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ABSTRACT

In this paper, a document algebra is proposed to support
both document transformation and pattern matching. Based
on the tree domain theory, the operational semantics for the
document transformation are defined. Then, by equating a
subtree structure from aDTD to an attribute from arelation
schema, a set of operations for treating document setsis de-
veloped, which is equipped with the pattern matching to
cope with the queries issued to a document database.
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1. Introduction

Until the mid-1980s, the relational algebrareceived alot of
attention dueto its simplicity, both for modeling and manip-
ulating data. Recently, however, we became aware of itsin-
sufficiency when trying to model data applications beyond
thetraditional business-oriented applications, such as office
automation, multimedia databases and text-oriented appli-
cations.

In this paper, we present a document algebra as a possible
successor of the relational model, aiming at the document
treatment. The proposed algebrais based on thetree domain
theory which has been extensively used to study the tree
logic [14], tree automaton [16] and tree periodicity [9].

We distinguish between two groups of operations. thosefor
document transformation and those for manipul ating sets of
documents (by which the pattern matching is needed.) The
first group isto operate on single documents. A ot of exam-
plesare given to show how the operations can be utilized to
elegantly translate a document into another one and how an
(approximate) DTD can be derived from a set of existing
documents. The second group provides a series of opera-
tions analogous to the relational algebra. By abstractly
equating a subtree structure from aDTD (Document Type
Descriptor) to an attribute from a relation schema, we can
see that a document roughly corresponds to an extended
“tuple” (in which each value is associated with a node ad-
dress; see below.) This observation enables us to build a
bridge between the document algebra and the relational al-

gebra and accordingly, w.r.t. the treatment of the sets of

documents, the same operation set can be established for the
document algebra as for the relational model. These two
groups form the core of a query language wherein users can
succinctly and naturally formulate complex problems typi-

cally encountered in document databases.

Recently, much research has been directed toward the data
models which recognize as the most fundamental character-
istic of dataits hierarchical structure [3, 7, 10, 15]. In [10],
an algebrafor transforming tree structures was developed, in
which several primitive operators are provided to change a
tree. But no attention was paid to operate among single trees
aswell astree sets. In [15], aso-called forest algebraisintro-
duced based on the tree automaton theory [16] to support
document transformation and pattern matching. But it istoo
intricate to be governed. It is moreinteresting fromatheoret-
ical perspective than from a practical viewpoint. In addition,
how to define a deterministic forest automaton for a given
DTD has never been clearly discussed. [7] is another inter-
esting suggestion; but the algebra provided is not purely de-
clarative, mixed with a predicate calculus. All the above
methods are grammar-based.

An entirely different approach tries to extend the relational
model and the object-oriented model to capture hierarchies
of structured documents with complex values. Probably, the
most notable exampleisby Christophideset al. [3]. They use
O, as a basis and further introduce ordered tuples and
marked unions to represent hierarchies of SGML/XML doc-
uments. However, extension in such away can not capture
the inherent hierarchical characteristic of documents, |ead-
ing to cumbersome operations for manipulating data.

Therest part of the paper is organized as follows. In Section
2, we give the definition of the document tree according to
thetree domain theory. Then, in Section 3, we define a set of
operations for transforming document trees. In Section 4, a
short conclusion is set forth.

2. DTD and Document trees

In this section, we introduce the concept of labeled trees
which can be used to represent documents exactly.

Intuitively, a labeled tree can be considered as consisting of
two parts: atree domain and a set of labels associated with
each element in the tree domain. The following isits formal
definition.

Definition 2.1 (tree) Let ~ = {1, ..., k} and let A be afinite
alphabet. A k-ary (labeled) tree over Aisamapping T: 2* [
{€e} - A wheree [ and >* denotes the set of al finite-
length sequences of letters from %. The domain of T: dom(T)
isafinite and prefix-closed subset of >* plus{¢e}. We say a
subset U of 2* [0 {€} to be prefix-closed if

() wOUOw=uw - udU (wu,vIE*)
(i wiDUDOj<i - 0OV (wX*,i,jOU).

The elementsin dom(T) are called nodes (or node addresses)
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and € is aways used to represent the root address of atree.
We say that T is an unlabeled tree if the alphabet contains
only one element (i.e., all nodes have the same label.)

Example2.1Let>Z={1,2} and A={a,b,c,d, e f, g h,i}.
Consider the mapping T: 2* O {€} — A given by the equa-
tions shown in Fig.1(a), which corresponds to a labeled bi-
nary tree as shown in Fig. 1(b).

)=d, T(21)=¢, T(22) e
T(121) = ¢, T(122) = h, T(221) = |,
(121):4 i
€Y

Fig. 1. An exemplary tree

Thismapping is defined over the prefix-closed set: {1, 2, 12,

21,22,121,122, 221} plus{e}. For alabel ainatree, |tscor—
respondlng nodes (10r node addresses) are denoted by T “X(a).

We notice that T is a multi-valued function since many
nodes may have the same label.

Definition 2.2 (subtree) Given atree T and a node address o
in dom(T), the subtree rooted at a, denoted Tq ,(0), isatree
such that dom(Tgn(a)) = {VvqVo ... Vi | avaVs ... v O dom(T)
and Tgp(a)(VqVs ... Vi) = T(AVqV5 ... Vi)

The empty tree, i.e., the tree mapping with domain 1, is de-
noted by A.

A terminal of atree T is an element whose node address w [
dom(T) such that no extension of wisalso indom(T). The set
of all terminals of T is called the frontier of T, denoted by
fr(T).

Now we consider an SGML/XML document. It can always
be represented as a labeled tree. As an example, consider a
possible DTD for letter documents shownin Fig.2. Its picto-
rial representation is as shown in Fig. 3.

1. <IDOCTYPE letter [

2. <!IELEMENT letter - - (date, greeting, body, closing, sig)>
3. <IATTLIST letter

filecode NUMBER #REQUIRED

secret (yes|no) “no”>
4. <IELEMENT body - - (para)+>
5.<!IELEMENT (date, greeting, closing, sig) - - (fPCDATA)>
6. </[ELEMENT para - - (text [ emph)*>
7.<IELEMENT  emph - - (#PCDATA)>
8. <IATTLIST emph

italic (yes|no) “yes">
9. <IENTITY salute “Dear”>

1>

Fig. 2. A sample DTD

The tree domain of this tree structure is a prefix-closed set:
{1,2,3,4,5,11, 21, 31, 311, 3111, 312, 3121, 41, 51} plus
{€}, labeled with the tag names: A = {letter, date, greeting,
closing, sig, para, text, emph}, and “#PCDATA” whichisa
data type, more or less comparable to string. Such atreeis
calledaDTD tree or aschema tree. Note that in the cases of
multiple appearance (asillustrated in Fig. 4(a)) and recursion
(asillustrated in Fig. 4(b)), the structure of aDTD can aso
berepresented as atree asillustrated in Fig. 4(c) and 4(d), re-
Spectively.

In terms of the above discussion, aDTD can aways be rep-

resented as aset of pairs with the following form: (a, t), (a,
t*), or (a, t*), where o is anode address and t is atag name, a
symbol indicating the data type or a complex value (see be-
low); “*” and “+” are two connection indicators as defined for
regular expressions.

letter

date greeting body closing sig

2RV 2N B B

#PCDATA #PCDATA para® #PCDATA #PCDATA

text* emph*
i |
#PCDATA #PCDATA

Fig. 3. Tree representation of the DTD shown in Fig. 2

Iener letter
bOdY closing body closing
pafa /#PCDATA para* #PCDATA
TEXT* emph* text*  emph*
i |
#PCDATA #PCDATA #PCDATA #PCDATA
€Y (b)
|etter letter
body  closing body  closing
para®  emph* #PCDATA para* #PCDATA
text*  emph* text* emph*
v | » VRS
#PCDATA #PCDATA #PCDATA #PCDATA body
(c) (d)

Fig. 4. Transformation of DTD trees

A complex value is defined as consisting of three parts asfol-
lows:

<complex value> := <tag-name>[-<contain-model>][-<attribute-list>].
It isused to capture part of aDTD structure, which can not be
represented by the tree structure aone.

For instance, the complex value for the node labeled with “ let-
ter” is of theform:

|etter-(date, greeting, body, closing, sig)-(filecode NUMBER #REQUIRED; secret (yes | no) “no”)

(AN J _/
| ' '

tag-name  contain-model attribute-list

Obvioudly, such avalue is too complicated to be represented
by the tree structure. Therefore, by the definition of the oper-
ations over trees, attention should be paid to the inner struc-
tutre of alabel. That is, by any operation, we should specify
whether a simple value (tag-name or data type) or a complex
value is considered and in the latter case, it should be further
specified which parts of acomplex valueistaken into account.
Tothisend, we represent alabel using atriple <l 1.(i), 1,()>,
where |, is for the tag-name, I(i) refers to the ith element in



the contain-model and | 4(j) refersto thejth attribute of the at-
tribute-list. If the whole contain-model or the whole at-
tribute-list is considered, we simply usel or |, respectively.

In the following, however, we use the label for both the sim-
ple and complex values for simplicity. If the distinction be-
tween them is necessary, we utilize Iy, |, and |, to reference
the different parts of alabel as discussed above.

In addition, the connector “|” isignored. That is, we regard
simply each sub-element appearing in the content model of
an element as a child, no matter whether they are connected
with “|” or not. In fact, this connector is only for the syntac-
tical description of a document and not related to the manip-
ulation of tree structures themselves.

Accordingly, a document conforming to a DTD can aso be
represented as aset of pairs of the form: (a, t), where a has
the same meaning asabove and t isatag name (possibly with
the attribute value assignment) if a is the address of an inte-
rior node, or a value (a string, a picture, or something else,
which can be treated by software) if a isaterminal node ad-
dress. We call atree for adocument the document tree.

In the following, we will define al basic operations on trees
(DTD trees or document trees) in Section 3.

3. Basic operations for DTD and document
transformation

In this section, eight operations for tree transformation are
defined based on the tree domain theory. They are tree-
union, tree-intersection, tree-symmetric-difference, tree-
concatenation, tree-substitution, node-insertion, node-dele-
tion, and label-renaming.

To specify these basic operations over trees, we need some
extra concepts.

Definition 3.1 (interval closed) Let £ = {1, ..., k}. A subset
Sof ¥* isinterval closed if for any words v and vab OS, we
have va O0S, wherea, b 0 .

Definition 3.2 (bush) Let > ={1, ..., Kk} and let A beafinite
alphabet. A k-ary (labeled) bush over Aisapartial mapping
B: Z* - A whose domain dom(B) is a finite and interval
closed subset of =*.

Example3.1Let2 ={1, 2} and A={d, e f, g, h, i}. The
mapping shown in Fig. 5(a) isabush. Its pictorial represen-
tation is shown in Fig. 5(b).

Definition 3.3 (compatible) Let T, and T, be two labeled
trees. We say that T, and T, are compatibleif and only if they
coincide as functions on the intersection of their domains
(i.e., the nodes with the same addresses in T; and T, will
havethe samelabels)) Informula, if T(D) denotestherestric-
tion of T to D O dom(T), we write T1(dom(T;) n dom(Ty)) =
To(dom(Tq) n dom(T5)).

]

-

T(2)=d, TR1=¢ T(22)="
T(121) = 0, T(122) = h, T(221) = :' (12) o ® (22)
g (121) [\o j

(122) (221)
@ (b)
Fig. 5. lllustration for bush

Now we can define several operations among trees (DTD

trees or document trees).
- tree-union (O)

Let T, and T, be two compatible trees. The union of them (T
O T,) is defined by

(i) dom(T, 0O T,) =dom(T;) 0O dom(Ty);
(i) OxOdom(T, O Ty),

_OTy(x), if x Odom(T,);
(T 07200 = ETZ(X), otherwise

This definition works well for the DTD trees. But for the doc-
ument trees, a little bit modification is needed due to the fact
that incompatibletermina nodes should be allowed to takethe
union operation for the practical purpose. In this case, the dif-
ferent termina nodes (in different document trees) with the
compatible parents will be put together to construct a bigger
piece of texts. To this end, we change the above definition as
follows:

(T O TN =
|:|T1(X)' if x Ddom(Tl)/fr(Tl) or x Dfr(Tl) but x's parent
0 is not compatible with any terminal's parent in Ty

0
|:|T2(x), if x Ddom(Tz)/fr(Tz) or x Dfr(Tz) but x's parent
g s not compatible with any terminal’s parent in T,;

0
O{T, (0 O {T,(}

otherwise

By this definition, we notice that the label of a terminal of a
document treeisavalue. Therefore, if for aterminal x O fr(T,)
n fr(T,) itsrespective parentsin T, and T, are compatible, the
label of xin T, and thelabel of xin T, arejoined together. That
is, its corresponding new label is {T(X)} O {T»(X)}. For in-
stance, the union of two document trees D4 and D, shown in
Fig. 6(a) isanew tree shown in Fig. 6(b).

b/\c b/\c b/\c
N\ .
VA AN

@ (b)
Fig. 6. lllustration for tree-union
- tree-intersection ()

Let T, and T, be again two compatible trees. The intersection
of them (T, * T,) isanew tree such that

(i) dom(Tye Ty) =dom(T,) n dom(T,)
(if) Tqe To=Ty(dom(T1) n dom(T5))
=Ty(dom(T;) n dom(Ty)).

For example, the intersection of treesD4 and D, shownin Fig.
6(a) isthe tree shown in Fig. 7.

b/\c
0/

Fig. 7. lllustration for tree-intersection

- tree-symmetric-difference (~)



We can imagine that if we smply apply the normal set dif-
ference operation to the domains of two trees, we do not get
atree but a bush.

Let T, and T, be two compatible trees. We define the bush
T, ~ T, asfollows.

(i) dom(T;~T,) =dom(T, O Ty) / dom(T4 * Ty);
(i) OxOdom(T, ~T,),

aT,(x),

ETZ(X) ’

For instance, the symmetric difference of trees D; and D,
shown in Fig. 6(a) is aset of document pieces shown in Fig.
8.

fo/h[>g y jo/\i}k

Fig. 8. lllustration for tree-symmetric-difference

if x Odom(T,);

(Ty~TH(X) = .
otherwise

€,

We now define the concatenation between two trees. Intu-
itively, to concatenate two trees T, and T,, we “attach” the
root of T, to one of the elements of the border of T;. Thebor-
der of atree can be defined as follows.

Definition 3.4 (border) Given atree T, the border of T isthe
set B(T) ={wi |w O dom(T), i 0 Z; butwi O dom(T)}.

In general, as aresult, we get more than one trees since the
border of atree normally contains more than one elements.
Then, the concatenation between two trees will be a set of
trees containing as many trees as the elements in B(T). We
first defineformally the concatenation of two trees at agiven
element of the border. Then, the general concatenation oper-
ation can be defined.

Let T, and T, be two trees; and let B(T;) denote the border
of T,. The concatenation of T, and T, at a 00B(T,) isatree
T4(a)T, defined as

(i) dom(T(a)T,) =dom(T4) O dom(Ty);
(i) Ox O dom(T1(a)Ty),

(To()TR)(X) =
|:|T1(X)x
ETz(y), where y O dom(Tz)a y =X, otherwise

if x Ddom(Tl);

- tree-concatenation (O

Let T, and T, be two trees; and let B(T,) denote the border
of T4. The concatenation of T, and T, isthe set of trees:

Ty Oy = {Ty(a) T [a O B(Ty)}
Asan example, consider thetrees T, and T, shown inFig. 9.

c
a d_~ e
y

Tl T2
Fig. 9. Two simpletrees

bo/o

The concatenation T, [T, isaset of treesas shownin Fig. 10.

oa oa
b~ b~ b/ua\nc
0%: oc o do/\oe
d_~, e d.",e f/

fo/ ¢/

o

Fig. 10. Concatenation of two trees shown in Fig. 9

- subtree-substitution (/)

Given two trees T, and T, and a node address a in dom(T,),
the substitution of T, for the subtree T14,,(0), denoted T4[a/
T,] , isthetree defined by

(i) dom(T{[a/T5,]) = (dom(T1)/dom(T1g,p(a))) O {aw |w O
dom(T»,)};

(i) Ox O dom(T4[a/T,]),

(Ta[a/To))(X) =
DTl(X)!
ETZ(X)!

This operation can beillustrated as shown in Fig. 11.

AD A/

Fig. 11. lllustration for tree-substitution

if x Odom(T,)/dom(Tg,,(a));

otherwise

- node-insertion

Let T beatree. Let a be a node-address in the tree and 3 be
oneof a’schildren. Theinsertion of anodelabeled a asachild
of a but the parent of 3, denoted T[a, [, a], can be defined as
follows.

Let A = dom(T)/dom(Tsub(B)) and B = {Blw | w O

dom(Tg,,(B))} . Then we have

(i) dom(T[a,B,a]) =A0BO{TR);

(i) Ox O dom(T[a, B, a]),

(Ta, B, a)(¥) =
Crex), if xOA;
%T(y) where y Ddom(Tsub(B)),x =B 1y, if xOB;
|:la otherwise
|:| 1

See Fig. 12 for illustration.

/a Ka Tla, B,
N ——

T

¥\

Fig. 12. lllustration for node-insertion

- node-deletion

Let Tbeatreeand a beanode addressin thetree. The deletion
of a from T, denoted T[~a] can be defined as follows. Let a



= wi, where w Odom(T) and i is an integer. Let 3 = wij (j =
1, 2, ..., k) be the node addresses of a’s children. Let od(w)
denote the outdegree of w. We first define three sets:

od(w)
A = dom(T)/ ﬁ dom(Tg ,(wn)) ;

n=i

B= {wju|ulD dom(Tg(By),j =i+1,, ..., i+k};

C= {wju| ul dom(Tgp(WM), | =i+1, ..., od(w), j = i+k,

., i+od(w)}.

Then we have

(i) dom(T[~a])=AOBOC;

(i) Ox O dom(T[~a]),

(T[~aD(x) =
DT(X), if x OA;
BT(y) where deom(Tsub(Bj))’X = wiy for some j, if xOB;
BT(Z) where deom(Tsub(wl)),x=W(I—i)z for some |, if xOC;

Fig. 13 helpsfor illustration.

'S

Flg. 13. lllustration for node-deletion

T[~G]

- label-renaming

Two label-renaming operations are provided. The first is
used to replace the label of some node with a new one. The
second substitutes anew label for all appearances of somela-
bel in the tree.

Let T beatree. Let a be anode addressin the tree. Thefirst
operation, denoted T[T(a) ~ a] (where aisalabel), can be
defined asfollows:

(i) dom(T[T(ax) — a]) = dom(T);
(i) Ox O dom(T[T(a) « a]),

(T[T(a) < a))(¥) =
ET(X)’ if x Odom(T)/{a};
a, otherwise

The second operation is denoted T[b — a], by which all the
appearances of b will bereplaced witha. Thefollowingisits
definition.
(i) dom(T[b - a]) = dom(T);
(i) Ox O dom(T[b « a]),
(Tl — a)() =

ET(X), if x Odom(T)/T (b);

A, otherwise

The following example demonstrates how the above opera-
tions can be utilized to perform a document (DTD) transfor-
mation.

Example 3.2 Consider the DTD given in Section 2 again.

Suppose we want to extract only the information on the letter
texts and signatures. The corresponding DTD would then be
transformed into the following form:

letter

para* sig
\

text* emph* #PCDATA

| I
#PCDATA #PCDATA

Fig. 14. A transformation of the DTD shown in Fig. 2

The transformation on the corresponding documents can be
accomplished by consecutively performing the following op-
erations:

for each a 0 T "Y(date) do
{T[a/A]}; (*replace, for example, the subtree
rooted at (1, date) with A*)
for each a 0 T "Y(greeting) do
{T[a/A\]}; (*replace, for example, the subtree
rooted at (2, greeting) with A*)
for each a0 T "Y(closing) do
{T[a)/A]}; (*replace, for example, the subtree
rooted at (4, closing) with A*)
for each a 0 T "L(body) do
{T[~a]}; (*delete, for example, the node (3,
body)*)
Alternatively, we can write these operations in the following
form for short.

T[T "Y(date)/A]; T[T Y(greeting)/Al; T[T X(closing)/Al; T[~T “*(body)].

Hereafter, the concise representation like this will be em-
ployed without further declaration if no confusion arises.

In addition, we notice that each element e 0 dom(T) also rep-
resents a path from the root to some node with e as the ad-
dress. Lete=iy.ip. ...ijand ay, ay, .. :;J be the labels appearing
on the path. Then ala g isalabel path. Similar to single
labels, we define T (al a2 ... &) to be the elements in
dom(T), on which a;.a. . appears This notation will be
used in the subsequent discussion.

Operations based on relaxed compatibility

In the above, we defined a set of operations based on a“ strict”
compatibility. For the practice purpose, however, more re-
laxed compatibilities should be considered. To this end, we
define the concept of tree isomorphism.

Definition 3.5 (tree isomor phism) Let T, and T, be two trees.
T, and T, are said to be isomorphic, denoted T, OT, if there
exists an one-to-one mapping from the nodes of T, to the
nodes of T, that preserves |abels and tree structure.

(The agorithm for the tree isomorphism is available and the
check to see whether two trees are isomorphic can aways be
donein linear time[12, 13].)

This definition leads directly to the following result.

Proposition 3.1 If T, and T, are isomorphic, then we can al-
waystransform T, into T, by applying aseries of |abel-renam-
ing operations on T, oOr vice versa.



Let T[by « &], T[by ~ a9, ..., T[b, « a,] be asequence of
label-renaming operations. We write T[B ~ A] for it for
short, where B={ by, by, ..., b} andA={ay, ay, ..., a,}.

Based on this concept, we define a relaxed compatibility as
follows.

Definition 3.6 (compatible up toisomorphism) Let T, and T,
be two document trees. We say that T, and T, are compatible
up to isomorphism if and only if there exists some tree else
Tsuch that T, OT and T is compatible with T,. (Note that if
T, and T, are compatible, they are also compatible up to iso-
morphism.)

In terms of this notion, we redefine the first three basic oper-
ations discussed above.
- tree-unionjg, (Hig)

Let T, and T, be compatible upon isomorphism. Let T4[B
A] be the label-renaming sequence transforming T, into a
tree compatible to T;. The union of them (T; Uiy To) is de-
fined by

(i) dom(T, 0O T,) =dom(T;) 0O dom(T5,);
(i) OxOdom(T, O Ty),

(T O T =

|:|T1(X)’ if x Ddom(Tl)/fr(Tl) or x Dfr(Tl) but x's parent
O is not compatible with any terminal's parent in T2
ETZ[BF Al(x), if x Ddom(Tz)/fr(Tz) or x Dfr(Tz) but x's parent
E is not compatible with any terminal's parent in T

O{T{(x} O{T,[B ~ Al(x)},  otherwise
Inasimilar way, we can define the corresponding “intersec-
tion” and “symmetric-difference”

- tree-intersectionjg, (*iso)s
- tree-symmetric-differenceq, (~ig)-

Now weturnto an interesting problem to deriveaDTD from
aset of documents. We have thisproblem by organizing a set
of documents (got, for example, through the World-Wild
Web) into a database. We need such a DTD to govern the
document loading process, such as the schema establi shment
for accommodating them, the index construction on some
document el ements, etc.

Example 3.3 Consider a set of documents Ty, T, ..., T,,. We
construct a new document T:

T= TlDiSOTZDiSO Diso Tn.
InT, each terminal nodeisof theform: {¢,, c,, ..., ¢}, where

each ¢; is either an empty string or the label (value) of ater-
minal node of T;. By asimple analysis, the data typefor ¢; (i
=1, 2, ..., n) can be determined, say #PCDATA. Then, sub-
stitute #PCDATA for {cy, Cy, ..., G} in T. We can replace
each terminal node of T with the corresponding datatypein
this way to obtain anew tree T" which can be employed as
an approximate DTD for T; (i =1, 2, ..., n).

We conclude this section with another example involving re-
cursion.

Example 3.4 Asiswell known, the recursion is beyond the
expressiveness of the relational algebra [20]. The same is
also true for the document algebra. But we can develop a
similar way as the deductive database to handle this problem

[4]. Consider the DTD piece shown in Fig. 15(a), in which
each “segment” possesses a “title”, some “paragraphs’ and
SO “segements’ recursively.

<IELEMENT C - - (seg*)>
<IELEMENT seg - - (title para*, seg*)>
<IELEMENT title - - (#PCDATA)>
<IELEMENT  para - - (#PCDATA)>
@
<IELEMENT doc - - (seg*)>

- - (title, para*, (seg | topic)*)>
- - (title, para*)>
- - (#PCDATA)>
- - (#PCDATA)>

<IELEMENT seg
<IELEMENT topic
<IELEMENT title
<IELEMENT para

(b)
Fig. 15. DTD transformation

We want to rename the lowest-level “segments’ as “topics’.
For the DTD treg, it is very simple, which can be done asfol-
lows:

T[T(1) ~ “seg-(title, para*, (seg | topic)*)"];
(*renammg )

T(1.4) Tg (T (doc.seg));
(*union of T and the subtree (rooted at “doc.seg”)
at node address “1.4”.*)

T[T(1.4) ~ “topic-(title, para*)"];
(*renaming*)

T[~T(doc.seg.topic.seg)].
(*removing the node labeled with “seg” below
the node labeled with “topic”*)

Theresulting DTD is shown in Fig. 15(b).

However, for the documents conforming to thisDTD, amore
complicated method hasto be employed for the corresponding
transformation. We need a predicate Pterminal(x) to check
whether anode is a parent of some terminal node. In addition,
we regard Tg () as a predicate to quantify subtrees. When
the subtree rooted at a exists, it evaluates to true. Otherwise,
it evaluates to false. We construct the following deductive
rule:

rule: Taup(T (x.seg)) 1= Ta(T (), seg O T(T "4(x)),
- Pterminal (T “Y(x.seg)).

The rule means that if x is a label path leading to a subtree

(Tau(T ~ (x))) the root of the subtree |s labeled with “seg”

(seg O T(T (%)) and at the sametime T “(x. seg) isnot a par-

ent of some terminal node (- Pterminal(T ~ (x seg))), then
Taun(T~ L(x.seg)) evaluatesto true.

Thisrule is recursive. To finish the above task for the docu-
ment transformation, we execute the following procedure:

A :={doc.seg}; A =0,
repeat
for each x JA do
{evauaterule;
A=A 0O answers;}
if A# O then
{A:=A; A:=0;} (*notethat the answers are a set

of label paths; only the answers last



produced are kept.*)
until no more new answers
for each d OA do

iT[T(d) « topic];  (*renaming*)

In the above, all the operations for the transformation of
DTDs and single document trees were discussed. To manip-
ulate document sets, more operations should be established.
In fact, three operations analogous to the relational algebra
can be defined. They are projection, selection and join. Dif-
ferent from the relational algebra, some tree specific opera-
tors are involved such as tree matching and tree inclusion,
which are especially useful for web recognition [5, 18, 19].

Definition 1 Let S be a set of documents conforming to a
certain DTD. The projection of S onto a subset X of DTD
(recall that DTD is a set of pairs, see Section 2) such that
dom(X) isinterval closed, written asTi(Sp), isthe document
pieces defined as follows

A= {Ti sub(aij) |Ti ] SD, Odo dom(X) such that Uijd ] don’(DTD)},

T(Sp) ={A i =1, ...},
where nisthe number of documentsin Sy.

Definition 2 (selection) The selection of a document set Sy
under aformulaF isthe subset of S, written as 0(Sp), con-
sisting of all those documents T of Sy such that each such
document satisfies F, i.e.,

Op(S) ={T|T OSyand T satisfies F}.
Definition 3 (join) Let S; and S, be two document sets con-
forming to DTD, and DTD,, respectively. Let A be asubtree
of DTD;and B a subtree of DTD,. Thejoin of S; and S, on
A and B, written as $;[A ¢ B]S,, isthe set consisting of every
triple of the form (nqy, T1, Ty) representing a new tree with
Ny, being the root and T, and T, being ny,’'s left and right
subtrees, respectively, where T, isin S, Toisin S, such that
T, ¢ T, evaluatestotrue. ny, isavirtual node used asthe root
of the new document containing T; and T, i.e.,

SI[A$ BIS ={(n12, T1, T) [ T1in Sy, Toin S and Ty ¢ T}

4. Conclusion

In this paper, adocument algebrais proposed. Based on the
tree domain theory, a group of operations for the tree trans-
formation is formally defined, which can be utilized to
change a DTD or a document structure and derive a DTD
from the existing documents. Another group of operationsis
developed by equating a subtree structure fromaDTD to an
attribute from a relation schema. This group can be used to
perform “projection”, “selection” and “join” as well as the
other set-oriented operations on document sets.
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