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Abstract—By the package design problem we are given a set 

of queries (referred to as a query log) with each being a bit 

string indicating the favourite activities or items of customers 

and required to design a package of activities (or items) to 

satisfy as many customers as possible. It is a typical problem of 

data mining. In this paper, we address this issue and propose 

an efficient algorithm for solving the problem based on a new 

tree search strategy, the so-called priority-first search, by which 

the tree search is controlled by using a priority queue, instead 

of a stack or a queue data structure. Extensive experiments 

have been conducted, which show that our method for this 

problem is promising. 

keywords—data mining, single package design, priority 

queues, priority-first search, time complexity analysis 

I. INTRODUCTION 

Frequent pattern mining plays an essential role in mining 

associations [1, 9, 11], which are important for decision 

making. For example, for the management of a supermarket, 

one has to decide, based on the association rules, what to put 

on sale, how to design coupons, as well as how to place 

merchandise on shelves in order to maximize the profit, etc. 

By the frequent pattern mining [1, 9, 11], we are given a 

set of transactions with each containing some items, and 

required to recognize a frequent pattern (a subset of items) 

which is supported (or say, contained) by most of 

transactions. In this paper, we discuss a more challenging 

problem, the so-called single package design problem (SPD 

for short [7]), by which we consider a set of activities or 

items A =  {a1, ..., am}, like hot spring, riding horse by a 

travel agency, referred to as an attribute, an item, or a 

feature; and a query log Q = {q1…qn} with each qi (i = 1, …, 

n) being a bit string of length m: ci1ci2 … cim (cij  {0, 1, *}, 

j = 1, …, m). Here, cij  = 1 indicates that aj is selected, and cij  

= 0 indicates that aj is not selected while ‘*’ means ‘don’t 

care’. Then, we will design a bit tuple t (or say a bit string 

with each bit corresponding to an activity) such that the 

number of satisfied queries is maximized. We will refer to t 

as a package. Thus, what we want is to ensure that the 

package satisfies as many queries as possible [13]. We call 

such a package a most popular package. For example, for 

the above vacation package, clients give their preferences by 

specifying yes, no, or ‘don’t care’ for each activity to form a 

query log. The design of a most popular package is to pick 

up a sub-set of these activities to meet as many queries’ 

requirements as possible. 

This problem has been investigated by several 

researchers [4, 13]. In [13], an approximation algorithm was 

discussed, by which an SPD problem is reduced to a 

MINSAT problem [12] that is an optimization version of the 

satisfiability [6], by which we seek to find a truth assignment 

to minimize the number of satisfied clauses. The method 

discussed in [4] is in fact based on the construction of a kind 

of binary trees, called signature trees [2, 3] for signature 

files [8, 10]. Its worst-case time complexity is bounded by 

O(mn2m). 

Our method is also based on the construction of a binary 

tree, but with a new tree search strategy, called the priority-

first search, being utilized to cut off a lot of branches. Its 

average time complexity is bounded by O(nm2 + mn2m/2). 

Extensive experiments have been conducted, which show 

that our method is much better than all the existing methods 

for this problem. 

The remainder of the paper is organized as follows. In 

Section II, we show a simple example of the SPD problem. 

Then, in Section III, the algorithms for evaluating a SPD is 

discussed in great detail. Section IV is devoted to the test 

results. Finally, we conclude with a summery in Section V. 

II. AN EXAMPLE OF SPD 

As an example of SPD, Table 1 shows a query log for a 

vacation package application. It contains n = 6 queries, m = 

6 attributes (activities), and each query represents one of 

user’s favourites. For instance, the query q1 = c11c12 … c 16 = 

(1, *, 0, *, 1 ,*) in Table 1, indicates that hot spring and 

airlines are q1’s favourites, but glacier is not. Furthermore, 

q1 does not care about whether riding, hiking or boating is 

available or not. 

Table 1: A query log Q 

QueryId Hot Spring Ride Glacier Hiking Airlines Boating 

q1 1 * 0 * 1 * 

q2 1 0 1 * * * 

q3 * 0 0 1 1 * 

q4 0 * 1 * 1 * 

q5 * 0 0 * * 0 

q6 * 1 * 0 * 1 

 

For this small query log, we can find a single package: 

hot spring, hiking, airline, which satisfy a maximum subset 

of queries: q1, q3, q5. 

III. ALGORITHM DESCRIPTION 

In this section, we discuss our algorithm. First, we give a 

basic algorithm to provide a discussion background in 

Subsection A. Then, in Subsection B, we describe our 

efficient algorithm in great detail. Finally, in Subsection C, 

we analyse the average time complexity of this algorithm. 
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A. Basic algorithm 

In this subsection, we show a basic algorithm to provide 

a discussion background, which is in fact an extension of an 

algorithm discussed in [2, 3].  Its main idea is to construct a 

binary tree T over Q, working in two steps. In the first step, 

we construct a signature-tree-like structure, called a search-

tree. Then, in the second step, we search a  path in the 

search-tree to find a most popular package. 

Let A = {a1, a2, …, am} be a set of items (or say 

attributes). Let Q = {q1, …, qn} be a query log. Denote by 

qi[j] the value of the jth attribute aj in qi (i = 1, …, m). The 

binary tree will be constructed as follows. 

1. Starting from the first attribute value, we divide all queries 

in Q into two branches. For query qi (1 ≤ i ≤ n), if qi[1] = 

‘0’, we put qi into the left branch. If qi[1] = ‘1’, it is put 

into the right branch. However, if qi[1] = ‘*’, we will put it 

in both left and right branches, showing a quite different 

behavior from a traditional signature tree construction [6]. 

2. In a next step, we will split both left and right branches in 

the same way as (1), but according to a next attribute. 

3. Repeating this process until all the attributes are checked, 

we will establish a binary tree. 

In Fig. 1, we show such a binary tree constructed for the 

query log given in Table 1. 

In Fig. 1, for each node v, we use s(v) to refer to the 

subset of queries represented by v. According to a certain 

attribute a, s(v) is split into two subsets, denoted as s(v)[a] 

and s(v)[a] respectively, such that for each q  s(v)[a] q[a] 

= 1 while for each q  s(v)[a] q[a] = 0. s(v)[a] is 

represented by v’s left child while s(v)[a] is represented by 

v’s right child. 

From this figure, we can see that the leaf node v66 has the 

largest size and the labels along the path from the root to it 

spell out a string 100110, representing a best package: {hot 

spring, hiking, airlines}. 

In the following, we analyze the computational 

complexity of the above algorithm. 

First, we notice that an search-tree will have exactly m 

levels, where m is the number of attributes in Q. So, in the 

worst case, the number of nodes in a search-tree is bounded 

by O(2m). Since each node represents a subset of Q, the time 

overhead should be bounded by O(mn2m). But the space 

requirement is much better since during the construction of a 

search-tree we need only to maintain a subset of all those 

nodes on the bottom frontier (i.e., the last nodes on each path 

at any time point. See the dashed lines in Fig. 1 for 

illustration, which represent a bottom frontier at a certain 

point in time: v40 - v41 – v31 -  v21 – v11.) The number of nodes 

on a frontier is bounded by O(2m) since in the worst case, a 

frontier may have 2 nodes for each level. Therefore, the 

space overhead is bounded by O(2m2n). 

B. Algorithm based on priority-first-searching 

The basic algorithm given above is essentially a depth-

first search process, controlled by using a stack. If we use a 

priority queue [5] to control the tree searching, we will get a 

very efficient strategy since this enables us to cut off a lot of 

useless branches in T. 

 

To define a priority queue S to control the tree search to 

avoid searching futile paths, the key value for each node v in 

S needs to be defined. It is set to be a pair of the form: (s(v), 

l), where l is the level of v. Here, we note that the level of 

the root is 0, the level of the root’s children is 1, and so on. 

We say that a pair (s(v), L) is larger than another pair 

(s(v), L) iff s(v) > s(v), or s(v) = s(v), but L > L. Among 

all the operations defined to manipulate a priority queue [6], 

the following two operations are very important to our 

algorithm: 

- extractMax(S) removes and returns the node of S with the 

largest key.  

- insert(S, v) inserts the node v into the queue S, which is 

equivalent to the operation S := S  {v}. 

In addition, for efficiency, a heuristics is employed to choose 

a next attribute to explore T: 

Each time we expand a node v, the next attribute a 

chosen among the remaining attributes should satisfy the 

following conditions: 

1) ||s(v)[a]| - |s(v)[a]|| is maximized. 
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s(v20) = {q3, q4, q5} s(v21) = {q4, q5} s(v22) = {q1, q2, q3, q5}  s(v23) = {q1, q5} 

s(v30) = {q3, q5} s(S31v = {q4}  s(v32) = {q6} s(v33) = {q4, q6}  s(v34) = {q1, q3, q5}  s(Sv35) = {q2} 

s(v36) = {q1, q6}  s(Sv37) = {q6 

s(v40) = {q3} s(v41) = {q4, q5}  s(v42) = {q4, q6}  s(v43) = {q4}  s(v44) = {q1, q5}  s(v45) = {q1, q3, q5} 

s(v46) = {q1, q6}  s(v47) = {q1} 

s(S50 ) = {q3} S51 = {q3, q5}  s(v52) = {q6}  s(v53) = {q4, q6}  s(v54) = {q5}  s(v55) = {q1, q5} 

s(v56) = {q5} s(v57) = {q1, q3, q5}  s(v58) = {q1}  s(v59) = {q1, q6} 

s (v60) = {q3, q5}  s(v61) = {q3}  s(v62 ) = {q4}  s(v63) = {q4, q6}  s(v64) = {q1, q5}  s(v65) = {q1} 

s(v66) = {q1, q3, q5}  s(v67) = {q1, q3}  s(v68) = {q1}  s(v69) = {q1, q6} 

 
Fig. 1: A search tree 



 

 

2) If more than one attributes satisfy condition (1), choose a 

from them such that the number of queries q in s(v) with 

q[a] = * is minimized (the tie is broken arbitrarily.) 

We use the above heuristics to avoid as many futile branches 

as possible. 

By using the priority queue, we are able to change paths 

during the searching process so that the current path is 

always estimated to be with the largest possibility to a leaf 

node representing a largest subset of satisfied queries. 

ALGORITHM 1. PRIORITY-SEARCH(Q, A) 

Input: a set of queries Q. 

Output: a most popular package P. 

begin 

1. i := 0; the key of root is set to be (|Q|, 0); 

2. S := insert(root); (*root represents the whole Q.*) 

3. while (i  n) do 

4. { (v, L) := extractMax(S); 

5.    if i = n then return the package represented by the path 

from root to v; 

6.    pick up a next attribute a from A according to 

heuristics; 

7.    create left child vl of v, representing s(v)[a]; 

8.    create right child vr of v, representing s(v)[a]; 

9.    the key of vl is set to be (|s(v)[a]|, L + 1); 

10.    the key of vr is set to be (|s(v)[a]|, L + 1); 

11.    insert(S, vl); insert(S, vr); 

12.    i := L + 1; 

13.  } 

end  

In the above algorithm, variable i is used to count the 

level of the current node v. So at the very beginning the 

current node is root and its level is set to be 0 (see line 1). 

In each iteration of the while-loop, we will extract a node 

v from the priority queue S with the largest key value (line 

4), that is, with the largest number of queries represented by 

v and at the deepest level (among all the nodes in S). Then, 

the subset of queries represented by v will be split (see lines 

7 and 8) according to a next attribute chosen in terms of the 

heuristics described above (line 6). Next, the key values for 

the two children of v will be determined (lines 9 and 10) and 

inserted into S (line 11). When i becomes equal to m (the 

number of attributes), we must have found a most popular 

package. 

The following example helps for illustration. 

Example 1 In this example, we apply the algorithm Priority-

search( ) to the query log shown in Table 1, and make a 

step-by-step trace of the computation for the first three steps. 

For each step, we show the nodes of both S and T. We also 

notice that the priority queue is in fact a max-heap [5], but 

rendered as a binary tree. 

In Fig. 2, we show the first 3 steps of the computation. 

In the first step, the key value of the root (v0) T is 

inserted into S. It is equal to (6, 0) since v0 represents the 

whole Q that contains 6 queries and is a node at level 0. 

According to attribute glacier, Q is split into two subsets 

(which may not be disjoint due to possible * in queries), 

represented by the two child nodes of v0: v10 and v11 with 

s(v10) = {q1, q3, q5, q6} and s(v11) = {q2, q4, q6}. Then, v10 (4, 

1) and v11 (3, 1) are inserted into S. 

 

In the second step, v10 (4, 1) will be extracted from S. 

According to attribute ride, s(v10) will be further divided into 

two subsets, represented by its two children: v20 and v21 with 

s(v20 ) = {q1, q3, q5} and  s(v21) = {q1, q5}. 

In the third step, v20 (3, 2) will then be extracted from S. 

This time, according to attribute hot spring, s(v20) is divided 

into two subsets, stored its two children respectively: v30 and 

v31 with s(v30 ) = {q1, q5} and  s(v21) = {q1, q3, q5}. 

In Fig. 3, we show the last step of the computation, in 

which s(v60) represents a subset of queries: {q1, q3, q5}, 

larger than any subset represented by any node currently in 

the priority queue S. What is important, it must be one of the 

largest subset of queries which can be satisfied by any 

selection of attributes. Then, along the path from the root to 

v60, we can determine all the attributes by checking the 

labels on the path. They are {hot spring, hiking, airline}, 

satisfying q1, q3, and q5. Since this is a maximum subset of 

satisfied queries, a most popular package is found. 

From this example, we can observe a very important 

property of T. That is, along each path, the sizes of subsets 

of queries (represented by nodes) never increase since the 

subset of queries represented by a node is a subset of the 

Step 1: 
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queries represented by its parent. We call this property a 

size-decreasing property. 

 

Concerning the correctness, we have the following 

proposition. 

Proposition 1 Let Q be a query log. Then, the subset of 

attributes found in Q by applying the algorithm PRIORITY-

SEARCH( ) to Q must be a most popular package.  

Proof. We notice that at any time point, each node in the 

priority queue is a leaf node in the search tree T currently 

constructed and on the termination of the algorithm the root 

of S must be of the largest the key value among all such 

nodes. That is, this root must represent a largest subset of 

queries among them. Due to the size-decreasing property, it 

also implies a largest subset of queries among all the leaf 

nodes in whole T. Thus, along the corresponding path, we 

will find a most popular package. 

In comparison with Fig. 1, the computation shown in 

Fig. 2 and Fig. 3 is super efficient. Instead of a binary tree of 

size O(2m) created, the algorithm only explores a single root-

to-leaf path (see the path represented by dashed edges in Fig. 

3). However, in general, we may need to create all the nodes 

in T in the worst case. 

Then, we may ask an interesting question: how many 

nodes need to be generated on average? 

In the next subsection, we give a probabilistic analysis to 

answer this question. 

C. Average time complexity 

From Example 1, we can see that for each internal node 

explored, both of its child nodes will be created. For some of 

them, only one of their children will be further explored as 

shown in Fig. 3. But for some of them, both of their children 

will be explored. For convenience, we call the former as 1-

nodes while the latter as 2-nodes. 

Remember that in T edges are labeled with either 1 or 0. 

Let a = a1a2 … am be an attribute sequence, along which the 

tree T is expanded level-by-level. For example, the tree 

shown in Fig. 3 is expanded along an attribute sequence: 

glacier – ride – airline – hot spring – hiking – boating. We 

will use a, a, a, … to designate the strings obtained by 

circularly shift the attributes of a, i.e., a = a2 … ama1, a = 

a3 … ama2a1, … a(m) = a = a1a2 … am. In addition, we will 

use Na(T) to represent the number of nodes created when 

applying PRIORITY-SEARCH( ) to Q, along a path from top 

to bottom. 

Denote by T1 the left subtree of T (i.e., the subtree rooted 

at the left child of the root), and by T2 the right subtree of T 

(i.e., the subtree rooted at the right child of the root). Then, if 

the root of T is a 2-node, we have 

Na(T) = 1 + Na(T1) + Na(T2).   (1) 

However, if the root of T is a 1-node, we have 

Na(T) = 1 + Na(T1),    (2) 

or 

Na(T) = 1 + Na(T2),    (3) 

depending on whether s(rl)  s(rr) or s(rl) < s(rr), where rl 

and rr represent the left and right child of the root, 

respectively. 

Now we consider the probability that |T1| = p and |T2| = N 

– p, where N is the number of all nodes in T. This can be 

estimated by the Bernouli probabilities: 

(
𝑁
𝑝

) (
1

2
)

𝑝

(
1

2
)

𝑁−𝑝

 = 
1

2𝑁 (
𝑁
𝑝

)  (4) 

Let ca,N denote the expected number of nodes created 

during the execution of PRIORITY-SEARCH( ) against Q. In 

terms of (1), (2) and (3), we have the following recurrences 

for N  2: 

If root is 2-node, ca,N = 1 +  
2

2𝑁
∑ (

𝑁
𝑝

) 𝑐𝑎′,𝑝𝑝  (5) 

If root is 1-node, ca,N = 1 +  
1

2𝑁
∑ (

𝑁
𝑝

) 𝑐𝑎′,𝑝𝑝  (6) 

Let 1 = 1 if root is a 1-node, and 1 = 2 if root is a 2-

node. Then, (5) and (6) can be rewritten as follows: 

ca,N = 1 +  
𝛾1

2𝑁
∑ (

𝑁
𝑝

) 𝑐𝑎′,𝑝𝑝  - N,0 - N,1,  (7) 

where N,j (j = 0, 1) is equal to 1 if N = j; otherwise, equal to 

0. 

To solve this recursive equation, we consider the 

following exponential generating function of the average 

number of nodes searched during the execution of 

PRIORITY-SEARCH( ). 

Ca(z) = ∑ 𝑐𝑎,𝑁
𝑧𝑁

𝑁!𝑁≥0     (8) 

In the following, we will prove that the generating 

function satisfies a relation given below: 

Ca(z) =  1ez/2Ca(
𝑧

2
) + ez – 1 – z.   (9) 

According to (7), Ca(z) can be rewritten as follows: 

Ca(z) =  ∑ (1 + 𝛾1 (
1

2
)

𝑁
∑ (

𝑁
𝑝

)𝑝  −  𝛿𝑁,0 −  𝛿𝑁,1)
𝑧𝑁
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)

𝑁
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− ∑ 𝛿𝑁,1
𝑧𝑁

𝑁!𝑁≥0     (10) 

= ez + 𝛾1 ∑
(𝑧/2)𝑝

𝑝!𝑝 ∑ 𝑐𝑎′,𝑝𝑁≥0
(𝑧/2)𝑁−𝑝

(𝑁−𝑝)!
 - 1 – z 

= 1ez/2Ca(
𝑧

2
) + ez – 1 – z. 

Next, we try to get Ca(z), Ca(z), …, 𝐶𝑎(𝑚−1)(𝑧). For this 

purpose, we define i for i  2 as follows: 

If all the nodes at level i  are 1-nodes, i = 1. If at least 

one node at level i is a 2-node, 1 < i  2. Concretely, i is 

calculated as follows: 

i =  
2×𝑛𝑢𝑚(2−𝑛𝑜𝑑𝑒𝑠 𝑎𝑡 𝑙𝑒𝑣𝑒𝑙 𝑖) + 𝑛𝑢𝑚(1−𝑛𝑜𝑑𝑒𝑠 𝑎𝑡 𝑙𝑒𝑣𝑒𝑙 𝑖)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 𝑎𝑡 𝑙𝑒𝑣𝑒𝑙 𝑖
. (11) 

In the same way as above, we can get the following 

equations: 

Ca(z) =  1ez/2Ca(
𝑧

2
) + ez – 1 – z, 

Ca (z) =  2ez/2Ca’(
𝑧

2
) + ez – 1 – z, 

 … …      (12) 

𝐶𝑎(𝑚−1)(𝑧) = mez/2Ca(
𝑧

2
) + ez – 1 – z. 

These equations can be solved by successive 

transportation. For example, when transporting the 

expression of Ca (z) given by the second equation in (12), 

we will get 

Ca(z) = b(z) + 1ez/2b(
𝑧

2
)+ 12ez/2𝑒𝑧/22

𝐶𝑎′′ (
𝑧

22) , (13) 

where b(z) = ez - 1 – z. 

In a next step, we transport Ca into the equation given in 

(13). We can successively transform the equations this way 

until the relation is only on Ca(z) itself. (Note that in this 

process a is circularly shifted.) That is, eventually we will 

get 

Ca(z) = 12 … mexp[z(1 – 
1

2𝑚)]Ca(
𝑧

2𝑚)   (14) 

+ ∑ 𝛾1𝛾2. . . 𝛾𝑚𝑒𝑥𝑝[𝑧(1 − 
1

2𝑗)](𝑒𝑥𝑝(
𝑧

2𝑗) −  1 −
𝑧

2𝑗)𝑚−1
𝑗=0  

 2m-k
 exp[z(1 – 

1

2𝑚)]Ca(
𝑧

2𝑚)  

+ ∑ 𝛾1𝛾2. . . 𝛾𝑚𝑒𝑥𝑝[𝑧(1 − 
1

2𝑗)](𝑒𝑥𝑝(
𝑧

2𝑗) −  1 −
𝑧

2𝑗)𝑚−1
𝑗=0 , 

where k is the number of all those levels each containing 

only 1-nodes.  

Let  = 2m-k,  = 1 - 
1

2𝑚,  = 
1

2𝑚, and 

B(z) = ∑ 𝛾1𝛾2. . . 𝛾𝑚𝑒𝑥𝑝[𝑧(1 −  
1

2𝑗)](𝑒𝑥𝑝(
𝑧

2𝑗) −  1 −
𝑧

2𝑗)𝑚−1
𝑗=0 . 

We have 

Ca(z) = ezCa(z) + B(z).   (15) 

Solving the equation in a way similar to the above, we get 

Ca(z) = ∑ α𝑗𝑒𝑥𝑝(β
1−𝛾𝑗

1−𝛾
𝑧)𝐵(𝛾𝑗𝑧)∞

𝑗=0  

= ∑ 2𝑗(𝑚−𝑘)∞
𝑗=0 ∑ 𝛾1𝛾2. . . 𝛾ℎ[𝑒𝑥𝑝(𝑧)𝑚−1

ℎ=0  

− 𝑒𝑥𝑝(𝑧(1 −  
1

2ℎ2𝑚𝑗))(1 +
𝑧

2ℎ2𝑚𝑗)]  (16) 

Finally, using the Taylor formular to expand exp(z) and  

𝑒𝑥𝑝(𝑧(1 − 
1

2ℎ2𝑚𝑗))(1 +
𝑧

2ℎ2𝑚𝑗)  in the above equation, and 

then extracting the Taylor coefficients, we get 

ca,N =  ∑ 𝛾1𝛾2. . . 𝛾ℎ ∑ 2𝑗(𝑚−𝑘)𝐷𝑗𝑘(𝑁)𝑗≥0
𝑚−1
ℎ=0 , (17) 

where D00(N) = 1 and for j > 0 and h > 0, 

Djh(N) = 1 – (1 – 2-mj-h)N – N2-mj-h(1 – 2-mj-h)N-1. (18) 

By a complex analysis, we can show that ca,N ~ N1-k/m. If 

k/m  1/2, ca,N is bounded by 

O(N0.5). 

Since the priority queue can have up to O(2m/2) nodes on 

average, so the time complexity of extractMax( ) and insert( 

) each is bounded log 2m/2 = m2. So, the average cost for 

generating all nodes  should be bounded by O(mN0.5)  

O(m2m/2). In addition, the whole cost for picking up an 

attribute to split s(v) for each internal node v into s(vl) and 

s(vr) is bounded by O(nm2) since the cost for splitting all the 

nodes at a level is bounded by O(nm) and the height of T is 

at most O(m). Here, vl, vr stand for the left and right child 

nodes of v, respectively. So we have the following 

proposition. 

Proposition 2 The average time complexity of PRIORITY-

SEARCH(Q) is bounded by O(nm2 + m2m/2), where n = |Q| 

and m is the number of attributes in Q.     

IV. EXPERIMENTS 

In order to show that our method does not only have a better 

theoretical computational complexity than the existing 

methods for this problem, but is also greatly better than them 

in practice, we have done a lot of tests on some real data and 

synthetic data. 

In our experiments, we have altogether tested four 

different methods: 

1)  Basic method (described in this paper, BM for short), 

2)  Priority-first search (discussed in this paper, PF for short), 

3)  Signature tree based [4] (STB for short), 

4)  Approximation method [13] (ApM for short). 

By the signature tree based method [4], the basic method 

described in Section III is improved by integrating the 

search-tree construction and the search-tree searching into a 

single process. By doing this, the running time can be 

greatly reduced. By the method discussed in [13], the 

problem is reduced to the so-called MINSAT problem [12]: 

Given a set U of Boolean variables and a collection of 

disjunctive clauses over U, find a truth assignment such that 

the number of satisfied disjunctive clauses is minimized. 

Then, an approximation algorithm is applied to solve the 

MINSAT problem. In [13], this algorithm is referred to as 

MINSAT HeuristicPD. 

All the four methods are implemented by ourselves. The 

code is written in in C++, running on a Linux machine with 

32GB of memory and a 2.9GHz 64-core processor. 



 

 

- Data sets 

Our experiments are conducted on a real data set and a 

collection of synthetic data sets (query logs). For the real 

query log, we collected 100 customers’ favourites at a 

Chinese restaurant and surveyed them during a large party. 

The investigation was designed with 10 attributes such as 

lemon chicken, ginger beef, honey garlic shrimp, broccoli 

with seafood and so on. The customers respond “yes”, “no”, 

or “don’t care” to each attribute to provide their preferences. 

Finally, we found that for each attribute the percentage of 

answers ‘yes’, ‘no’, or ‘don’t care’ each is almost 1/3 on 

average. Because the real query log is very small, the 

response time and the output quality of the algorithms 

cannot be really observed. We then generated a collection of 

larger synthetic data sets (query logs) containing up to 10000 

queries with up to 30 attributes. Each query is represented by 

a string with each position being ‘0’, ‘1’, or ‘*’, evenly 

populated. We may increase the number of‘*’ to obtain 

different experimental results. 

- Test results 

The performance measurement mainly focuses on the 

response time and the output quality, which is measured by 

the number of queries satisfying the corresponding found 

package 

Test results for real data sets on SPD 

In this subsection, we show the test results for the SPD 

problem on the real data which contains only 100 queries 

with 10 attributes. 

Figures 3, 4 and 5 show the performance and quality of 

the algorithms for the real query log. From them, we can see 

that, the basic methos is much slower than the other three 

algorithms as shown in Fig. 4. However, the basic method 

and ours, as well as the signature-tree based  method have 

the same optimal quality (see Fig. 3), better than the method 

discussed in [13]. The reason for this is that this method is 

just an approximate algorithm. In addition, our method 

requires less time than the signature-tree based method. But 

both of them are much better than the basic method, as 

shown in Fig. 6, which also shows that the space complexity 

of the approximation method is best. 

From this test, we can see that both the time and space 

complexities of our method are much than the basic method 

and the signature-tree based method, but with the same 

package being obtained. The approximation method has the 

best time and space overhead, but with the worst quality of 

answers, not quite useful in practice. 

Test results for varying attributes on SPD 

In Figures 7, 8 and 9, we show the test results with 

varying numbers of attributes. From these figures, we see 

again that the basic method, the signature-tree based, and 

ours have much higher quality than the approximation 

method. The Fig. 7 displays that the number of satisfied 

queries decreases as the total number of attributes increases. 

The reason for this is that as more attributes are added, the 

queries become more selective and then more difficult to be 

satisfied. In general, the basic method needs too much time 

while the approximation method has too low quality to be 

used in practice although the time required by this method is 

the best among all the four methods. As we can see from 

Fig. 8 and 9, the time and space requirements of our method 

are also very low, just a little bit worse than the 

approximation method. 

 

Fig. 4. Quality for Real data sets 

 

Fig. 5. Time cost for Real data sets 

 

Fig. 6. Space requirement for Real data sets 

Test results for varying query log size on SPD 
In this subsection, we show the test results for varying 

sizes of query logs. 

Figures 10, 11, and 12 show the results with varying 

query log sizes. From these figures, we see that the 

signature-tree based is still more efficient than the basic 

method and the approximation method. But our is the base. 

Similar to the previous experiment, the approximation  

method uses the least time, but has the worst quality; and 

ours performs better overall. 
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Fig. 7. Quality for varying num. of attributes for 100 queries 

 

 
Fig. 8. Time cost for varying attributes for 100 queries 

 

Fig. 9. Space requirement for varying attributes for 100 

queries 

 

 

Fig. 10. Quality for varying of query log sizes with 15 

attributes 

V. CONCLUSION 

In this paper, we presented a new method to solve the 

single package design (SPD) problem by using a new tree 

search method, by which a priority queue is utilized to 

control the tree exploration. Together with a powerful 

heuristics, this approach enables us to cut off a lot of futile 

branches and find an answer as early as possible in the tree 

search process. The motivation of this work is to select, from 

a given set, a subset of the elements according to a query log 

to satisfy as many customers as possible and to overcome 

the limitation of the current packages design methods. SPD 

is a useful extension of the frequent pattern mining problem. 

Extensive experiments have been conducted, which show 

that in general our algorithms are able to find better 

packages by using almost the same time as the exiting 

method for this problem. 

 

Fig.11. Time cost for varying of query log sizes with 15 

attributes 

 

Fig. 12. Space requirement for varying of query log sizes 

with 15 attributes 
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