
Tree Inclusion Algorithm, Signatures and Evaluation
of Path-Oriented Queries

Yangjun Chen*, Yong Shi+, and Yibin Chen*
*Dept. of Applied Computer Science

University of Winnipeg, Manitoba, Canada R3B 2E9
+Dept. of Computer Science

University of Manitoba, Manitoba, Canada R3T 2N2
ABSTRACT
In this paper, a method to evaluate path-oriented queries in docu-
ment databases is proposed. The main idea of this method is to han-
dle the evaluation of a path-oriented query as a tree inclusion
problem. A new algorithm for tree-inclusion is discussed, which in-
tegrates a top-down process into a bottom-up searching strategy. On
the one hand, the algorithm can be arranged to access the data on
disk page-wise and fits therefore within a database environment. On
the other hand, the algorithm can be combined with the signature in-
dexing technique to cut off useless subtree inclusion checkings as
early as possible. Experiments have been conducted to compare this
method with some existing approaches, which shows that the inte-
gration of the signatures into the top-down tree inclusion is highly
promising.

Categories & Subject Decriptors: H.2.4
General Terms: Databases, Algorithms, Performance
Key Words: XML document, path oriented queries, tree in-
clusion, signatures, indexes

1. INTRODUCTION
In query languages proposed for XML, and even more generic
SGML query languages, path-oriented queries play a prominent
role. By “path-oriented” we mean queries that are based on the path
expressions including element tags, attributes, and key words. As an
example, consider the following query in XPath expression:
Q1: hotel-room-reservation[name/text()]/location[city-or-ditrict

[text() = 'Winnipeg']/address [//number[text() = '510']//
street[text() = ’Portage Ave.’].

This path-oriented query asks for the name of the hotel located in
510 Portage Ave., Winnipeg, and can be represented as a tree shown
in Fig. 1(a). In the query, ‘/’ is the child operator which selects from
immediate child nodes, and ‘//’ is the descendant operator which se-
lects from arbitrary descendant nodes.
As another example, the query below is just a single path:

Q2: letter//body/*/para [text() contain ‘visited’]

where [text() contain ‘visited’] is a predicate, enquiring whether el-
ement para’s text() contains a word ‘visited’. This query is pictorial-
ly shown in Fig. 1(b).
In the rest of the paper, we mainly discuss how such queries can be
evaluated.

A lot of work has been done on this issue [4, 8, 11, 12]. However, all
the methods proposed fail to recognize that the evaluation of a path-
oriented query is in essence a tree-inclusion problem, and no effort
has been made in them to analyze the nature of this problem.

In the following, we show some of existing strategies and analyze
their computational complexities. The first one is based on Indexing
elements and words [12], the second is based on Indexing paths and
words [8], and the third is based on indexing tree structures [11]. All
these methods are somehow related to our method to be discussed.

Indexing elements and words
There is a lot of work that considers using relational database tech-
niques to store and retrieve XML documents, such as those dis-
cussed in [4, 8, 11, 12]. Among them, the method discussed in [12]
is inversion-based. In this method, two kinds of inverted indexes are
established for text words and elements, by means of which a text
word (or an element) is mapped to a list, which enumerates all the
documents containing the word (or the element) and its positions
within a document. To speed up a query evaluation, the position of a
word (or an element) is recorded as follows:

- (Dno, Wposition, level) for a text word,
- (Dno, Eposition, level) for an element,

where Dno is its document number, Wposition is its position in the
document, and level is its nesting depth within the document; Eposi-
tion is a pair: <s, e>, representing the positions of the start and end
tags of an element, respectively. For instance, the document shown
in Fig. 2(a) is indexed as illustrated in Fig. 2(b). The index for ele-
ments is called E-index and the index for words is called T-index.

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’06, April 23-27, 2006, Dijon, France.
Copyright 2006 ACM 1-59593-108-2/06/0004…$5.00.

hotel-room-reservation

name location

text()

Winnipeg

city-or-

letter

Portage Ave.

streetnumber

515

district
address

body

para

visited

(a) (b)

//

*

/ /

//

////

Fig. 1. Tree representation of XPath queries

<hotel-room-reservation filecod=”1302”>
<name>Travel-lodeg</name>

<number>500</number>

<location>
<city-or-district>Winnipeg</city-or-district>
<state>Manitoba</state>

</reservation-time>

</location>

</hotel-room-reservation>

(a)

<country>Canada</country>
<address>

<street>Portage Ave.</street>
<post-code>R3B 2E9</post-code>

</address>

<type>
<rooms>one-bed-room</room>
<price>$119.00</price>

</type>
<reservation-time>

<from>April 20, 2002</from>
<to>April 28, 2002</to>

(1, <1, 45>, 0) ...

(1, <2, 4>, 1) ...

(1, <5, 28>, 2) ...
... ...

hotel-room-reservation

name

location
...

E-index:

(1, 3, 2) ...

(1, 7, 3) ...
(1, 10, 3) ...
... ...

Travel-lodge

Winnipeg
Manitoba
...

T-index: (b)

Fig. 2. A sample XML file and its inverted lists

The Author is supported by NSERC 239074-01 (242523) (Natural Sciences and Engineering Council of Canada).
1020

Let (d, x, l) be an index entry for an element a. Let (d’, x’, l’) be an
index entry for a word b. Then, a contains b iff d = d’ and x.s < x’ <
x.e. Let (d’’, x’’, l’’) be an index entry for another element c. Then,
a contains c iff x.s < x’’.s and x.e > x’’.e. Using these properties,
some simple path-oriented queries can be evaluated. For instance, to
process the query: /hotel-room-reservation/location/city-or-district
[text() = Winnipeg], the inverted lists of ‘hotel-room-reservation’,
‘location’, ‘city-or-district’ and ‘Winnipeg’ will be retrieved and
then their containment will be checked according to the above prop-
erties. In a relational database, E-index and T-index are mapped into
the following two relations:

E-index(element, docno, begin, end, level), and
T-index(word, docno, wordPosition, level),

where the primary keys are underlined.
The index structures are efficient for simple cases, such as whether
a word is contained in an element. However, in the case that a query
is a non-trivial tree, the evaluation based on these index structures
are an exponential time process. To see this, consider the query: /ho-
tel-room-reservation/location/address/street [text() = Portage Ave.].
To evaluate this query, four joins have to be performed. They are the
self-joins on E-index relation to connect ‘hotel-room-reservation’
and ‘location’, ‘location’ and ‘address’, and ‘address’ and ‘street’, as
well as the join between E-index and T-index relations to connect
‘street’ and ‘Portage Ave.’ In general, for a document tree with n
nodes and a query tree with m nodes, the checking of containment
needs O(nm) time in the worst case.
Indexing paths and words
The above method is improved by Seo et al. [8] by introducing in-
dexes on paths to reduce the number of joins as well as the sizes of
relations involved in a join operation. This is achieved by establish-
ing four relations to accommodate the inverted lists:

Path(pathID, path),
PathIndex(pathID, docno, begin, end),
Word(wordID, word), and
WordIndex(wordID, docno, pathID, position).

In this way, the number of joins is dramatically decreased. For ex-
ample, to process the same query: /hotel-room-reservation/location/
address/street [text() = Portage Ave.], only two joins are needed. The
first join is between the Path and WordIndex relations with the join
condition:

Path.path = ‘hotel-room-reservation/location/address/ street’ and
Path.pathID = WordIndex.pathID.

The second join is between the result R of the first join and the Word
relation with the join condition:

R.wordID = Word.wordID and Word.word = ‘Portage Ave.’.
In general, the query evaluation based on such an index structure
needs k joins, where k is the number of the paths in a query. Howev-
er, such a time improvement is at cost of memory space since in the
relation Path the element names are repeatedly stored. Concretely,
for a document with n nodes, the size of Path-relation is on the order
of O(n⋅h), where h is the average height of a document tree. There-
fore, the time complexity of this method is O(k⋅l⋅n⋅h), where l stands
for the number of the (key) words in a document.

- indexing tree structures

In [11], a different method was proposed, which stores a document
as a sequence: (a1, p1), ..., (ai, pi), ..., (an, pn), where each ai is an el-
ement or a word in the document, and pi a path from the root to it. In
the sequence, the pairs appear in the preorder of the document tree.
For instance, the XML document shown in Fig. 2(a) will be stored
in the following form:

In practice, all the paths can be stored in a separate set without re-
peated paths and in a pair such as (ai, pi), pi is just an address. In this

way, the space overhead can be reduced. However, if all the paths are
different, the document storage can be huge and takes O(n⋅h) space
as the method discussed in [8]. To speed up the query evaluation,
each node is associated with a pair of integers in the same way as the
method discussed in [12] to recognize the ancestorship of elements
and words. Over such pairs, a B+-tree is established. In addition, a
trie structure (called suffix tree in [37]) is constructed over all the
document sequences and labeled in the same way for a single docu-
ment tree. Again, over such labels, another B+-tree is built. When a
query arrives, it will be transformed into a pair sequence which is
scanned against all the document sequences. During this process, the
labels associated with each pair in a document sequence are used to
control the searching so that only those pairs in a document sequence
are visited, which are descendants of the current pair. Especially,
both the B+-trees are employed to do the searching quickly. Since for
each current pair, all its descendants will be checked and for check-
ing each pair a path has to be scanned, the time complexity is
O(n⋅m⋅h). This time complexity is still very high, considering the
state-of-the-art of the research on the so-called ordered tree inclu-
sion problem, which can be adapted to handle path-oriented queries.
Up to now, the best algorithm for solving this problem is O(n⋅p),
where p represents the number of the leaf nodes of a query tree [2].
The method to be discussed below needs O(n⋅hq) time, where hq rep-
resents the height of a query tree.

The rest of the paper is organized as follows. In Section 2, we first
describe the main ideas of our method and then discuss a new tree
inclusion algorithm for the evaluation of path-oriented queries. In
Section 3, we show how the signature technique can be integrated
into it to cut off non-relevant branches. Finally, a short conclusion is
set forth in Section 4.

2. QUERY EVALUATION BASED ON TREE
INCLUSION AND SIGNATURES
Now we begin to discuss our method based on the tree inclusion.
First, we give a general description of our method in 2.1. Then, we
show why the evaluation of a path oriented query is a tree inclusion
problem in 2.2. Next, we present a new algorithm, which is particu-
larly suitable in a database environment in 2.3.

2.1 General description
Our method can be described as a pair <S, A>, where S = s1, ..., si, ...
, sn is the preorder sequence of a document tree and A represents a
tree inclusion algorithm. In S, each si is quadruple (ai, ci, bi, signa-
turei), where ai is an element or a text, ci is a pointer to the first child
node of ai, bi is a pointer to the right sibling of ai, and signaturei is a
bit string of a certain length. We use ci and bi to keep the tree struc-
ture, and signaturei to index the subtree rooted at ai. For example,
the XML document shown in Fig. 2(a) can be stored in a way shown
in Fig. 3.

How to construct the signature associated with a node is discussed
in 3.1.
When a query arrives, it will be transformed to a preorder sequence
of the query tree: Q = q1, ..., qj, ... , qm, where each qj is a tuple of
five elements (qaj, qcj, qbj, q-signaturej, q-labelj). Here, q-signaturej
is generated in the same way as for the document tree nodes and q-
labelj is ‘/’, ‘//’, or ‘*’, which is the label marking the edge from the
parent of qj to qj. For example, The query tree shown in Fig. 1(a) will
be transformed into a sequence shown in Fig. 4.

(hotel-room-reservation,
(name,
(Travel-lodge,
(location,
(city-or-district,
(Winnipeg,

∅)
hotel-room-reservation)
hotel-room-reservation.name)

1
2
3
4
5
6

hotel-room-reservation)
hotel-room-reservation.location)
hotel-room-reservation.location.city-or-district)

...

(hotel-room-reservation,
(name,
(Travel-lodge,
(location,
(city-or-district,
(Winnipeg,

1001
1001
1000

1
2
3
4
5
6

1001
1001
1001

...

Fig. 3. A document
sequence

2,
3,
∅,
5,
6,
∅,

∅,
∅,
∅,
2,
∅,
∅,

0011
0001
0011
0011
0001
0001

1110)
1100)
0100)
1110)
1100)
0100)

(hotel-room-reservation,
(name,
(text(),
(location,
(city-or-district,
(Winnipeg,

1
2
3
4
5
6

Fig. 4. A query
sequence

(address,7
8
9

(number,
(515,
...

2,
3,
∅ ,
5,
6,
∅ ,
8,
9,
∅ ,

∅ ,
4,
∅ ,
∅ ,
∅ ,
∅ ,
∅ ,
10,
∅ ,

1001 0011 1110, ∅)
1001 0001 1100, ‘/’)
∅ , ‘/’)
1001 0011 1110, ‘/’)
1001 0001 1100, ‘/’)
1001 0001 0100, ‘/’)
1001 0000 1100, ‘/’)
1001 0001 0100, ‘//’)
1000 0001 0100, ‘//’)
1021

After the query transformation, the tree inclusion algorithm A will be
invoked to check all the document sequences against the query se-
quence. During this process, the signatures are used to cut off non-
relevant documents, as well as useless subtrees within a document as
early as possible.

2.2 Tree inclusion v.s. path oriented queries
As pointed out by Kilpelainen and Mannila[5], both documents and
queries can be considered as labeled trees and the evaluation of a
query can be thought of as a tree embedding (or say, tree inclusion)
problem. In the following, we first define the concept of tree embed-
ding. Then, we show that to evaluate a query, we will check whether
the query tree is included in some document trees.
Definition 1 (labeled tree) A tree is called a labeled tree if a func-
tion label from the nodes of the tree to some alphabet is given, or
each node in the tree is labeled.
Obviously, an XML document can be represented as a tree with the
internal nodes labeled with tags and the leaves labeled with texts;
and a query as shown in Section 1 can also be represented as a
labeled tree.
Definition 2 (tree embedding) Let T and P be two ordered, labeled
trees. A mapping M from the nodes of P to the nodes of T is an
embedding of P into T if it preserves labels, left-to-right ordering
and ancestorship. That is, for all nodes u and v of P, we require that

a) M(u) = M(v) iff u = v,
b) label(u) = label(M(u)),
c) u is an ancestor of v in P if and only if M(u) is an ancestor

of M(v) in T, and
d) v is to the left of u iff M(v) is to the left of M(u).

An embedding is root preserving if M(root(P)) = root(T). Accord-
ing to [5], restricting to root-preserving embedding does not lose
generality.
Example 1. As an example, consider the trees: T and P shown in Fig.
5(a), representing the document shown in Fig. 2(a) and the query
shown in Fig.1(a), respectively. If a mapping as shown in Fig. 5(b)
can be determined, we will have a tree-embedding of the query tree
P into the document tree T, as indicated by the dashed lines.
For the query evaluation purpose, we’ll return that document as one
of the answers.
However, the above example is just a special case of XPaths. To de-
velop a general strategy, any algorithm to solve the tree inclusion
problem has to be extended in such a way that the following issues
can be addressed.
1. In an XPath query, different predicates may appear, such as =, <,

>, ‘contains’, and so on.
2. The ordering of siblings in a query tree may be different from that

in a document tree.
3. The edges in a query tree may be labeled with different connec-

tors (‘/’ or ‘//’), or a wild card ‘*’.
The first problem can be handled by changing the label equivalence,
i.e., label(u) = label(M(u)), to the corresponding predicate if u is a
leaf node.
In order to tackle the second issue, we will change the sibling order

in a query according to DTD if it is available. If the corresponding
DTD does not exist, we simply use the lexicographical order of the
names of the elements/attributes. In the case that a branch has mul-
tiple identical child nodes, the tree isomorphism problem cannot be
avoided by enforcing sibling order. For example, a query of the
form: /X[Y/Z/B]/Y/A can be represented as a tree shown in Fig. 6(a)
or a tree shown in Fig. 6(b).

In this case, a sibling order cannot be specified lexicographically or
by DTD schema. In order to find all matches, we have to check these
two trees separately and unify their results.
The treatment of different connectors needs to change the algorithm
itself. In the following, we will first present a new top-down algo-
rithm and then discuss how to adapt it to different connectors.

2.3 A new top-down algorithm
A lot of methods have been developed to check tree inclusion in the
theory research community, such as the methods discussed in [1, 2,
5, 6]. However, all these methods work in a bottom-up way and are
not suitable for database applications since they all assume that both
the target and pattern trees can be completely accommodated in
main memory. In the case of large volume of data, it is not possible.
For this reason, we design a new algorithm for the tree inclusion
with a top-down process integrated into a bottom-up searching. This
algorithm has the following advantages.
1. The time complexity of the algorithm is comparable to the best

pure bottom-up method [2]. In fact, the method in [2] needs
O(n⋅Pl) time while ours needs only O(n⋅Ph) time, where Pl stands
for the number of the leaf nodes in P and Ph for the height of P.

2. Our algorithm works well in a database environment for the rea-
son that it checks a target tree in a top-down fashion and each time
only part of the target tree is manipulated.

3. The top-down searching enables us to differentiate the edges la-
beled with ‘/’,‘//’, or ‘*’ in a query tree; and handle them in dif-
ferent ways.

- Algorithm description

In the following discussion, T = <t; T1, ..., Tk> represents a tree,
where t = root(T) and T1, ..., Tk are the subtrees of t; and G = <P1, ...,
Pq> represents a forest containing subtrees P1, ..., Pq.
Our algorithm attempts to find the number of subtrees j (≥ 0) within
an ordered forest G = <P1, ..., Pq> (q ≥ 1), which are able to be
included in a target tree T. If j = q, we say that G is included in T. If
j < q, then only the subtrees P1, ..., and Pj can be included in T. Let
p1, ..., pq be the roots of P1, ..., Pq , respectively; and t be the root of
T. Since a forest G does not have a root, we create a virtual node pv
to serve as a substitute for root(G). Thus, root(G) will return pv if G
= <P1, ..., Pq> with q > 1 (i.e., G is a real forest), and will return p1
if q = 1.
There are three cases that need to be considered when designing an
algorithm to check the tree embedding:

X
Y Y
Z
B

A
Y
A

X
Y
Z
B

(a) (b) Fig. 6. Query trees

T:
P:hotel-room-reservation hotel-room-reservation

M(P.hotel-room-reservation)

M(P.name) = T.name
= T.hotel-room-reservation
Fig. 5. Illustration for tree embedding
(a) (b)

M(P.?x) = T.Travel-lodge name location type reservation-time

Travel-lodge

Winnipeg

city-or-
district

state country address rooms price

Manitoba

Canada

515

one-bed-room

from to

$119.00

April 20, 2002

April 28, 2002

Portage Ave.

R3B 2E9

number

street

post-
code

name location

text()

Winnipeg

city-or-district address

Portage Ave.

street

M(P.city-or-district

M(P.Winnipeg) = T.Winnipeg

M(P.515) = T.515

number

515

M(P.‘Portagee Ave.’)
= T.‘Portage Ave.’

M(P.location) = T.location

M(P.address) = T.address
 = T.city-or-district

1022

input: T = <t; T , ..., T >, G = <p; P , ..., P >
Case 1: root(G) ≠ pv (i.e., G = <P> is a tree and root(G) = p), and
label(p) ≠ label(t). If G is included in T, then there must exist a sub-
tree Ti of t such that it contains the whole G. The algorithm should
return 1 if an embedding can be found and 0 if it cannot. (See Fig. 7
for illustration.)
For instance, if the root t of the document tree shown in Fig. 5 does
not match the root p of the query tree, we will try to find a subtree of
t, which includes the whole query tree.
Case 2: root(G) ≠ pv (i.e., G = <P> and root(G) = p), and label(p)
= label(t). Let <P1, ..., Pl> (l ≥ 0) be the forest of subtrees of p and
<T1, ..., Tk> the forest of subtrees of t. If G is included in T, there
must exist two sequences of integers: k1, ..., kg and l1, ..., lg (g ≤ l)
such that includes < , ..., > (i = 1, ..., g, l0 = 0, lg =
l), where < , ..., > represents a forest containing subtrees

, ..., and . Thus, if lg = l, the algorithm should return 1
since we have a root preserving inclusion of G in T. Otherwise, it
should return 0. (See Fig. 8 for illustration.)
For instance, since the root t of the document tree shown in Fig. 5
matches the root p of the query tree, we will first try to find all those
subtrees of p (the root of the query tree), which can be included in
the first subtree of t. Then, we will try to find a second group of sub-
trees of p, which can be included in the second subtree of t, and so
on.
Case 3: root(G) = pv (i.e., G is a forest) and there exists an integer
j (0 ≤ j ≤ q) such that <P1, ..., Pj> is included in T. If j = q, then the
whole G is able to be included in T. There are two possibilities to be
considered when looking for j. The first possibility is similar to Case
2, where there are two sequences of integers: k1, ..., kg and l1, ..., lg
(g ≤ q), which represent the order, in which the subtrees of root(G)
are included in the subtrees of root(T). In this case, j = lg. If j = 0, we
will check the second possibility to see whether there exists a root
preserving inclusion of P1 in T, i.e., label(p1) = label(t) and the sub-
trees of p1 are included in the subtrees of t. In this case, j = 1. (See
Fig. 9 for illustration.)
For instance, if we want to check whether the document tree shown
in Fig. 5 includes the two query trees shown in Fig. 1, we will first
try to find whether these two trees can be covered by the subtrees of
the root of the document tree (possibility 1). Since it is not the case,
we will check whether the document tree contains the first one of
the two query trees (possibility 2).

In terms of above analysis, we give our algorithm which consists of
two functions: top-down-process(T, G) and bottom-up-process(T,
G). By top-down-process(T, G), the first input is a tree and the sec-
ond can be a tree or a forest. By bottom-up-process(T, G), the first
input is a tree and the second is a forest. In the algorithm, a forest is
always handled as a tree with a virtual root.

Functionally, top-down-process() is designed to handle Case 1,
Case 2, and the second possibility in Case 3 while bottom-up-pro-
cess() is only for the first possibility in Case 3.
function top-down-process(T, G)

1 k 1 q
(*p may or may not be a virtual node.*)
output: if root(G) is virtual, returns j ≥ 0; else returns 1 if T includes G; otherwise
returns 0.
begin
1. if root(G) is virtual then
2. {if (|T | < |P1| + |P2| or p has only one child)
3. then G := P1;
4. else {j := bottom-up-process(T, G);
5. if (j = 0 and label(t) = label(P1’s root))

(*second possibility in Case 3*)
6. then {change P1’s root to a virtual node;

x := bottom-up-process(T, P1);
7. if (x = the number of the children of P1’s root)

then j := 1 else j := 0;}
8. return j;}}
9. if |T| < |G | return 0;
10. else { if (label(t) = label(p)) (*handling Case 2*)
11. then {p := virtual node;
12. j := bottom-up-process(T, G);
13. if (j = l) then return 1 else 0;}
14. else {if t is a leaf then return 0;(*handling Case 1*)
15. i := 1;
16. while (i ≤ k) do
17. {x := top-down-process(Ti, G);
18. if x > 0 then return 1;
19. i := i + 1;}
20. return 0;} }
end
function bottom-up-process(T, G)
input: T = <t; T1, ..., Tk>, G = <p; P1, ..., Pq>
output: j - an integer
begin
1. j := 0; i := 1;
2. while (j < q and i ≤ k) do
3. { x := top-down-process(Ti, G);
4. j := j + x; G := <p; Pj+1, ..., Pq>; i := i + 1;}
end

The algorithm begins from a checking to see whether G is a tree or
a forest (see line 1 in top-down-process(T, G)). If it is a tree, the
controls goes to line 9 to check whether |T| < |G |. If it is the case,
return 0 to show that T does not include G. Otherwise, we will
check whether the root t of T matches the root p of G (see line 10; it
is Case 2). If it is the case, we will check whether the subtrees of p
can be included in the subtrees of t by replacing p with a virtual
node and then calling bottom-up-process(T, G) (see lines 11 - 12; in
this case, we will be handling the second possibility of Case 3).
Otherwise, we have case 1 and the control goes to line 14. If t is a
leaf node, it is not possible for T includes G. So the algorithm
returns 0. If t is not a leaf node, we will try to find whether there
exists some subtree of t, which contains the whole G (see lines 15 -
20). If G is a forest (i.e., its root p is a virtual node), we will check
whether |T | < |P1| + |P2| or p has only one child (see line 2). If |T | <
|P1| + |P2|, T may includes P1, but not P1 and any other subtree
together. So we will check wether T includes P1. If p has only one
child, it indicates that p has only one subtree left unchecked. So we
will check wether T includes this subtree. In both cases, the control
goes to line 9 and we will be handling Case 1 or Case 2. Otherwise,
we will call bottom-up-process(T, G) to check the first possibility of
Case 3 (see line 4). If the subtree of t cannot cover any subtree of p
(i.e., j = 0; see line 5), we will check the second possibility of Case
3 (see lines 5 - 8). We notice that in line 5, we check both j = 0 and
label(t) = label(P1’s root). If t does not match P1’s root, the check-
ing of the second possibility of Case 3 cannot be successful since in
this case we have to find a subtree of t, which contains P1. We have
already done that and get j = 0, showing that such a subtree does not
exist.
In bottom-up-process(T, G), we check the subtrees of t one by one
against G1, G2, ..., Gj for some j, where each Gi (1 < i ≤ j) is a forest
obtained by removing those subtrees from Gi-1, which are found to
be covered by the checked subtrees of t in the previous iteration
steps (see lines 3 - 4.)

Tki li 1– 1+ li

li 1– 1+ Pli

li 1– 1+ Pli

T
G

}
}

label(root(T)) ≠ label(root(G))

tree G is included in Ti.

Fig. 7. Illustration

Ti

for Case 1

t

T1 Tk1 Tkg
Tk

T: p

P1 Pl1
Plg-1

G:
Plg

+1

 = Pl

...}} }}

include
include

Fig. 8. Illustration for Case 2

label(root(T) = label(root(G)
1023

- About handling ‘/’, ‘//’ and ‘*’

The above algorithm assumes that all the nodes on a path in a query
tree are connected by ‘//’. To handle ‘/’ and ‘*’ correctly, we mark
the edges in a query tree using ‘//’, ‘/’ and ‘*’ according to the orig-
inal query and deal with ‘/’ or ‘*’ as special constraints, which can
be done easily as below. Each time when we call a top-down recur-
sive call top-down-process(Ti, G) (see line 17 in Algorithm top-
down-process(T, G) and line 3 in Algorithm bottom-up-process(T,
G)), we will check the edge going to the root of G to see whether it
is marked with ‘/’, ‘//’, or ‘*’ and do the following:
- If the edge is marked with ‘/’, check the root of Ti against the root

of G immediately. If they don’t match, top-down-process(Ti, G)
will not be performed; but set x to 0. (x is the variable receiving the
return value of top-down-process(Ti, G).) Otherwise, top-down-
process(Ti, G) is conducted.

- If the edge is marked with ‘//’, top-down-process(Ti, G) is directly
conducted.

- If the edge is marked with ‘*’, add a virtual node pv as the parent
of G’s root and mark the edge from pv to G’s root with ‘/’. Denote
this modified tree G’ and call top-down-process(Ti, G’).

3. Integrating signatures into tree inclusion
An advantage of the top-down process (integrated into a bottom-up
strategy) is that we can integrate the signature technique into a tree
inclusion to speed up the evaluation of a kind of XPath queries, i.e.,
the queries contain only ‘contains’ predicates. We assign each node
v in T a bit string sv (called a signature), and each node u in P a bit
string su in such a way that if su matches sv then the subtree Tv rooted
at v may includes the subtree Pu rooted at u. Otherwise, Tv definitely
does not contain Pu. Here, by “matching”, we mean that for each bit
set to 1 in su, the corresponding bit in sv is also set to 1 while for a
bit set to 0 in su, the corresponding bit in sv can be 0 or 1. This meth-
od is similar to [7]. However, the combination of signatures into tree
inclusion is the first effort to handle this problem.

3.1 Signature technique
The signature technique was originally introduced as a text indexing
methodology. Nowadays, however, it is utilized in a wide range of
applications, such as in office filing, hypertext systems, relational
and object-oriented databases, as well as in data mining.
The main idea of the signature technique is that each word is pro-
cessed separately by a hashing function. The scheme sets a constant
number (m) of 1s in a [1..F] range. The resulting binary pattern is
called the word signature. Each text is seen to be composed of fixed
size logical blocks and each block involves a constant number (D) of
non-common, distinct words. The D word signatures of a block are
superimposed (bit OR-ed) to produce a single F-bit pattern, which is
the block signature stored as an entry in the signature file [3]. To de-
termine the length of signatures, we use the following formula [3]:

F × ln2 = m × D. (1)

Fig. 10 depicts the signature generation and comparison process of
a block containing three words (then D = 3), say “SGML”, “data-
base”, and “information”. Each signature is of length F = 12, in
which m = 4 bits are set to 1. When a query arrives, the block signa-
tures in the corresponding signature file are scanned and many non-
qualifying blocks are discarded. The rest are either checked (so that
the “false drops” are discarded; see below) or they are returned to the
user as they are. Concretely, a query specifying certain values to be
searched for will be transformed into a query signature sq in the same
way as for word signatures. The query signature is then compared to
every block signature in the signature file. Three possible outcomes
of the comparison are exemplified in Fig. 10: (1) the block matches
the query; that is, for every bit set in sq, the corresponding bit in the
block signature s is also set (i.e., s ∧ sq = sq) and the block contains
really the query word; (2) the block doesn’t match the query (i.e., s
∧ sq ≠ sq); and (3) the signature comparison indicates a match but the
block in fact doesn’t match the search criteria (false drop). In order
to eliminate false drops, the block must be examined after the block
signature signifies a successful match.

For the tree inclusion problem, we can assign each label a signature
in the same way as discussed above by using the method described
in [3]. But the signature associated with a node in a document tree is
defined as follows.
Definition 3. (node signature) Let v be a node in a tree T. If v is a leaf
node, its signature sv is equal to the signature assigned to its label.
Otherwise, sv = s ∨ ∨ ... ∨ , where s represents the signature
for the label associated with v, and , ... , and are the signa-
tures of v’s children: v1, ..., vn, respectively.
Example 2. Consider the tree shown in Fig. 11(a). If the signatures
assigned to the labels are those shown in Fig. 11(b). Each node in the
tree will have a signature as shown in Fig. 11(c).

Each time when we check a node u in P against a node v in T, we will
first check their signatures. If they don’t match, the subtree rooted at
v will be cut off and not be searched any more, reducing the time
overhead greatly.
Here, an important problem is how to determine the length of signa-
tures. Due to the superimposing of signatures along the tree paths,
the equation (1) shown above is not useful any more since it was es-
tablished only for the simple structure of sequential signature files.
However, if the length of signatures is not properly determined, as in
an S-tree [9], the signatures near the root will be very heavy (i.e,
populated with too many 1s in a signature) and the selectivity will be
reduced dramatically. For this reason, we make the following analy-
sis and develop a new method to estimate the signature length in

t

T1 Tk1 Tkg
Tk

T:
qv (virtual node)

P1 Pl 1 Plg-1

G:

...}} }}

include
include

t

T1 Tk1 Tkg
Tk

T:
qv (virtual node)

P1 Pl 1 Pl g-1

G:

Plg

+1

 = Pl

...}

include

Fig. 9. Illustration for Case 3

(a)

(b)

label(root(T) = label(root(P1)

possibility 1:

possibility 2:

Plg = Pl

block: ... SGML ... databases ... information ...
word signature:

SGML

database

information

010 000 100 110

100 010 010 100

010 100 011 000

110 110 111 110object signature (OS)

∨

Fig. 10. Signature generation and comparison

queries:

SGML

XML
informatik

query signatures:

010 000 100 110

011 000 100 100
110 100 100 000

matching results:

match with OS

no match with OS
false drop

sv1 vn sv1
svn

t0

t1

t11 t12 t21 t22

t2

T: a

b e

f e c d

Fig. 11. Node signatures

(a)

a:
b:
c:
d:
e:
f:

0101 0000
0011 1000
0001 0101

1010 1000
1100 0000

(b)

t0
a

1111 1101

t1
b

1111 1000 t2
e

1111 1101

t11

f

1010 1000 t12

e
1100 0000 t21

c
0001 0101 t22

d

0010 1000

(c)

0010 1000
1024

such a way that the above problem can be removed.
Consider two signatures s1 and s2. Assume that both of them are of
length F and with m1 and m2 bits set to 1, respectively. Now, let s =
s1 ∨ s2. Obviously, s will possibly contain more 1s. To keep the ratio
of 1s in s not increased, s should be set longer. The question is: how
long should s be? Let l be the number of 1s in s and denote δ = l - m’,
where m’ = max(m1, m2). Then, F + cδ should be a reasonable length
for s, where c is a constant and should be tuned for different applica-
tions. The value of δ can be estimated as follows.
Let λ be a random variable representing the number of positions, in
which both s1 and s2 have 1s. Then, the mathematical expectation of
λ can be calculated as below:

Eλ = 1⋅p(λ = 1) + 2⋅p(λ = 2) + ... + m’’⋅p(λ = m’’) (2)
where m’’ = min(m1, m2) and p(λ = i) represents the probability that
λ is equal to i. To calculate this probability, we use the following for-
mula:

p(λ = i) = (3)

It is because the number of all the possible cases that s1 has m1 bits

set to 1 and s2 has m2 bits set to 1 is ; and the number of

the cases that s1 and s2 have some bits set to 1 at the same i positions

is .

Note that l = m1 + m2 - λ. Then, we have δ = l - m = m1 + m2 - λ -
max(m1, m2).
Using the above formulas, we can determine the length of signatures
for a tree as follows. First, we calculate the average number of key
words in all the leaf nodes, which is used as the value of D to deter-
mine the initial values of F and m using formula (1). The key words
can be identified by first using Connexor-analyzer [13] to figure out
nouns and phrases and then using the method discussed in Chapter
3 in [10] to determine key words. Then, we compute the lengths of
signatures for the internal nodes in a bottom-up way. That is, we first
calculate the lengths for all those nodes, each of which is a parent of
some leaf nodes. Then, we compute the lengths for the nodes at a
higher lever. This process is repeated until the length of the signature
for the root is computed, which will be used as the length of all the
signatures to be generated.

3.2 Cutting off subtrees using signatures
Given two labeled trees T and P, we assign the signatures to their
nodes in the same way. During the checking whether T includes P,
we can use signatures to cut off some subtrees of T, which cannot
contain the corresponding subtrees in P. This can be done by intro-
ducing the signature checkings into the algorithm top-down-pro-
cess().
The following algorithm is almost the same as the algorithm top-
down-process(); but each time when we check whether a subtree in
T includes a subtree in P, the corresponding signatures will be first
checked. Of course, before the execution of the algorithm, the node
signatures have to be first established for both T and P.
Algorithm signature-tree-inclusion(T, P)
Input: T, P
Output: if root(P) is virtual, return j ≥ 0; else return 1 if T includes
P; otherwise return 0.
begin

... ...
(*lines 1 - 8 are the same as in Algorithm top-down-process().*)
9. if |T| < |P| return 0;
10. else {if p’s signature not match t’s signature return 0;

if (label(t) = label(p)
... ...

(*the rest part of the algorithm is the same as lines 11 - 20 in Algo-
rithm top-down-process().*

end
We pay attention to line 10. Before we compare label(t) and label(p),
we will first check their signatures. If P is a forest, a virtual root for
P will be constructed and it does not have a signature. However, its
signature can be easily established by superimposing the signatures
of all its child nodes.
Example 3. Consider the trees T and P shown in Fig. 12. To check
whether T includes P, we will assign signatures to the labels and the
nodes in T and P in the same way. Assume that the assignment of the
signatures to the labels is the same as shown in Fig. 11(b). Then, the
checking of the subtree rooted at t1 (in T) against the forest contain-
ing p1 and p2 (in P) can be avoided. It is because the signature for the
virtual node of the forest (equal to 0011 1101) does not match the
signature for t1 (equal to 1111 1000). (See Fig. 12 for illustration.)

4. CONCLUSION
In this paper, a new strategy for evaluating path-oriented queries are
discussed. The main idea of the query evaluation is a new algorithm
for checking the inclusion of a query tree P in a document tree T, by
which a top-down process is interleaved with a bottom-up computa-
tion. The algorithm has a comparable time complexity as the best
bottom-up method, but needs no extra space. In addition, it is more
suitable for a database environment and can be combined with the
signature technique to get rid of useless checkings for subtree inclu-
sion. In comparison with the methods based on the inverted indexes,
our approach is more general and has a much better time complexity.

REFERENCES
[1] L. Alonso and R. Schott. On the tree inclusion problem. In Proceed-

ings of Mathematical Foundations of Computer Science, pages 211-
221, 1993.

[2] W. Chen. More efficient algorithm for ordered tree inclusion. Journal
of Algorithms, 26:370-385, 1998.

[3] S. Christodoulakis and C. Faloutsos, “Design consideration for a mes-
sage file server,” IEEE Trans. Software Engineering, 10(2) (1984)
201-210.

[4] D. Florescu and D. Kossman, Storing and Querying XML Data using
an RDBMS. IEEE Data Engineering Bulletin, 22(3), 1999.

[5] P. Kilpelainen and H. Mannila. Ordered and unordered tree inclusion.
SIAM Journal of Computing, 24:340-356, 1995.

[6] T. Richter. A new algorithm for the ordered tree inclusion problem.
In Proceedings of the 8th Annual Symposium on Combinatorial Pat-
tern Matching (CPM), in Lecture Notes of Computer Science
(LNCS), volume 1264, pages 150-166. Springer, 1997.

[7] Sangwon Park, Hyoung-Joo Kim: A New Query Processing Tech-
nique for XML Based on Signature. DASFAA 2001: 22-27.

[8] C. Seo, S. Lee, and H. Kim, An Efficient Index Technique for XML
Documents Using RDBMS, Information and Software Technology
45(2003) 11-22, Elsevier Science B.V.

[9] E. Tousidou, P. Bozanis, Y. Manolopoulos, “Signature-based struc-
tures for objects with set-values attributes,” Information Systems,
27(2):93-121, 2002.

[10] G. Salton and M.J. McGill, “Introduction to Modern Information Re-
trieval,” McGray-Hill Int. Book Com., Hamburg, 1983.

[11] H. Wang, S. Park, W. Fan, and P.S. Yu, Vist: A Dynamic Index Meth-
od for Querying XML Data by Tree Structures, SIGMOD Int. Conf.
on Management of Data, San Diego, CA., June 2003.

[12] C. Zhang, J. Naughton, D. DeWitt, Q. Luo and G. Lohman, “On Sup-
porting Containment Queries in Relational Database Management
Systems, in Proc. of ACM SIGMOD Intl. Conf. on Management of
Data, California, USA, 2001.

[13] http://www.connexor.com/demos/index.html.

F i–
m1 i– 
  F m1–

m2 i– 
 ⋅

F
m1 
  F

m2 
 ⋅

--

F
m1 
  F

m2 
 ⋅

F i–
m1 i– 
  F m1–

m2 i– 
 ⋅

Fig. 12. Cutting subtrees using signatures

t0
a 1111 1101

t1
b

1111 1000 t2

e

1111 1101

t11

f

1010 1000

t12

e

1100 0000

t21

c

0001 0101

t22

d

0010 1000

p0

p1 p2

P:

c

a

d

T:

0001 0101 0010 1000

0011 1101not match

this subtree will
not be explored

0011 1101

virtual
node
1025

