic time [44].
Using a suffix array as the index, however, the searching time
can be reduced to O(logn) for some patterns, which contain
only a sequence of consecutive Don’t Cares [40].

III. BWT-TRANSFORMATION

In this section, we give a brief description of the BWT
transformation to provide a discussion background.

A. BWT and String searching
We use s to denote a string that we would like to transform.

Assume that s terminates with a special character $, which
does not appear elsewhere in s and is alphabetically prior to
all other characters. In the case of DNA sequences, we have
$ < a < c < g < t. As an example, consider s = acagaca$. We
can rotate s consecutively to create eight different strings, and
put them in a matrix as illustrated in Fig. 1(a).

In Fig. 1(a), for ease of explanation, the position of a
character in s is represented by its subscript. (That is, we
rewrite s as a1c1a2g1a3c2a4$.) For example, a2 representing the
second appearance of a in s; and c1 the first appearance of c in
s. In the same way, we can check all the other appearances of
different characters.

Now we sort the rows of the matrix alphabetically, and get
another matrix, as demonstrated in Fig. 1(b), which is called
the Burrow-Wheeler Matrix [7, 15, 27] and denoted as
BWM(s). Especially, the last column L of BWM(s), read from
top to bottom, is called the BWT-transformation (or the BWT-
array) and denoted as BWT(s). So for s = acagaca$, we have
BWT(s) = acg$caaa. The first column is referred to as F.

When ranking the elements x in both F and L in such a
way that if x is the ith appearance of a certain character it will
be assigned i, the same element will get the same number in
the two columns. For example, in F the rank of a4, denoted as
rkF(a4), is 1 (showing that a4 is the first appearance of a in F).
Its rank in L, rkL(a4) is also 1. We can check all the other
elements and find that this property, called the rank
correspondence, holds for all the elements. That is, for any
element e in s, we always have

rkF(e) = rkL(e) (1)
According to this property, a string searching can be very
efficiently conducted. To see this, let us consider a pattern
string r = aca and try to find all its occurrences in s =
acagaca$.

First, we notice that we can store F as |�| + 1 intervals,
such as F$ = F[1 .. 1], FA = F[2 .. 5], FC = F[6 .. 7], FG = F[8 ..
8], and FT = � for the above example (see Fig. 1(c).) We can
also represent a segment within an Fx with x � � as a pair � of
the form <x, [
, β]>, where
 	 β are two ranks of x. Thus, we
have FA = F[2 .. 5] = <a, [1, 4]>, FC = F[6 .. 7] = <c, [1, 2]>,
and FG = F[8 .. 8] = <g, [1, 1]>. In addition, we can use L� to
represent a range in L corresponding to a pair �. For example,
in Fig. 1(c), L<a, [1, 4]> = L[2 .. 5], L<c, [1, 2]> = L[6 .. 7]. L<a, [2, 3]>
= L[3 .. 4], and so on.

We will also use a procedure search(z, �) to search L� to
find the first and the last rank of z (denoted as
� and β�,
respectively) within L�, and return <z, [
�, β�]> as the result:

Then, we work on the characters in r in the reverse order
(referred to as a backward search). That is, we will search
r (reverse of r) against BWT(s), as shown below.
Step 1: Check r[3] = a in the pattern string r, and then figure
out FA = F[2 .. 5] = <a, [1, 4]>.
Step 2: Check r[2] = c. Call search(c, L<a, [1, 4]>). It will search
L<a, [1, 4]>= L[2 .. 5] to find a range bounded by the first and
last rank of c. Concretely, we will find rkL(c2) = 1 and rkL(c1)
= 2. So, search(c, L<a, [1, 4]>) returns <c, [1, 2]>. It is F[6 .. 7].
Step 3: Check r[3] = a. Call search(a, L<c, [1, 2]>). Notice that
L<c, [1, 2]> = L[6 .. 7]. So, search(a, L<c, [1, 2]>) returns <a, [2, 3]>.

<z, [
�, β�]>,
(2)

if z appears in L�;

, otherwise.
search(z, �) =

Fig. 1: Rotation of a string

$ a1 c1 a2 g1 a3 c2 a4

a1 c1 a2 g1 a3 c2 a4 $
c1 a2 g1 a3 c2 a4 $ a1

a2 g1 a3 c2 a4 $ a1 c1

g1 a3 c2 a4 $ a1 c1 a2

a3 c2 a4 $ a1 c1 a2 g1

c2 a4 $ a1 c1 a2 g1 a3

a4 $ a1 c1 a2 g1 a3 c2

$ a1 c1 a2 g1 a3 c2 a4

a4 $ a1 c1 a2 g1 a3 c2

c2 a4 $ a1 c1 a2 g1 a3

a3 c2 a4 $ a1 c1 a2 g1

g1 a3 c2 a4 $ a1 c1 a2

a2 g1 a3 c2 a4 $ a1 c1

c1 a2 g1 a3 c2 a4 $ a1

a1 c1 a2 g1 a3 c2 a4 $

(a) (c)(b)

$ a4

a4 c2

c2 a3

a3 g1

g1 a2

a2 c1

c1 a1

a1 $

F L
��
1

1

2

1

4

2

3

rkF

��
1

2

1

4

2

3

��

rkL

403403403389389389389389389401401401

It is F[3 .. 4]. Since now we have exhausted all the characters
in r and F[3 .. 4] contains only two elements, two occurrences
of r in s are found. They are a1 and a3 in s, respectively.

The above working process can be represented as a
sequence of three pairs: <a, [1, 4]>, <c, [1, 2]>, <a, [2, 3]>. In
general, for r = c1 … cm, its search against BWT(s) can
always be represented as a sequence:

<x1, [
1, �1]>, …, <xm, [
m, �m]>,
where <x1, [
1, �1]> = ,

1xF and <xi, [
i, �i]> =

search(xi, ,xi
L

1�� ���]β,[α 11 ii
) for 1 < i 	 m. We call such a

sequence as a search sequence. Thus, the time used for this

process is bounded by O(�
�

m

i
i

1
τ), where �i is the time for an

execution of search(xi, ,xi
L

1�� ���]β,[α 11 ii
). However, this time

complexity can be reduced to O(m) by using the so-called
rankAll method [29], by which |�| arrays each for a character x
� � are arranged such that Ax[k] (the kth entry in the array for
x) is the number of appearances of x within L[1 .. k] (i.e, the
number of x-characters appearing befor L[k + 1].) (See Fig.
2(a) for illustration.)

Now, instead of scanning a certain segment L[i .. j] (i 	 j)
to find a subrange for a certain x � �, we can simply look up
the array for x to see whether Ax[i - 1] = Ax[j]. If it is the case,
then x does not occur in L[i .. j]. Otherwise, [Ax[i - 1] + 1, Ax[j]]
should be the range to be found.

For instance, to find the subrange for g within L[6 .. 7], we
will first check whether Ag[6 - 1] = Ag[7]. Since Ag[6 - 1] =
Ag[5] = Ag[7] = 1, we know that g does not appear in L[6 .. 7].
However, since Ac[2 - 1] ≠ Ac[5], we immediately get the
subrange for c within L[2 .. 5]: [Ac[2 - 1] + 1, Ac[5]] = [1, 2].

We notice that the column for $ needn’t be stored since it
will never be searched. We can also create rankAlls only for
part of the elements to reduce the space overhead, but at cost
of some more searches. See Fig. 2(b) for illustration.

B. Construction of BWT arrays
A BWT-array can be constructed in terms of a relationship

to the suffix arrays [10, 19, 30, 46].
As mentioned above, a string s = a1a1 ... an is always

ended with $ (i.e., ai � � for i = 1, …, n – 1, and an = $). Let
s[i] = ai (i = 1, 2, …, n) be the ith character of s, s[i.. j] = ai ...
aj a substring and s[i .. n] a suffix of s. Suffix array H of s is a

permutation of the integers 1, ..., n such that H[i] is the start
position of the ith smallest suffix. The relationship between H
and the BWT-array L can be determined by the following
formulas:

Since a suffix array can be generated in O(n) time [52], L

can then be created in a linear time. However, most algorithms
for constructing suffix arrays require at least O(nlogn) bits of
working space, which is prohibitively high and amounts to 12
GB for the human genome. Recently, Hon et al [52] proposed
a space-economical algorithm that uses n bits of working
space and requires only < 1 GB memory at peak time for
constructing L of the human genome. We use this for our
purpose.

IV. STRING MATCHING WITH K MISMATCHES

A. Basic working process
By the string matching with k mismatches, we allow up to

k characters in a pattern r to match different characters in a
target s. By using the BWT as an index, for finding all such
string matches, a tree structure will be generated, in which
each path corresponds to a search sequence discussed in the
previous section. It is due to the possibility that a position in r
may be matched to different characters in s and we need to
call search() multiple times to do this task, leading to a tree
representation.
Definition 1 (search tree) Let r be a pattern string and s be a
target string. A search tree T (S-tree for short) is a tree
structure to represent the search of r against BWT(s) (which
is equivalent to the search of r against BWT(s)). In T, each
node is a pair of the form <x, [
, �]>), and there is an edge
from v (= <x, [
, �]>) to u (= <x�, [
�, ��]>) if search(x, Lv) =
u.

As an example, consider the case where r = tcaca, s =
acagaca and k = 2. To find all occurrences of r in s with up to
two mismatches, a search tree T shown in Fig. 3 will be
created.

In Fig. 3, v0 is a virtual root, representing the whole L, and
‘virtually’ corresponds to the virtual starting character r[0] =

Fig. 3: Search for string matching with 2 mismatches

<-, [1, 8]>

<a, [1, 4]>

<c, [1, 2]>

<a, [2, 3]>

<g, [1, 1]>

<g, [1, 1]>

<a, [4, 4]>

<c, [2, 2]>

<c, [1, 2]>

<a, [2, 3]>

<g, [1, 1]>

<g, [1, 1]>

<a, [4, 4]>

v0

v1 v2 v3

v4 v5
v6 v7

v8 v9
v10

v12 v13

P1 P2 P3 P4

<a, [4, 4]> <a, [3, 3]>v16 v17

r[2] = c

r[3] = a

r[4] = c

r[5] = a

r[1] = t

r:

<a, [4, 4>]v14

<c, [2, 2]>v18

<a, [3, 3]>

<$, [-, -]>

<c, [2, 2]>

v15

v19

v11

T:

L[i] = $,
(3)

if H[i] = 0;

L[i] = s[H[i] – 1], otherwise.

Fig. 2: Illustration for rankAlls

$ a4

a4 c2

c2 a3

a3 g1

g1 a2

a2 c1

c1 a1

a1 $

F L
��
0

1

0

1

1

1

��

$
1
1

2

1

4

1

3

1

Aa

0
1

2

1

2

2

2

1

Ac

0
0

1

1

1

1

1

1

Ag

0
0

0

0

0

0

0

0

At

4

1

Aa

2

1

Ac

1

1

Ag

0

0

At

0 0 0 0

i

2

1

0
��
2

6

3

8

5

7

��

j

(a) (b)

For each 4
values in L, a
rankAll value
is stored.

404404404390390390390390390402402402

‘-’. By exploring paths P1 = v1 � v4 � v8 � v12 � v16 and P2

= v1 � v5 � v9 � v13 � v16, we will find two occurrences of r
with 2 mismatches: s[1 .. 5] (= a1c1a2g1a3) and s[3 .. 7] (=
a2g1a3c2a4) while by either P3 = v2 � v6 � v10 � v14 � v18 or
P4 = v3 � v7 � v11 � v15 � v19 no string matching with at
most 2 mismatches can be found.

A node <x, [
, �]> in such a tree is called a matching node
if it corresponds to a same character in r. Otherwise, it is
called a mismatching node. For example, node v4 = <c, [1, 2]>
is a matching node since it corresponds to r[2] = c while v1 =
<a, [1, 4]> is a mismatching node since it corresponds to r[1]
= t.

For a path Pl, we can store all its mismatching positions in
an array Bl of length k + 1 such that Bl[i] = j if Pl[j] ≠ r[j] and
this is the ith mismatch between Pl and r, where Pl[j] is the jth
character appearing on Pl. If the number of mismatches, k�,
say, between Pl and r is less than k + 1, then the default value
� onwards, i.e.,

Bl[k� + 1] = Bl[k� + 2] = … = Bl[k + 1] = �.
We call Bl a mismatch array. For instance, in Fig. 3, for P1,

we have B1 = [1, 4, �], indicating that at position 1, we have
the first mismatch P1[1] = a ≠ r[1] = t and at position 4 we
have the second mismatch P1[4] = g ≠ r[4] = a. For the same
reason, we have B2 = [1, 2, �], B3 = [1, 2, 3], and B4 = [1, 2, 3].

These data structures can be easily created by maintaining
and manipulating a temporary array B of length k + 1 to
record the mismatches between the current path P and r.
Initially, each entry of B is set to be � and an index variable i
pointing to the first entry of B. Each time a mismatch is met,
its position is stored in B[i] and then i is increased by 1. Each
time r is exhausted or B becomes full (i.e., each entry is set a
value not equal to �), we will store B as an Bl (and associate
it with the leaf node of the corresponding Pl.) Then,
‘backtrack’ to the lowest ancestor of the current node, which
has at least a branch not yet explored, to search a new path.
For instance, when we check v16, r is exhausted and the
current value of B is [1, 4, �]. We will store B in B1 (the array
associated with the leaf node v16 of P1) and ‘backtrack’ to v1 to
explore a new path. At the same time, all those values in B,
which are set after v1, will be reset to �, i.e., B will be
changed to [1, �, �].

Now we consider another path P3. The search along P3 will
stop at v10 since when reaching it B becomes full (B = [1, 2,
3]). Therefore, the search will not be continued, and v14, v18
will not be created.

It is essentially a brute-force search to check all the
possible occurrences of r in s. Denote by n� the number of leaf
nodes in T. The time used by this process is bounded by
O(mn�).

In fact, it is the main process discussed in [34]. The only
difference is that in [34] a simple heuristics is used, which
precomputes, for each position i in r, the number �(i) of
consecutive, disjoint substrings in r[i .. m], which do not
appear in s. For example, in Fig. 3, �(1) = 2 since in r[1 .. 5] =
tcaca both r[1 .. 1] = t and r[2 .. 4] = cac do not occur in s =

acagaca. But �(3) = 0 since any substring in r[1 .. 3] = aca
does appear in s. Assume that the number of mismatches
between r[1 .. i – 1] and P[1 .. i – 1] (the current path) is l.
Then, if k – l < �(i), we can immediately stop exploring the
subtree rooted at P[i – 1] as no satisfactory answers can be
found by exploring it.

The time required to establish such a heuristics is O(n) by
using BWT(s) [33]. However, the theoretic time complexity of
this method is still O(mn�). Even in practice, this heuristics is
not quite helpful since �(i) delivers only the information
related to r[i .. m] and the whole s, rather than the information
related to r[i .. m] and the relevant substrings of s, to which it
will be compared. To see this, pay attention to part of the tree
marked grey in Fig. 3. Since �(3) = 0, the search along P4 will
be continued. But no answer can be found. The heuristics here
is in fact useless since it is not about r[3 .. 5] and s[5 .. 7],
which is to be checked in a next step.

B. Mismatch information
Searching S-trees in an improvement over sanning strings,

but it often happens that there are repetitive traversals of
similar subtrees due to the multiple appearnces of a same pair.
However, such repeated appearance of pairs cannot be simply
removed since they may be aligned to different positions in r.
For example, the first appearance of <c, [1, 2]> (v4 in Fig. 3)
is compared to r[2] while its second appearance (v2) is to r[1].
Hence, we cannot use the result computed for v4 (when <c, [1,
2]> is first met) as the result for v2.

However, if we have stored the mismatch information R
between substrings of r, like r[2 .. 4] and r[1 .. 3], in some
way, the mismatches along P3 can be derived from R and B1
(the mismatches recorded for P1), instead of simply exploring
P3 again in a way done for P1. To do so, for each pair i, j � {1,
…, m}, we need to maintain a data structure Rij containing the
positions of the first k + 1 mismatches between r[i .. m – q + i]
and r[j .. m – q + j], where q = max{i, j}, such that if Rij[l] = x
(� �) then r[i + x - 1] � r[j + x - 1] or one of them does not
exist, and it is the lth mismatch between them.

Clearly, this task requires O(km2) time and space.
For this reason, we will precompute only part of R, instead

of Rij for all i, j � {1, …, m}. Specifically, R12, …, R1m for r
will be pre-constructed in a way as described in [29], giving
the positions of the mismatches between the pattern and itself
at various relative shifts. That is, each R1i (2 ≤ i ≤ m) contains
the positions within r of the first 2k + 1 mismatches between
the substring r[1 .. m – i] and r[i + 1 .. m], i.e., the overlapping
portions of the two copies of pattern r for a relative shift of i.
Thus, if R1i[j] = x, then r[x] ≠ r[i + x - 1] or one of them does
not exist, which is the jth mismatch between r[1 .. m – i] and
r[i + 1 .. m]. (See Fig. 4(a) for illustration.)

In Fig. 4(b), we show a pattern r1 = tcacg and all the
possible right-to-left shifts: r2 = r[2 .. 5] = cacg, r3 = r[3 .. 5] =
acg, and so on. In Fig. 4(c), we give R12, …, R15 for r1. In an
R1i, if the number of mismatches, k�, say, between r[1 .. m – i]
and r[i + 1 .. m] is less than 2k + 1, then the default value �
onwards, i.e.,

R1i[k� + 1] = R1i[k� + 2] = … = R1i[2k + 1] = �.

405405405391391391391391391403403403

We will also use �(R1i) to represent the number of all those
entries in R1i, which are not �. Trivially, R11 = [�, …, �].

Using the algorithm of [29], R12, …, R1m can be
constructed in O(mlogm) time, just before the process for the
string matching gets started. In addition, we need to keep 2k +
1, rather than k + 1 mismatches in each R1i (i = 2, …, m), since
for generating an R1j, up to 2k + 1 mismatches in some R1i
with i < j are needed to get an efficient algorithm (see [29] for
detailed discussion.)

Each time we meet a node u (compared to a certain r[j]),
which is the same as an already encountered one v (compared
to an r[i]), we need to derive dynamically the relevant
mismatches, Rij, between r[i .. m – q + i] and r[j .. m – q + j]
from R1i and R1j, as well as r, to compute mismatch
information for some new paths (to avoid exploring them by
using search().) (A node <x, [
, β]> is said to be the same as
another node <x�, [
�, β�]> if x = x�,
 =
� and β = β�.) For
this purpose, we design a general algorithm to create Rij
efficiently.
� Let �, �1 and �2 be three strings. Let A1 and A2 be two

arrays containing all the positions of mismatches between
� and �1, and � and �2, respectively.

� Create a new array A such that if A[i] = j (� �), then �1[j]
� �1[j], or one of them does not exists. It is the ith
mismatch between them.

The algorithm works in a way similar to the sort-merge-
join, but with a substantial difference in handling a case when
an entry in A1 is checked against an equal entry in A2. In the
algorithm, two index variables p and q are used to scan A1 and
A2, respectively. The result is stored in A.
1. p := 1; q := 1; l := 1;
2. If A2[q] < A1[p], then {A[l] := A2[q]; q := q + 1; l := l + 1;}
3. If A1[p] < A2[q], then {A[l] := A1[p]; p := p + 1; l := l + 1;}
4. If A1[p] = A2[q], then {if �1[p] � �2[q], then {A[l] := q; l :=

l + 1;} p := p + 1; q := q + 1;}
5. If p > |A1|, q > |A2|, or both A1[p] and A2[q] are �, stop (if

A1 (or A2) has some remaining elements, which are not �,
first append them to the rear of A, and then stop.)

6. Otherwise, go to (2).
We denote this process as merge(A1, A2, �1, �2). As an

example, let us consider the case where A1 = R12 = [1, 2, 3, 4,
�], A1 = R13 = [1, 3, �, �, �], �1 = r[2 .. 4] = cacg and �1 =
r[3 .. 5] = acg, and demonstrate the first three steps of the
execution of merge(A1, A2, �1, �2) in Fig. 5. The result is A =

[1, 2, 3, 4], showing the mismatches between these two
substrings.

In step 1: p = 1, q = 1, l = 1. We compare A1[p] = A1[1] and
A2[q] = A2[1]. Since A1[1] = A2[1] = 1, we will
compare �1[1] and �2[1], and find that �1[1] = c �
�2 [1] = a. Thus, A[1] is set to be 1. p := p + 1 = 2,
q := q + 1 = 2, l := l + 1 = 2.

In step 2: p = 2, q = 2, l = 2. we compare A1[2] and A2[2].
Since A1[2] = 2 < A2[2] = 3, A[2] is set to be 2. p := p
+ 1 = 3, q := 2, l := l + 1 = 3.

In step 3: p = 3, q = 2, l = 3. We compare A1[3] and A2[2], and
find that A1[3] = A2[2] = 3. So, we need to compare
�1[3] and �2[3]. Since �1[3] = c � �2 [3] = g, A[3] is
set to be 3. p := p + 1 = 4, q := 3, l := l + 1 = 4.

In a next step, we have p = 4, q = 3, l = 4. We will compare
A1[4] and A2[3]. Since A1[4] = 4 < A2[3] = �, we set A[4] to 4.

Obviously, the running time of this process is bounded by
O(k).
Proposition 1 Let A be the result of merge(A1, A2, �1, �2)
with A1, A2, �1, �2 defined as above. Let k� be the number of
mismatches between �1 and �2. Then, A[i] must be the
position of the ith mismatch between �1 and �2, or �,
depending on whether i is 	 k�.
Proof. Consider �2[j]. Position j may satisfy either, neither, or
both of the following conditions:
i) j corresponds to the lth mismatch between � and �2 for

some l, i.e., �[j] ≠ �2[j] and A2[l] = j.
ii) j corresponds to the fth mismatch between � and �1 for

some f, i.e., �[j] ≠ �1[j] and A1[f] = j.
If (i) holds, but (ii) not, (2) in merge(A1, A2, �1, �2) will be
executed. Since in this case, we have �[j] ≠ �2[j] and �[j] =
�1[j], (2) is correct.

If (ii) holds, but (i) not, (3) will be executed. Since in this
case, we have �[j] ≠ �1[j] and �[j] = �2[j], (3) is also correct.

If both (i) and (ii) hold, no conclusion concerning �1[j]
and �2[j] can be drawn and we need to compare them. In this
case, (4) is executed. If neither (i) nor (ii) is satisfied, we must
have �[j] = �2[j] and �[j] = �1[j]. So �2[j] = �1[j], i.e., we
have a matching at j.

Fig. 4: Illustration for table R

i

ir: R12: 1 2 3 4 �

R13: 1 3 � � �

R14 1 2 � � �

(a) (b)

R15 1 � � � �

tcacg
acg

r1:
r3:

tcacg
cg

r1:
r4:

(c)

tcacg
cacg

r1:
r2:

tcacg
g

r1:
r5:

Fig. 5: Illustration for merge()

A1 = R12:

1 2 3 4 �

1 3 � � �

A2 = R13:

1 2 3 4 �

1 3 � � �

1 2 3 4 �

1 3 � � �

p

q

1 2 1 2 3

�1[3]=c��2[3]=g

A: 1

p p

q q

Step 1: Step 2: Step 3:

�1[1]=c��2[1]=a

406406406392392392392392392404404404

C. Main idea: mismatch information derivation
Now we are ready to present the main idea of our

algorithm, which is similar to the generation of an S-tree
described in Subsection A. However, each time we meet a
node u (compared to a position in r, say, r[j]), which is the
same as a previous one v (compared to a different position in r,
say, r[i]), we will not explore T[u] (the subtree rooted at u),
but do the following operations to derive the relevant
mismatching information:

First, we will create Rij by executing merge(R1i, R1j, r[i .. m
– q + i], r[j .. m – q + j]), where q = max{i, j}. Then, we will
created a set of mismatch arrays for all the sub-paths in T[u],
which start at u and end at a leaf node, by doing two steps
explained below.
� For each path Pi going through v, figure out a sub-array of

Bl, denoted as i
lB , containing only those values in Bl,

which are larger than or equal to i. Moreover, each value in
it will be decreased by i – 1. (For example, for B1 = [1, 4,
�], we have 1

1B = [1, 4, �], 2
1B = [3, �], 3

1B = [2, �], 4
1B =

[1, �], and 5
1B = [�].)

� Create the mismatch arrays for all the paths going through
u by executing merge(i

lB , Rij, Pl[i .. ml], r[j .. m]) for each
Pl, where ml = |Pi|.

We denote this process as mi-creation(u, v, j, i).
As an example, consider v2 (in Fig. 3, labeled <c, [1, 2]>

and compared to r[1] = t), which is the same as v4 (compared
to r[2] = c). By executing mi-creation(v2, v4, 1, 2), the
following operations will be performed, to avoid repeated
access of the corresponding subtree (i.e., part of P3 shown in
Fig. 6(a)):
1. Create R21:

R12 = [1, 2, 3, 4, �], R11 = [�, �, �, �, �],
R21 = merge(R12, R11, r[2 .. 5], r[1 .. 4]) = [1, 2, 3, 4].

2. Create part of mismatch information for P3:

B1 = [1, 4, �], 2
1B = [3, �]. P1[2 .. 5] = caga, r[1 .. 4]) =

caca.

merge(2
1B , R21, P1[2 .. 5], r[1 .. 4]) = [1, 2, 3, 4].

In general, we will distinguish between two cases:
(i) i < j. This case can be illustrated in Fig. 6(b). In this case,

the mismatch information for the new paths can be
completely derived.

(ii) i > j. This case can be illustrated in Fig. 6(c), in which
only part of mismatch information for the new paths can
be derived. Thus, after the execution of merge(), we have
to continue to extend the corresponding paths.

Therefore, among different appearances of a certain node v,
we should always use the one compared to r[i] with i being
the least to derive as much mismatch information as possible
for the to be created paths.

Finally, we notice that it is not necessary for us to consider
the case i = j since the same node will never appear at the

same level more than once. The following lemma is easy to
prove.
Lemma 1 In an S-tree T, if two nodes are with the same pair,
then they must appear at two different levels.

D. Algorithm Description
The main idea presented in the previous subsection can be

dramatically improved. Instead of keeping a Bl for each Pl, we
can maintain a general tree structure, called a mismatch tree,
to store the mismatch information for all the created paths.
First, we define two simple concepts related to S-trees.
Definition 2 (match path) A sub-path in an S-tree T is called a
match path if each node on it is a matching node in T.

Definition 3 (maximal match sub-path) A maximal match
sub-path (MM-path for short) in an S-tree T is a match sub-
path such that the parent of its first node in T is a mismatching
node and its last node is a leaf node or has only mismatching
nodes as its children.

For example, edge v4 � v8 in T shown in Fig. 3 is a MM-
path. Path v9 � v13 � v17 is another one. The node v16 alone is
also a MM-path in T.

Based on the above concepts, we define another important
concept, the so-called mismatch trees.
Definition 4 (mismatch trees) A mismatch tree D (M-tree for
short) for a given S-tree T, is a tree, in which for each
mismatching node <x, [
, β]> (compared to r[i] for some i) in
T we have a node of the form <x, i>, and for each MM-path a
node of the form <-, 0>. There is an edge from u to u� if one
of the following two conditions is satisfied:
� u is of the form <x, i> corresponding to a pair <x, [
, β]>

(compared to r[i]), which is the parent of the first node of
an MM-path (in T) represented by u�; or

� u is of the form <-, 0> and u� corresponds to a
mismatching node which is a child of a node on the MM-
path represented by u.
Without causing confusion, we will also call <-, 0> in D a

matching node, and <x, i> a mismatching node.
For example, for T shown in Fig. 3, we have its M-tree

shown in Fig. 7, in which u0 is a virtual root corresponding to
the virtual root of the S-tree shown in Fig. 3. Its value is also
set to be <-, 0> since it will be handled as a matching node.
Then, each path in the M-tree corresponds to a Bl. For instance,
path u0 � u1 � u4 � u8 � u12 corresponds to B1 = [1, 4, �]

Fig. 6: Illustration for derivation of mismatch information

<a, [1, 4]>

<c, [1, 2]>

<a, [2, 3]>

<g, [1, 1]>

v1

<a, [4, 4]> P1

(a)

… …

P3

<a, [2, 3]>

<a, [4, 4>]>

<c, [2, 2]>

…
<c, [1, 2]>

<g, [1, 1]>

<-, [1, 8]>

P:

i

j

P:

i

(b) (c)

j

j

P�: P�:

This part of P3 will
not be created.

P:

407407407393393393393393393405405405

if all the matching nodes on the path are ignored. For the same
reason, u0 � u1 � u5 � u19 corresponds to B2 = [1, 2, �].

In addition, we can store all the different nodes v (= <x, [
,
�]>) in T in a hash table with each entry associated with a
pointer to a node in the corresponding M-tree D, described as
follows.
� If v is a mismatching node compared to r[i] for some i �

{1, …, m}, a node u = <x, i> will be created in D and a
pointer (associated with v, denoted as p(v)) to u will be
generated.

� If v is a matching node, a node u = <-, 0> will be created in
D and p(v) to u will be generated. If the parent u� of u itself
is <-, 0>, u will be merged into its parent. That is, v will be
linked to u� while u itself will not be generated.
For instance, when <a, [1, 4]> (v1 in T shown in Fig. 3) is

created, it is compared to r[1] = t. Since a ≠ t, we have a
mismatch and then u1 = <a, 1> in the M-tree D will be
generated. At the same time, we will insert <a, [1, 4]> into the
hash table and produce a pointer associated with it to u1 (see
Fig. 8 for illustration). However, when <c, [1, 2]> (v4 in T
shown in Fig. 3) is created, it is compared to r[2] = c and we
have a matching. For this, a node <-, 0> (u4 in Fig. 7) will be
generated, and a link from <c, [1, 2]> to it will be established.
But when <a, [2, 3]> (v8 in T shown in Fig. 3, compared to r[5]
= a) is met, no node in D will be generated since it is a
matching node (in T) and the parent (u4 in Fig. 7) of the node
to be created for it is also <-, 0>. We will simply link it to its
parent u4.

In order to generate D, we will use a stack S to control the
process, in which each entry is a quadruple (v, j, �, u), where
v – a node inserted into the hash table.
j – j is an integer to indicate that v is the jth node on a path in

T (counted from the root with the root as the 0th node).
� – the number of mismatches between the path and r[0 .. j]

(recall that r[0] = ‘-’).
u – the parent of a node in D to be created for v.
In this way, the parent/child link between u and the node to be
created for v can be easily established, as described below.

Each time an entry e = (v, j, �, u) with v = <x, [
, �]> is
popped out from S, we will check whether x = r[j].
i) If x = r[j], we will generate a node u� = <x, j> and link it to

u as a child.
ii) If x � r[j], we will check whether u is a node of the form <-,

0>. If it is not the case, generate a node u� = <-, 0>.

Otherwise, set u� to be u.
iii) Using search() to find all the children of v: v1, …, vl. Then,

push each (vi, j + 1, ��, u�) into S with �� being � or � + 1,
depending on whether yi = r[j + 1], where vi = <yi, [
i, �i]>.

Note that in this process it is not necessary to keep T, but
insert all the nodes (of T) in the hash table as discussed above.
Example 2 In this example, we run the above process on r =
tcaca and L = BWT(s) shown in Fig. 1(c) with k = 2, and
show its first 5 steps. The tree created is shown in Fig. 7.
Step 1: Create the root, v0 = <-, [1, 8]>. Push (v0, 0, 0,
) into
S, where
 is used to represent the parent of the root D. See
Fig. 8(a).

Step 2: Pop out the top element (v0, 0, 0,
) from S. Create the
root u0 of D, which is set to be a child of
. Push <v3, 1, 1,
u0>, <v2, 1, 1, u0>, <v1, 1, 1, u0> into S, where v3, v2, and v1 are
three children of v0. See Fig. 8(b).

Step 3: Pop out (v1, 1, 1, u0) from S. v1 = <a, [1. 4]>. Since
r[1] = t � a, a mismatching node u1 = <a, 1> will be created
and set to be a child of u0. Then, push (v4, 2, 1, u1) into S,
where v4 is the child of v1. See Fig. 8(c).
Step 4: Pop out (v4, 2, 1, u1) from S. v4 = <c, [1, 2]>. Since
r[2] = c, we will check whether u1 is a matching node. It is the
case. So, a matching node u4 = <-, 0> will be created and set
to be a child of u1. Then, push (v8, 3, 1, u4) into S, where v8 is
the child of v4. See Fig. 8(d).
Step 5: Pop out (v8, 3, 1, u4) from S. v8 = <a, [2, 3]>. r[3] = a.
However, no new node is created since u4 is a matching node.
Push (v12, 4, 1, u4) into S, where v12 is the child of v8. See Fig.
8(e).

From the above sample trace, we can see that D can be
easily generated. In the following, we will discuss how to
extend this process to a general algorithm for our task.

As with the basic process, each time a node v = <x, [
, �]>
(compared to r[j]) is encountered, which is the same as a
previous one v� = <x�, [
�, ��]> (compared to r[i]), we will not
create a subtree in T in a way as for v�, but create a new node u
for v in D and then go along p(v�) (the link associated with v�)
to find the corresponding nodes u� in D and search D[u�] in the
breadth-first manner to generate a subtree rooted at u in D by
simulating the merge operation discussed in Subsection B. In

Fig. 7: A mismatch tree

<-, 0>

<a, 1>

<-, 0> <g, 2>

<c, 1>

<a; 2>

<g; 3>

<g; 1>

<a; 2>

u0

u1 u2 u3

u4 u5 u6 u7

u8

B1 B2 B3 B4

<a, [1, 4]>

Hash table

<c; 3>u9

<c , [1, 2]>

<a, [4, 4]>
�

�

<g, 4>

<-, 0>

<-, 0> u10 u11

u12

<a, [2, 3]>

<a, 4> <a, 4>

<c, 5> <$, 5>

u13 u14

u15 u16

D:

(a)

Fig. 8: Illustration for stack changes

(b)

<v0, 0, 0,
>

S:
<v4, 2, 1, u1>
<v5, 2, 2, u1>
<v2, 1, 1, u0>
<v3, 1, 1, u0>

(c)

(d)

<v1, 1, 1, u0>
<v2, 1, 1, u0>
<v3, 1, 1, u0>

<-, 0>

<-, 0>

<a, 1>

<v8, 3, 1, u4>
<v5, 2, 2, u1>
<v2, 1, 1, u0>
<v3, 1, 1, u0>

<-, 0>

<a, 1>

<-, 0>
(e)

<v12, 4, 1, u8>
<v5, 2, 2, u1>
<v2, 1, 1, u0>
<v3, 1, 1, u0>

<-, 0>

<a, 1>

<-, 0>

<g, 4>

u0
u0

u1

u0

u1

u4

u0

u1

u4

u8

408408408394394394394394394406406406

other words, D[u] (to be created) corresponds to the mismatch
arrays for all the paths going though v in T, which will not be
actually produced. See Fig. 9 for illustration.

To this end, a queue data structure Q is used to do a
breadth-first search of D[u�], and at the same time generate
D[u]. In Q, each entry e is a pair (w, �) with w being a node in
D[u�], and � an entry in Rij. Initially, put (u�, Rij[1]) into Q,
where u� = <x, i>. In the process, when e is dequeued from Q
(taken out from the front), we will make the following
operations (simulating the steps in merge()):
1. Let e = (w, Rij[l]). Assume that w = <z, f> and Rij[l] = val.

If <z, f> = <-, 0>, then create a copy of w added to D[u]. If
w is not a leaf node, let w1, …, wh be the children of w and
enqueue (w1, Rij[l]), …, (wh, Rij[l]) into Q (append at the
end) in turn. If <z, f> � <-, 0>, do (2), (3), or (4).

2. If f < i + val - 1, add <z, f – i + j> to D[u]. If w is not a leaf
node, enqueue (w1, Rij[l]), …, (wh, Rij[l]) into Q.

3. If f = i + val - 1, we will distinguish between two subcases:
z ≠ r[j + val - 1] and z = r[j + val - 1]. If z ≠ r[j + val - 1],
we have a mismatching and add a node <z, j + val - 1> to
D[u]. If z = r[j + val - 1], create a node <-, 0> added to
D[u]. (If its parent is <-, 0>, it should be merged into its
parent.)
If w is not a leaf node, enqueue <w1, Rij[l + 1]), …, < wh,
Rij[l + 1]) into Q.

4. If f > i + val - 1, we will scan Rij starting from Rij[l] until
we meet Rij[l�] such that f 	 i + Rij[l�] - 1. For each Rij[g] (l
≤ g < l�), we create a new node <r[j + Rij[g] - 1], j + Rij[g] -
1> added to D[u]. Enqueue <w, Rij[l�]> into Q.
In the above description, we ignored the technical details

on how D[u] is constructed for simplicity. However, in the
presence of D[u�], it is easy to do such a task by manipulating
links between nodes and their respetive parents.

Denote the above process by node-creation(w, �, i, j, Rij).
We have the following proposition.
Proposition 2 node-creation(w, �, i, j, Rij) create nodes in D[u]
correctly.
Proof. The correctness of node-creation(w, �, i, j, Rij) can be
derived from Proposition 1.

Again, if i > j, D[u] needs to be extended, which can be
done in a way similar to the extension of mismatch arrays as
discussed in Subsection C.

As an example, consider Fig. 3 and Fig. 7 once again.
When we meet <g, [1, 1]> (v5 in T, compared to r[2]) for a

second time, we will not generate T[v5] in Fig. 3, but D[u5] in
Fig. 7. Comparing T and D, we can clearly see the efficiency
of this improvement. In D, an MM-path in T is collapsed into a
single node of the form <-, 0>.

The following is the formal description of the working
process.

ALGORITHM A(L, r, k)
begin
1. create root of T; push(S, (root, 0, 0,
));
2. while S is not empty do {
3. (v, j, �, u) := pop(S); let v = <x,
, �>;
4. if v is same as an existing v� (compared to r[i]) then{
5. q := max{i, j};
6. Rij := merge(R1i, R1j, r[i .. m – q + i], r[j .. m – q + j]);
7. enqueuer(Q, (p(v�), Rij[1]));
8. while Q is not empty do {
9. (w, �) := dequeuer(Q); node-creation(w, �, i, j, Rij);}}
10.else {
11. if x � r[j] then create u� = <x, j> and make it a child of u;
12. else if u is <-, 0> then u� := u
13. else create u� = <-, 0> and make it a child of u;
14. p(v) := u�; (*associate with v a pointer to u�.*)
15. if j < |r| and � 	 k then {
16. for each y � � within Lv do {
17. w := search(y, Lv);
18. if w �
 then {
19. if y = r[j + 1] then push(S, (w, j + 1, �, u�));
20. if y � r[j + 1] and � < k then {push(S, (w, j + 1, � + 1, u�));
21. }}}}
end

If we ignore lines 3 – 9 in the above algorithm, it is almost
a depth-first search of a tree. Each time an entry (v, j, �, u) is
popped out from S (see line 4), it will be checked whether v is
the same as a previous one v� (compared to r[i]). (See line 4.)
If it is not the case, a node u� for v will be created in D (see
lines 11 – 14). Then, all the children of v will be found by
using the procedure search () (see line 17) and pushed into S
(see lines 18, and 19.) Otherwise, we will first create Rij by
executing merge(R1i, R1j, r[i .. m – q + i], r[j .. m – q + j]),
where q = max{i, j}. (see lines 5 - 6.) Then, we create a
subtree in D by executing a series of node-creation operatons
(see lines 8 – 9.)

Concerning the correctness of the algorithm, we have the
following proposition.

Proposition 3 Let L be a BWT-array for the reverse s of a
target string s, and r a pattern. Algorithm A(L, r, k) will
generate a mismatching tree D, in which each root-to-leaf
path represents an occurrence of r in s having up to k
positions different between r and s.
Proof. In the execution of A(L, r, k), two data structures will
be generated: a hash table and a mismatching tree D, in
which some subtrees in D are derived by using the
mismatching information over r. Replacing each matching
node in D with the corresponding maximum matching path

Fig. 9: Illustration for generation of subtrees in T�

T: D: D[u] will
be created
in terms of
D[u�], Rij,
and r.v�

v

u�

u

T[v] will not be actually explored.

409409409395395395395395395407407407

and each mismatching node <x, i> with the corresponding
pair <x, [
, β]> (compared to r[i]), we will get an S-tree, in
which each path corresponds to a search sequence discussed
in Section III. Thus, in D each root-to-leaf path represents an
occurrence of r in s having up to k positions different between
r and s.

The time complexity of the algorithm mainly consists of
three parts: the cost for generating the mismatching
information over r which is bounded by O(mlogm); the cost
for generating the M-tree and maintaining the hash table,
which is bounded by O(kn�), where n� is the number of the M-
tree’s leaf nodes; and the cost for checking the characters in s
against the characters in r, which is bounded by O(n). So, the
total running time is bounded by O(kn� + n + mlogm).

V. EXPERIMENTS
In our experiments, we have tested altogether four

different methods:

- BWT-based [34] (BWT for short),
- Amir’s method [2] (Amir for short),
- Cole’s method [14] (Cole for short),
- Algorithm A discussed in this paper (A() for short)

By the BWT-based method, an S-tree will be created as
described in Section IV, but with �(i) being used to cut off
branches, where �(i) is the number of consecutive, disjoint
substrings in r[i .. m] not appearing in s. By the Amir’s
algorithm, a pattern r is divided into several periodic stretches
separated by 2k aperiodic substrings, called breaks, as
illustrated in Fig. 10. Then, for each break bi, located at a
certain position i, find all those substrings sj (located at
different positions j) in s such that bi = sj, and then mark each
of them. After that, discard any position that is marked less
than k times. In a next step, verify every surviving position in
s.

By the Cole’s, a suffix tree for a target is constructed. (The
code for constructing suffix trees is taken from the gsuffix
package: http:://gsuffix.Sourceforge.net/).

All the four methods are implemented in C++, compiled by
GNU make utility with optimization of level 2. In addition, all
of our experiments are performed on a 64-bit Ubuntu
operating system, run on a single core of a 2.40GHz Intel
Xeon E5-2630 processor with 32GB RAM.

For the test, five reference genomes shown in Table 1 are
used. They are all obtained from a biological project
conducted in a laboratory at University of Manitoba [27]. In
addition, all the simulating reads are taken from these five
genomes, with varying lengths and amounts. It is done by
using the wgsim program included in the SAMtools package
[37] with a default model for single reads simulation.

Concretely, we take 5000 reads with length varying from 100
bps to 300 bps.
Table 1: Characteristics of genomes

Genomes Genome sizes (bp)

Rat (Rnor_6.0) 2,909,701,677

Zebra fish (GRCz10) 1,464,443,456

Rat chr1 (Rnor_6.0) 290,094,217

C. elegans (WBcel235) 103,022,290

C. merlae (ASM9120v1) 16,728,967

To store BWT(s), we use 2 bits to represent a character �
{a, c, g, t} and store 4 rankAll values (respectively in Aa, Ac,
Ag, and At) for every 4 elements (in L) with each taking 32 bits.

In Fig. 11(a) and (b), we report the average time of testing
the Rat (Rnor_6.0) for matching 100 reads of length 100 to
300 bps. From this figure, we can see that Algorithm A()
outperforms all the other three methods. But the Amir’s
method is better than the other two methods. The BWT-based
and the Cole’s method are comparable. However, for small k,
the Cole’s is a little bit better than the BWT-based method
while for large k their performaces are reversed.

To show why A() has the best running time, we show the
number n� of leaf nodes in the M-trees created by A() for
some tests in Table 2, which demonstrates that n� can be much
smaller than n. Thus, the time complexity O(kn�) of A()
should be a significant improvement over O(n k logk) - the
time complexity of Amir’s.
Table 2: Number of leaf nodes of S-trees

k/length-of-read 5/50 10/100 20/150 30/200

No. of leaf nodes 2K 0.7M 16.5M 102M

In this test (and also in the subsequent tests), the time for
constructing BWT(s) is not included as it is completely
independent of r. Once it is created, it can be repeatedly used.

In Fig. 11(b), we show the impact of read lengths. For this
test, k is set to 25. It can be seen that only the BWT-based and
the Cole’s are sensitive to the length of reads. For the BWT-

Fig. 11: Test results on varying values of k and read length

time (s)

varying values of k

(b)(a)

varying length of reads

0

100

200

300

400

500

600

700

5 10 20 30 40

BWT Amir's
Cole's A()

0

200

400

600

800

1000

100 150 200 250 300

BWT Amir's Cole's A()

Fig. 10: Illustration for periodic stretches and breaks

breaks

a a a a a a b b b b b b c c c c c c c c c d d d d

periodic stretches

410410410396396396396396396408408408

based, more time is required to construct S-trees for longer
reads while for the Cole’s longer paths in a suffix tree will be
searched as the lengths of reads increase. For the other two
methods: A() and the the Amir’s, the lengths of reads only
impact the time for the read pre-processing, but it is
completely overshadowed by the time spent on searching
genomes. For the Amir’s, the time for recognizing breaks is
linear in |r| [2] while for A() the time for generating the
mismatch information is bounded by O(|r|log|r|). No
significant difference between them can be measured.

In Fig. 12(a) and (b), we report the test results of searching
the Zebra fish (GRCz10).

Again, similar to Fig. 11(a), the performance of Algorithm
A() is best, and the Amir’s is still better than both the BWT-
based and the Cole’s.

In Table 3, we show the number n�.

Table 3: Number of leaf nodes of S-trees

k/length-of-read 5/50 10/100 20/150 30/200

No. of leaf nodes 0.7K 0.30M 9.2M 89M

Fig. 12(b) shares the same features as Fig. 11(b). It also
shows that only the BWT-based and the Cole’s are sensitive to
the length of reads.

In Fig. 13, 14, and 15, we show the tests on Rat chr1
(Rnor_6.0), C. elegans (WBcel235), and C. merlae
(ASM9120v1), respectively.

From these figures, the most important feature we can
observe is that as the size of genomes becomes smaller, the
difference between the Amir’s and Cole’s diminishes. But the
BWT-based and A() remain the worst and the best,
respectively. Although A() is impacted by the number of leaf
nodes of an S-tree, the impact factor is small in comparison
with the size of the whole S-tree, which dominates the time
complexity of the BWT-based method. Also, the big
difference between A() and Amir’s shows that using M-trees
the cost for creating mismatch information of r’s occurrences
in s can be significantly reduced.

VI. CONCLUSION AND FUTURE WORK
In this paper, a new method to do the string matching with

k mismatches is proposed. Its main idea is to transform the
reverse s of target string s to BWT(s) and use the mismatch
information over a pattern string r to speed up the
computation. Its time complexity is bounded by O(kn� + n +
mlogm), where m = |r|, n = |s|, and n� is the number of leaf
nodes of a tree structure produced during the search of a Fig. 13: Test results on varying values of k and read length

varying values of k

(b)(a)

varying length of reads

time (s)

0

20

40

60

80

100

100 150 200 250 300

BWT Amir's Cole's A()

0

20

40

60

80

100

5 10 20 30 40

BWT Amir's
Cole's A()

Fig. 15: Test results on varying values of k and read length

varying values of k

(b)(a)
varying length of reads

time (s)

0

1

2

3

4

5

5 10 20 30 40

BWT Amir's
Cole's A()

0

1

2

3

4

5

6

100 150 200 250 300

BWT Amir's Cole's A()

Fig. 14: Test results on varying values of k and read length

varying values of k

(b)(a)

varying length of reads

time (s)

0

10

20

30

40

50

60

100 150 200 250 300

BWT Amir's Cole's A()

0

10

20

30

40

50

5 10 20 30 40

BWT Amir's
Cole's A()

(b)(a)

0

100

200

300

400

500

600

100 150 200 250 300

BWT Amir's Cole's A()

varying values of k varying length of reads

time (s)

Fig. 12: Test results on varying values of k and read length

0

100

200

300

400

5 10 20 30 40

BWT Amir's
Cole's A()

411411411397397397397397397409409409

BWT(s). Our experiments show that it ihas a better running
time than any existing on-line and index-based algorithms.

As a future work, we will use the BWT to solve another
important problem, the string matching with k errors. It seems
to be more challenging than the k mismatches since the
Levenshtein distance is more difficult to handle than the
Hamming distance.

REFERENCES
[1] A.V. Aho and M.J. Corasick, Efficient string matching: an aid to

bibliographic search, Communication of the ACM, Vol. 23, No. 1, pp.
333 -340, June 1975.

[2] A. Amir, M. Lewenstein and E. Porat, Faster algorithms for string
matching with k mismatches, Journal of Algorithms, Vol. 50, No.
2, Feb.2004, pp. 257-275.

[3] A. Apostolico and R. Giancarlo, The Boyer-Moore-Galil string
searching strategies revisited, SIAM Journal on Computing, Vol. 15, No.
1, pp. 98 – 105, Feb. 1986.

[4] R.A. Baeza-Yates and G.H. Gonnet, A new approach to text searching,
in N.J. Belkin and C.J. van Rijsbergen (eds.) SIGIR 89, Proc. 12th

Annual Intl. ACM Conf. on Research and Development in Information
Retrieval, pp. 168 – 175, 1989.

[5] R.A. Baeza-Yates and G.H. Gonnet, A new approach in text searching,
Communication of the ACM, Vol. 35, No. 10, pp. 74 – 82, Oct. 1992.

[6] R.A. Baeza-Yates and C.H. Perleberg, Fast and practical approximate
string matching, in A. Apostolico, M. Crocchemore, Z. Galil, and U.
Manber (eds.) Combinatorial Pattern Matching, Lecture Notes in
Computer Science, Vol. 644, pp. 185 – 192, Springer-Verlag, Berlin.

[7] S. Bauer, M.H. Schulz, Peter N. Robinson, gsuffix: http:://gsuffix.
Sourceforge.net/, 2014.

[8] A.M.Bolger, M. Lohse and B. Usadel, Trimmomatic: Bolger: A flexible
trimmer for Illumina Sequence Data. Bioinformatics, btu170, 2014.

[9] R.S. Boyer and J.S. Moore, A fast string searching algorithm,
Communication of the ACM, Vol. 20, No. 10, pp. 762 -772, Oct. 1977.

[10] M. Burrows and D.J. Wheeler, A block-sorting lossless data
compression algorithm, 1994.

[11] W.L. Chang and J. Lampe, Theoretical and empirical compaisons of
approximate string matching algorithms, in A. Apostolico, M.
Crocchemore, Z. Galil, and U. Manber (eds.) Combinatorial Pattern
Matching, Lecture Notes in Computer Science, Vol. 644, pp. 175 – 184,
Springer-Verlag, Berlin.

[12] Y. Chen, Y. Wu and J. Xie, An Efficient Algorithm for Read Matching
in DNA Databases, in Proc. Int. Conf. DBKDA’2016, Lisbon, Portugal,
June 26 – 30, 2016, pp. 23 – 34.

[13] Y. Chen and Y. Wu, On the Massive String Matching Problem, in Proc.
ICNC-FSKD 2016, IEEE, Changsha, China, August 13 – 15, 2016.

[14] R. Cole, L. Gottlieb, and M. Lewenstein, Dictionary Matching and
Indexing with Errors and Don’t Cares, STOC’04, pp. 91 – 100, 2004.

[15] L. Colussi, Z. Galil, and R. Giancarlo, On the exact complexity of string
matching, Proc. 31st Annual IEEE Symposium of Foundation of
Computer Science, Vol. 1, pp. 135 – 144, 1990.

[16] F. Cunningham, et al., Nucleic Acids Research 2015, 43, Database
issue:D662-D669.

[17] S.R. Eddy, What is dynamic programming? Nature Biotechnology 22,
909 - 910, (2004) doi:10.1038/nbt0704-909.

[18] A. Ehrenfeucht and D. Haussler, A new distance metric on strings
computable in linear time, Discrete Applied Mathematics, Vol. 20, pp.
191 – 203.

[19] P. Ferragina and G. Manzini, Opportunistic data structures with
applications. In Proc. 41st Annual Symposium on Foundations of
Computer Science, pp. 390 - 398. IEEE, 2000.

[20] Z. Galil, On improving the worst case running time of the Boyer-Moore
string searching algorithm, Communication of the ACM, Vol. 22, No. 9,
pp. 505 -508, 1977.

[21] Z. Galil and R. Giancarlo, Improved string matching with k mismatches,
ACM SIGACT News, Vol. 17, Issue 4, Spring 1986, pp. 52b- 54.

[22] M.C. Harrison, Implementation of the substring test by hashing,
Communication of the ACM, Vol. 14, No. 12, pp. 777- 779, 1971.

[23] H. Jiang, and W.H. Wong, (2008) SeqMap: mapping massive amount of
oligonucleotides to the genome, Bioinformatics, 24, 2395–2396.

[24] R.L. Karp and M.O. Rabin, Efficient randomized pattern-matching
algorithms, IBM Journal of Research and Development, Vol. 31, No. 2,
pp. 249 – 260, March 1987.

[25] D.E. Knuth, The Art of Computer Programming, Vol. 3, Massachusetts,
Addison-Wesley Publish Com., 1975.

[26] D.E. Knuth, J.H. Morris, and V.R. Pratt, Fast pattern matching in strings,
SIAM Journal on Computing, Vol. 6, No. 2, pp. 323 – 350, June 1977.

[27] lab website: http://home.cc.umanitoba.ca/~xiej/, 2014.
[28] G.M. Landau and U. Vishkin, Efficient string matching in the presence

of errors, Proc. 26th Annual IEEE Symposium on Foundations of
Computer Science, pp. 126 – 136, 1985.

[29] G.M. Landau and U. Vishkin, Efficient string matching with k
mismatches, Theoretical Computer Science, Vol. 43, pp. 239 – 249,
1986.

[30] B. Langmead, Introduction to the Burrows-Wheeler Trans- form,
www.youtube.com /watch?v=4n7N Pk5lwbI, Sept., 2014.

[31] T. Lecroq, A variation on the Boyer-Moore algorithm, Theoretical
Computer Science, Vol. 92, No. 1, pp. 119 – 144, Jan. 1992.

[32] H. Li, et al., (2008) Mapping short DNA sequencing reads and calling
variants using mapping quality scores, Genome Res., 18, 1851–1858.

[33] R. Li, et al., (2008) SOAP: short oligonucleotide alignment
program,Bioinformatics, 24, 713–714.

[34] H. Li and R. Durbin, Fast and accurate short read alignment with
Burrows–Wheeler Transform, Bioinformatics, Vol. 25 no. 14 2009, pp.
1754–1760.

[35] H. Li and R. Durbin, Fast and accurate long-read alignment with
Burrows–Wheeler Transform, Bioinformatics, Vol. 26 no. 5 2010, pp.
589–595.

[36] H. Li and. Homer, A survey of sequence alignment algorithms for next-
generation sequencing, Briefings in Bioinformatics.2010;11(5):473-
483.doi:10.1093/bib/bbq015.

[37] H. Li, wgsim: a small tool for simulating sequence reads from a
reference genome, https://github.com/lh3/wgsim/, 2014.

[38] H. Lin, et al., (2008) ZOOM! Zillions of oligos mapped, Bioinformatics,
24, 2431–2437.

[39] U. Manber and E.W. Myers, Suffix arrays: a new method for on-line
string searches, Proc. the 1st Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 319 – 327, SIAM, Philadelphia, PA, 1990.

[40] U. Manber and R.A. Baeza-Yates, An algorithm for string matching
with a sequence of don’t cares, Information Processing Letters, Vol. 37,
pp. 133 – 136, Feb. 1991.

[41] E.M. McCreight, A space-economical suffix tree construction algorithm,
Journal of the ACM, Vol. 23, No. 2, pp. 262 – 272, April 1976.

[42] G. Navarro and M. Raffinot, Pattern Matching in Strings, Cambridge
University Press, 2002.

[43] M. Nicolas and S. Rajasekarian, On string matching with k mismatches,
https://arxiv.org/pdf/1307.1406, 2013.

[44] R.Y. Pinter, Efficient string matching with don’t’ care patterns, in A.
Apostolico and Z. Galil (eds.) Combinatorial Algorithms on Words,
NATO ASI Series, Vol. F12, pp. 11 – 29, Springer-Verlag, Berlin, 1985.

[45] M. Schatz, (2009) Cloudburst: highly sensitive read mapping with
mapreduce, Bioinformatics, 25, 1363–1369.

[46] J. Seward. bzip2 and libbzip2, version 1.0. 5: A program and library for
data compression. URL http://www. bzip. org, 2007.

[47] A.D. Smith, et al, (2008) Using quality scores and longer reads
improves accuracy of Solexa read mapping, BMC Bioinformatics, 9, 128.

[48] J. Tarhio and E. Ukkonen, Boyer-Moore approach to approximate string
matching, in J.R. Gilbert and R. Karlssion (eds.) SWAT 90, Proc. 2nd

Scandinavian Workshop on Algorithm Theory, Lecture Notes in
Computer Science, Vol. 447, pp. 348 – 359, Springer-Verlag, Berlin.

[49] J. Tarhio and E. Ukkonen, Approximate Boyer-Moore String Matching,
SIAM Journal on Computing, Vol. 22, No. 2, pp. 243 -260.

[50] E. Ukkonen, Approximate string-matching with q-grams and maximal
matches, Theoretical Computer Science, Vol. 92, pp. 191 – 211.

[51] P. Weiner, Linear pattern matching algorithm, Proc. 14th IEEE
Symposium on Switching and Automata Theory, pp. 1 – 11, 1973.

[52] W. Hon et al., A space and time efficient algorithm for constructing
compressed suffix arrays, Alrothmica, 48, 23 – 36, 2007.

412412412398398398398398398410410410

