On the Query Evaluation in Document DBs

Yangjun Chen
Department of Applied Computer Science
University of Winnipeg
Winnipeg, Manitoba, Canada R3B 2E9
ychen2@uwinnipeg.ca

Abstract In this paper, we study the query evaluation in document data-
bases. First, we show that a query represented in an XML language can
be generally considered as a labeled tree, and the evaluation of such a
query isin fact a tree embedding problem. Then, we propose a strategy
to solve this problem, based on dynamic programming. For the ordered
tree embedding, the proposed algorithm needs only O(|T|0P|) time and
O(|T|GP|) space, where |T| and |P| stands for the numbers of the nodesin
the target tree T and the pattern tree P, respectively. This computational
complexity is better than any existing method on this issue. In addition,
how to adapt this method to the general tree embedding is also discussed.

1 Introduction

In XML, datais represented as atree; associated with each node of thetreeisan el-
ement type from afinite alphabet >.. The children of anode are ordered from left to
right, and represent the content (i.e., list of subelements) of that element. XML que-
ries such as XPath, XQuery, XML-QL and Quilt use tree patternsto extract relevant
portions from the input database. A tree pattern query (or called a query tree) that
we consider in this paper, denoted by TPQ from now on, is defined as follows. The
nodes of atree are labeled by element types from X O {*}, where * isawild card,
matching any element type. The type for a node v is denoted (V). There are two
kinds of edges: child edges (c-edges) and descendant edges (d-edges). A c-edges
from node v to node u is denoted by v - uin the text, and represented by asingle
arc; uiscalled ac-child of v. A d-edgeisdenoted v= uinthetext, and represented
by adouble arc; uiscalled ad-child of v.

In any DAG (directed acyclic graph), anode u is said to be a descendant of a node

v if there exists a path (sequence of edges) from v to u. In the case of a TPQ, this

path could consist of any sequence of c-edges and/or d-edges.

An embedding of a TPQ P into an XML document T isamapping f: P - T, from

the nodes of P to the nodes of T, which satisfies the following conditions:

1. Preserve node type: For each v O P, v and f(Vv) are of the same type.

2. Preserve c/d-child relationships: If v » uin P, then f(u) isachild of f(v) inT; if
v = uin P, then f(u) isadescendant of f(v) in T.

Any document T, in which P can be embedded, is said to contain P and considered

The author is supported by NSERC 239074-01 (242523) (Natural Science and Engineering Council of
Canada).

to be an answer.

To handle all the possible XPath queries, we allow anode u in a TPQ P to be asso-
ciated with a set of predicates. We distinguish among three different kinds of pred-
icates: current node related predicates (called current-predicates), child node
related predicates (called c-predicates), and descendant related predicates (called
d-predicates). A current-predicate pisjust abuilt-in predicate applied to the current
node; i.e., anodevin T, which matches u, must satisfy this predicate associated with
u. A c-predicate is a built-in predicate applied to the children of the current node.
That is, for each node v in T, which matches u, each of its children (or one of its chil-
dren) must satisfy this predicate. Similarly, ad-predicate must be satisfied by al the
descendants of the node (or one of its descendants), which matches u. Without loss
of generality, we assume that associated with u is a conjunctive-disjunctive normal
form: (pyy O... Opy;) O... O(pya O O py,), where each py; is a predicate.

For example, the following XPath query:
chapter[section[//paragraph[text() contains ‘informatics']/following-sib-
ling::*][position() = 3]]/*[self::section or self::chapter-notes]

can be represented by atree shownin Fig. 1.

chapter Uy

position() = 173
T(up) = section or
T(uy) = chapter-notes
paragraph us g

text() contains following-sibling(us)

‘informatics’

Fig. 1. A sample TPQ

In the query tree shown in Fig. 1, each node is labeled with atype or *, and may or
may not be associated with a conjunctive-disunctive normal form of predicates,
which are used to describe the conditions that the node (and/or its children) has to
satisfy, or the relationships of the node with some other nodes:

Ug - T(ug) = chapter. It matchesany nodevin Tif it isassociated with type * chapter’.

u; - T(uq) = section; and associated with acurrent predicate position() = 3. It match-
esany nodevinTif itisathird child of its parent and associated with type ‘ sec-
tion'.

U, - T(up) =*; and associated with a disjunction of current-predicates: T(u,) = sec-
tion or t(uy) = chapter-notes. It matches anode v in T if it is associated with
type ‘section’ or ‘chapter-notes'.

Uz - T(ug) = paragraph; associated with a c-predicate: text() contains ‘informatics'.
It matchesanodevin T if it is associated with type ‘ paragraph’ and has atext
child that contains word ‘informatics' .

Uy - T(uy) = *; associated with a current-predicate: following-sibling(vs), whichin-
dicates that if u, match anode in T, that node must directly follows any node
that matches ug, i.e., any node with type ‘paragraph’ and having a text child
node that contains word ‘informatics'.
Accordingly, the embedding f of aTPQ P into adocument T is modified as follows.
1.For each v O P, v and f(v) are of the same type; and f(v) satisfies al the current-
predicates associated with v.

21f v - uinP, then f(u) isachild of f(v) in T; and f(u) satisfiesall the c-predicates
associated with v. If v= uin P, then f(u) is a descendant of f(v) in T; and f(u) sat-
isfies all the d-predicates associated with v.

Recently, much research has been conducted on the evaluation of such XML que-
ries[1, 5, 6, 7, 8]. Here, we just mention some of them, which are very closely re-
lated to the work to be discussed. The first one is based on Inversion on elements

and words[8], which needs O(n™) timein the worst case where n and mare the num-
ber of the nodesin T and P, respectively. The second is based on Inversion on paths
and words [5], which improves the first one by introducing indexes on paths. The

time complexity of this method is till exponential and needs O((n[ﬁ)k) timein the
worst case, where h is the average height of a document tree and k is the number of
joins conducted. The main idea of the third method isto transform atree embedding
into a string matching problem [6, 7]. The time complexity is O(nfhi). This poly-
nomial time complexity is achieved by imposing an ordering on the siblings in a
query tree. That is, the method assumes that the order of sib-lings is significant. If
the query treeis ordered differently from the documents, a tree embedding may not
be found even though it exists. In this case, the query tree should be reordered and
evaluated once again. Another problem of [6] is that the results may be incorrect.
That is, a document tree that does not contain the query tree may be designated as
one of the answers due the ambiguity caused by identical sibling nodes. This prob-
lem is removed by the so-called forward prefix check-ing discussed in [7]. Doing
s0, however, the theoretical time complexity isdra-matically degraded to O(nZEh[h).
The last oneisto represent an XPath query as aparse tree and evaluate such a parse
tree bottom-up or top-down [1]. In [1], it is claimed that the bottom-up strategy
needs only O(n5m‘|2) time and O(n4m12) space, so does its top-down algorithm. But
in another paper [2] of the same authors, the same problem is claimed to be NP-com-
plete. It seemsto be controversial. In fact, the analysis made in [1] assumes that the
query tree is ordered while by the analy-sis conducted in [2] the query treeis con-
sidered to be unordered, leading to different analysis results.

In this paper, we present a new algorithm based on the ordered tree embedding. Its
time complexity is bounded by O(nlt).

2 A strategy based on Ordered-tree embedding
In this section, we mainly discuss a strategy for the query evaluation based on the

ordered tree embedding, by which the order between siblings is significant. The
query evaluation based on the unordered tree embedding is discussed in the next
section.

In general, atree pattern query P can be considered as a labeled tree if we extend
the meaning of label matching by including the predicate checking. That is, to check
whether anode v in adocument T matches anode u in P, we not only compare their
types, but aso check whether all the predicates associated with u can be satisfied.
Such an abstraction enables us to focus on the hard part of the problem.

In the following, wefirst give the basic definitions over the ordered tree embedding
in 3.1. Then, we propose an algorithm for solving this problem in 3.2.

2.1Basic concepts

Technically, it is convenient to consider adlight generalization of trees, namely for-
ests. A forest is afinite ordered sequence of digoint finite trees. A tree T consists
of a specially designated node root(T) called the root of the tree, and a forest <Tj,

oy Ti>, Where k = 0. The trees Ty, ..., Tc are the subtrees of the root of T or the

immediate subtrees of tree T, and k is the out-degree of theroot of T. A tree with the
root t and the subtrees Ty, ..., T isdenoted by <t; Ty, ..., T\>. Theroots of the trees

Ty, ..., Tgare the children of t and siblings of each other. Also, wecall Ty, ..., T the
sibling trees of each other. In addition, Ty, ..., Tj_; are called the left sibling trees of
T;, and T;_; the direct left sibling tree of T;. The root is an ancestor of all the nodes

in its subtrees, and the nodes in the subtrees are descendants of the root. The set of
descendants of anode v (excluding V) is denoted by desc(v). A leaf is a node with
an empty set of descendants. The children of anode v is denoted by chidren(v).

Sometimes we treat atree T as the forest <T>. We also denote the set of nodesin a
forest F by V(F). For example, if we speak of functions from aforest F to aforest
G, we mean functions mapping V(F) onto V(G). The size of aforest F, denoted by
|F|, is the number of the nodesin F. The restriction of aforest F to anode v with its
descendantsis called a subtree of F rooted at v, denoted by F[V].

Let F =<Ty, ..., T,> beaforest. The preorder of aforest F isthe order of the nodes
visited during apreorder traversal. A preorder traversal of aforest <Ty, ..., T > isas
follows. Traverse the trees Ty, ..., Ty in ascending order of the indices in preorder.

To traverse atree in preorder, first visit the root and then traverse the forest of its
subtrees in preorder. The postorder is defined similarly, except that in a postorder
traversal the root is visited after traversing the forest of its subtrees in postorder.
We denote the preorder and postorder numbers of a node v by pre(v) and post(v),
respectively.

Using preorder and postorder numbers, the ancestorship can be checked as follows.

Lemma 1. Let vand u be nodesin aforest F. Then, visan ancestor of u if and only
if pre(v) < pre(u) and post(u) < post(v).
Proof. See Exercise 2.3.2-2in [4]. O

Similarly, we check the left-to-right ordering as follows.

Lemma 2. Let vand u be nodesin aforest F. Then, v appears on the | eft side of u if
and only if pre(v) < pre(u) and post(v) < post(u).

Proof. The proof istrivial. O
Now we give the definition of ordered tree embeddings. In this definition, we sim-
ply use ‘label matching' to refer to both type matching and predicate checking.
Definition 1. Let P and T be rooted labeled trees. We define an ordered embedding
(f, P, T) asan injective mapping f: V(P) - V(T) such that for all nodesv, u O V(P),
i) label(v) = label(f(v)); (Iabel preservation condition)

ii) if (v, u) isac-edge, then f(v) is the parent of f(u); (child condition)

iii) if (v, u) isad-edge, then f(v) is an ancestor of f(u); (ancestor condition)

iv) vistotheleft of uiff f(v) isto theleft of f(u). (Sibling condition) O
As an example, we show an ordered tree embedding in Fig. 2.

Fig. 2. An example of an ordered tree embeding

In Fig. 2(a), the tree on the left can be embedded in the tree on the right because a
mapping as shown in Fig. 2(b) can be recognized, which satisfies all the conditions
specified in Definition 1. In addition, Fig. 2(b) shows a special kind of tree embed-
dings, which is very critic to the design of our algorithm and also quite useful to
explain the main idea of our design.

Definition 2. Let P and T be trees. A root-preserving embedding of P in T isan
embedding f of P in T such that f(root(P)) = root(T). If there is a root-preserving
embedding of P in T, we say that the root of T is an occurrence of P. O

For example, the tree embedding shown in Fig. 4(b) is a root preserving embed-
ding. Obviously, restricting to root-preserving embedding does not |ose generality.
Finally, we use Lemma 2 to define an ordering of the nodes of aforest F given by v
= V' iff post(v) < post(v') and pre(v) < pre(V'). Also,v =V iffv—= v orv=V.
The left relatives, Ir(v), of anode v O V(F) isthe set of nodes that are to the left of v
(i.e., al those nodes that precede v both in preorder and postorder), and similarly
the right relatives, rr(v), is the set of nodes that are to the right of v (i.e., al those
nodes that follow v both in preorder and postorder).

Throughout the rest of the paper, we refer to the labeled trees simply as trees since
we do not discuss unlabeled trees at al.

2.2Algorithm description

The algorithm to be given isin fact a dynamic programming solution. During the
process, two m x n (m = |P|, n = |T|) matrices are maintained and computed to dis-
cover tree embeddings. They are described as follows.

1. Thenodesin both P and T are numbered in postorder, and the nodes are then
referred to by their postorder numbers.
2. Thefirst matrix is used to record subtree embeddings, in which each entry ¢;
(041, ...mb,jO{1, .., n}) hasvalueOor 1. If ¢j; = 1, it indicates that there
is aroot preserving embedding of the subtree rooted at the node indexed by i
(in P) in the subtree rooted at the node indexed by j (in T). Otherwise, ¢;; = 0.
This matrix is denoted by c(P, T).
3. Inthe second matrix, each entry dj; (i U {1, ..., m}, j U {0, ..., n- 1}) is defined
asfollows:
dij=min({x O rr() | cix =1} O {a}),
wherea =n+ 1. That is, d;; contains the closest right relative x of node j such
that T[X] contains PJ[i], or n + 1, indicating that there exists no right relative x
of node j such that T[X] contains P[i]. This matrix is denoted by d(P, T).
In the above definitions of matrices, we should notice that the indexes of d(P, T) is
dlightly different from those of c(P, T). That is, for d(P, T), j O {0, ..., n- 1} (instead
of {1, ..., n}),and j = 0 is considered to be a virtual node to the left of any node in
T.
The matrix c(P, T) is established by running the following algorithm, called
ordered-tree-embedding while d(P, T) is employed to facilitate the computation.
Initialy, ¢;; =0, and d;; = O for al i andj. In addition, each node vin T is associated
with a quadruple (a(v), B(v), x(v), &(Vv)), where a(v) isV's preorder number, B(v) is
V's postorder number, x(v) is v's level number, and 3(v) = min(desc(v)). By the
level number of v, we mean the number of ancestors of v, excluding v itself. For
example, the root of T hasthe level number 0, its children have the level number 1,
and so on. Obviously, for two nodes v4 and vs, associated respectively with (a4, 31,
X1, ©1) and (a5, By, X2, 02), If Xo=X1+ 1, 01 <05 and B, > 3,, we have v, O chil-
dren(vq).
In the following algorithm, we assume that for T there exists a virtual node with
postorder number O, which isto theleft to any node in T. Thisisamodified version
of the algorithm described in [3], adapted to handling of different kinds of edges
(c-edges and d-edges).
Algorithm ordered-tree-embedding(T, P)
Input: tree T (with nodes 0, 1, ..., n) and tree P (with nodes 1, ..., m)
Output: c(P, T), which shows the tree embedding.
begin
1. foru:=1, .., mdo
2. {forv:=0,..n-1do{d, =n+1;}

3 |:=0;

4 forv:=1,..,ndo

5. {if label(u) = label(v) then

6. let ug, ..., u, bethe children of u;
7

8

9

j=0(v) - 1;
i=1;
) whilei <kandj <vdo
10. {j:= dui,j ;
11 if (u, ;) isad-edge then
12. {if j O desc(v) theni =i+ 1,
13. else/*(u, u;) isac-edge.*/
14. {if j O children(v) andj isac-child theni ;=i + 1;}
15. }
16. ifj=kthen
17. {cw:=1
18. whilel Olr(v) do{dy ;=v;1:=1+1}
19. }
20. }
end

To know how the above agorithm works, we should first notice that both T and P
are postorder-numbered. Therefore, the algorithm proceeds in a bottom-up way
(seeline 1 and 4). For any node uin P and any node v in T, if label(u) = label (v), the
children of u will be checked one by one against some nodes in desc(v). The chil-
dren of uisindexed by i (see line 6); and the nodes in desc(v) isindexed by | (see
line 10). Assume that the nodes in desc(v), which are checked during the execution
of the while-loop (seelines 9 - 15), are |y, ..., jp. Then, for eachjg (1< g<h), the
following conditions are setisfied (see line 10):

(i) d&(v) sjg<vi(ie,jg0 desc(V)),

(i) Thereexistsu; suchthat j4 = du“jg_lwith jo=0(v) - 1.

Therefore, for any j, and j, U {j1, ..., jn}, they must be on different paths according
to the definition of d(P, T). In addition, in the while-loop, if (u, ;) is ad-edge, the
algorithm checks whether j O desc(v) (seeline 12). If it isthe case, u; has amatch-

ing counterpart in desc(v) and i will be increased by 1. Thus, in a next step, the
algorithm will check the direct right sibling of u; against a node in the right rela-

tives of j. If (u, u;) is a c-edge, we will check whether j O children(v) and j is c-
child (seeline 14). If i = k (i.e., desc(v) contains all subtrees P[uy], ..., P[u]), we
will have a root-preserving embedding of P[u] in T[V]. Therefore, ¢, is set to 1
(seeline 17). Also, for any node | in the left relatives of v, d; is set to v (see line

18). It is because v must be the closest right relative of any of such nodesin T such
that the subtree rooted at it (i.e, T[V]) root-preservingly contains P[u].

Example 1. As an example, consider the trees shown in Fig. 3. The nodes in them
are postorder numbered.

T: a,b
d_— b
b_—~" b e/bﬁb 5
2 1 3
b
2

Fig. 3. Labeled trees and postorder numbering

When we apply the algorithm to these two trees, ¢(P, T) and d(P, T) will be created
and changed in the way as illustrated in Fig. 4, in which each step corresponds to
an execution of the outmost for-loop.

step 1 step 2:

c(P, T): d(P, T): c(P, T): d(P, T):
12345686 012345 1234568 012345
1701 1010] 1[2 2555 7] 1701 1010] 1[22555
2000000l 2000000 201 1010| 2225557
3loooo0o00] 300000 0] 310 00000] 3000000
step 3:

123456 012345

1701 1010] 1[2 2555 7])

2/011010| 2|(225557 Fig. 4. Sampletrace
3000001 3677777]

In step 1, we show the values in c(P, T) and d(P, T) after node 1 in P is checked
against every node in T. Since node 1 in P matches node 2, 3and 5in T, ¢y, Cy3,

and c,5 are all set to 1. Furthermore, dyg is set to 2 since the closest right relative of

node 0 in T, which matchesnode 1 in P,isnode 2in T. The same analysis applies to
dq;. Since the closest right relative of node 2, 3, 4 in T, which matchesnode 1 in P,
isnode5inT, dyp, dy3, and dy4 areall set to 5. Finally, we notice that dq4 is equal to
7, which indicates that there exists no right relative of node 5 that matches node 1
inP.

In step 2, the algorithm generates the matrix entries for node 2 in P, which is done
inthe sameway asfor nodelinP.

In step 3, node 3 in P will be checked against every node in T, but matches only
node6inT. Sinceitisan internal node (in fact, it isthe root of P), its children will
be further checked. First, to check its first child, the algorithm will examine dy,

which is equal to 2, showing that node 2 in T is the closest right relative of node 0
that matches node 1 in P. In a next step, the algorithm will check the second child
of node 3in P. To do this, dy, is checked. dy,’'s value is 5, showing that the closest
relative of node 2 in T, which matchesnode 2 in P, isnode 5in T. In addition, since
the edge (3, 2) in P isac-edge, the algorithm will check whether node 5in T is not
only a child of node 6, but also a c-child. Since it is the case, we have a root-pre-

serving embedding of P[3] in T[6]. Finally, we notice that when the second child of
node 3 in P is checked, the algorithm begins the checking from d,, rather than dy.

In thisway, alot of useless checkingsis avoided. O
Proposition 1. Algorithm ordered-tree-embedding(T, P) computes the values in
c(P, T) and d(P, T) correctly.

Proof. The proposition can proved by by induction on the sum of the heights of T
and P. O
Proposition 2. Algorithm ordered-tree-embedding(T, P) requires O(nlm) time and
space, wheren = |T|and m= |P|.

Proof. During the execution of the outermost for-loop, | may increases from 0 to n.
Therefore, the time spent on the execution of line 18 in the whole process is
bounded by O(n). An execution of the while-loop from line 9 to 15 needs O(d,)

time, where d,, represents the outdegree of node u in P. So the total time is bounded
by
m n n m
OM+0(Y T d)=0M+0(Y ¥ d,)

u=1v=1 v=1u=1
n

= O(n) +O(3 m) = O(NH).
v=1

Obvioudly, to maintain c(P, T) and d(P, T), we need O(nlh) space. O

3 Ontheevaluation of general tree pattern queries

In this section, we briefly discuss how to use the a gorithm for ordered tree embed-
ding to evaluate general tree pattern queries. For this, we need to consider the fol-
lowing problem:

The ordering of siblingsin a pattern (query) tree may be different from that in a

target (document) tree.
In order to tackle this problem, wewill change the sibling order in aquery according
to DTD if itisavailable. If the corresponding DTD does not exist, we store the doc-
ument trees according to the lexicographical order of the names of the elements/at-
tributes. Whenever a query arrives, the query tree will be constructed according to
the same order. However, in the case that a branch has multiple identical child
nodes, the tree isomorphism problem cannot be avoided by enforcing sibling order.
For example, a query of the form: /X[Y/Z/B]/Y/A can be represented as a tree
shown in Fig. 5(a) or atree shown in Fig. 5(b).

X X
Y Y Y Y
zd §a@ Ab bz B
B B
Fig. 5. Tree pattern queries

In this case, a sibling order cannot be specified lexicographically or by DTD sche-
ma. Inorder to find all matches, we haveto check these two trees separately and uni-
fy their results.

4 Conclusion

In this paper, a new strategy for evaluating XPath queries is discussed. The main
idea of the strategy is to handle an XPath query as tree embedding problem, by
which the label matching includes both the type matching the predicate satisfaction.
A dynamic programming method is proposed to check the ordered tree embedding,
by the ordering of siblings is important. The algorithm needs only O(|T|(P|) time
and O(|T|(P|) space, where |T| and |P| stands for the numbers of the nodesin thetar-
get tree T and the pattern tree P, respectively. Finally, how to adapt this method to
the unordered tree embedding is briefly discussed.

References

[1] G Gottlob, C. Koch, and R. Pichler, Efficient Algorithms for Processing
XPath Queries, ACM Transaction on Database Systems, Vol. 30, No. 2, June
2005, pp. 444-491.

[2] G Gottlob, C. Koch, and K.U. Schulz, Conjunctive Queries over Trees, in
Proc. PODS 2004, June 2004, Paris, France, pp. 189-200.

[3] Pekka Kilpelainen and Heikki Mannila. Ordered and unordered tree inclu-
sion. SSAM Journal of Computing, 24:340-356, 1995.

[4] D.E. Knuth, The Art of Computer Programming, Vol. 1, Addison-Wesley,
Reading, MA, 1969.

[5] C. Seo, S. Lee, and H. Kim, An Efficient Index Technique for XML Docu-
ments Using RDBMS, Information and Software Technology 45(2003) 11-
22, Elsevier Science B.V.

[6] H.Wang, S. Park, W. Fan, and PS. Yu, ViST: A Dynamic Index Method for
Querying XML Databy Tree Structures, SGMOD Int. Conf. on Management
of Data, San Diego, CA., June 2003.

[7] H.Wangand X. Meng, On the Sequencing of Tree Structuresfor XML Index-
ing, in Proc. Conf. Data Engineering, Tokyo, Japan, April, 2005, pp. 372-385.

[8] C. Zhang, J. Naughton, D. DeWitt, Q. Luo and G. Lohman, “On Supporting
Containment Queries in Relational Database Management Systems, in Proc.
of ACM SGMOD Intl. Conf. on Management of Data, California, USA, 2001

