

Priority-First Search and Mining Popular Packages
Yangjun Chen1 and Bobin Chen2

Dept. Applied Computer Science, University of Winnipeg, Canada

1y.chen@uwinnipeg.ca, 2BC234kirk@hotmail.com

Abstract—By the package design problem we are given a set

of queries (referred to as a query log) with each being a bit

string indicating the favourite activities or items of customers

and required to design a package of activities (or items) to

satisfy as many customers as possible. It is a typical problem of

data mining. In this paper, we address this issue and propose

an efficient algorithm for solving the problem based on a new

tree search strategy, the so-called priority-first search, by which

the tree search is controlled by using a priority queue, instead

of a stack or a queue data structure. Extensive experiments

have been conducted, which show that our method for this

problem is promising.

keywords—data mining, single package design, priority

queues, priority-first search, time complexity analysis

I. INTRODUCTION

Frequent pattern mining plays an essential role in mining

associations [1, 9, 11], which are important for decision

making. For example, for the management of a supermarket,

one has to decide, based on the association rules, what to put

on sale, how to design coupons, as well as how to place

merchandise on shelves in order to maximize the profit, etc.

By the frequent pattern mining [1, 9, 11], we are given a

set of transactions with each containing some items, and

required to recognize a frequent pattern (a subset of items)

which is supported (or say, contained) by most of

transactions. In this paper, we discuss a more challenging

problem, the so-called single package design problem (SPD

for short [7]), by which we consider a set of activities or

items A = {a1, ..., am}, like hot spring, riding horse by a

travel agency, referred to as an attribute, an item, or a

feature; and a query log Q = {q1…qn} with each qi (i = 1, …,

n) being a bit string of length m: ci1ci2 … cim (cij {0, 1, *},

j = 1, …, m). Here, cij = 1 indicates that aj is selected, and cij

= 0 indicates that aj is not selected while ‘*’ means ‘don’t

care’. Then, we will design a bit tuple t (or say a bit string

with each bit corresponding to an activity) such that the

number of satisfied queries is maximized. We will refer to t

as a package. Thus, what we want is to ensure that the

package satisfies as many queries as possible [13]. We call

such a package a most popular package. For example, for

the above vacation package, clients give their preferences by

specifying yes, no, or ‘don’t care’ for each activity to form a

query log. The design of a most popular package is to pick

up a sub-set of these activities to meet as many queries’

requirements as possible.

This problem has been investigated by several

researchers [4, 13]. In [13], an approximation algorithm was

discussed, by which an SPD problem is reduced to a

MINSAT problem [12] that is an optimization version of the

satisfiability [6], by which we seek to find a truth assignment

to minimize the number of satisfied clauses. The method

discussed in [4] is in fact based on the construction of a kind

of binary trees, called signature trees [2, 3] for signature

files [8, 10]. Its worst-case time complexity is bounded by

O(mn2m).

Our method is also based on the construction of a binary

tree, but with a new tree search strategy, called the priority-

first search, being utilized to cut off a lot of branches. Its

average time complexity is bounded by O(nm2 + mn2m/2).

Extensive experiments have been conducted, which show

that our method is much better than all the existing methods

for this problem.

The remainder of the paper is organized as follows. In

Section II, we show a simple example of the SPD problem.

Then, in Section III, the algorithms for evaluating a SPD is

discussed in great detail. Section IV is devoted to the test

results. Finally, we conclude with a summery in Section V.

II. AN EXAMPLE OF SPD

As an example of SPD, Table 1 shows a query log for a

vacation package application. It contains n = 6 queries, m =

6 attributes (activities), and each query represents one of

user’s favourites. For instance, the query q1 = c11c12 … c 16 =

(1, *, 0, *, 1 ,*) in Table 1, indicates that hot spring and

airlines are q1’s favourites, but glacier is not. Furthermore,

q1 does not care about whether riding, hiking or boating is

available or not.

Table 1: A query log Q

QueryId Hot Spring Ride Glacier Hiking Airlines Boating

q1 1 * 0 * 1 *

q2 1 0 1 * * *

q3 * 0 0 1 1 *

q4 0 * 1 * 1 *

q5 * 0 0 * * 0

q6 * 1 * 0 * 1

For this small query log, we can find a single package:

hot spring, hiking, airline, which satisfy a maximum subset

of queries: q1, q3, q5.

III. ALGORITHM DESCRIPTION

In this section, we discuss our algorithm. First, we give a

basic algorithm to provide a discussion background in

Subsection A. Then, in Subsection B, we describe our

efficient algorithm in great detail. Finally, in Subsection C,

we analyse the average time complexity of this algorithm.

The research is supported by NSERC, Canada, DDG-2019-04100.

mailto:y.chen@uwinnipeg.ca

A. Basic algorithm

In this subsection, we show a basic algorithm to provide

a discussion background, which is in fact an extension of an

algorithm discussed in [2, 3]. Its main idea is to construct a

binary tree T over Q, working in two steps. In the first step,

we construct a signature-tree-like structure, called a search-

tree. Then, in the second step, we search a path in the

search-tree to find a most popular package.

Let A = {a1, a2, …, am} be a set of items (or say

attributes). Let Q = {q1, …, qn} be a query log. Denote by

qi[j] the value of the jth attribute aj in qi (i = 1, …, m). The

binary tree will be constructed as follows.

1. Starting from the first attribute value, we divide all queries

in Q into two branches. For query qi (1 ≤ i ≤ n), if qi[1] =

‘0’, we put qi into the left branch. If qi[1] = ‘1’, it is put

into the right branch. However, if qi[1] = ‘*’, we will put it

in both left and right branches, showing a quite different

behavior from a traditional signature tree construction [6].

2. In a next step, we will split both left and right branches in

the same way as (1), but according to a next attribute.

3. Repeating this process until all the attributes are checked,

we will establish a binary tree.

In Fig. 1, we show such a binary tree constructed for the

query log given in Table 1.

In Fig. 1, for each node v, we use s(v) to refer to the

subset of queries represented by v. According to a certain

attribute a, s(v) is split into two subsets, denoted as s(v)[a]

and s(v)[a] respectively, such that for each q s(v)[a] q[a]

= 1 while for each q s(v)[a] q[a] = 0. s(v)[a] is

represented by v’s left child while s(v)[a] is represented by

v’s right child.

From this figure, we can see that the leaf node v66 has the

largest size and the labels along the path from the root to it

spell out a string 100110, representing a best package: {hot

spring, hiking, airlines}.

In the following, we analyze the computational

complexity of the above algorithm.

First, we notice that an search-tree will have exactly m

levels, where m is the number of attributes in Q. So, in the

worst case, the number of nodes in a search-tree is bounded

by O(2m). Since each node represents a subset of Q, the time

overhead should be bounded by O(mn2m). But the space

requirement is much better since during the construction of a

search-tree we need only to maintain a subset of all those

nodes on the bottom frontier (i.e., the last nodes on each path

at any time point. See the dashed lines in Fig. 1 for

illustration, which represent a bottom frontier at a certain

point in time: v40 - v41 – v31 - v21 – v11.) The number of nodes

on a frontier is bounded by O(2m) since in the worst case, a

frontier may have 2 nodes for each level. Therefore, the

space overhead is bounded by O(2m2n).

B. Algorithm based on priority-first-searching

The basic algorithm given above is essentially a depth-

first search process, controlled by using a stack. If we use a

priority queue [5] to control the tree searching, we will get a

very efficient strategy since this enables us to cut off a lot of

useless branches in T.

To define a priority queue S to control the tree search to

avoid searching futile paths, the key value for each node v in

S needs to be defined. It is set to be a pair of the form: (s(v),

l), where l is the level of v. Here, we note that the level of

the root is 0, the level of the root’s children is 1, and so on.

We say that a pair (s(v), L) is larger than another pair

(s(v), L) iff s(v) > s(v), or s(v) = s(v), but L > L. Among

all the operations defined to manipulate a priority queue [6],

the following two operations are very important to our

algorithm:

- extractMax(S) removes and returns the node of S with the

largest key.

- insert(S, v) inserts the node v into the queue S, which is

equivalent to the operation S := S {v}.

In addition, for efficiency, a heuristics is employed to choose

a next attribute to explore T:

Each time we expand a node v, the next attribute a

chosen among the remaining attributes should satisfy the

following conditions:

1) ||s(v)[a]| - |s(v)[a]|| is maximized.

0

1

0

0 0 0 0 0 1 1 1 1 1

1 0 0

1

0 0 0 0 0

0 0 0

0

v61 v62 v63 v64 v65 v66 v67 v68 v69

v50 v52 v53 v54 v55 v56 v57 v58 v59

v40 v41 v42 v43 v44 v45 v46 v47

v30 v31 v32 v34 v35 v36 v37

v20 v21 v22 v23

v0

v10 v11

v33

v60

v51

0 0 0 1 1 1 1

1 1 1 1

1 1 1 1 1

s(v0) = {q1, q2, q3, q4, q5, q6} s(v10) = {q3, q4, q5, q6} s(v11) = {q1, q2, q3, q5, q6}

s(v20) = {q3, q4, q5} s(v21) = {q4, q5} s(v22) = {q1, q2, q3, q5} s(v23) = {q1, q5}

s(v30) = {q3, q5} s(S31v = {q4} s(v32) = {q6} s(v33) = {q4, q6} s(v34) = {q1, q3, q5} s(Sv35) = {q2}

s(v36) = {q1, q6} s(Sv37) = {q6

s(v40) = {q3} s(v41) = {q4, q5} s(v42) = {q4, q6} s(v43) = {q4} s(v44) = {q1, q5} s(v45) = {q1, q3, q5}

s(v46) = {q1, q6} s(v47) = {q1}

s(S50) = {q3} S51 = {q3, q5} s(v52) = {q6} s(v53) = {q4, q6} s(v54) = {q5} s(v55) = {q1, q5}

s(v56) = {q5} s(v57) = {q1, q3, q5} s(v58) = {q1} s(v59) = {q1, q6}

s (v60) = {q3, q5} s(v61) = {q3} s(v62) = {q4} s(v63) = {q4, q6} s(v64) = {q1, q5} s(v65) = {q1}

s(v66) = {q1, q3, q5} s(v67) = {q1, q3} s(v68) = {q1} s(v69) = {q1, q6}

Fig. 1: A search tree

2) If more than one attributes satisfy condition (1), choose a

from them such that the number of queries q in s(v) with

q[a] = * is minimized (the tie is broken arbitrarily.)

We use the above heuristics to avoid as many futile branches

as possible.

By using the priority queue, we are able to change paths

during the searching process so that the current path is

always estimated to be with the largest possibility to a leaf

node representing a largest subset of satisfied queries.

ALGORITHM 1. PRIORITY-SEARCH(Q, A)

Input: a set of queries Q.

Output: a most popular package P.

begin

1. i := 0; the key of root is set to be (|Q|, 0);

2. S := insert(root); (*root represents the whole Q.*)

3. while (i n) do

4. { (v, L) := extractMax(S);

5. if i = n then return the package represented by the path

from root to v;

6. pick up a next attribute a from A according to

heuristics;

7. create left child vl of v, representing s(v)[a];

8. create right child vr of v, representing s(v)[a];

9. the key of vl is set to be (|s(v)[a]|, L + 1);

10. the key of vr is set to be (|s(v)[a]|, L + 1);

11. insert(S, vl); insert(S, vr);

12. i := L + 1;

13. }

end

In the above algorithm, variable i is used to count the

level of the current node v. So at the very beginning the

current node is root and its level is set to be 0 (see line 1).

In each iteration of the while-loop, we will extract a node

v from the priority queue S with the largest key value (line

4), that is, with the largest number of queries represented by

v and at the deepest level (among all the nodes in S). Then,

the subset of queries represented by v will be split (see lines

7 and 8) according to a next attribute chosen in terms of the

heuristics described above (line 6). Next, the key values for

the two children of v will be determined (lines 9 and 10) and

inserted into S (line 11). When i becomes equal to m (the

number of attributes), we must have found a most popular

package.

The following example helps for illustration.

Example 1 In this example, we apply the algorithm Priority-

search() to the query log shown in Table 1, and make a

step-by-step trace of the computation for the first three steps.

For each step, we show the nodes of both S and T. We also

notice that the priority queue is in fact a max-heap [5], but

rendered as a binary tree.

In Fig. 2, we show the first 3 steps of the computation.

In the first step, the key value of the root (v0) T is

inserted into S. It is equal to (6, 0) since v0 represents the

whole Q that contains 6 queries and is a node at level 0.

According to attribute glacier, Q is split into two subsets

(which may not be disjoint due to possible * in queries),

represented by the two child nodes of v0: v10 and v11 with

s(v10) = {q1, q3, q5, q6} and s(v11) = {q2, q4, q6}. Then, v10 (4,

1) and v11 (3, 1) are inserted into S.

In the second step, v10 (4, 1) will be extracted from S.

According to attribute ride, s(v10) will be further divided into

two subsets, represented by its two children: v20 and v21 with

s(v20) = {q1, q3, q5} and s(v21) = {q1, q5}.

In the third step, v20 (3, 2) will then be extracted from S.

This time, according to attribute hot spring, s(v20) is divided

into two subsets, stored its two children respectively: v30 and

v31 with s(v30) = {q1, q5} and s(v21) = {q1, q3, q5}.

In Fig. 3, we show the last step of the computation, in

which s(v60) represents a subset of queries: {q1, q3, q5},

larger than any subset represented by any node currently in

the priority queue S. What is important, it must be one of the

largest subset of queries which can be satisfied by any

selection of attributes. Then, along the path from the root to

v60, we can determine all the attributes by checking the

labels on the path. They are {hot spring, hiking, airline},

satisfying q1, q3, and q5. Since this is a maximum subset of

satisfied queries, a most popular package is found.

From this example, we can observe a very important

property of T. That is, along each path, the sizes of subsets

of queries (represented by nodes) never increase since the

subset of queries represented by a node is a subset of the

Step 1:

v0 (6, 0)

s(v0) = {q1, q2, q3, q4, q5, q6} s(v10) = {q1, q3, q5, q6} s(v11) = {q2, q4, q6}

0

v
10

v
0

v11

1

S – priority queue:
T – search tree:

glacier

Step 2:

s(v20) = {q1, q3, q5} s(v21) = {q1, q5}

0

v
10

v
0

v
11

1
T:

glacier

0

v
20

 v
21

1

v
10

 (4, 1)

S:

v
11

 (3, 1) ride

Step 3:

s(v
30

) = {q
1
, q

5
} s(v

31
) = {q

1
, q

3
, q

5
}

0

v
10

v
0

v
11

1
T:

glacier

0

v
20

 v
21

1

v
20

 (3, 2)

S:

v
11

 (3, 1)

0

v
30

 v
31

1

ride

hot

spring

Fig. 2. A sample trace

v
21

 (2, 2)

queries represented by its parent. We call this property a

size-decreasing property.

Concerning the correctness, we have the following

proposition.

Proposition 1 Let Q be a query log. Then, the subset of

attributes found in Q by applying the algorithm PRIORITY-

SEARCH() to Q must be a most popular package.

Proof. We notice that at any time point, each node in the

priority queue is a leaf node in the search tree T currently

constructed and on the termination of the algorithm the root

of S must be of the largest the key value among all such

nodes. That is, this root must represent a largest subset of

queries among them. Due to the size-decreasing property, it

also implies a largest subset of queries among all the leaf

nodes in whole T. Thus, along the corresponding path, we

will find a most popular package.

In comparison with Fig. 1, the computation shown in

Fig. 2 and Fig. 3 is super efficient. Instead of a binary tree of

size O(2m) created, the algorithm only explores a single root-

to-leaf path (see the path represented by dashed edges in Fig.

3). However, in general, we may need to create all the nodes

in T in the worst case.

Then, we may ask an interesting question: how many

nodes need to be generated on average?

In the next subsection, we give a probabilistic analysis to

answer this question.

C. Average time complexity

From Example 1, we can see that for each internal node

explored, both of its child nodes will be created. For some of

them, only one of their children will be further explored as

shown in Fig. 3. But for some of them, both of their children

will be explored. For convenience, we call the former as 1-

nodes while the latter as 2-nodes.

Remember that in T edges are labeled with either 1 or 0.

Let a = a1a2 … am be an attribute sequence, along which the

tree T is expanded level-by-level. For example, the tree

shown in Fig. 3 is expanded along an attribute sequence:

glacier – ride – airline – hot spring – hiking – boating. We

will use a, a, a, … to designate the strings obtained by

circularly shift the attributes of a, i.e., a = a2 … ama1, a =

a3 … ama2a1, … a(m) = a = a1a2 … am. In addition, we will

use Na(T) to represent the number of nodes created when

applying PRIORITY-SEARCH() to Q, along a path from top

to bottom.

Denote by T1 the left subtree of T (i.e., the subtree rooted

at the left child of the root), and by T2 the right subtree of T

(i.e., the subtree rooted at the right child of the root). Then, if

the root of T is a 2-node, we have

Na(T) = 1 + Na(T1) + Na(T2). (1)

However, if the root of T is a 1-node, we have

Na(T) = 1 + Na(T1), (2)

or

Na(T) = 1 + Na(T2), (3)

depending on whether s(rl) s(rr) or s(rl) < s(rr), where rl

and rr represent the left and right child of the root,

respectively.

Now we consider the probability that |T1| = p and |T2| = N

– p, where N is the number of all nodes in T. This can be

estimated by the Bernouli probabilities:

(
𝑁
𝑝

) (
1

2
)

𝑝

(
1

2
)

𝑁−𝑝

 =
1

2𝑁 (
𝑁
𝑝

) (4)

Let ca,N denote the expected number of nodes created

during the execution of PRIORITY-SEARCH() against Q. In

terms of (1), (2) and (3), we have the following recurrences

for N 2:

If root is 2-node, ca,N = 1 +
2

2𝑁
∑ (

𝑁
𝑝

) 𝑐𝑎′,𝑝𝑝 (5)

If root is 1-node, ca,N = 1 +
1

2𝑁
∑ (

𝑁
𝑝

) 𝑐𝑎′,𝑝𝑝 (6)

Let 1 = 1 if root is a 1-node, and 1 = 2 if root is a 2-

node. Then, (5) and (6) can be rewritten as follows:

ca,N = 1 +
𝛾1

2𝑁
∑ (

𝑁
𝑝

) 𝑐𝑎′,𝑝𝑝 - N,0 - N,1, (7)

where N,j (j = 0, 1) is equal to 1 if N = j; otherwise, equal to

0.

To solve this recursive equation, we consider the

following exponential generating function of the average

number of nodes searched during the execution of

PRIORITY-SEARCH().

Ca(z) = ∑ 𝑐𝑎,𝑁
𝑧𝑁

𝑁!𝑁≥0 (8)

In the following, we will prove that the generating

function satisfies a relation given below:

Ca(z) = 1ez/2Ca(
𝑧

2
) + ez – 1 – z. (9)

According to (7), Ca(z) can be rewritten as follows:

Ca(z) = ∑ (1 + 𝛾1 (
1

2
)

𝑁
∑ (

𝑁
𝑝

)𝑝 − 𝛿𝑁,0 − 𝛿𝑁,1)
𝑧𝑁

𝑁!𝑁≥0

= ∑
𝑧𝑁

𝑁!𝑁≥0 + ∑ 𝛾1 (
1

2
)

𝑁

𝑝 ∑ (
𝑁
𝑝

)𝑁≥0 𝑐𝑎′,𝑁
𝑧𝑁

𝑁!
 - ∑ 𝛿𝑁,0

𝑧𝑁

𝑁!𝑁≥0

0

v
10

v
0

v
11

1
T:

glacier

0

v
20

 v
21

1

S:

0

v
30

 v
31

1

ride

hot

spring

Fig. 3. A sample trace

0

v
40

 v
41

1

0

v
50

 v
51

1

airline

hiking

0

v
60

 v
61

1 boating

s(v
40

) = {q
3
, q

5
} s(v

41
) = {q

1
, q

3
, q

5
}

s(v
50

) = {q
1
, q

5
} s(v

51
) = {q

1
, q

3
, q

5
}

s(v
60

) = {q
1
, q

3
, q

5
} s(v

61
) = {q

1
, q

3
}

v
11

 (3, 1)

v
30

 (2, 3) v
40

 (2, 4)

v
50

 (2, 5) v
61

 (2, 6)

− ∑ 𝛿𝑁,1
𝑧𝑁

𝑁!𝑁≥0 (10)

= ez + 𝛾1 ∑
(𝑧/2)𝑝

𝑝!𝑝 ∑ 𝑐𝑎′,𝑝𝑁≥0
(𝑧/2)𝑁−𝑝

(𝑁−𝑝)!
 - 1 – z

= 1ez/2Ca(
𝑧

2
) + ez – 1 – z.

Next, we try to get Ca(z), Ca(z), …, 𝐶𝑎(𝑚−1)(𝑧). For this

purpose, we define i for i 2 as follows:

If all the nodes at level i are 1-nodes, i = 1. If at least

one node at level i is a 2-node, 1 < i 2. Concretely, i is

calculated as follows:

i =
2×𝑛𝑢𝑚(2−𝑛𝑜𝑑𝑒𝑠 𝑎𝑡 𝑙𝑒𝑣𝑒𝑙 𝑖) + 𝑛𝑢𝑚(1−𝑛𝑜𝑑𝑒𝑠 𝑎𝑡 𝑙𝑒𝑣𝑒𝑙 𝑖)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑎𝑡 𝑙𝑒𝑣𝑒𝑙 𝑖
. (11)

In the same way as above, we can get the following

equations:

Ca(z) = 1ez/2Ca(
𝑧

2
) + ez – 1 – z,

Ca (z) = 2ez/2Ca’(
𝑧

2
) + ez – 1 – z,

 … … (12)

𝐶𝑎(𝑚−1)(𝑧) = mez/2Ca(
𝑧

2
) + ez – 1 – z.

These equations can be solved by successive

transportation. For example, when transporting the

expression of Ca (z) given by the second equation in (12),

we will get

Ca(z) = b(z) + 1ez/2b(
𝑧

2
)+ 12ez/2𝑒𝑧/22

𝐶𝑎′′ (
𝑧

22) , (13)

where b(z) = ez - 1 – z.

In a next step, we transport Ca into the equation given in

(13). We can successively transform the equations this way

until the relation is only on Ca(z) itself. (Note that in this

process a is circularly shifted.) That is, eventually we will

get

Ca(z) = 12 … mexp[z(1 –
1

2𝑚)]Ca(
𝑧

2𝑚) (14)

+ ∑ 𝛾1𝛾2. . . 𝛾𝑚𝑒𝑥𝑝[𝑧(1 −
1

2𝑗)](𝑒𝑥𝑝(
𝑧

2𝑗) − 1 −
𝑧

2𝑗)𝑚−1
𝑗=0

 2m-k
 exp[z(1 –

1

2𝑚)]Ca(
𝑧

2𝑚)

+ ∑ 𝛾1𝛾2. . . 𝛾𝑚𝑒𝑥𝑝[𝑧(1 −
1

2𝑗)](𝑒𝑥𝑝(
𝑧

2𝑗) − 1 −
𝑧

2𝑗)𝑚−1
𝑗=0 ,

where k is the number of all those levels each containing

only 1-nodes.

Let = 2m-k, = 1 -
1

2𝑚, =
1

2𝑚, and

B(z) = ∑ 𝛾1𝛾2. . . 𝛾𝑚𝑒𝑥𝑝[𝑧(1 −
1

2𝑗)](𝑒𝑥𝑝(
𝑧

2𝑗) − 1 −
𝑧

2𝑗)𝑚−1
𝑗=0 .

We have

Ca(z) = ezCa(z) + B(z). (15)

Solving the equation in a way similar to the above, we get

Ca(z) = ∑ α𝑗𝑒𝑥𝑝(β
1−𝛾𝑗

1−𝛾
𝑧)𝐵(𝛾𝑗𝑧)∞

𝑗=0

= ∑ 2𝑗(𝑚−𝑘)∞
𝑗=0 ∑ 𝛾1𝛾2. . . 𝛾ℎ[𝑒𝑥𝑝(𝑧)𝑚−1

ℎ=0

− 𝑒𝑥𝑝(𝑧(1 −
1

2ℎ2𝑚𝑗))(1 +
𝑧

2ℎ2𝑚𝑗)] (16)

Finally, using the Taylor formular to expand exp(z) and

𝑒𝑥𝑝(𝑧(1 −
1

2ℎ2𝑚𝑗))(1 +
𝑧

2ℎ2𝑚𝑗) in the above equation, and

then extracting the Taylor coefficients, we get

ca,N = ∑ 𝛾1𝛾2. . . 𝛾ℎ ∑ 2𝑗(𝑚−𝑘)𝐷𝑗𝑘(𝑁)𝑗≥0
𝑚−1
ℎ=0 , (17)

where D00(N) = 1 and for j > 0 and h > 0,

Djh(N) = 1 – (1 – 2-mj-h)N – N2-mj-h(1 – 2-mj-h)N-1. (18)

By a complex analysis, we can show that ca,N ~ N1-k/m. If

k/m 1/2, ca,N is bounded by

O(N0.5).

Since the priority queue can have up to O(2m/2) nodes on

average, so the time complexity of extractMax() and insert(

) each is bounded log 2m/2 = m2. So, the average cost for

generating all nodes should be bounded by O(mN0.5)

O(m2m/2). In addition, the whole cost for picking up an

attribute to split s(v) for each internal node v into s(vl) and

s(vr) is bounded by O(nm2) since the cost for splitting all the

nodes at a level is bounded by O(nm) and the height of T is

at most O(m). Here, vl, vr stand for the left and right child

nodes of v, respectively. So we have the following

proposition.

Proposition 2 The average time complexity of PRIORITY-

SEARCH(Q) is bounded by O(nm2 + m2m/2), where n = |Q|

and m is the number of attributes in Q.

IV. EXPERIMENTS

In order to show that our method does not only have a better

theoretical computational complexity than the existing

methods for this problem, but is also greatly better than them

in practice, we have done a lot of tests on some real data and

synthetic data.

In our experiments, we have altogether tested four

different methods:

1) Basic method (described in this paper, BM for short),

2) Priority-first search (discussed in this paper, PF for short),

3) Signature tree based [4] (STB for short),

4) Approximation method [13] (ApM for short).

By the signature tree based method [4], the basic method

described in Section III is improved by integrating the

search-tree construction and the search-tree searching into a

single process. By doing this, the running time can be

greatly reduced. By the method discussed in [13], the

problem is reduced to the so-called MINSAT problem [12]:

Given a set U of Boolean variables and a collection of

disjunctive clauses over U, find a truth assignment such that

the number of satisfied disjunctive clauses is minimized.

Then, an approximation algorithm is applied to solve the

MINSAT problem. In [13], this algorithm is referred to as

MINSAT HeuristicPD.

All the four methods are implemented by ourselves. The

code is written in in C++, running on a Linux machine with

32GB of memory and a 2.9GHz 64-core processor.

- Data sets

Our experiments are conducted on a real data set and a

collection of synthetic data sets (query logs). For the real

query log, we collected 100 customers’ favourites at a

Chinese restaurant and surveyed them during a large party.

The investigation was designed with 10 attributes such as

lemon chicken, ginger beef, honey garlic shrimp, broccoli

with seafood and so on. The customers respond “yes”, “no”,

or “don’t care” to each attribute to provide their preferences.

Finally, we found that for each attribute the percentage of

answers ‘yes’, ‘no’, or ‘don’t care’ each is almost 1/3 on

average. Because the real query log is very small, the

response time and the output quality of the algorithms

cannot be really observed. We then generated a collection of

larger synthetic data sets (query logs) containing up to 10000

queries with up to 30 attributes. Each query is represented by

a string with each position being ‘0’, ‘1’, or ‘*’, evenly

populated. We may increase the number of‘*’ to obtain

different experimental results.

- Test results

The performance measurement mainly focuses on the

response time and the output quality, which is measured by

the number of queries satisfying the corresponding found

package

Test results for real data sets on SPD

In this subsection, we show the test results for the SPD

problem on the real data which contains only 100 queries

with 10 attributes.

Figures 3, 4 and 5 show the performance and quality of

the algorithms for the real query log. From them, we can see

that, the basic methos is much slower than the other three

algorithms as shown in Fig. 4. However, the basic method

and ours, as well as the signature-tree based method have

the same optimal quality (see Fig. 3), better than the method

discussed in [13]. The reason for this is that this method is

just an approximate algorithm. In addition, our method

requires less time than the signature-tree based method. But

both of them are much better than the basic method, as

shown in Fig. 6, which also shows that the space complexity

of the approximation method is best.

From this test, we can see that both the time and space

complexities of our method are much than the basic method

and the signature-tree based method, but with the same

package being obtained. The approximation method has the

best time and space overhead, but with the worst quality of

answers, not quite useful in practice.

Test results for varying attributes on SPD

In Figures 7, 8 and 9, we show the test results with

varying numbers of attributes. From these figures, we see

again that the basic method, the signature-tree based, and

ours have much higher quality than the approximation

method. The Fig. 7 displays that the number of satisfied

queries decreases as the total number of attributes increases.

The reason for this is that as more attributes are added, the

queries become more selective and then more difficult to be

satisfied. In general, the basic method needs too much time

while the approximation method has too low quality to be

used in practice although the time required by this method is

the best among all the four methods. As we can see from

Fig. 8 and 9, the time and space requirements of our method

are also very low, just a little bit worse than the

approximation method.

Fig. 4. Quality for Real data sets

Fig. 5. Time cost for Real data sets

Fig. 6. Space requirement for Real data sets

Test results for varying query log size on SPD
In this subsection, we show the test results for varying

sizes of query logs.

Figures 10, 11, and 12 show the results with varying

query log sizes. From these figures, we see that the

signature-tree based is still more efficient than the basic

method and the approximation method. But our is the base.

Similar to the previous experiment, the approximation

method uses the least time, but has the worst quality; and

ours performs better overall.

0

20

BM PF STB ApM

No. of satisfied queries

Algorithms

0

2

4

BM PF STB ApM

Time in milli sec.

Algorithms

0

2000

4000

BM PF STB ApM

Number of nodes

Algorithms

Fig. 7. Quality for varying num. of attributes for 100 queries

Fig. 8. Time cost for varying attributes for 100 queries

Fig. 9. Space requirement for varying attributes for 100

queries

Fig. 10. Quality for varying of query log sizes with 15

attributes

V. CONCLUSION

In this paper, we presented a new method to solve the

single package design (SPD) problem by using a new tree

search method, by which a priority queue is utilized to

control the tree exploration. Together with a powerful

heuristics, this approach enables us to cut off a lot of futile

branches and find an answer as early as possible in the tree

search process. The motivation of this work is to select, from

a given set, a subset of the elements according to a query log

to satisfy as many customers as possible and to overcome

the limitation of the current packages design methods. SPD

is a useful extension of the frequent pattern mining problem.

Extensive experiments have been conducted, which show

that in general our algorithms are able to find better

packages by using almost the same time as the exiting

method for this problem.

Fig.11. Time cost for varying of query log sizes with 15

attributes

Fig. 12. Space requirement for varying of query log sizes

with 15 attributes

REFERENCES

[1] R. Agrawal, T. Imielinski, and A. Swami, Mining Association Rules

between Sets of Items in Large Databases, in: Proc. SIGMOD Conf.,
Washington DC, USA, May 1993, pp. 207-216.

[2] Y. Chen, Signature files and signature trees, Information Processing

Letters, 82(4):213-221, 2002.
[3] Y. Chen, On the signature trees and balanced signature trees. In Proc.

of 21th Conference on Data Engineering, pages 742-753, Tokyo,

Japan, April 2005.
[4] Y. Chen, and W. Shi, On the Designing of Popular Packages, in

Proc. IEEE Conf. on Internet of Things, Green Computing and
Communications, Cyber, Physical and Social Computing, Smart

Data, Blockchain, Computer and Information Technology, Congress

on Cybermatics, Halifax, Canada, 2018, pp. 937-944.
[5] T. H. Corman, C. E. Leierson, R. L. Rivest, and C. Stein,

Introduction to Algorithms, McGraw Hill, 2002.

[6] M. R. Garey and D. S. Johson, Computers and Intractibility: A
Guide to the Theory of NP-Completeness, W. H. Freeman, San

Francisco, CA, 1979.

[7] T. S. Gruca and B. R. Klemz, Optimal new product positioning: A
genetic algorithm approach, European Journal of Operational Re-

search, 146, 3, 2003, 621-633.

[8] F. Grandi, P. Tiberio, and P. Zezula, Frame-sliced partitioned parallel
signature files, In Proceedings of the 15th Annual International ACM

SIGIR Conference on Research and Development in Information

Retrieval, pp. 286-297, Copenhagen, Denmark, June 1992.
[9] J. Han, M. Kamber, Data Mining: Concepts and Techniques, Ebook

2005.

[10] D. L. Lee, Y. M. Kim, and G. Patel, Efficient signature file methods
for text retrieval, IEEE Transactions on Knowledge and Data

Engineering, 7(3):423-435, 1995.

[11] J. Han, J. Pei, and Y. Yin, Mining Frequent Patterns without
Candidate Generation, MOD 2000, Dallas, TX USA, ACM, pp. 1-12.

[12] R. Kohli, R. Krishnamurti, and P. Mirchandani, The Minimum

Satisfiability Problem, SIAM J. Discrete Math, 1994, pp. 275-283.
[13] M. Miah, Most Popular Package Design, in Proc. Conference for

Information Systems Applied Research, 2011 Conisar Proceedings,

pp. 1-7.

0

5

10

15

20

10 15 20 25 30

Sa
ti

sf
ie

d
Q

u
er

ie
s

num. of attributes

BM

BST

ApM

PF

0

5000

10000

15000

10 15 20 25 30

Ti
m

e
in

 M
Se

c

num. of attributes

BM

STB

ApM

PF

0

10

20

30

10 15 20 25 30

n
u

m
. o

f
n

o
d

es

M
ill

io
n

s

num. of attributes

BM

STB

ApM

PF

0

200

400

600

800

1000

1000 3000 5000 7000 10000

Sa
ti

sf
ie

d
Q

u
er

ie
s

Size of query log

BM

STB

ApM

PF

0

20

40

60

80

100

120

1000 3000 5000 7000 10000

Ti
m

e
in

 M
Se

c

Size of Query log

BM

STB

ApM

PF

0

5000

10000

15000

1000 3000 5000 7000 10000

n
u

m
. o

f
n

o
d

es

Size of query log

BM

STB

ApM

PF

