
A New Algorithm for Evaluating Ordered Tree Pattern
Queries

Yangjun Chen

Dept. Applied computer Science
University of Winnipeg, Winnipeg, Manitoba, Canada, R3b 2E9

Abstract - An XML tree pattern query, represented as a
labeled tree, is essentially a complex selection predicate on
both structure and content of an XML. Tree pattern matching
has been identified as a core operation in querying XML data.
We distinguish between two kinds of tree pattern matchings:
ordered and unordered tree matching. By the unordered tree
matching, only ancestor-descendant and parent-child
relationships are considered. By the ordered tree matching,
the order of siblings is also taken into account. While dif-
ferent fast algorithms for unordered tree matching are
available, no efficient algorithm for ordered tree matching for
XML data exists. In this paper, we discuss a new algorithm
for processing ordered tree pattern queries, whose time
complexity is polynomial. In addition, the algorithm can be
adapted to an indexing environment with XB-trees being used.
Experiments have been conducted, which shows that the new
algorithm is promising.

Keywords: XML data stream, tree pattern queries, ordered
tree matching

1 Introduction
 In XML [43, 44], data is represented as a tree; associated
with each node of the tree is an element name from a finite
alphabet �. The children of a node are ordered from left to
right, and represent the content (i.e., list of subelements) of
that element.
 Accordingly, in most of the XML query languages (e.g.
XPath [43], XQuery [44], XML-QL [15], and Quilt [6, 7]),
queries are typically expressed by tree patterns (for example,
path expressions expressed in XPath, path expressions in the
for and let clauses in XQuery.) In such tree patterns, nodes are
labeled with symbols from � ∪ {*} (* is a wildcard,
matching any node name) and string values, and edges are
parent-child or ancestor-descendant relationships. As an ex-
ample, consider the query tree shown in Fig. 1(a), which asks
for any node of name b (node 3) that is a child of some node
of name a (node 1). In addition, the node of name b (node 3)
is the parent of some nodes of name c and e (node 6 and 7,
respectively), and the node of name e itself is an ancestor of
some node of name d (node 8). The node of name b (node 2)
should also be the ancestor of a node of name f (node 5). The
query corresponds to the following XPath expression:
 a[b[c and .//f]]/b[c and e//d].

 Fig. 1(a), there are two kinds of edges: child edges (/-
edges for short) for parent-child relationships, and descendant
edges (//-edges for short) for ancestor-descendant
relationships. A /-edge from node v to node u is denoted by v
→ u in the text, and represented by a single arc; u is called a /-
child of v. A //-edge is denoted by v � u in the text, and
represented by a double arc; u is called a //-child of v.

 In any DAG (directed acyclic graph), a node u is said to
be a descendant of a node v if there exists a path (sequence of
edges) from v to u. In the case of a tree pattern, this path
could consist of any sequence of /-edges and/or //-edges. We
also use label(v) to represent the symbol (∈ � ∪ {*}) or the
string associated with v. Based on these concepts, the tree
embedding can be defined as follows.
Definition 1 An embedding of a tree pattern Q into an XML
document T is a mapping f: Q → T, from the nodes of Q to the
nodes of T, which satisfies the following conditions:
(i) Preserve node label: For each u ∈ Q, label(u) =

label(f(u)) (or say, u matches f(u)).
(ii) Preserve parent-child/ancestor-descendant relationship:

If u → v in Q, then f(v) is a child of f(u) in T; if u � v in
Q, then f(v) is a descendant of f(u) in T.

If there exists a mapping from Q into T, we say, Q can be
imbedded into T, or say, T contains Q.
Almost all the existing strategies for evaluating twig join
patterns are designed according to this definition [4, 8, 10, 11,
12, 14, 24, 26, 28, 29, 30, 31, 36, 37, 46].
This definition allows a path to match a tree as illustrated in
Fig. 1(b).
 It is because by Definition 1 the left-to-right
relationships between siblings are not taken into account. We
call such a problem an unordered tree pattern matching.
 We may consider another problem, called an ordered
tree pattern matching, defined below.
Definition 2 An embedding of a tree pattern Q into an XML
document T is a mapping f: Q → T, from the nodes of Q to the
nodes of T, which satisfies the following conditions:
(i) same as (i) in Definition 1.

b c

a

1 a

2 b 3 b

4 c 5 f 6 c 7 e

8 d

Output node
a

b

c

Q: T:

(a) (b)
Fig. 1. A query tree and a tree matching a path

(ii) same as (ii) in Definition 1.
(iii) Preserve left-to-right order: For any two nodes v1 ∈ Q

and v2 ∈ Q, if v1 is to the left of v2, then f(v1) is to the left
of f(v2) in T.

 In general, a node u1 is said to be to the left of another
node u2 in a tree T if they are not related by the ancestor-
descendant relationship and u2 follows u1 when we traverse T
in preorder.
 This kind of tree mappings is useful in practice. For
example, an XML data model was proposed by Catherine and
Bird [5] for representing interlinear text for linguistic
applications, used to demonstrate various linguistic principles
in different languages. For the purpose of linguistic analysis,
it is essential to preserve the linear order between the words in
a text [5]. In addition to interlinear text, the syntactic structure
of textual data should be considered, which breaks a sentence
into syntactic units such as noun clauses, verb phrases,
adjectives, and so on. These are used by the language Tree-
Bank [31] to provide a hierarchical representation of
sentences. Therefore, by the evaluation of a tree pattern query
against the TreeBank, the order between siblings should be
considered [31, 34].
 The remainder of the paper is organized as follows. In
Section 2, we review the concept of XML data streams. In
Section 3, we discuss our algorithm and analyze its
computational complexities. The paper concludes in Section
4.

2 XML data stream
 In a XML database, we can always store a document as a
data stream by using an interesting tree encoding [46], which
can be used to identify different relationships between the
nodes of a tree.
 Let T be a document tree. We associate each node v in T
with a quadruple (d, l, r, ln), denoted as α(v), where d =
DocId, l = LeftPos, r = RightPos, and ln = LevelNum, defined
to be the nesting depth of the element in the document. (See
Fig. 2 for illustration.) By using such a data structure, the
structural relationships between the nodes in an XML
database can be simply determined [46]:
(i) ancestor-descendant: a node v1 associated with (d1, l1, r1,

ln1) is an ancestor of another node v2 with (d2, l2, r2, ln2)
iff d1 = d2, l1 < l2, and r1 > r2.

(ii) parent-child: a node v1 associated with (d1, l1, r1, ln1) is
the parent of another node v2 with (d2, l2, r2, ln2) iff d1 =
d2, l1 < l2, r1 > r2, and ln2 = ln1 + 1.

(iii) left-to-right order: a node v1 associated with (d1, l1, r1,
ln1) is to the left of another node v2 with (d2, l2, r2, ln2)
iff d1 = d2, r1 < l2.

 In Fig. 4, v2 is an ancestor of v6 and we have v2.LeftPos =
2 < v6.LeftPos = 6 and v2.RightPos = 9 > v6.RightPos = 6. In
the same way, we can verify all the other relationships of the
nodes in the tree. In addition, for each leaf node v, we set
v.LeftPos = v.RightPos for simplicity, which still work
without downgrading the ability of this mechanism. In the rest
of the paper, if for two quadruples α1 = (d1, l1, r1, ln1) and α2

= (d2, l2, r2, ln2), we have d1 = d2, l1 ≤ l2, and r1 ≥ r2, we say
that α2 is subsumed by α1. For convenience, a quadruple is
considered to be subsumed by itself (i.e., a node is considered
to be an ancestor of itself). In this way, we can store an XML
document as a stream of quadruples sorted by LeftPos or
RightPos values.

 If no confusion is caused, we will used v and α(v)
interchangeably. As with DeweyIDs [21], we can also leave
gaps in the numbering space between consecutive labels to
support dynamical changes of documents.

3 Algorithm
 In this section, we discuss our strategy for the ordered
tree pattern matching. First, we discuss the main algorithm in
3.1. Then, in 3.2, we show the correctness of our algorithm
and analyze its computational complexities. In 3.3, we
describe how to adapt it to an indexing environment, as well
as how the wildcard and output node can be handled.

3.1 Algorithm description

 Our algorithm works bottom-up. Therefore, we need to
sort XML streams by (DocID, RightPos) values. Each time a
query Q is submitted to the system, we will associate each
query node q with a data stream L(q) such that for each v ∈
L(q) label(v) = label(q), as illustrated in Fig. 3, in which each
query node is attached with a list of matching nodes of the
document tree shown in Fig. 2.

 In the figure, for simplicity, we use the node names in a
data stream, instead of the nodes’ quadruples. In addition,
DocIDs are not displayed. We remark that the data streams
associated with different nodes in Q may be the same. So we
use q to represent the set of such query nodes and denote by
L(q) the data stream shared by them. Without loss of
generality, assume that the query nodes in q are sorted by
their RightPos values. We will also use L(Q) = {L(q1), ...,
L(ql)} to represent all the data streams with respect to Q,
where each qi (i = 1, ..., l) is a set of sorted query nodes that
share a common data stream.
 In order to facilitate the checking of tree embedding,
some more data structures are established for query nodes.

(1, 5, 5, 4)

(1, 3, 3, 3)

(1, 10, 10, 2)

A v1

B v2

v3 C B v4

B v8

D v7 v5 C

(1, 4, 8, 3)

(1, 7, 7, 4)
(1, 6, 6, 4)

Fig. 2. Illustration for tree encoding

T:
(1, 2, 9, 2)

v6 C

(1, 1, 11, 1)

A q1

q1 B B q5

q3 C C q4

{v4, v2, v8}

{v3, v5, v6}

{v1} Query nodes with the same
tag will be associated with
the same data stream:

Q:

L(q2) = L(q5 = {v4, v2, v8}

Fig. 3. Illustration for L(qi)’s

1. First, we will number the nodes of Q in postorder (see
the boldfaced numbers in Fig. 4(a) for illustration). So
the nodes in Q will be referenced by their postorder
numbers.

2. For each node q of Q, a link from it to the left-most leaf
node in Q[q], denoted by δ(q), is established. (See Fig.
4(b)). For a leaf node q’, δ(q’) = q’. Additionally, we set
a virtual node for Q, numbered 0, which is considered to
be to the left of any node in Q.

3. Let q’ be a leaf node in Q. We denote by δ-1(q’) a set of

nodes x such that for each q ∈ x δ(q) = q’.
4. Each time we create a node v in T’, we associate it with

an array Av of length |Q|, indexed from 0 to |Q| - 1. In Av,
each entry is a query node or φ, defined below:

[]
�
�

�

�
�

�

� ∧∈

=

−

otherwise.,
];[in embedded being

][with node oneleast at contains)(],[embeds][
such that than larger 'leafleast a is thereif)(|max{

1-

1

φ

δ
δ

vT

xQxqxQvT

qqqxx

qAv

Here, Q[x] represents a subtree of Q rooted at x.
See Fig. 5 for illustration.

 In Fig. 5, q’ represents a closest leaf node to the right of
q (i.e., the least leaf node larger than q) such that there exists
at least one x ∈ δ-1(q’) with T[v] embedding Q[x]. Each xi
represents such a node in δ-1(q’). But we make Av[q] point to
the largest one since the embedding of a tree in T[v] implies
the embedding of any of its subtrees in T[v]. At the same time,
the left-to-right order is also recorded.
Such entries can be produced as below.
(i) If we find Q[x] can be embedded in T[v], we will set Av

Av[q1], ..., Av[qk] to x, where each ql (0 ≤ l ≤ k) is a query
node to the left of x, to record the fact that x is the
closest node to the right of ql such that T[v] embeds
Q[x].

(ii) If some time later we find another node x’, which is to
the right of x, such that Q[x’] can be embedded in T[v],
we will set Av[p1], ..., Av[ps] to x’, where each pl (1 ≤ l ≤
s) is to the left of x’ but to the right of qk.

(iii) If x’ is an ancestor of x, we will find all those entries
pointing to a descendant of x’ on the left-most path in
Q[x’]. Replace these entries with x’.

(iv) For all the other nodes v’ such that T[v’] embeds Q[x],
we will set values for the entries in Av’ in the same way
as (i), (ii), and (iii).

 As an example, consider node v4 in T shown in Fig. 2.
After it is checked against node 1 (q3) of Q in Fig. 4, we will
set

4vA [0] to 1 since node 1 (q3) of Q is the closest node to the

right of node 0 (the virtual node of Q) such that T[v4] embeds
Q[q3]. (See Fig. 6(a)). At a later time point, we find that T[v4]
also embeds Q[q2], we will change [0] to 3 (see Fig. 6(b)). It
is because node 1 (q3) is a descendant of node 3 (q2) on the
left-most path in Q[q2]. In the subsequent computation, we
will find that T[v4] can embed Q[q5]. In order to record this
fact, will be further modified as shown in Fig. 6(c) since
node 4 (q5) is the closest node right of node 1 (q3), 2 (q4), and
3 (q2) such that T[v4] embeds Q[q5].

 Based on Av’s, the ordered tree embedding can be
checked as follows:
• Let q in Q and v in T be the nodes encountered.
• Let v1, ..., vk be the child nodes of v. Let q1, ..., ql be the

child nodes of q. We first check
1vA starting from

1vA [l],

where l = δ(q) - 1. We begin the searching from δ(q) - 1
because it is the closest node to the left of the first child of
q. Let

1vA [l] = q’. If q’ is not an ancestor of q1, we will

check
2vA [l] in a next step. This process continues until

one of the following conditions is satisfied:
 (i) All

ivA ’s have been checked, or

 (ii) There exists vj such that [l] is an ancestor of q.
If all

ivA ’s are checked (case (i)), it shows that Q[q1] cannot be

embedded in any subtree rooted at a child node of v. So T[v]
cannot embed Q[v].
If it is case (ii), we know that T[vj] embeds Q[q1]. If q1 is a //-
child, or both q1 and vj are /-children, we will continue to
check [q1]. (Otherwise, we will continue to check

2vA [l].)

 In terms of the above discussion, we give our algorithm
for evaluating ordered tree pattern queries. It mainly consists
of two processes: (1) scanning the data streams associated
with the query nodes in such an order that each time the
quadruple with the least RightPos is accessed; (2) checking
tree embedding.
 In the first process, for each encountered quadruple v
from a L(q), a node is created, which will be associated with
two links, denoted respectively left-sibling(v) and parent(v),
to reconstruct T (or a subtree of T, which contains only those
nodes matching a query node) as follows:
1. Identify a data stream L(q) with the first element being of

the minimal RightPos value. Choose the first element v of
L(q). Remove v from L(q).

2. Generate a node for v.
3. If v is not the first node, we do the following:
 Let v’ be the node chosen just before v. If v’ is not a child

(descendant) of v, create a link from v to v’, called a left-
sibling link and denoted as left-sibling(v) = v’.

 If v’ is a child (descendant) of v, we will first create a link
from v’ to v, called a parent link and denoted as parent(v’)

A v4 : [1, φ, φ, φ, φ] [3, φ, φ, φ, φ] [3, 4, 4, 4, φ]

Fig. 6. Changes in array Av

(a) (b) (c)

q

Av:

Av[q]

Fig. 5. Illustration for Av[q]

x1

xj

5

3

A q1

B q5

C q4

q4 B

q4 B

Q : A q1

B q5

C q4

q4 B

q4 B

δ(q1)

δ(q2)

(a) (b)

Fig. 4. Labeled trees and postorder numbering

1 2

4

q’ q’ is the closest node to the right of q.

= v. Then, we will go along the left-sibling chain starting
from v’ until we meet a node v’’ which is not a child (de-
scendant) of v. For each encountered node u except v’’, set
parent(u) ← v. Finally, set left-sibling(v) ← v’’.

 In the second process, we check, for each v from a L(q),
whether T[v] embeds Q[q] for each q in q. For this purpose, in
addition to δ(q), Av, another two data structures are used:
Sv - a list of query nodes q such that T[v] embeds Q[q].
τ(v) - a postorder number for a query node associated with

node v in T’ such that T’[v] is the subtree currently
found to embed Q[τ(v)]. The initial value for each τ(v) is
0.

 In the following algorithm, we only show the second
process for ease explanation. But the first process can easily
be integrated.
Algorithm tree-embedding(L(Q))
Input: all data streams L(Q).
Output: Sv’s, which show the tree embedding.
begin
1. repeat until each L(q) in L(Q) become empty
2. {identify q such that the first element v of L(q) is of the

minimal RightPos value; remove v from L(q);
3. generate node v; Av ← φ; Sv ← φ;
4. let v1, ..., vk be the children of v.
5. for each q ∈ q do { (*nodes in q are sorted.*)
6. let q1, ..., ql be the children of q;
7. if l = 0 then j ← 0
8. else { p ← δ(q) - 1;
9. i ← 1; j ← 1; p’ ←

ivA [p];

10. while i ≤ k and p’ ≠ φ and p’ < q do
11. {if (p’ is an ancestor of qj and ((q, qj) is a //-
edge,
 or both (q, qj) and (v, vi) are /-edges))
12. then { p’ ←

1+ivA [p’]; i ← i + 1; j ← j + 1;}

13. else {p’ ←
1+ivA [p]; i ← i + 1;}

14. }
15. }
16. if l = j then
17. { Sv ← Sv ∪{q};
18. if q is to the right of τ(v)
19. then { a ← τ(v);
20. for b = a to q - 1 do
21. {if b is to the left of q then Av[b] ← q;}
22. }
23. else {replace with q all those entries pointing to a

descendant of q on the left-most path in Q[q] in Av;
}

24. τ(v) ← q; }
25. for i = 1 to k do {Av ← merge(Av, ivA);}

26. remove
1vA , ...,

kvA ;

27. }
end
 In the above algorithm, the nodes in T are created one
by one. But for each node v generated for an element from a

L(q), Av is created and each entry is initialized to φ. Then, for
each q ∈ q, we will check whether T[v] embeds Q[q]. This is
done by executing lines 7 - 15, in which two index variables: i
and j are used to scan the children of v and q, respectively.
The searching begins from [p], where p = δ(q) - 1 (see line 8).
In each iteration of the while-loop (see lines 10 - 14), we
check vi against qj by examining whether the following two
conditions are satisfied:
i)

ivA [p] is an ancestor of qj, and

ii) (q, qj) is a //-edge, or both (q, qj) and (v, vi) are /-edges.
 If both the conditions hold, T[vi] embeds Q[qj]. We will
continue to check T[vi+1] against Q[qj+1]. Special attention
should be paid to the statement: p’ ←

1+ivA [p’] (line 12), by

which we get a query node q’ that is the closest to the right of
qj, such that T[vi+1] embeds Q[q’]. We also notice that if T[vi]
cannot embed Q[qj], we will check vi+1 against qj by doing p’
←

1+ivA [p] (see line 13).

 This process continues until one of the following
conditions is met: (1) i > k, (2) p’ = φ, or (3) p’ ≥ q.
(1) or (2) implies an unsuccessful checking. If (3) holds, we
must have l = j (see line 16), showing that each Q[qj’] (1 ≤ j’
≤ l) is embedded by a T[vi] (1 ≤ i ≤ k) in the left-to-right
order.
Lines 18 - 23 are used to set the entries in Av.
Finally, we need to merge each

ivA into Av (line 25) since the

embedding of a subtree in T[vi] implies the embedding of that
subtree in T[v].
Handling φ as a negative integer (e.g., -1) that represents a
descendant of any node, we define merge(Av, ivA) as below:

�
�

�
�

�

=
 otherwise.]),[],[max(

 ;path same
 on the are])[and][if]),[],[max(

])[,(
jAjA

jAjAjAjA

jAAmerge

i

ii

i

vv

vvvv

vv

 Obviously, if Av[j] and
ivA [j] are on the same path,

merge(Av[j], ivA [j]) should be set to be max{Av[j], ivA [j]}.

However, if Av[j] and
ivA [j] are on different paths,

merge(Av[j], ivA [j]) is set to be min{Av[j], ivA [j]}. It is

because in Av each entry Av[j] is the closest node j’ to the right
of j such that T[v] contains Q[j’].
 In line 26, we remove

1vA , ...,
kvA since they will not be

used any more.
Example 2 As an example, consider Q shown in Fig. 3 and T
in Fig. 3 once again. The nodes in Q are postorder numbered,
i.e., q1 = 5, q2 = 3, q3 = 1, q4 = 2, and q5 = 4. When we apply
the above algorithm to them, each node v (except v7) in T will
be associated with an array Av as shown in Fig. 6.
 In Step 1, v3 is checked against q’’ = {2}. Node 2 is a
leaf node. So, we have T[v3] embedding Q[2] and

3vA will be

established as shown in Fig. 6(a). We notice that
3vA [0] =

3vA [1] = 2. It is because node 2 is the closest node to the right

of node 0 (virtual node) and node 1 (q3) such that T[v3]
embeds Q[2].

 In Setp 2, v5 is checked against q’ = {1, 3, 4}. Node 1 is
a leaf and so T[v5] embeds Q[1], which sets

5vA as shown in

Fig. 6(b). T[v5] is not able to contain Q[3], but Q[4]. Thus,
5vA

is changed to [1, 4, 4, 4, φ].
 In Setp 3, v6 is checked against q’’ = {2}. Node 2 is a
leaf and T[v6] embeds Q[2].

6vA is the same as . See Fig. 6(c).

 In Setp 4, v4 is checked against q’ = {1, 3, 4}. Since
T[v4] embeds Q[1],

4vA is first set to [1, φ, φ, φ, φ] (see Fig.

6(d)). When v4 is checked against node 3, their children will
be examined. The children of v4 are v5 and v6; and the children
of node 3 are nodes 1 and 2. First,

5vA [0] is checked. It is 1,

showing that T[v5] embeds Q[1]. Next,
6vA [1] is checked, it is

equal to 2, showing that T[v6] embeds Q[2]. Therefore, T[v4]
is able to embed Q[3] and

4vA is changed to [3, φ, φ, φ, φ].

(Note that node 1 is a child of node 3 and also on the left-
most path in Q[3].) By checking v4 against node 4,

4vA becomes [3, 4, 4, 4, φ]. By merge(
4vA ,

5vA),
4vA is not

changed. But by merge(
4vA ,

6vA),
4vA is further changed to [3,

2, 4, 4, φ].

 The same analysis applies to Step 5 and 6, by which
and are constructed as shown in Fig. 6(e) and (f),
respectively.
 In Step 7, v1 is checked against q = {5}. We will first
check their children. The children of v1 are v2 and v8; and the
children of node 5 are nodes 3 and 4. Since

2vA [0] = 3,

showing that T[v2] contains Q[3]. However, since the edge (5,
3) (i.e., (q1, q2)) in Q is a /-edge, we have to check whether v2
in T is a /-child of v1. It is the case. So we will continue to
check

8vA [3]. It is equal to 4, demonstrating that T[v8] embeds

Q[4]. Thus,
1vA is set to [5, φ, φ, φ, φ]. See Fig. 6(g). By

merge(
1vA ,

2vA),
1vA is changed to [5, 2, 4, 4, φ]. By

merge(
1vA ,

8vA),
1vA remains unchanged.

3.2 Corectness and time complexities
In this subsection, we prove the correctness of the algorithm
and analyze its computational complexities.
Proposition 2 Algorithm tree-matching() computes the
values in Av’s correctly.
Proof. We prove the proposition by induction on the heights
of nodes in T’. We use h(v) to represent the height of node v.
Basic step. It is clear that any node v with h(v) = 0 is a leaf
node. Then, each entry in Av corresponds to a leaf node q in Q
with label(v) = label(q). Since all those leaf nodes in Q are
checked in the order of increasing RightPos values, the entries
in Av must be correctly established.

Induction step. Assume that for any node v with h(v) ≤ l, the
proposition holds. We will check any node v with h(v) = l + 1.
 Let v1, ..., vk be the children of v. Then, for each vi (i = 1,
..., k), we have h(vi) ≤ l. In terms of the induction hypothesis,
each

ivA is correctly constructed. Let q1, ..., ql be the children

of q. In the main while-loop, we will access a sequence:

1vA [p1], ..., kvA [pk]

with p1 ≤ p2 ≤ ... ≤ pk. If there exists a subsequence:
1ip ,

...,
lip satisfying the following conditions:

i)
jip is an ancestor of qj, and

ii) (q, qj) is a //-edge, or both (q, qj) and (v,) are /-edges,
T[v] embeds Q[q]. If q is to the right of τ(v), then in Av, all the
entries to the right of τ(v) but to the left of q will be set to be
q. If q is an ancestor, all those entries pointing to a descendant
of q and appearing on the left-most path in Q[q] are replaced
with q. The merging operation is obviously correct since the
embedding of a subtree in T[vi] implies that T[v] also contains
that subtree. This completes the proof.
 Now we analyze the time complexity of the algorithm.
The whole cost can be divided into four parts.
 The first part consists of checking v of T’ against q of Q.
Since in each

ivA , where vi is a child of v, only one entry is

checked, this part of cost is bounded by
 O(�

∈Tv
vd) = O(|T|),

where dv represents the outdegree of v.
 The second part is the cost for filling in the case that q
is to the right of τ(v). For each v ∈ T, the cost is bounded by
O(|Q|). So this part of cost is in the order of O(|T|⋅|Q|).
 The third part is the cost for filling in the case that q is
an ancestor of τ(v). This part of checking can be slightly
improved as follows. In Av, each entry is set to be a pointer to
a place storing a postorder number, instead of the number
itself, as illustrated in Fig. 7.

 In Fig. 7,

4vA is stored as an array of pointers. Especially,

the postorder numbers in Av a can be organized as a tree in a
way similar to the reconstruction of T from data streams.
Therefore, to modify all the entries pointing to a descendant
of q on the left-most path in Q[q], we need only to search for
the place containing the corresponding postorder number.
This can be done by traversing along a left-link chain as
discussed in 3.1. For a node v ∈ T checked against q, the cost
of this process is bounded by O(|q|).
 The forth part of cost is for the merging operation. It can
simply be estimated by
 O(= O(|T|⋅|Q|).

A v3 :
A v5 :
A v6 :
A v4 :
A v2 :
A v8 :
A v1 :

[2, 2, φ, φ, φ]
[1, φ, φ, φ, φ]
[2, 2, φ, φ, φ]
[1, φ, φ, φ, φ]
[1, φ, φ, φ, φ]
[1, 4, 4, 4, φ]
[5, φ, φ, φ, φ]

[1, 4, 4, 4, φ]

[3, φ, φ, φ, φ]
[3, 2, φ, φ, φ]

[5, 2, 4, 4, φ]

[3, 4, 4, 4, φ]
[3, 2, 4, 4, φ]

[3, 2, 4, 4, φ]

(a)
(b)
(c)
(d)
(e)
(f)
(g)

Fig. 6. A sample trace

A v4 : [3, 2, 4, 4, φ]

3 q2 4 q5

2 q4
left link

Fig. 7. Structure of Av

 In terms of the above analysis, we have the following
proposition.
Proposition 3 The time complexity of Algorithm tree-
embedding() is bounded by O(|T’|⋅|Q| + O(|D|⋅|Q|).
 The space overhead of Algorithm tree-embedding() is
in the order of O(leafT⋅|Q|), where leafT is the number of the
leaf nodes of T. It is because after a v is checked all the arrays
associate with its children are removed. So at any time point
during the execution, at most leafT nodes in T are associated
with a array (see line 26 in Algorithm tree-embedding().)

3.3 About index, *, and output nodes
 In the previous subsections, the main algorithm has been
described in detail. However, three issues yet remain to be
addressed. That is, the indexing, wildcards (*) as well as the
output node in Q should be handled carefully.

- Index
 The index mechanism used in our implementation is a
modified XB-tree [4]. As with TwigStack [4], an XB-tree is
established over a data stream sorted by LeftPos values.
However, we can use the following algorithm to make a
transformation of data streams, in which a global stack ST is
maintained to control the process. In ST, each entry is a pair
(qi, v) with qi ∈ Q and v ∈ T (v is represented by its
quadruple.)
Algorithm stream-transformation(B(qi)’s)
input: all data streams B(qi)’s, each sorted by LeftPos.
output: new data streams L(qi)’s, each sorted by RightPos.
begin
1. repeat until each B(qi) becomes empty
2. {identify qi such that the first element v of B(qi) is of the

minimal LeftPos value; remove v from B(qi);
3. while ST is not empty and ST.top is not v’s ancestor do
4. { x ← ST.pop(); Let x = (qj, u);
5. put u at the end of L(qi); }
6. ST.push(qi, v);
7. }
end

In the above algorithm, ST is used to keep all the nodes on a
path until we meet a node v that is not a descendant of ST.top.
Then, we pop up all those nodes that are not v’s ancestor; put
them at the end of the corresponding L(qi)’s (see lines 3 - 5);
and push v into ST (see line 6.) The output of the algorithm is
a set of data streams L(qi)’s with each being sorted by
RightPos values. However, we remark that the popped nodes
are in postorder. So we can directly handle the nodes in this
order without explicitly generating L(qi)’s.
In Fig. 8(b), we demonstrate a XB-tree built on a B(q) shown
in Fig. 8(a).
Each entry in a page (a node) P of an XB-tree consists of a
bounding segment [LeftPos, RightPos] and a pointer to its
child page, which contains entries with bounding segments

completely included in [LeftPos, RightPos]. The bounding
segments may partially overlap, but their LeftPos positions
are in increasing order. Besides, each page has two extra data
fields: P.parent and P.parentIndex. P.parent is a pointer to
the parent of P, and P.parentIndex is a number i to indicate
that the ith pointer in P.parent points to P. For instance, in the
XB-tree shown in Fig. 8(b), P3.parentIndex = 2 since the
second pointer in P1 (the parent of P3) points to P3.

In our implementation, some modifications have been made.
First, for a set of nodes q = {q1, ..., ql}, we establish only one
XB-tree, where q1, ..., ql have the same label. But for each qj
∈ q (j = 1, ..., l), we maintain a pair (P, i), denoted , to
indicate that the ith entry in the page P (in the XB-tree) is
currently accessed for qj. Thus, each (j = 1, ..., l) corresponds
to a different searching of the same XB-tree as if we have a
separate copy of that XB-tree over B(qj). We use advance()
and drilldown() to navigate the corresponding XB-tree.
Concretely, advance() advances i. If i is the last entry in P, is
replaced with (P.parent, P.parentIndex). By drilldown(), we
replace (P, i) with (P’, 0) if P is not a leaf page, where P’ is
the child page pointed to by the pointer of the ith entry in P
[4].
The second modification consists in a different navigation
strategy of XB-trees. By Twigstack [4], each time to
determine a q in Q, for which an entry from B(q) is taken, the
following three conditions are satisfied:
i) For q, there exists an entry vq in B(q) such that it has a

descendant in each of the streams B(qi) (where qi is a
child of q.)

ii) Each recursively satisfies (i).
iii) LeftPos(vq) is minimum.
But for the ordered tree matching, (i) is changed:
- For q, there exists an entry vq in B(q) such that it has a

descendant in each of the streams B(qi). If q has a right
sibling q’, then there exists an entry vq’ in B(q’), which is
to the right of vq.

In this way, not only the ancestor-descendant relationship,
but also the left-to-right order is utilized to skip over entries in
an XB-tree, which substantially reduces the number of disk
access.

- Wildcards
 Using XB-trees, * is handled in the same way as non-
wildcard nodes. In fact, for each q in Q, no matter whether it
is a wildcard or not, we will be looking for only one element
in the corresponding XB-tree each time. More importantly,
using the above drilldown and advance operators [4], any
entry in an XB-tree (corresponding to a query node) is
accessed only once.

(1, 1, 9, 1)
(1, 2, 7, 2)
(1, 3, 3, 3)
(1, 4, 6, 3)
(1, 5, 5, 4)
(1, 8, 8, 2)

(a)

 1, 9 3, 6 5, 8

 1, 9 2, 7 3, 3 4, 6 5, 5 8, 8

p.parent

p.parentIndex

(b)

Fig. 8. A quadruple sequence and the XB-=tree over it

- Output node
 As for the output node of Q, we should notice that the
set Sv generated for each node v in T’ does not serve as the
answer to Q although for each q ∈ Sv we have T’[v] embeds
Q[q]. For this reason, we need to slightly modify the
algorithm to create two extra data structures Lr and Lo as
below.
 Each time we insert a q into an Sv (see line 17 in
Algorithm tree-embedding()), we will also add v to Lr if q is
the root r of Q, or to Lo if q is the output node o.
 Clearly, in these two data structures, all nodes are
increasingly sorted by the RightPos values. Thus, using them,
we can create another subtree T’’ of T (in a way similar to the
generation of a matching subtree; see Algorithm matching-
tree-construction()). It contains only those nodes v such that
T’[v] embeds Q[r] with label(v) = label(r) or embeds Q[o]
with label(v) = label(o). We call a node v an r-node if T’[v]
contains Q[r] with label(v) = label(r), or an o-node if T’[v]
embeds Q[o] with label(v) = label(o). Search T’’. Any node v,
which is an o-node and also a child of some r-node, should be
an answer if o is a descendant of r or a //-child of r. If o is a /-
child of r, an o-node is an answer only if it is a /-child of
some r-node.

4 Conclusion
 In this paper, a new algorithms tree-embedding for
processing ordered tree pattern queries is discussed. For the
ordered tree pattern queries, not only the parent-child and
ancestor-descendant relationships but also the order of
siblings are taken into account. The time complexity of the
algorithm is bounded by O(|T|⋅|Q|) and its space overhead is
by O(leafT⋅|Q|), where Q stands for a tree pattern, T’ for a
subtree of a document tree T containing the nodes that match
at least one query node, and leafT represents the number of the
leaf nodes of T’. Our experiments demonstrate that our
method is both effective and efficient for the evaluation of
ordered tree pattern queries.

5 References
[1] R. Agrawal, A. Borgida and H.V. Jagadish, “Efficient

management of transitive relationships in large data and
knowledge bases,” Proc. of the 1989 ACM SIGMOD
Intl. Conf. on Management of Data, Oregon, 1989, pp.
253-262.

[1] S. Abiteboul, P. Buneman, and D. Suciu, Data on the
web: from relations to semistructured data and XML,
Morgan Kaufmann Publisher, Los Altos, CA 94022,
USA, 1999.

[2] A. Aghili, H. Li, D. Agrawal, and A.E. Abbadi, TWIX:
Twig structure and content matching of selective queries
using binary labeling, in: INFOSCALE, 2006.

[3] S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, D.
Srivastava, and Y. Wu, Structural Joins: A primitive for
efficient XML query pattern matching, in Proc. of IEEE
Int. Conf. on Data Engineering, 2002.

[4] N. Bruno, N. Koudas, and D. Srivastava, Holistic Twig
Joins: Optimal XML Pattern Matching, in Proc.
SIGMOD Int. Conf. on Management of Data, Madison,
Wisconsin, June 2002, pp. 310-321.

[5] B. Catherine and S. Bird, Towards a general model of
Interlinear text, in Proc. of EMELD Workshop, Lansing,
MI, 2003.

[6] D. D. Chamberlin, J.Clark, D. Florescu and M.
Stefanescu. "XQuery1.0: An XML Query Language,"
http:// www.w3.org/TR/query-datamodel/.

[7] D. D. Chamberlin, J. Robie and D. Florescu. “Quilt: An
XML Query Language for Heterogeneous Data
Sources,” WebDB 2000.

[8] T. Chen, J. Lu, and T.W. Ling, On Boosting Holism in
XML Twig Pattern Matching, in: Proc. SIGMOD, 2005,
pp. 455-466.

[9] Y. Chen, An Efficient Streaming Algorithm for
Evaluating XPath Queries. in Proc. WEBIST, 2008, pp.
190-196.

[10] B. Choi, M. Mahoui, and D. Wood, On the optimality of
holistic algorithms for twig queries, in: Proc. DEXA,
2003, pp. 235-244.

[11] C. Chung, J. Min, and K. Shim, APEX: An adaptive
path index for XML data, ACM SIGMOD, June 2002.

[12] Y. Chen, S.B. Davison, Y. Zheng, An Efficient XPath
Query Processor for XML Streams, in Proc. ICDE,
Atlanta, USA, April 3-8, 2006.

[13] S. Chen, H-G. Li, J. Tatemura, W-P. Hsiung, D.
Agrawa, and K.S. Canda, Twig2Stack: Bottom-up
Processing of Generalized-Tree-Pattern Queries over
XML Documents, in Proc. VLDB, Seoul, Korea, Sept.
2006, pp. 283-294.

[14] B.F. Cooper, N. Sample, M. Franklin, A.B. Hialtason,
and M. Shadmon, A fast index for semistructured data,
in: Proc. VLDB, Sept. 2001, pp. 341-350.

[15] A. Deutsch, M. Fernandez, D. Florescu, A. Levy,
D.Suciu, A Query Language for XML, in: Proc. 8th
World Wide Web Conf., May 1999, pp. 77-91.

[16] D. Florescu and D. Kossman, Storing and Querying
XML data using an RDMBS, IEEE Data Engineering
Bulletin, 22(3):27-34, 1999.

[17] G. Gou and R. Chirkova, Efficient Algorithms for
Evaluating XPath over Streams, in: Proc. SIGMOD,
June 12-14, 2007.

[18] R. Goldman and J. Widom, DataGuide: Enable query
formulation and optimization in semistructured
databases, in: Proc. VLDB, Aug. 1997, pp. 436-445.

[19] G. Gottlob, C. Koch, and R. Pichler, Efficient
Algorithms for Processing XPath Queries, ACM
Transaction on Database Systems, Vol. 30, No. 2, June
2005, pp. 444-491.

[20] C.M. Hoffmann and M.J. O’Donnell, Pattern matching
in trees, J. ACM, 29(1):68-95, 1982.

[21] Sayyed Kamyar Izadi a, Theo Härder b,*, Mostafa S.
Haghjoo, S3: Evaluation of Tree-Pattern Queries
Supported by Structural Summaries, Data & Knowledge
Engineering, 68, pp. 126-145, Elsevier, Sept. 2008.

[22] R.B. Lyngs, M. Zuker & C.N.S. Pedersen, Internal loops
in RNA secondary structure prediction, in Proceedings
of the 3rd annual international conference on
computational molecular biology (RECOMB), 260-267
(1999).

[23] Jiang, Z., Luo, C., Hou, W.-C., Zhu, Q., and Che, D.,
“Efficient Processing of XML Twig Pattern: A Novel
One-Phase Holistic Solution,” In Proc. the 18th Int’l
Conf. on Database and Expert Systems Applications
(DEXA), pp. 87-97, Sept. 2007.

[24] R. Kaushik, P. Bohannon, J. Naughton, and H. Korth,
Covering indexes for branching path queries, in: ACM
SIGMOD, June 2002.

[25] C. Koch, Efficient Processing of Expressive Node-
Selecting Queries on XML Data in Secondary Storage:
A Tree Automata-based Approach, in: Proc. VLDB,
Sept. 2003.

[26] Q. Li and B. Moon, Indexing and Querying XML data
for regular path expressions, in: Proc. VLDB, Sept.
2001, pp. 361-370.

[27] Y. Rui, T.S. Huang, and S. Mehrotra, Constructing
table-of-content for videos, ACM Multimedia Systems
Journal, Special Issue Multimedia Systems on Video
Libraries, 7(5):359-368, Sept 1999.

[28] J. Lu, T.W. Ling, C.Y. Chan, and T. Chan, From Region
Encoding to Extended Dewey: on Efficient Processing
of XML Twig Pattern Matching, in: Proc. VLDB, pp.
193 - 204, 2005.

[29] J. McHugh, J. Widom, Query optimization for XML, in
Proc. of VLDB, 1999.

[30] G. Miklau and D. Suciu, Containment and Equivalence
of a Fragment of XPath, J. ACM, 51(1):2-45, 2004.

[31] K. Müller, Semi-automatic construction of a question
treebank, in Proc. of the 4th Intl. Conf. on Language
Resources and Evaluation, Lisbon, Portual, 2004.

[32] L. Qin, J.X. Yu, and B. Ding, “TwigList: Make Twig
Pattern Matching Fast,” In Proc. 12th Int’l Conf. on
Database Systems for Advanced Applications
(DASFAA), pp. 850-862, Apr. 2007.

[33] P. Ramanan, Holistic Join for Generalized Tree Patterns,
Information Systems 32 (2007) 1018-1036.

[34] P. Rao and B. Moon, Sequencing XML Data and Query
Twigs for Fast Pattern Matching, ACM Transaction on
Database Systems, Vol. 31, No. 1, March 2006, pp. 299-
345.

[35] A.R. Schmidt, F. Waas, M.L. Kersten, D. Florescu, I.
Manolescu, M.J. Carey, and R. Busse, The XML
benchmark project, Technical Report INS-Ro1o3,
Centrum voor Wiskunde en Informatica, 2001.

[36] C. Seo, S. Lee, and H. Kim, An Efficient Index
Technique for XML Documents Using RDBMS,
Information and Software Technology 45(2003) 11-22,
Elsevier Science B.V.

[37] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D.J.
Dewitt, and J.F. Naughton, Relational databases for
querying XML documents: Limitations and
opportunities, in Proc. of VLDB, 1999.

[38] U. of Washington, The Tukwila System, available from
http:/ /data.cs.washington.edu/integration/tukwila/.

[39] U. of Wisconsin, The Niagara System, available from
http:// www.cs.wisc.edu/niagara/.

[40] U of Washington XML Repository, available from
http:// www.cs.washington.edu/research/xmldatasets.

[41] H. Wang, S. Park, W. Fan, and P.S. Yu, ViST: A
Dynamic Index Method for Querying XML Data by
Tree Structures, SIGMOD Int. Conf. on Management of
Data, San Diego, CA., June 2003.

[42] H. Wang and X. Meng, On the Sequencing of Tree
Structures for XML Indexing, in Proc. Conf. Data
Engineering, Tokyo, Japan, April, 2005, pp. 372-385.

[43] World Wide Web Consortium. XML Path Language
(XPath), W3C Recommendation, 2007. See
http://www.w3.org/TR/ xpath20.

[44] World Wide Web Consortium. XQuery 1.0: An XML
Query Language, W3C Recommendation, Version 1.0,
Jan. 2007. See http://www.w3.org/TR/xquery.

[45] XMARK: The XML-benchmark project, http://monet-
db.cwi.nl/xml, 2002.

[46] C. Zhang, J. Naughton, D. Dewitt, Q. Luo, and G.
Lohman, on Supporting containment queries in
relational database management systems, in Proc. of
ACM SIGMOD, 2001.

[47] M. Götz, C. Koch, and W. Martens, Efficient
Algorithms for the tree Homeomorphism Problem, in
Pro. Int. Symposium on Database Programming
Language, 2007.

[48] Z. Bar-Yossef, M. Fontoura, and V. Josifovski, On the
memmory requirements of XPath evaluation over XML
streams, Journal of Computer and System Sciences 73
(2007) 391-441.

[49] M. Zaki. Efficiently mining frequent trees in a forest. In
Proc. of KDD, 2002.

