
Query Evaluation and Web Recognition in Document
Databases

Yangjun Chen*
Dept. Business Computing, Winnipeg University

515 Portage Ave. Winnipeg, Manitoba, Canada R3B 2E9
Abstract A Web and Document Database (WDDB) is a
system to manage efficiently local documents and their se-
mantic connection to remote ones. The general objective of
a WDDB is to facilitate web search and internet naviga-
tion. Abstractly, a WDDB can be defined as a triple <D, U,
W>, where D stands for a local document database to store
XML documents structurally, U for a set of URLs with each
pointing to a remote database which shares common data
with the local one, and W for a Web recognizer that identi-
fies information sources related to data items in the local
database. Then, a query against a WDDB normally con-
sists of two parts: a local query and a set of remote queries.
A local query can be considered as tree-embedding prob-
lem and can be sped-up using the so-called signature tech-
nique. A remote query has to be sent to another database
which may not be available locally. To decide where to
send a query, an address book has to be maintained, which
can be established manually or automatically using Web
recognizer.

Key Words: Web, Document databases, Tree inclusion,
Signatures, Ontology, Path-oriented queries

1. Introduction

Recently, with the expansion of the Web, more and more
comprehensive information repositories can be now vis-
ited easily through networks. A growing and challenging
problem is how to quickly find information of interest to
an individual in either a home or work setting. While nav-
igating the Web, one may get lost in the maze of hyper-
links. A great deal of work has been done to mitigate this
problem to some extent, including search engines such as
Lycos, AltaVista, google and Yahoo, web query languages
such as W3QL [20], semistructured data management sys-
tems [1, 33] and document databases [2, 5, 6, 7, 29]. How-
ever, these approaches lack a general method to bring
together all the aspects such as the search engine, query
treatment and document management under one umbrella.
In this paper, we discuss a WDDB system to provide a
powerful mechanism to guide the access of information
sources distributed all over the world.
Abstractly, a WDDB can be defined as a triple <D, U, W>,
where D represents a local document database to store
XML documents structurally, U represents a set of URLs
with each pointing to a remote database that shares some
common data with the local one, and W represents a Web
recognizer that identifies information sources related to
data items in the local database. More concretely, the
remote information sources are established by storing the
corresponding URLs, which are distributed over a pre-
* The author is supported by NSERC 239074-01 (242523) (Natural Sciences an
defined ontology. As an application scenario, consider a
local database containing all the hotel information (D) in a
city. Then, a query against it may get, for example, hotel
prices, hotel living conditions, etc. But a user may also
want to know about car rentals, sightseeing and different
cuisine flavors in that city, which may be distributed in dif-
ferent databases. In this case, one has to switch over to
those databases and submit new queries, respectively. How-
ever, if some URL links (U) are available and the relation-
ships between them and the relevant local data items are
specified, the system can manage to access those remote
databases automatically. In addition, to obtain the URLs
related to local data, a Web recognizer (W) is needed to
explore the internet to find information sources of interest.
Its other task would be to extract relevant information from
the data obtained by issuing remote queries.

2. System Architecture

In terms of the discussion conducted in the introduction, we
have the following system architecture for a WDDB.

The system contains mainly three parts with each for a spe-
cial functionality.

part I - document management.

This part manages a local document database as an infor-
mation source reachable over the network. Mainly, it con-
tains:

1. A module for the schema management and the docu-
ment loading. This module establishes a data
schema for a given XML DTD and loads the corre-
sponding documents into the database.

2. A module for query evaluation and
3. An interface that can be utilized for users to interact

with the system.

part II - web connection.

This part is used to connect to remote document databases
distributed over the internet. For this purpose, it contains:

interface

schemas

doc. loading

query

evaluation

DTDs Web connection

doc.
database(Document Type Descriptor)

Fig. 1. Architecture of a standalon WDDB

Web recognizer
d Engineering Council of Canada).

4. A module for web connection. In a local WDDB, a
set of URLs is maintained and distributed over an
ontology (see Section 4 for the definition of an
ontology). That is, each concept (or a pattern) in the
ontology is associated with a set of URLs pointing
to remote document databases, which are related to
the concept in some way. For example, for the ‘car
rental’, we may have several URLs that are the
addresses of some document databases containing
the information on car rental enterprises. Therefore,
a query involving a concept not available in the
local resource can be sent to the associated remote
document databases to get data for answering the
query completely.

part III - web recognizer.

The third part is used to recognize remote information
sources for a given concept. It mainly contains:

5. A module for web recognition, which can be done
by establishing several patterns for a concept. These
patterns can be utilized to find those document data-
bases that contain XML pages matching any of
them.

From the above system architecture, it can be seen that a
WDDB always works together with some other document
databases distributed over the network. All the relevant
document databases are considered to be semantically con-
nected through URLs, which are associated with a concept
or a pattern in some ontology defined in the local WDDB.

3. Storage of documents in a WDDB

In a WDDB, documents are stored in a document database
in XML format. It may be connected to remote document
databases through URLs. In this section, we mainly discuss
the storage of XML documents in a WDDB. The query
evaluation is addressed in Section 4 in detail.

In Fig 2, we show a simple XML document, which contains
element-tags, element-texts and attributes for elements. By
means of the tags, the tree structure of the document is rep-
resented.

To keep the tree structure of documents when loading them
into a relational database, we propose the following storage

<hotel-room-reservation filecod=”1302”>
<name>Travel-lodeg</name>

<number>500</number>

<location>
<city-or-district>Winnipeg</city-or-district>
<state>Manitoba</state>

</reservation-time>

</location>

</hotel-room-reservation>

Fig. 2. A simple document

<country>Canada</country>
<address>

<street>Portage Ave.</street>
<post-code>R3B 2E9</post-code>

</address>

<type>
<rooms>one-bed-room</room>
<price>$119.00</price>

</type>
<reservation-time>

<from>April 20, 2002</from>
<to>April 28, 2002</to>
structure.

1. Element-tag:

{DocID: <integer>, ID: <integer>, Tag: <string>, firstChildID:
<integer>, siblingID: <integer>, attributeID: <integer>}.

where DocID represents the document identifier,
ID represents the element identifier,
Tag is the element name (or tag name),
firstChildID is the pointer to the first child of an
element,
siblingID is the pointer to the right sibling of an
element and
attributeID is the pointer to the first attribute of an
element, which is stored in the relation Attribute.

2. Element-text:

{DocID: <integer>, textID: <integer>, value: <string>},

where textID is for the identifiers of texts that are the values
of the corresponding elements in original documents. One
should notice that a text always takes an element as its parent
node, and if an element has a text as a child, it has only this
child node. See the following table for illustration.

3. Attribute:

{DocID: <integer>, att-ID: <integer>, parentID: <inte-

ger>, att-name: <string>, att-value: <string>}.

In this relation, the attribute parentID is used for the identi-
fiers of the corresponding elements (stored in relation Ele-
ment-tag), with which an attribute is associated. The
following table helps for a better understanding.

From the above discussion, we can see that the tree structure
of a document is implemented through the attributes firstCh-
ildID and siblingID in the relation Element-tag, which con-
tain pointers to the first child and the first right sibling node,
respectively. They can be used to efficiently navigate docu-
ments and to support the checking for tree embedding, which
is about to be discussed in the next section.

4 Query evaluation in a WDDB

In a WDDB, a query may be composed of two parts: a local
query and a remote query. The local query can be evaluated
against the local database while the remote query has to be
sent to remote databases. In this section, we first give a gen-
eral description of the WDDB’s queries in 4.1. Then, we dis-
cuss the evaluation of local queries and remote queries in 4.2
and 4.3, respectively.

4.1 Path-oriented queries

Several path-oriented language such as XQL [23] and XML-
QL [14] have been proposed to manipulate tree-like struc-
tures as well as attributes and cross-references of XML doc-
uments. XQL is a natural extension to the XSL pattern
syntax, providing a concise, understandable notation for
pointing to specific elements and for searching nodes with
particular characteristics. On the other hand, XML-QL has
operations specific to data manipulation such as joins and
supports transformations of XML data. XML-QL offers
tree-browsing and tree-transformation operators to extract
parts of documents to build new documents. XQL separates
transformation operation from the query language. To make
a transformation, an XQL query is performed first, then the

results of the XQL query are fed into XSL [31] to conduct
transformation. Another interesting language is YATL [10].
It represents queries in a more compact form but has the
same power as XQL and XML-QL. An interested reader is
referred to [10] for more detailed description.

An XQL query is represented by a line command which
connects element types using path operators (‘/’ or ‘//’). ‘/’
is the child operator which selects from immediate child
nodes. ‘//’ is the descendant operator which selects from ar-
bitrary descendant nodes. In addition, symbol ‘@’ precedes
attribute names. By using these notations, all paths of tree
representation can be expressed by element types, at-
tributes, ‘/’ and ‘@’. Exactly, a simple path can be de-
scribed by the following Backus-Naur Form:

<simple path>::=<PathOP> <SimplePathUnit> |
<PathOp> <SimplePathUnit> ‘@’ <AttName>

<PathOp>::=‘/’ | ‘//’

<SimplePathUnit>::=<ElementType>|<ElementType>

<PathOp> <SimplePathUnit>

The following is a simple path-oriented query:

/letter//body [para $contains$‘visit’],

where /letter//body is a path and [para $contains$‘visited’]
is a predicate, enquiring whether element “para” contains a
word ‘visited’.

Several paths can be jointed together using ‘∧ ’ to form a
complex query as follows.

/hotel-room-reservation/name ?x ∧
/hotel-room-reservation/location [city-or-district = ‘Winnipeg’] ∧
/hotel-room-reservation/location/address [street = ‘510 Portage Ave.’] ∧
/car-renntal/company/name ?y ∧
/car-rental/company/location [city-or-district = ‘Winnipeg’] ∧
/car-rental/company/car-type ?z.

This query enquires the name of the hotel located at 510
Portage Ave., Winnipeg, as well as any car-rental company
located in Winnipeg and any car types that are available in
that company.

The above query can be represented in a compact form by
integrating the common parts of multiple paths as shown
below.

/hotel-room-reservation/[name ?x ∧ location [city-or-district = ‘Win-
nipeg’ ∧ street = ‘510 Portage Ave.’]] ∧

/car-renntal/company/[name ?y ∧ location [city-or-district = ‘Win-
nipeg’] ∧ car-type ?z].

Assume that the local document database can answer the
first part of the query. That is, it can provide the information
on hotel room reservations, but fail to inform on car rentals.
In this case, the system will send the second part of the que-
ry to some remote document databases pointed to by some
URLs, which contain the information on the car rental. If
one of the remote document databases is able to evaluate
the query on car rentals, the answer will be sent back to the
local WDDB, contributing to a complete answer to the orig-
inal query.

A remote query can be of the form: <URL><query>. For
instance, assume that there is a remote WDDB with the
URL: http:://www.uwinnipeg.ca/docDB, which contains
the data on car-rental. The local database will issue a re-
quest of the following form to get the second part of the an-
swer to the above query:

http:://www.uwinnipeg.ca/docDB/car-rental/company[/

name=$t/location/city-or-district=$x/car-type=$z].

The problem is how to determine where to send a remote
query, and how a local WDDB becomes aware of other doc-
ument databases and knows what they have. We discuss
these issues in 4.3.

4.2 Evaluation of local queries

Both the documents and the queries can be considered as la-
beled trees and the evaluation of a local query can be thought
of as a tree-embedding problem. In the following, we first
define the concept of the tree embedding. Then, we show
that for evaluating a query we will check whether a tree rep-
resenting a query is embedded in another tree representing a
document.

Definition 1 (labeled tree) A tree is called a labeled tree if a
function label from the nodes of the tree to some alphabet is
given, or say each node in the tree is labeled.

Obviously, an XML document can be represented as a tree
with the internal nodes labeled with tags and the leaves
labeled with texts. Similarly, a query as shown in 4.1 can
also be represented as a tree labeled with tags and texts (or
key words).

Definition 2 (tree embedding) Let T1 and T2 be two labeled
trees. A mapping M from the nodes of T2 to the nodes of T1
is an embedding of T2 into T1 if it preserves labels and
ancestorship. That is, for any pair of nodes u and v of T2, we
require that

a) M(u) = M(v) if and only if u = v,

b) label(u) = label(M(u)), and

c) u is an ancestor of v in T2 if and only if M(u) is an
ancestor of M(v) in T1.

Here, the mapping M can be implemented as a method dis-
cussed in [24] or any method used in [26, 26, 4, 12].

Example 1. As an example, consider the trees: T1 and T2
shown in Fig. 4, representing the query shown discussed 4.1
and the document shown in Fig. 2, respectively. If a mapping
as shown in Fig. 3 can be determined, we’ll have a tree-em-
bedding of the tree representing the query into the tree rep-
resenting the document as shown in Fig. 4.

For the query evaluation purpose, we’ll return that document

as one of the answers.

In the following, we proposed a top-down algorithm for

Fig. 3. Illustration for mappings

M(T1.hotel-room-reservation) = T2.hotel-room-reservation
M(T1.name) = T2.name
M(T1.location) = T2.location
M(T1.Travel-lodge) = T2.?x

M(T1.city-or-district) = T2.city-or-district
M(T1.address) = T2.address
M(T1.Winnipeg) = T2.Winnipeg
M(T1.‘515 Portagee Ave.’) = T2.‘515 Portage Ave.’

checking whether T2 is embedded in T1, which needs
O(|T1|⋅|T2|) time and is worse than the bottom-up algorithm
discussed in [8]. However, this top-down algorithm can be
combined with the so-call signature technique to discard
non-relevant document trees or subtrees as early as possi-
ble. Below we first describe this algorithm. Then, how to
integrate signatures into the algorithm will be discussed in
graet detail.

The following algorithm checks whether a tree T1 contains
another tree (or forest) T2.

Algorithm tree-embedding(T1, T2)
input: two trees: T1 and T2.
output: if T1 contains T2, true; otherwise, false.

let r1 and r2 be the roots of T1 and T2, respectively;
(*If T2 is a forest, assume that it has a virtual root, which match-

es
any label.*)
if label(r1) = label(r1) then

{let , ..., be the subtrees of r1;

 let , ..., be the subtrees of r2;
 if there exist i1, ..., il such that

then return true;
else if there exists some i such that

tree-embedding(, ∪ ... ∪)
then return true;}

else if there exists some i such that
tree-embedding(, T2)

then return true;
else return false;}

The algorithm works top-down. First, it checks whether the
root r1 of T1 matches the root r2 of T2. If it is the case, all
the subtrees of r2 will be checked to see whether they are
contained in the corresponding subtrees of r1. If such con-
tainment cannot be achieved, the algorithm will check
whether all the subtrees of r2 is entirely contained in some
subtree of r1. If the root r1 of T1 does not match the root r2
of T2, we will check the containment of T2 in a single sub-
tree of r1, too.
In the following, we discuss how to integrate the signature
technique into a top-down tree embedding.

Definition 3. (Signature [15]) A signature for a key word is
a hash-coded bit string of length k with m bit set to “1”,
where k and m are determined according to the number of

T1: T2:hotel-room-reservation

name location type reservation-time

#PCDATA

#PCDATA

city-or-
district

state country address rooms price

#PCDATA
#PCDATA

#PCDATA

#PCDATA

from to

#PCDATA
#PCDATA

#PCDATA

#PCDATA

#PCDATA

number

street

post-
code

hotel-room-reservation

name location

?x

Winnipeg

city-or-district address

515 Portage Ave.

street

Fig. 4. Illustration for tree embedding

T1
1

T1
k

T2
1

T2
l

tree embedding T1
ij T2

j,()–

j 1=

l

∏

T1
i

T2
1

T2
l

T1
i

relevant documents in a database and the average number of
key words in a document.

For example, using a hash function, we may assign three sig-
natures with k = 12 and m = 4: 010 000 100 110, 100 010 010
100 and 010 100 011 000 to three key words: SGML, data-
base and information, respectively.

Definition 4. (Document signature) Let kw1, ..., kwn be the
key words of a document. Let si (i = 1, ..., n) be the signature
for kwi. Then, the signature s for the document is set to be s1
∨ ... ∨ sn.

Assume that a document has only three key words: SGML,
database and information. Their signatures are shown as
above. Then, the document signature: 110 110 111 110 can
be obtained by superimposing the three signatures together
(see Fig. 5).

The goal of document signatures is to work as an inexact fil-
ter. Given a query q, we generate a signature sq for it using
the same hash function as for documents. Then, we compare
the query signature against the document signatures (which
are stored in a signature file) and many nonqualifying signa-
tures are discarded. The rest are checked using the tree-em-
bedding algorithm. Three possible outcomes of the
comparison are exemplified in Fig. 5: (1) the document
matches the query; that is, for every bit set to 1 in sq, the cor-
responding bit in the document signature s is also set (i.e., s
∧ sq = sq) and the document contains really the query word;
(2) the document doesn’t match the query (i.e., s ∧ sq ≠ sq);
and (3) the signature comparison indicates a match but the
document in fact doesn’t match the search criteria (it is
called a false drop). In order to eliminate false drops, the
document must be examined after the document signature
signifies a successful match. We do this by using a tree-em-
bedding check.

The purpose of using a signature file is to screen out most of
the nonqualifying documents. A signature failing to match
the query signature guarantees that the corresponding docu-
ment can be ignored. Therefore, unnecessary document ac-
cesses are prevented. Signature files have a much lower
storage overhead and a simple file structure than inverted in-
dexes [34].

To generate a query signature, we introduce the following
concepts.

Definition 5. (Query tree) Let P1 ∧ ... ∧ Pn be a query q with
each Pi (i = 1, ..., n) being of the form: /pi1/... / /[op
value], where each pij is a tag, op ∈ {=, ⊆ }, and value is a
set of key words (i.e., kw1 ∧ ... ∧ kwl or kw1 ∨ ... ∨ kwl).
Then, all the paths appearing in q constitute a query tree, de-
noted Tq. (see Fig. 6(a) for illustration.)

Definition 6. (Query signature tree) Let /pi1/... / be a
path in a Tq (from the root to some leaf). Let /pi1/... / /

object:

attribute signature:

John

12345678

professor

010 000 100 110

100 010 010 100

010 100 011 000

110 110 111 110object signature (OS)

∨

Fig. 5. Signature generation and comparison

queries:

John

Paul
11223344

query signatures:

010 000 100 110

011 000 100 100
110 100 100 000

matching results:

match with OS

no match with OS
false drop

John 12345678 professor

piik 1–
piik

piik
piik 1–

[op value] be the corresponding subquery in q. Then, if
value is of the form: kw1 ∧ ... ∧ kwl, then its signature svalue
= ∨ ... ∨ , where each represents the signature
of kwi. If value is of the form: kw1 ∨ ... ∨ kwl, then its signa-
ture svalue = ∧ ... ∧ . The query signature tree is de-
noted Ts. The signature of a non-leaf node in Tq can be
obtained by superimposing the signatures of its child nodes.

For example, for the local part of our exemplary query, the
query tree and the query signature tree are shown in Fig.
6(a) and (b), respectively.

Based on the above concepts, the evaluation of a query
against a document database can be conducted using the fol-
lowing algorithm. Its inputs are a document tree and a query
tree.

Algorithm signature-tree-embedding(T1, T2)
input: two tree: T1 and T2.
output: if T1 contains T2, true; otherwise, false.

let s1 and s2 be the signatures of T1 and T2, respectively;
if s2 does not match s1 then return false;
else {

let r1 and r2 be the roots of T1 and T2, respectively;
if label(r1) = label(r1) then
{let , ..., be the subtrees of r1;

 let , ..., be the subtrees of r2;
 if there exist i1, ..., il such that

then return true;
else if there exists some i such that

tree-embedding(, ∪ ... ∪))
then return true;}

else if there exists some i such that
tree-embedding(, T2)

then return true;
else return false;}}

The above algorithm is similar to the Algorithm tree-em-
bedding(T1, T2). The main difference is that at the very be-
ginning, the signatures of T1 and T2 are compared to avoid
useless searching. We notice that this optimization is recur-
sively applied.

4.3 Database connection for remote query evaluation

In this subsection, we mainly address the database connec-
tion. It is necessary for evaluating a remote query. First, we
discuss how to organize URLs in a local database in 4.3.1.
Then, in 4.3.2, we discuss how a remote information
source is recognized.

4.3.1. Web connection

As mentioned in the previous section, to evaluate a remote
query, a WDDB has to know where to send that query. This
can be done by maintaining a so-called association list of
concepts. Each item of an association list is a triple of the

piik

skw1
skwl

skwi

skw1
skwl

hotel-room-reservation

name location

?x

Winnipeg

city-or-district address

515 Portage Ave.

street

Fig. 6. Query tree and query signature

hotel-room-reservation

name location

?x

Winnipeg

city-or-district address

515 Portage Ave.

street101 100 000 100

101 100 000 100

101 110 000 100

000 000 000 000

000 000 000 000

(a) (b)

T1
1

T1
k

T2
1

T2
l

tree embedding T1
ij T2

j,()–

j 1=

l

∏

T1
i

T2
1

T2
l

T1
i

form: (G, C, S), where G represents an information unit, e.g.,
some hotel information in a city, C stands for a set of URLs
connecting to some remote databases containing the rele-
vant information such as car rental in that city, and S is a
descriptor of the relationship between G and C. Assume that
a document database contains only the information on hotel.
Then, the query shown in 4.1 can not be answered com-
pletely. However, using a corresponding item, say (‘hotel’,
{url1, url2, ..., urli}, ‘car rental’) in the association list, the
system can switch over to the document databases pointed
to by url1, url2, ..., urli to obtain the information on the car
rental.

In an association list, a same concept may appear multiple
times and some concepts are possibly closely related. To
handle these issues, we organize the association list in a dif-
ferent way. We extend the concept of mediators discussed in
[32], which is originally proposed to integrate heteroge-
neous information sources. Concretely, A mediator is com-
posed of two parts: an ontology and a set of articulations.
An ontology is a pair (T,), where T is a set of names, or
terms, and is a subsumption relation over T, i.e., a reflex-
ive and transitive relation over T. If a and b are two terms of
T, we say that a is subsumed by b if a b; e.g., Database
Informatics, Canaries Birds. An articulation is a set of
relationships between the terms of the mediator and the
terms of a local source. Through the articulations, the heter-
ogeneity of local databases is suppressed.

For our purpose, a mediator in a WDDB is defined to be a
tree structure and a set of URLs. In the tree structureℑ , a
node v is a pattern that is used to identify relevant informa-
tion sources. Similar to T, an edge from c to d inℑ repre-
sents that the concept represented by c subsumes the
concept by d. Associated with v (a node in ℑ ,), we have a set
of URLs pointing to the web pages matching the pattern
represented by v. As an example, consider the tree structure
shown in Fig. 7.

Such a tree structure is called an extended ontology (EO for
short) in the sense that a term in an ontology is extended to a
more complex structure, i.e., a pattern to describe the con-
cept more exactly. In an EO, a pattern is normally a tree to
represent an information structure for a concept (see
pattern3 in Fig. 7; it is used to recognize the pages for car
rental). In the simplest case, a pattern can be a key word and
in this case an EO is degenerated to a normal ontology. Such
a pattern is used to find pages relevant to a concept from
networks.

4.3.2 Web recognizer

To find the remote information sources related to a concept,
we need a mechanism to recognize web pages. Normally,
one can determine the similarity of two pages in different
ways. For instance, one can use the information retrieval
notion of textual similarity [24]. One could also use data
mining techniques to cluster pages into groups that share
meaningful terms (e.g., [22]), and then define pairs of pages
within a cluster to be similar. A third option is to compute

pattern1

pattern2 pattern3

pattern7pattern6pattern5pattern4

pattern1: vehicle rental pattern2: truck
pattern3: car

car
type
features

date&time

start

end

day
date

day
date

pattern4: truck with 4 cylinder
... ...

Fig. 7. Extended ontology

time

time

textual overlap by counting the number of chunks of text
(e.g., sentences or paragraphs) that pages share in common
[25, 26, 4, 12]. In all these schemes, there is a threshold
parameter that indicates how close pages must be to be con-
sidered similar (e.g., according to number of shared words,
n-dimensional distance, number of overlapping chunks).
This parameter needs to be empirically adjusted according
to the target application.

All the methods mentioned above don’t, however, pay atten-
tion to an important aspect of information: the structure of a
page. As we know, a page in HTML or XML format always
consists of a hierarchical structure, starting with a root ele-
ment as shown in Fig. 2.

Such structure information can be used to speed up page
matchings (since taking the structure of pages into account
can limit the search for similar terms to small parts of a
text). A frequently used technique to explore the similarity
of structures is tree matching; but it is too strict and a simi-
lar page may be filtered out undesirably. So we utilize the
tree embedding technique once again for this task.

5. Conclusion

In this paper, we have discussed the system architecture of a
WDDB, which is composed of three parts: a local document
database, a web connector, and a web recognizer. The local
document database can be considered as an information
source reachable through the network. It can also connect to
some other document databases through its web connector,
which maintains a set of URLs. Each URL is related to a con-
cept or a pattern that specifies the content of the demote da-
tabase. The task of the web recognizer is to perform web
recognition. It works as a web wrapper [3, 18] but is more
powerful in the sense that it recognizes a web page by check-
ing not only part of the page’s syntactic structure but the
whole page with semantics considered. It will associate a set
of URLs with a concept or a pattern which indicates the con-
tents of the document databases pointed to by the URLs.

References
[1] S. Abiteboul, Querying semi-structured data, in Proc. Int’l

Conference on Data Engineering (ICDE), 1997. http://www-
db.stanford.edu/pub/papers/icdt97.semistructured.ps.

[2] S. Abiteboul, S. Cluet, V. Christophides, T. Milo, G.
Moerkotte and J. Simeon, “Querying documents in object
databases,” Int. J. on Digital Libraries, Vol. 1, No. 1, Jan.
1997, pp. 5-19.

[3] P. Atzeni, G. Mecca and P. Merialdo: Semistructured and
structured data in the web: going back and forth, Proc. of
ACM SIGMOD Workshop on Management of Semi-struc-
tured Data (1997), pp. 1-9.

[4] A.Z. Broder, S.C. Glassman and M.S. Manasse, Syntactic
clustering of the web, in Proc. of 6th Int. World Wide Web
Conference, April 1997, pp. 391-404.

[5] Y. Chen, K. Aberer, Layered Index Structures in Document
Database Systems, Proc. 7th Int. Conference on Information
and Knowledge Management (CIKM), Bethesda, MD, USA:
ACM, 1998, pp. 406-413.

[6] Y. Chen and K. Aberer, Combining Pat-Trees and Signature
Files for Query Evaluation in Document Databases, in: Proc.
of 10th Int. DEXA Conf. on Database and Expert Systems Ap-
plication, Florence, Italy: Springer Verlag, Sept. 1999. pp.
473-484.

[7] Y. Chen and K. Aberer, SGML DataBlade - A Document Da-
tabase System, in: Proc. of Int. Symposium on Database Ap-
plication in Non-Traditional Environments, Tokyo, Japan,
IEEE, Dec. 1999, pp. 37-40.

[8] W. Chen, More Efficient Algorithm for Ordered Tree Inclu-
sion, J. Algorithms, 26, 370-385 (1998).

[9] Y. Chen, A New Way to Speed-up Recursion in Relational
Databases, in: Proc. of 13th Information Resources Manage-
ment Association Intl. Conference, Seattle, USA, May 19-22,
2002, pp. 356-360.

[10] V. Christophides, S. Cluet and J. Simeon, “On Wrapping Que-
ry Languages and Efficient XML Integration,” in Proc. of the
ACM SIGMOD Conf. on Management of Data, pp. 141-152,
2000.

[11] Copernic: http://www.copernic.com.
[12] J. Cho, N. Shivakumar, H. Garcia-Molina, “Finding repli-

cated web collections,” http://dbpubs.stafford.edu/pub/1999-
64.

[13] S.J. DeRose and D.D. Durand, “Making Hypermedia Work: A
User’s Guide to HyTime,” Kluwer Academic Publishers, Lon-
don, 1994.

[14] A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and
D.Siciu, XML-QL: A Query Langauge for XML, Technical
report, World Wide Web Consorttium, 1989, http://
www.w3.org/TR/NOTE-xml-ql.

[15] C. Faloutsos, “Access Methods for Text,” ACM Computing
Surveys, 17(1), 1985, pp. 49-74.

[16] C. Faloutsos, “Signature Files,” in: Information Retrieval:
Data Structures & Algorithms, edited by W.B. Frakes and R.
Baeza-Yates, Prentice Hall, New Jersey, 1992, pp. 44-65.

[17] I.S. Graham: HTML-documentation and style guide, http://
www.utirc.utoronto.ca/HTMLdocs/NewHTML/htmlin-
dex.html, 1994.

[18] C. Hsu: Initial results on wrapping semistructured web pages
with finite-state transducers and contextual rules, Proc. of
AAAI-98 Workshop on AI and Information Integration
(1998), pp. 66-73.

[19] KnowAll: http://www.worldfree.net.
[20] D. Konopnicki and O. Shmueli, W3QS: A query system for

the world-wide web, in Proc. of the 21st VLDB Conference,
Zurich, Switzerland, 1995, pp. 54-65.

[21] T.B. Lee: RFC 1738: Uniform Resource Locators, http://
www.w3.org/hypertext/WWW/Addressing/rfc1738.txt, Dec.
1994.

[22] M. Perkowitz and O. Etzioni, Adaptive web sites: automati-
cally synthesizing web pages, in proc. of 15th National Conf.
on Computer and Human Interaction (CHI’97), 1997.

[23] J. Robie, J. Lapp, and D. Schach, XML Query Language
(XQL), http://www.w3.org/TandS/QL/QL98.

[24] G. Salton, Introduction to modern information retrieval,
McGraw-Hill, New York, 1983.

[25] N. Shivalumar and H. Garcia-Molina, SCAM: a copy detec-
tion mechanism for digital documents, in proc. of 2nd Int.
Conf. on Theory and Practice of Digital Libraries (DL’95),
Austin, Texas, June 1995.

[26] N. Shivalumar and H. Garcia-Molina, Building a scalable and
accurate copy detection mechanism, in Proc. of 1st Int. Conf.
on Digital Libraries (DL’96), Bethesda, Maryland, March
1996.

[27] Squid: http://www.squid-cache.org.
[28] T. Fiebig and G. Moerkotte, “Algebraic XML Construction in

Natix,” in Proc. of the 2nd Int. Conf. on Web Information Sys-
tems Engineering, pp. 250-259, 2001.

[29] M. Volz, K. Aberer and K. Böhm, “Applying a Flexible
OODBMS-IRS_Coupling to Structured Document Han-
dling,” Proc. of 12th Int. Conf. on Data Engineering (ICDE),
New Orleans, 1996, pp. 10-19.

[30] World Wide Web Consortium, Extensible Markup Language
(XML) 1.0. http//www.w3.org/TR/1998/REC-xml/19980210,
Febuary 1998.

[31] World Wide Web Consortium, Extensible Style Language
(XML) Working Draft, Dec. 1998. http//www.w3.org/TR/
1998/WD-xsl-19981216.

[32] G. Wiederhold, “Mediators in the Architecture of Future
Information Systems,” IEEE Computer, 25:38-49, 1992.

[33] K. Wang and H. Liu, Discovering structural association of
semistructured data, IEEE transaction on knowledge and
data engineering, Vol. 12, No. 3, May/June 2000, pp. 353-
371.

[34] J. Zobel, A. Moffat and K. Ramamohanarao, “Inverted Files
Versus Signature Files for Text Indexing”, ACM Transaction
on Database Systems, Vol. 23, No. 4, Dec. 1998, pp. 453-490.

	Query Evaluation and Web Recognition in Document Databases

