
Personal Web Space

Yangjun Chen Tony Liu and Paul Sorenson

Department of Business Computing Department of Computing Science
University of Winnipeg University of Alberta

Winnipeg, Manitoba, Canada R3B 2E9Edmonton, Alberta, Canada T6G 2H1
ychen2@uwinnipeg.ca {tonyliu, sorenson}@cs.ualberta.ca

Abstract This paper describes the functional requirement and architecture of a software system
called Personal Web Space (PWS). A PWS is a system to manage the information from the Web,
for either leisure or work related use. Similar to bookmarks, a PWS stores a set of URL addresses
but, in addition, it caches on a proxy server pages of high interest. PWS is developed through a
evolutionary process that is outlined in the paper. First, a method is prescribed to rank a page (or
an URL address) based on the degree of importance to a person as determined by search engine
responses and user input. Second, the information stored in a PWS must be refreshed periodically
to keep up with the new state of information available on network; therefore a technique is pro-
posed for determining and monitoring freshness. Thirdly, a PWS evolves through enlargement to
include more information domains, or refinement to concentrate on smaller sub-domains. The
paper describes how enlargement and refinement operations are mapped on to the stored PWS
data dictionary. Finally, key-word queries can be issued against a PWS to get interesting informa-
tion quickly. In this sense, a PWS uses a combination of information caching, information
retrieval and bookmarks technique to enhance significantly user performance on the Web.

1. Introduction

With the expansion of the Web, more and more comprehensive information repositories can be
now visited easily through network. A growing and challenging problem is how to find quickly
information of interest to an individual. While navigating through the Web, one may get lost in the
maze of hyperlinks [Gr94, Le94] and spend significant amounts of time scanning useless informa-
tion. A major goal of this research is to investigate mechanisms to help a user to find and then
access only the information interesting to him/her. That is, we are interested in supporting high
precision queries without suffering significantly from low recall of information. Our proposed
method, called PWS, stores a set of URL addresses and some Web pages of high interest, catego-
rized according to subject domains (or topics). It supports bookmarks [bo99], but is more power-
ful in the sense that

(i) some pages of high interest are cached in a proxy;

(ii) all pages and URL addresses are organized into different domains and each domain is con-
sidered as a node in a graph structure used to govern domain/sub-domain relationships,
which can then be used to control a PWS evolution process. Also, the navigation within a
PWS can be facilitated based on such a domain/sub-domain graph;

(iii)the pages in a PWS are refreshed periodically to keep up with the new state of information
from the internet; and

(iv)the key-word queries against a PWS can be conducted just as in an information retrieval
system.
1

Recently, a lot of effort has be directed towards efficient navigation through the Web [Ma99,
We99, Kn99, Co99]. In [Ma99], a software tool called WebGlimps was presented, which can be
considered as a combination of searching and browsing. WebGlimps allows the search to be lim-
ited to a “neighborhood” by analyzing automatically the Web pages related to the current one. It
provides fast search, efficient indexing and “neighborhood” definition and therefore avoids
wasteful use of the internet resources. We adopt the general notion of neighborhood in our PWS
approach, but our implementation of neighborhood is quite different. Another software tool,
KnowAll [Kn99] maintains a huge (100,000 words) lexicon and provides a text-understanding
ability in order to return a “right” answer to the question issued. The results are generally superior
to those of a normal search engines. A third interesting method, developed in Copernic project
[Co99], simultaneously consults the best search engines and brings back relevant results with
summaries. In addition, duplicate information and dead links can be removed during the search-
ing.

The main goal of the PWS is to provide an optimized view of the internet with respect to rela-
tively specialized domains of personal interest. When compared to the above methods, PWS
extends the concept of “neighborhood” by establishing a data dictionary (thesaurus) and performs
full-text search against the cached pages using the traditional information retrieval techniques.
However, no text-understanding ability is provided in PWS; however, this is an ongoing area of
research for PWS.

The rest of the paper is organized as follows. In Section 2, we outline the system architecture of a
PWS and provide a brief overview of its functionality. In Section 3, we describe in greater detail
the main functionality of a PWS, including the system start-up, the storage refreshment and the
PWS evolution. In Section 4, we give a short summary and discuss briefly some future work.

2. System architecture

One of our main research direction in PWS is to develop an extendable architecture that supports
experimentation with web assistants. As a consequence, PWS is designed and implemented as an
extension to Sandwich [Li99] an O-O framework developed to support personal web assistants.
Sandwich uses proxy technology to provide basic functions and hooks for plugging in assistants
in support of advanced web browsing: in particular, observing and delegating assistants. The rela-
tionship between PWS and Sandwich is shown in Fig. 1.

Among its several functions, Sandwich provides support for HTTP stream analysis and an inter-
face to persistence manager (i.e., DB management), both of which are needed in PWS. Using
basic Sandwich functionality, a proxy is established to handle all HTTP communication between
users and the internet. By means of its persistence interface, the data of the system can be stored
and manipulated using DB management facilities. As a consequence, the PWS is ‘hooked’

HTTP
proxy

DB
management

inte rne t DB

PWS

SANDWICH

Fig. 1. PWS as an extension to SANDWICH
2

[FHLS00] onto Sandwich’s HTTP and DB support. To complete PWS, it is necessary to develop
its own user interface and some PWS specific modules. More concretely, our PWS has the archi-
tecture as shown in Fig. 2.

This architecture consists of four parts: interface, PWS core, HTTP proxy and DB-management.

(1) (interface) As in most software system, the PWS interface is a suite of application tools
which enable users to access the system. In PWS, our interface will support start-up,
refreshment and evolution as described below. All information access is conducted using a
standard browser (Netscape or Explorer), thereby keeping the management of PWS sepa-
rate from the access to the PWS.

(2) (PWS core) The PWS core consists of four components:

- a start-up-processor to initialize the PWS storage;

- a refresher to change the PWS periodically to keep up with the new state of information
on the internet;

- an PWS evolver to govern the interest changes of users (a user’s interest may change,
expand, or more narrowly focus over time); and

- a mechanism to do PWS navigation and query evaluation.

(3) (HTTP proxy) As mentioned above, the HTTP proxy is mainly responsible for communi-
cation.

(4) (DB-management) The data of a PWS is stored in a database system. As shown in Fig. 1,
the data of a PWS consists mainly of two parts: information retrieved from network and a
data dictionary which is used to represent the semantic relationships among different
information domains. Such data can be easily manipulated using functions provided by a
modern database, such as the operations for full text retrieval and maintenance of domain/
sub-domain relationships, as well as normal key-word query evaluation.

The third and fourth parts are just a reuse of those implemented in Sandwich.

3. PWS core

In this section, we describe the main components of a PWS in detail. As outlined in the previous
section, a PWS contains mainly four parts which we refer to as the system core: a start-up-proces-
sor, a refresher, an evolver and a mechanism for the PWS navigation and the query evaluation.
The last part can be implemented using traditional database techniques. Therefore, in the follow-
ing we focus only on the first three parts.

HTTP
proxy

DB
management

client

us
er

 in
te

rf
ac

e

start-up

refresh

evolution

PWS navigation
query evaluation

internet da ta space

d a ta d ic tio nary

Fig. 2. PWS system architecture
3

3.1 Start-up

As a first step to build up a PWS, several searching engines such as ‘Yahoo’, ‘Inforseek’,
‘Goolge’, etc. are employed to get information available on network by issuing key words related
to a domain which is interesting to a person. To decide which pages are stored in PWS, two tasks
have to be conducted: recognizing similar pages and assigning each page a rank to indicate its
‘importance’.

In the following, we first introduce a method to recognize the page similarities in 3.1.1. Then, we
discuss the assignment of ranks to pages in 3.1.2.

3.1.1 Similarity of pages

Among the pages returned by a searching engine, there may be similar documents obtained from
different sites. It is because many documents may be replicated across the web for fast local
access, higher availability, or marketing of a site. Therefore, for a PWS, those similar pages
should be recognized for reducing space overhead, or for calculating the importance of a page.

One can determine the similarity of two pages in different ways. For instance, one can use the
information retrieval notion of textual similarity [Sal83]. One could also use data mining tech-
niques to cluster pages into groups that share meaningful terms (e.g., [PE98]), and then define
pairs of pages within a cluster to be similar. A third option is to compute textual overlap by count-
ing the number of chunks of text (e.g., sentences or paragraphs) that pages share in common
[SGM95, SGM96, BGM97, BB99, CSG99]. In all schemas, there is a threshold parameter that
indicates how close pages have to be considered similar (e.g., according to number of shared
words, n-dimensional distance, number of overlapping chunks). This parameter needs to be
empirically adjusted according to the target application.

All the methods mentioned above don’t, however, pay attention to an important aspect of inform-
tion: the structure of a page. As we know, a page in HTML or XML format always consists of a
hierarchical structure, starting with a root element as shown in Fig. 3(a).

Such a structure information can be used to speed up page matchings since taking the structure of
pages into account the search of similar terms can be limited to small parts of a text. A normaly
used technique to explore the similarity of structures is tree matching; but it is too strict and a sim-

Fig. 3. Sample XML pages

<article>

<articletitle>On the DTD Mapping into OO Schemas</aricletitle>
<author id=”dawkins”>

<name>
<firstname>Richard</firstname>
<lastname>Dawkins</lastname>

<address>
<city>Winnipeg</city>
<province>Manitoba</province>
<zip>R3B-2E9</zip>

</address>
</author>

</name>

<abstract>... database ... SGML ... informatics ... </abstract>
</article>

<article>

<articletitle>DTD and OO Schemas</aricletitle>
<author id=”dawkins”>

<name>
<firstname>Richard</firstname>
<lastname>Dawkins</lastname>

</author>
</name>

<abstract>... DB ... XML ... computer science ... </abstract>
</article>

(a) (b)
4

ilar page may be filtered out undesirably. So we introduce a more relaxed concept: tree inclusion,
which can be defined as follows.

Definition 1 (labeled tree) A tree is called a labeled tree if a function label from the nodes of the
tree to some alphabet is given, or say each node in the tree is labeled.

Definition 2 (tree inclusion) Let T1 and T2 be two labeled trees. A mapping M from the nodes of
T2 to the nodes of T1 is an embedding of T2 into T1 if it preserves labels and ancestorship. That is,
for all nodes u and v of T2, we require that

a) M(u) = M(v) if and only if u = v,

b) label(u) = label(M(u)), and

c) u is an ancestor of v in T2 if and only if M(u) is an ancestor of M(v) in T1.

Here, the mapping M can be implemented as a method discussed in [Sal83] or any method used in
[SGM95, SGM96, BGM97, BB99, CSG99]. For example, the XML pages shown in Fig. 3(a) and
and 3(b) can be represented as two trees shown in the left and right parts of Fig. 4(a), respectively.
If a mapping as shown in Fig. 4(b) can be determined, we know that the tree shown in the right
part of Fig. 4(a) is included in the tree shown in the left part of Fig. 4(a) (see the dashed lines in
the figure). In this case, we claim that the page shown in Fig. 3(b) is similar to the page shown in
Fig. 3(a).

Note that to get an equation such as ‘M(T1.articletitle) = T2.articletitle’, we should check the sim-
ilarity between ‘On the DTD Mapping into OO Schemas’ and ‘DTD and OO Schemas’. Similarly,
to get ‘M(T1.abstract) = T2.abstract’, we have to check the similarity between ‘database’ and
‘DB’, ‘SGML’ and ‘XML’, and ‘informatics’ and ‘computer science’. Furthermore, we’ll utilize
the technique discussed in [Sal83] to determine the similarity of T1’s abstract and T2’s abstract
based on the common words in these two paragraphs.

The concept of tree inclusion can be used in a variety of ways. For example, we can claim that
two pages P1 and P2 are similar if P1 contains a subtree T1 and P2 contains T2 , T1 ⊆ T2 (or T1 ⊇
T2), and at the same time both the ratios: |T1|/|P1| and |T2|/|P2| are larger than a certain shreshold,
where |Ti| and |Pi| (i = 1, 2) represent the numbers of nodes in Ti and Pi, respectively. It is one of
our forthcoming researches to explore different ways to use the concept of tree conclusion to rec-
ognize effectively the similarity of pages.

3.1.2 Page storage for start-up

Fig. 4. Illustration for tree inclusion

(a) (b)

article article

articletitle articletitle
author

abstract

abstractname
name address

city
province

zip

T1: T2:
M(T1.article) = T2.article
M(T1.articletitle) = T2.articletitle

M(T1.name) = T2.name
M(T1.abstract) = T2.abstract
5

The appearance number f of a page in the result set produced for different searching engines can
be calculated. We are experimenting with several approaches to calculating f based on how high a
page appears in the result list of each of the search engines. In addition to a computed f value, To
each obtained page, a user can attach a user interest value v to selected pages. Typically, during
start-up all pages are assigned v value of 0. As PWS matures, certain pages will be either marked
explicitly by the users as important using a bookmark (in which case v is set to an integer greater
than zero) or will be implicitly assigned a v value based on how often the user accesses that page
over a given period of time. Expressed in terms of v and f, we assign each page a value k to repre-
sent the degree of interest as follows. We sort the web pages in terms of t = v + f such that a page
b1 appears before another page b2 if t1 ≥ t2, where t1 and t2 represent t values associated with b1
and b2, respectively. Then, each page b will get an order number k according to the sorted page
sequence. The pages with the same value of t will have the same k value. Hence, a page with a k
value of i can be considered as an ith most interesting page to that person. Using Zipf’s law [Zi29,
BCF99] as an estimator of the relative probability p that a person accesses a page with k value as
follows:

p = 1/k.

(Note that Zipf’s law has often been used as an estimator of the expected frequency of page
accesses in a virtual memory paging environment [BCF99].)

Furthermore, we want to rank a page based on more aspects that can affect the degree of impor-
tance to a person. Let cf (0 ≤ cf ≤ 1) be the rate of modification of a page and sz the page size. The
rate of modification is the number of changes of a page over a given period of time. Some web
pages provide such information in their page. If we cannot get such information, we set cf to 1 if
the corresponding page is dynamic (e.g., a page constructed on the fly); otherwise, cf is set to 0.
The page size sz is counted in Kbytes. We compute the rank of this page h (0 ≤ h ≤ 1) as follows:

h = (1 - cf)⋅

The meaning of h is that a page with a higher value of h will be more likely to be stored, which
reflects the intuition that a page frequently changing (cf approaches 1) and with a large size should
not be cached. In the above formula, we use the logarithm of sz so that h values are not dominated
by the page sizes. In contrast, a small page that rarely changes and is of high interest should be
kept locally. Note that if a page is dynamic it should not be cached and should therefore be
assigned a cf of 1. We use Sandwich HTTP analyzer to detect dynamic pages. The size of a page S
is represented by a parameter sz which is computed as follows. If |S| is, for example, equal to k ×
100, where k = 1024 bytes, then sz = 100.

Expressed in terms introduced above, a start-up process can be done as follows.

Procedure start-up(kw; en1, ..., enk)

/*kw represents a set of key words; en1, ..., enk are the search engines used*/

1. Use en1,..., enk to retrieve information by issuing kw related to a certain domain of interest.

2. Let be the page set obtained using enj. Let S = S1 ∪ ... ∪ Sk. (Note that S is a multi-set;

i.e., a member of it may appear several times.)

p
max sz 1,log{ }

Sj
6

3. Assign each different b ∈ S a value v and compute its appearance number f (i.e., the num-
ber of times b appearing in S). After that, k and p can be calculated.

4. Compute h for each different b ∈ S. For the start-up, we take cf = 0 for each different b
unless b is dynamic, in which case cf = 1.

5. In terms of h values, store S as shown in Fig. 5(a).

The PWS space for a domain is divided into two parts. The first (lower) part is all the URL
addresses of b’s (b ∈ S). The second (upper) part is a set of pages with higher h values.

We note that at the very beginning, a user is not able to know the change frequency of a page. As
a consequence, we just assume that each obtained page has the same values of cf (= 0). But during
the course of operations, a user may observe the modification rate of some pages. Then, he/she
can assign the corresponding values to them based on those observations.

A PWS may contain information on several domains. The information on one domain constitutes
a sub-space. Then, we construct a directed graph (called a domain graph) in which each node rep-
resents a sub-space and each edge represents a domain/sub-domain relation as shown in Fig. 5(b).
(Such a graph can be constructed using the data dictionary if the relevant information is available
in it; or constructed with interference of human beings.)

Example 1. Assume that S = {s1, ..., s10} and T = {t1, ..., t10} are two sets of pages obtained
respectively using two search engines ens and ent by issuing the same key word set search.
Assume that si = ti for 1 ≤ i ≤ 5. Then S ∪ T = {s1, ..., s10, t6, ..., t10} = {b1, ..., b15}, where bi = si

for 1 ≤ i ≤ 10 and bj = tj for 10 < j ≤ 15. Then, the appearance number of bi is f(bi) = 2 for 1 ≤ i ≤ 5
and f(bj) = 1 for 6 ≤ i ≤ 15. Assume that we assign each bi a value v(bi) = i for 1 ≤ i ≤ 15. This is
quite unpractical, but it demonstrates the computation process. The values of k can be calculated
as shown in Fig. 5(a). In terms of k values, p values can then be calculated. Assume that for each
bi its cf value is 0 and its size |bi| is (16 - i) × Kbytes (then its sz is i). We give the values of h for
each bi (1 ≤ i ≤ 15) in Fig. 6(a).

pages

URL addresses

Fig. 5. PWS storage

a sub-space
for a domain: computer

science

computer
vision

vision

artificial
vision

machine
vision

robot
vision

(a) (b)
7

If there is room to cache only five pages after all URL addresses are put into the PWS space, the
map of the storage space will be as shown in Fig. 6(b).

3.2 Refresh

A PWS should ideally provide access to the latest information. To this end, a periodical refresh-
ment of the storage is needed. Two different refreshment operations may be performed:

- refreshment of cached pages

- replacement of URL addresses

Nowadays a page on Web may have the following parameters: max-age, min-age and expiring-
time for the management purpose, where max-age is the longest time the page can exist, min-age
is the shortest time the page can exist and expiring-time indicates when the page becomes invalid.
A user can also assign each cached page a time-tag to indicate its replacement period. When a
page reaches its replacement period, it should be refreshed. Obviously, such parameters can be
used to implement the operation to refresh cached pages. The following is a simple algorithm to
do this task, which is in fact a modified version of Squid algorithm discussed in [Sq99]. In the
description of the algorithm, by the age of a page, we mean the time that page exists in PWS.

Procedure marking(pa)
input: a cached Web page pa;
output: pa will be marked with “fresh” or “stale”;

begin
if max-age exists for pa then

if pa’s age is more than max-age then {mark pa with “stale”; return;}
if min-age exists for pa then

if pa’s age is less than min-age then {mark pa with “fresh”; return;}
if expiring-time exists for pa then

if pa has already expiredthen {mark pa with “stale”; return;}
if pa reaches the replacement period (time-tag) then {mark pa with “stale”; return;}
mark pa with “fresh”

end

By the above algorithm, a cached page will be marked with “fresh” or “stale”. In terms of these
marks, a refreshment operation can be performed as follows.

Procedure refreshment(P)

b15

b14
b13
b12
b11
b10
b9
b8

b7
b6
b5
b4
b3
b2
b1

1 6
1 5
1 4
1 3
1 2
11
1 0
9
8
7
7
6
5
4
3

1
2
3
4
5
6
7
8
9
10
10
11
12
13
14

1.0 00
0.50 0
0.33 3
0.25 0
0.20 0
0.16 6
0.14 2
0.12 5
0.111
0.10 0
0.10 0
0.09 0
0.08 3
0.07 7
0.07 2

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

1
2
3
4
5
6
7
8
9
1 0
11
1 2
1 3
1 4
1 5

1.00 00
0.50 00
0.30 50
0.18 00
0.12 50
0.09 20
0.07 30
0.06 03
0.05 05
0.04 34
0.04 18
0.03 62
0.03 20
0.02 90
0.02 60

t = v + f k p cf sz h

U R L (b 15)

U R L (b 1)

..

b 15

b1 2 b11

b 14 b 13

(b)(a)

Fig. 6. Exemplary storage

1
1
1
1
1
1
1
1
1
1
2
2
2
2
2

f

15
14
13
12
11
10
9
8
7
6
5
4
3
1
1

v

8

input: a set of cached Web pages;
output: a new set of Web pages to be cached;

begin
for each pa ∈ P do

{if pa is marked with “stale”
then remove pa and get the new version of pa using the corresponding URL address;}

 end
For the replacement of URL addresses, we simply call the start-up-processor, but without caching
any concrete page.

3.3 PWS evolution

The PWS evolution is another important function of PWS. As time goes on, a user’s interest may
change from a domain to another. For this purpose, the system provides a built-in data dictionary
to govern the relationship among different domains and thus control the domain transfer. In addi-
tion, a user is able to insert entries into or delete entries from a data dictionary. Generally, a data
dictionary is a set of tree structures and each node in a tree is a pair of the form: < α, β>, where α
represents a domain name and β is a list of key words related to the domain. There is a path from
node a to node b in a tree structure if b represents a sub-domain of a. In Fig. 7, two tree structures
in a data dictionary are given.

- PWS enlargement

The PWS enlargement is used to govern the process of the domain changing from a smaller one to
a bigger one. One the one hand, the domain enlargement is an important character of interest
transfer. On the other hand, the relationship of domain/sub-domain is a simple principle of orga-
nizing PWS spaces. Thus, it should be supported.

The PWS enlargement can be made along a path in a tree structure of the data dictionary or using
the key words given by a user. In the former case, the key words associated with the parent (or
ancestor) node of a node whose corresponding domain will be enlarged, will be used to search the
Web. We further distinguish between two enlargements:

- single enlargement and

- multiple enlargement

If a concept a (representing a domain) appears only in one tree structure in the data dictionary, the
enlargement for a must be a single enlargement. If it appears in several tree structures simulta-
neously, a multiple enlargement will be performed. That is, along the paths in the different tree
structures, several enlargements will be conducted.

computer
science

computer
vision database

C-recog.

artificial
vision machine

vision
robot
vision

pattern
recut.

picture
recog.

automatic optical
inspection

Fig. 7. An entry in a data dictionary

(a) (b)

computer
vision

vision

human
vision

e1

e2

C-inspectionC-vision
9

Formally, a single enlargement can be described as follows. Let T be a tree structure (an entry in
the data dictionary), al be a node in T and p = a1 → ... → al be a path in T. (Note that a1 is not
always the root of T. It is determined by the user.) Assume that the concept associated with al

appears only in T and S is the node in the domain graph, representing the sub-space for al. Then, a
single enlargement can be performed by doing the following two operations:

S’ ← start-up(kw; en1, ..., enk);

establish an edge e = (S’, S) in the domain graph; mark e with p;

where kw represents the key word list associated with a1, en1, ..., enk represent k search engines
used and S’ represents the PWS sub-spaces for a1. The relationship between S and S’ is repre-
sented as an edge in the domain graph.

Similarly, a multiple enlargement can be described as follows. Let T1, ..., Tm be m tree structures
in the data dictionary containing a same concept. Assume that its corresponding nodes in T1, ...,

Tm are c11, ..., cl1, respectively. Let pi = → ... → ci1 be a path in Ti (1 ≤ i ≤ m). We do the fol-

lowing operations to implement a multiple enlargement:

S ← start-up(kw1 ∪ ... ∪ kwm; en1, ..., enk);

establish an edge e = (S’, S) in the domain graph; mark e with {p1, ..., pm};

where kw1, ..., kwm represent m lists of key words associated with , ..., and , respectively.

We illustrate the above operation using the following example.

Example 2. Consider the two tree structures shown in Fig. 7. Assume that kw1 and kw2 are two
lists of key words associated with ‘computer science’ and ‘vision’, respectively. The multiple
enlargement of domain ‘computer vision’ using search engines ‘Yahoo’ and ‘Inforseek’ can be
done as shown in Fig. 8(a). The result is a sub-space for a new domain comprising ‘computer sci-
ence’ and ‘vision’ as shown in Fig. 8(b).

By this multiple enlargement, the domain ‘computer vision’ is enlarged along e1 in the tree shown
in Fig. 8(a) and along e2 in the tree shown in Fig. 8(b). The result of this enlargement is a com-
bined domain for ‘computer science’ and ‘vision’. To represent the relationship between this new
domain and the domain ‘computer vision’, a new node v for it and a new edge e (labeled with {e1,
e2}) connecting v and the node for ‘computer vision’ will be constructed. (See Fig. 8(b) for illus-
tration.)

ciji

c1j1
cljm

S ← start-up(kw1 ∪ . kw2; Yahoo, Inforseek);

establish an edge e = (S, S’); mark e with {e1, e2};

computer
vision

domain graph already existing

new node for a combined
domain for ‘computer science’ and ‘vision’

Fig. 8. Illustration for multiple enlargement

(a) (b)

{e1, e2}
10

Alternatively, a user can choose a list of key words by himself. Corresponding to this list of key
words, a new domain is created by the user and therefore should be named, which is then inserted
into the domain graph which is used to govern the domain/sub-domain relationships.

- PWS refinement

The PWS refinement can be performed in a similar way to the enlargement, but reversed. This
operation is needed when the user narrows his/her interests.

A refinement is always done down a path in a tree structure in the data dictionary. Let T be a tree
structure, a1 be a node in T and p = a1 → ... → al be a path in T. Then, a refinement from a1 to ak

can be performed as follows:

S’ ← start-up(kw; en1, ..., enk);

establish an edge e = (S, S’); mark e with p;

where kw represents the key word list associated with al. This is just a reverse process of the sin-
gle enlargement.

4. Summary and future work

In this paper, the architecture and functionality of a software system: PWS is discussed in detail.
Like bookmarks, a PWS contains a set of URL addresses of interest but with some concrete Web
pages cached. In addition, a lot of functions are supported in a PWS to facilitate the access, the
manipulation and the management of interesting information from the internet. A PWS can be
started up by retrieving information of interest on network, which will be organized into a
domain/sub-domain graph stored locally. The storage of a PWS can also be refreshed periodically
to keep up with the new state of the information on Web. Further, a PWS can be evolved to reflect
the interest change of users. At last, a PWS can be enquired by issuing queries just as in an infor-
mation retrieval system. In this way, a PWS works as a combination of information caching,
information retrieval and bookmarks.

As a future research, more aspects affecting the storage strategy of PWS should be explored. For
example, the reliability of pages should be taken into account for page storing. It is intuitive that a
page with lower reliability (e.g., the source server is often down or unavailable) may not be
worthwhile as an information source for a PWS. This observation can be integrated into the for-
mula to compute h values as follows. Let r (0 ≤ r ≤ 1) be a value to represent the reliability of a
page. We reconstruct the way to calculate h as shown in the formula below:

h = (1 - cf)⋅ ,

where p ⊕ r = p + r - p⋅r. (Note that, if 0 ≤ p ≤ 1 and 0 ≤ r ≤ 1, we have always 0 ≤ p ⊕ r ≤ 1.)
From this we can see that a page of higher reliability will has a higher h value. The problem is
how to determine r values, i.e., how to check automatically whether an information resource is
reliable or not. For this purpose, we need a mechanism to observe the behavior of an information
resource and then “reason” how high it is reliable. Another interesting parameter is “interest to
public”, which can be obtained by checking how many times a page is linked by others, which
needs another mechanism to trace the Web.

p r⊕
max sz 1,log{ }

11

In addition, we are planning to enhance the full-text searching ability of the system with text-
understanding, which will make a PWS more intelligent and therefore the cached pages will fit
the user’s needs more exactly.

References

BB99 K. Bharat and A.Z. Broder, Mirror, Mirror, on the web: A study of host pairs with repli-
cated content, in Proc. of 8th Int. Conf. on World Wide Web (WWW’99), May 1999.

BCF99 L. Breslau, P. Cao, L. Fan, G. Phillips and S. Shenker: Web Caching and Zipf-like Dis-
tributions: Evidence and Implications, http://www.cs.wisc.edu/~cao/papers/zipf-impli-
cations.html.

BGM97 A.Z. Broder, S.C. Glassman and M.S. Manasse, Syntactic clustering of the web, in Proc.
of 6th Int. World Wide Web Conference, April 1997, pp. 391-404.

bo99 bookmarks home page: http://www.whatis.com/bookmark.htm.

Co99 Copernic: http://www.copernic.com.

CSG99 J. Cho, N. Shivakumar, H. Garcia-Molina, “Finding replicated web collections,” http://
dbpubs.stafford.edu/pub/1999-64.

FHLS00 Froehlich, G., Hoover, H.J., Liu L. and SORENSON, P.G.: "Reusing Application
Frameworks Through Hooks," to appear in Object-Oriented Application Frameworks,
M. Fayad, R. Johnson editors. John Wiley & Sons, New York, NY.

Gr94 I.S. Graham: HTML-documentation and style guide, http://www.utirc.utoronto.ca/
HTMLdocs/NewHTML/htmlindex.html, 1994.

Kn99 KnowAll: http://www.worldfree.net.

Le94 T.B. Lee: RFC 1738: Uniform Resource Locators, http://www.w3.org/hypertext/WWW/
Addressing/rfc1738.txt, Dec. 1994.

Li99 W. Liew: Sandwich: A Personal Web Assistant Framework, master thesis, Department
of Computing Science, University of Alberta, 1999.

Ma99 U. Manber: WebGlimps - Combing Browsing and Searching, Department of Computer
Science, University of Arizona, http://ftp.cs.arizona.deu/people/udi/webglimps.ps.Z.

PE98 M. Perkowitz and O. Etzioni, Adaptive web sites: automatically synthesizing web pages,
in proc. of 15th National Conf. on Computer and Human Interaction (CHI’97), 1997.

Sall83 G. Salton, Introduction to modern information retrieval, McGraw-Hill, New York, 1983.

SGM95 N. Shivalumar and H. Garcia-Molina, SCAM: a copy detection mechanism for digital
documents, in proc. of 2nd Int. Conf. on Theory and Practice of Digital Libraries
(DL’95), Austin, Texas, June 1995.

SGM96 N. Shivalumar and H. Garcia-Molina, BUilding a scalable and accurate copy detection
mechanism, in proc. of 1st Int. Conf. on Digital Libraries (DL’96) , Bethesda, Maryland,
March 1996.

Sq99 Squid: http://www.squid-cache.org.

We99 WebGlimps: http://webglimps.org.
12

Zi29 G.K. Zipf: Relative frequency as a determinant of phonetic change, Reprinted from the
Harvard Studies in Classical Philiology, Vol. XL, 1929.
13

