
Fast Ordered Tree Matching for XML Query
Evaluation

Yangjun Chen, Yibin Chen
Dept. Applied Computer Science, University of Winnipeg

Winnipeg, Manitoba, Canada R3B 2E9
y.chen@uwinnipeg.ca
Abstract− An XML tree pattern query, represented as a la-
beled tree, is essentially a complex selection predicate on
both structure and content of an XML. Tree pattern matching
has been identified as a core operation in querying XML da-
ta. We distinguish between two kinds of tree pattern match-
ings: ordered and unordered tree matching. By the
unordered tree matching, only ancestor/descendant and par-
ent/child relationships are considered. By the ordered tree
matching, however, the order of siblings has to be taken into
account besides ancestor/descendant and parent/child rela-
tionships. While different fast algorithms for unordered tree
matching are available, no efficient algorithm for ordered
tree matching for XML data exists. In this paper, we discuss
a new algorithm for processing ordered tree pattern queries,
whose time complexity is polynomial.

Key words: XML documents; tree pattern queries; tree
matching; tree encoding; XB-trees

1 Introduction
Xpath [16, 17] is a language for matching paths and,

more generally, patterns in tree-structured data and XML
documents. These patterns may use either just purely the tree
structure of an XML document or data values occurring in
the document as well. For example, the XPath expression:

book[title = ‘Art of Programming’]//author[firstName
= ‘Donald’ and lastName = ‘Knuth’]

matches author elements that (i) have a child subelement
firstName with content Knuth, (ii) have a child subelement
lastName with content Donald, and (iii) are descendants of
book elements that have a child title subelement. It can be
represented by a tree structure as shown in Fig. 1.

In Fig. 1, there are two kinds of edges: child edges (/-
edges for short) for parent-child relationships, and descen-
dant edges (//-edges for short) for ancestor-descendant rela-
tionships. A /-edge from node v to node u is denoted by v →
u in the text, and represented by a single arc; u is called a /-

Fig. 1. An Xpath tree

book

title author

Art of Programming

output node

firstName lastName

KnuthDonald
child of v. A //-edge is denoted by v ⇒ u in the text, and rep-
resented by a double arc; u is called a //-child of v.

Many different strategies have been proposed to effi-
ciently evaluate such kind of queries [1, 3 - 9, 12, 14, 15]. But
most of them take only ancestor/descendant and parent/child
relationships into consideration. No attention is paid to the
left-to-right order of the nodes.

However, in many applications, such as the natural lan-
guage processing [2], the video content-based retrieval [13],
the scene analysis, as well as some problems in the compu-
tational biology (such as RNA structure matching [11]) and
the data mining (such as tree mining [18]), the order of the
nodes is significant. As an example, consider querying
grammatical structures as shown in Fig. 2, which is the
parse tree of a natural language sentence.

One might want to locate, say, those sentences that in-
clude a verb phrase containing the verb “is” and after it a
noun “individual” followed by “.”. This is exactly the sen-
tences whose parse tree can be matched to a subtree of the
tree shown in Fig. 2. (See Fig. 3 for illustration.) But the left-
to-right ordering must be followed.

In this paper, we discuss an efficient algorithm to solve
this kind of problems.

The remainder of the paper is structured as follows. In
section 2, we give some basic definitions, which are needed
for the subsequent discussion. In Section 3, we present the
main algorithm. In Section 4, we analyze the computational
complxities. Finally, the paper concludes in Section 5.

s

np vp

det n npvbz

“.”

“The” “student” “is” det adj n

“an” “excellent” “individual”

Fig. 2. The parse tree of a sentence

Fig. 3. A query tree which matches a subtree of the

s
vp

nvbz “.”

“is” “individual”

parse tree shown in Fig. 2

2 Basic definitions
We concentrate on labeled trees that are ordered, i.e.,

the order between siblings is significant. Technically, it is
convenient to consider a slight generalization of trees,
namely forests. A forest is a finite ordered sequence of dis-
joint finite trees. A tree T consists of a specially designated
node root(T) called the root of the tree, and a forest <T1, ...,
Tk>, where k ≥ 0. The trees T1, ..., Tk are the subtrees of the
root of T or the immediate subtrees of tree T, and k is the
outdegree of the root of T. A tree with the root t and the sub-
trees T1, ..., Tk is denoted by <t; T1, ..., Tk>. The roots of the
trees T1, ..., Tk are the children of t and siblings of each
other. Also, we call T1, ..., Tk the sibling trees of each other.
In addition, T1, ..., Ti-1 are called the left sibling trees of Ti,
and Ti-1 the immediate left sibling tree of Ti. The root is an
ancestor of all the nodes in its subtrees, and the nodes in the
subtrees are descendants of the root. The set of descendants
of a node v is denoted by desc(v). A leaf is a node with an
empty set of descendants.

Sometimes we treat a tree T as the forest <T>. We may
also denote the set of nodes in a forest F by V(F). For exam-
ple, if we speak of functions from a forest G to a forest F,
we mean functions mapping the nodes of G onto the nodes
of F. The size of a forest F, denoted by |F|, is the number of
the nodes in F. The restriction of a forest F to a node v with
its descendants desc(v) is called a subtree of F rooted at v,
denoted by F[v].

Let F = <T1, ..., Tk> be a forest. The preorder of a forest
F is the order of the nodes visited during a preorder tra-
versal. A preorder traversal of a forest <T1, ..., Tk> is as fol-
lows. Traverse the trees T1, ..., Tk in ascending order of the
indices in preorder. To traverse a tree in preorder, first visit
the root and then traverse the forest of its subtrees in preor-
der. The postorder is defined similarly, except that in a pos-
torder traversal the root is visited after traversing the forest
of its subtrees in postorder. We denote the preorder and pos-
torder numbers of a node v by pre(v) and post(v), respec-
tively.

Using preorder and postorder numbers, the ancestorship
can be easily checked. If there is path from node u to node v,
we say, u is an ancestor of v and v is a descendant of u. In
this paper, by ‘ancestor’ (‘descendant’), we mean a proper
ancestor (descendant), i.e., u ≠ v.
Lemma 1 Let v and u be nodes in a forest F. Then, v is an
ancestor of u if and only if pre(v) < pre(u) and post(u) <
post(v).
Proof. See Exercise 2.3.2-20 in [10] (page 347).
Similarly, we check the left-to-right ordering as follows.
Lemma 2 Let v and u be nodes in a forest F. The node v is
said to be to the left of u if they are not related by the ances-
tor-descendant relationship and u follows v when we
traverse F in preorder. Then, v is to the left of u if and only
if pre(v) < pre(u) and post(v) < post(u).

Proof. The proof is trivial.
In the following, we use the postorder numbers to define
an ordering of the nodes of a forest F given by v v’ iff
post(v) < post(v’). Also, v v’ iff v v’ or v = v’. Further-
more, we extend this ordering with two special nodes ⊥ v

. The left relatives, lr(v), of a node v ∈ V(F) is the set of
nodes that are to the left of v and similarly the right rela-
tives, rr(v), are the set of nodes that are to the right of v.
Based on the above concepts, we give the definition of
ordered tree matching.
Definition 1 An embedding of a tree pattern P into an XML
document T is a mapping ϕ: P → T, from the nodes of P to
the nodes of T, which satisfies the following conditions:
(i) Preserve node label: For each u ∈ P, label(u) = la-

bel(ϕ(u)) (or say, u matches f(u)).
(ii) Preserve parent-child/ancestor-descendant relationship:

If u → v in P, then ϕ(v) is a child of ϕ(u) in T; if u ⇒ v in
Q, then ϕ(v) is a descendant of ϕ(u) in T.

(iii)Preserve left-to-right order: For any two nodes v1 ∈ P
and v2 ∈ P, if v1 is to the left of v2, then ϕ(v1) is to the left
of ϕ(v2) in T.
If there exists such a mapping from P to T we say, T includes P,

T contains P, T covers P, or say, P can be embedded in T.
Fig. 4 shows an example of an ordered tree embedding.

Let P and T be two labeled ordered trees. An embedding ϕ
of P in T is said to be root-preserving if ϕ(root(P)) =
root(T). If there is a root-preserving embedding of P in T, we
say that the root of T is an occurrence of P.

Fig. 4(b) also shows an example of a root preserving
embedding. Obviously, restricting to root-preserving
embedding does not lose generality. In fact, what can be
found by the top-down algorithm to be discussed is a root-
preserving tree embedding.

Throughout the rest of the paper, we refer to the labeled
ordered trees simply as trees.

3 Algorithm
In this section, we give our algorithm. For simplicity, we

consider only the case that a query tree contains only //-

a

b b
b

e

a
d

e
c (a)

(b)

Fig. 4: (a) The tree on the left can be matched to a subtree

embedding.

b

c

a

b b

b

e

a
d

e
c

b

c

in the tree on the right. (b) The dashed lines show a tree

edges. But it is an easy task to extend the algorithm for gen-
eral cases.

Let G = <P1, ..., Pl> (l ≥ 1) be a forest. Consider a node
v in G with children v1, ..., vj, ordered from left to right. We
will use <vk, i> (1 ≤ k ≤ j; 1 ≤ i ≤ j - k + 1) to represent an
ordered forest containing i subtrees of v: <G[vk], ..., G[vk+i-

1]>. Let v be a node on the left-most path in P1. We call <v,
i> a left corner of G. Denote by pj the root of Pj in G = <P1,
..., Pl> (j = 1, ..., l). Then, the left corner <p1, i> represents
the forest <P1, ..., Pi> (i ≤ l). In addition, we use δ(v) to rep-
resent a link from a node v in G to the left-most leaf node in
G[v], as illustrated in Fig. 5.

Let v’ be a leaf node in G. δ(v’) is defined to be a link to
v’ itself. So in Fig. 5, we have δ(v1) = δ(v2) = δ(v3) = v3. We

also denote by δ−1(v’) a set of nodes x such that for each v ∈
x δ(v) = v’. Therefore, in Fig. 5, δ−1(v3) = {v1, v2, v3}. The
out-degree of v in a tree is denoted by d(v) while the height
of v is denoted by h(v), defined to be the number of edges on
the longest downward path from v to a leaf. The height of a
leaf node is set to be 0.

Our algorithm mainly contains two functions: top-
down(T, G) and bottom-up(F, G) to check tree matching,
where T is a tree, and F and G are two forests. Each of the
two functions returns a left corner <v, i> of G (i.e., v is a
node on the left-most path of P1) such that
- <G[v1], ..., G[vi]> can be embedded in T or in F, where

v1= v, v2,..., vi are consecutive siblings; and
- there is no other left corner <v’, j> with v’ being an

ancestor of v, which can be embedded in T or in F. (In
other words, <v, i> is the highest left corner in G such
that it can be embedded in T.)

If v = p1 (the root of P1), it shows that P1, ..., Pi can be
embedded in T or in F.

If the target (a document tree) is a tree and the pattern (a
query tree) is a forest, we call the function top-down. If both
the target and the pattern are forests, we call the function
bottom-up. But during the computation, they will be called
from each other.

In addition, each time a call top-down(T, G) returns a
pair <v, i>, the root t of T is associated with that pair,
referred to as κ(t). Initially, each κ(t) is set to φ. κ(t) is
mainly used in bottom-up() to avoid redundancy.

Let T = <t; T1, ..., Tk>. Denote by ts the root of Ts (s = 1,
..., l). We use top-down(t, <p1, l>) to represent top-down(T,

Fig. 5. A pattern tree and

v1

v2 v5

v3 v4

P:δ(v1)

δ(v2)

illustration for δ(v1)
G), which is designed to check T and G top-down. For a giv-
en G, two cases are recognized:
Case 1: G = <P1>; or G = <P1, ..., Pl> (l > 1), but |T | ≤ |P1|
+ |P2|. (That is, G is a forest containg only a single tree or a
proper forest but the size of the first two subtrees is equal to
or larger than the size of T.)
Case 2: G = <P1, ..., Pl> (l > 1), and |T | > |P1| + |P2|.

In Case 1, what we can do is to find a left corner within
P1, which can be embedded in T. This is done as follows:
i) If t is a leaf node, we will check whether label(t) = la-

bel(δ(p1)) (note that p1 is the root of P1.) If it is the case,
set κ(t) to be a triplet [δ(p1), 1] and return <δ(p1), 1>.
Otherwise, set κ(t) to be [δ(p1), 0] and return <δ(p1), 0>.

ii) If |T| < |P1| or h(t) < h(p1), we will make a recursive call
top-down(t, <p11, j>), where p11 is the left-most child of
p1 and j = d(p1). So <p11, j> represents a forest of the
subtrees of p1: <P11, ..., P1j>. The return value <v, i> of
top-down(t, <p11, j>) is used as the return value of top-
down(t, <p1, l>).

iii) If |T| ≥ |P1| and h(t) ≥ h(p1), we further distinguish be-
tween two cases:
• label(t) = label(p1). In this case, we will call bottom-

up(<t1, k>, <p11, j>), by which <P11, ..., P1j> will be
checked against <T1, ..., Tk>.

• label(t) ≠ label(p1). In this case, we will call bottom-
up(<t1, k>, <p1, 1>), by which P1 will be checked
against <T1, ..., Tk>.

In both cases, assume that the return value is <v, i>. A
further checking needs to be conducted:

- If label(t) = label(v’s parent) and i = d(v’s parent), the
return value should be <v’s parent, 1>. Set κ(t) to be
[v’s parent, 1].

- Otherwise, the return value remains <v, i>. Set κ(t) to
be [v, i].

In Case 2, we try to find a left corner within G = <P1, ...,
Pl>, which can be embedded in T. This is done by calling bot-
tom-up(<t1, k>, <p1, l>). Assume that the return value is <v,
i>. The following checkings will be continually conducted.
iv) If v = p1, the return value of top-down(t, <p1, l>) is the

same as <v, i>.
v) If v ≠ p1, check whether label(t) = label(v’s parent) and i

= d(v). If it is the case, the return value will be changed
to <v’s parent, 1>, and κ(t) is set to be [v’s parent, 1].
Otherwise, the return value remains <v, i>, and κ(t) is set
to be [v, i].
The following is the formal description of the algorithm

top-down(t, <p1, l>), in which we assume that each node v
has a link to its direct sibling, making a sibling chain. Starting
from p1, we can access p1, ..., pl along the sibling chain.
Function top-down(t, <p1, l>)

input: t - stands for T = <t; T1, ..., Tk>, <p1, l> - for G = <P1, ...,
Pl>.
output: <v, i> specified above.
begin
1. if (l = 1 or |T[t]| ≤ |G[p1]| + |G[p2]|)
2. then { let p11 be the left-most child of p1; let j be d(p1);

(*Case 1*)
3. if t is a leaf then {if label(t) = label(δ(p1))

then i := 1 else i := 0;
4. κ(t) := [δ(p1), i]; return <δ(p1), i>;}
5. if (|T[t]| < |G[p1]| or h(t) < h(p1))
6. then {<v, i> := top-down(t, <p11, j>); return <v, i>;}
7. if label(t) = label(p1) (*|T| ≥ |P1| and h(t) ≥ h(p1)*)
8. then {if p1 is a leaf then {v := p1; i := 1;}
9. else {<v, i> := bottom-up(<t1, k>, <p11, j>);
10. if label(t) = label(v’s parent) and

i = d(v’s parent)
then {v := v’s parent; i := 1;}

11. }
12. else <v, i> := bottom-up(<t1, k>, <p1, 1>);

(*If label(t) ≠ label(p1), call bottom-up().*)
13. κ(t) := [v, i]; return <v, i>;
14. }
15. else {<v, i> := bottom-up(<t1, k>, <p1, l>);

(*Case 2*)
16. if v ≠ p1 then { p := v’s parent;
17. if (label(t) = label(p)) and i = d(p)
18. then {v := p; i := 1; }
19. κ(t) := [v, i];
20. }
21. return <i, v>;
22. }
end

The above algorithm mainly consists of two parts: lines
2 - 14 for Case 1, and lines 15 - 22 for Case 2. In the first
part, we first handle the case that T contains only a single
node (see lines 3 - 4); and then the case that |T| < |P1| or h(t)
< h(p1) (see lines 5 - 6). The lines 7 - 14 are devote to the
case that |T| ≥ |P1| and h(t) ≥ h(p1). If label(t) = label(p1), we
need to check whether p1 is a leaf node. If it is the case,
return <p1, 1> (see line 8). Otherwise, the bottom-up proce-
dure will be invoked to check <P11, ..., P1j> against <T1, ...,
Tk> (see line 9). If label(t) ≠ label(p1), the bottom-up proce-
dure is invoked to check P1 against <T1, ..., Tk> (see line
12).

In the second part, the bottom-up procedure is invoked
to check <T1, ..., Tk> against <P1, ..., Pl> (see line 15).
Finally, We notice that each time a node t is checked κ(t) is
changed to a new value, which is the return value of the cur-
rent top-down execution (see lines 4, 13, and 19).
bottom-up(F, G) is designed to handle the case that both F
and G are forests with each containing some subtrees rooted
at a set of consecutive siblings in the target and the pattern,
respectively. Let F = <T1, ..., Tk>. We use bottom-up(<t1,
k>, <p1, l>) to represent bottom-up(F, G). In bottom-up(<t1,
k>, <p1, l>), we will make a series of calls of the form top-
down(ti, < , l - ji + 1>), where j1 = 1, and j1 ≤ j2 ≤ ... ≤ jh ≤

l (for some h ≤ k), controlled as follows.

pji
1. Two index variables s, j are used to scan t1, ..., tk and p1,
..., pl, respectively. (Initially, s is set to 1, and j is set to
0.) They also indicate that <P1, ..., Pj> has been success-
fully embedded in <T1, ..., Ts>.

2. Let <vs, is> be the return value of top-down(ts, <pj+1, l -
j>). If ts = pj+1, set j to be j + is. Otherwise, j is not
changed. Set s to be s + 1. Go to (2).

3. The loop terminates when all Ts’s or all Pj’s are exam-
ined.
See Fig. 7. for illustration.
If j > 0 when the loop terminates, bottom-up(<t1, k>,

<p1, l>) returns <p1, j>.
Otherwise, j = 0. In this case, we will continue to search

for a left corner <v, i> in G, which can be embedded in F, as
described below.
i) Let <v1, i1>, ..., <vk, ik> be the return values of top-

down(t1, <p1, l>), ..., top-down(tk, <p1, l>), respectively.
Since j = 0, each vf (f = 1, ..., k) must be a descendant of
p1 and on the left-most path in P1.

ii) If each if = 0 (f = 1, ..., k), return <δ(p1), 0>. Otherwise,
there must be some <vf, if>’s such that if > 0. We call
such a vf a non-zero point. Find the first non-zero point vf
such that vf is not a descendant of any other non-zero
point. Let w1, ..., wh be the right siblings (in this order)
of vf. We will further check <Tf+1, ..., Tk> against
<G[], G[]..., G[wh]>. This can be done in the
same way as described above. But it is not necessary to
record the highest non-zero point. If it is found that
<Tf+1, ..., Tk> embeds the first q subtrees in <G[],

G[]..., G[wh]>, the return value of bottom-up(<t1,
k>, <p1, l>) is set to be <vf, if + q>. Otherwise, the return
value is <vf, if>.
In this process, a node t in F may be checked multiple

times due to the second checking described in (ii). In order
to avoid any possible redundancy, we define a simple func-
tion as below.
Let v, v’ be two nodes in G. Define

During the execution of bottom-up(), this function will
be used each time we make a call of the form top-down(t,
<p, l>) for a node t in F. Let κ(t) = [v, i]. If β(v, p) = true, we
simply set the return value of top-down(t, <p, l>) to be <v, i>
and top-down(t, <p, l> is not actually executed. It is because
<v, i> is the highest left corner of some forest in G that can
be embedded in F[t], and therefore for any ancestor p of v
with δ(v) = δ(p) a call of the form top-down(t, <p, l>) will
definitely return <v, i>.

Obviously, if p is a descendant of v and i > 0, the return

wif
wif 1+

wif

wif 1+

β(v, v’) = { true,

false,

if v = v’, or δ(v) = δ(v’) and v’ is

otherwise.
an ancestor of v;

value should be <p, l>. But if i = 0, the return value is <p,
0>.

In terms of the above discussion, we give the following
algorithm to implement the bttom-up procedure, in which a
subprocedure td-checking() is invoked to check a Ti against
a forest < , ..., Pl>, including the redundancy checking by
using κ(t)’s.
Function bottom-up(<t1, k>, <p1, l>)
input: <t1, k> - stands for F = <T1, ..., Tk>,

<p1, l> - for G = <P1, ..., Pl>.
output: <v, i> specified above.
begin
1. s := 1; j := 0; t := t1; p := p1; τf := 1; vf := φ; if := 0;
 (*φ is considered to be a descendant of any node.*)
2. while (j < l and s ≤ k) do(*first checking*)
3. { <v, i> := td-checking(t, p, j, l);
4. if (v = p and i > 0) then {j := j + i; p := pj+1;}

(*navigate along the sibling chain to find pj+i+1.*)
5. else if v is an ancestor of vf then {vf := v; if := i; τf := s;}

(*record the highest non-zero point.*)
6. s := s + 1; t:= ts;

(*navigate one step along the sibling chain to find ts+1.*)
7. }
8. if j > 0 then return <p1, j>;
9. if if = 0 then return <δ(p1), 0>
10. let d(vf’s parent) = c; find vf’s (if + 1)th right sibling ;

(*Let w1, ..., wc be the right siblings of vf.*)
11. x := τf + 1; y := if ; t := ; p := ;
12. while (y < c and x ≤ k) do(*second checking*)
13. { <v, i> := td-checking(t, p, y, c);
14. if (v = p and i > 0) then {y := y + i; p := wy+1;}
15. x := x + 1; t := tx;
16. }
17. if y > 0 then return <vf , if + y> else return <vf , if>;
18.}
end

Function td-checking(t, p, j, l)
input: t - a node in F; p - a node in G; j, l - two integers with j ≤ l.
output: <v, i> specified above.
begin
1. let κ(t) = [γ, η];
2. if β(γ, p) = true then {v := γ; i := η;}
3. else {if p is a descendant of γ

then {v := p; if η = 0 then i := 0 else i := l - j;}
4. else <v, i> := top-down(t, <p, l - j>);
5. }
6. return <v, i>;
end

In bottom-up(), the variables s and j are used to scan T1,
..., Tk and P1, ..., Pl, respectively, while the variables t and p
are used to store the roots of the current Ts and Pj+1 (see line
1). The variables vf and if are for storing the highest non-
zero point, and τf is for the root of the corresponding Tf.

As described above, the algorithm involves two times of
checkings. The first checking is done in lines 2 - 7 while the
second checking is conducted in lines 10 - 16. Whether the
second checking will be carried out depends on the check-
ing result performed in lines 8 and 9.

Pji

wif

tτf 1+ wif
First, in lines 2 - 7, we do a series of checkings of Ti against
< , ..., Pl> (i = 1, ..., h, 1 ≤ h ≤ k) and each is done by call-
ing td-checking() (see line 3), in which κ(t)’s are checked to
eliminate redundancy (see lines 2 - 3 in td-checking()). Line
5 is devoted to the computation of the highest non-zero
point <vf, if>.

If j > 0, the return value of bottom-up(<t1, k>, <p1, l>) is
<p1, j> (see line 8). If j = 0 and if = 0, the return value is
<δ(p1), 0> (see line 9). In both cases, the second checking
will not carry on. Therefore, we call the following condition
the second-checking condition:

j = 0 and if > 0.
If the above condition holds, the second checking will be
conducted (see lines 10 - 16). This is almost the same as line
2 - 7. But no computation is arranged to record the highest
non-zero point. In line 17, we calculate the return value for
the case of j = 0.
Example 1 Consider the tree T and the forest G shown in
Fig. 6. As indicated by the dashed lines, we have an ordered
embedding of a subtree of G in T.

In Fig. 6, each node in T is identified with ti, such as t0,
t1, t11, and so on; and each node in G is identified with pj. Be-
sides, each subtree rooted at ti (pj) is represented by Ti (resp.
Pj). In Fig. 7, we trace the computation process when apply-
ing the algorithm to T and G. In this figure, a solid arrow rep-
resents a subprocedure call while each dashed arrow
represents a return value. Associated with a solid arrow is the
condition under which the subprocedure is invoked.

The return value of the whole procedure is <p1, 1>,
showing that T contains P1.

From the sample trace, we can see that a node in T can be
checked multiple times, but against different nodes in G. For
instance, t112 is first checked against p111, and then against
p112. t2 is also checked two times, against p111 and p12, re-
spectively.

4 Computational complexities
In this section, we analyze the computational complexi-

ties of the algorithm.
In the algorithm discussed in the previous section, a

node t in F may be involved in multiple calls of the form
top-down(t, <p, l>) due to a possible second checking in bot-
tom-up().

Pji

t11

t111 t112

T:

a

d e

t1111

f

t0
a

t1
b

t2
g

p1

p11 p12

G:
a

b g

p111

f

p2
h

p21
e

p112

e
t21

h

Fig. 6. A target tree and a pattern tree

td(t0, <p1, 2>)

bu(<t1, 2>, <p1, 2>)

|T| > |P1| + |P2|

>)

<t112, 1> aginst <p112, 1>

td(t112, <p112, 1>)

T112 is a leaf.

label(t112) = label(p112)
return <p112, 1>

 <p111, 2>

 <2, p11>

label(t1) = label(p11)
return <p11, 1>

td(t2, <p1, 2>)
|T2| < |P1|

td(t2, <p11, 2>)
|T2| < |P11|

td(t2, <p111, 2>)
|T2| = |P111| + |P112|

td(t21, <p111, 2>)

label(t2) ≠ label(p111)

T21 is a leaf.

label(t21) ≠ label(p111)
return <p111, 0>

bu(<t2, 1>, <p12, 1>)

return <p111, 0>

return <p111, 0>

return <p111, 0>

td(t2, <p12, 1>)

label(t2) = label(p12)

return <p12, 1>
p12 is a leaf.

return <p12, 1>

label(t0) = label(p1)

return < p11, 2>

return <p1, 1>

Fig. 7. A sample trace

112, 1>

bu(<t21, 1>, <p111, 2>)

return <p111, 0>

SC
In the algorithm discussed in the previous section, a node t
in F may be involved in multiple calls of the form top-
down(t, <p, l>) due to a possible second checking in bottom-
up(). We denote by [t, p] each of such calls for simplicity.
We further distinguish two kinds of [t, p]’s. During a [t, p]
of the first kind, t is checked against a node in G, which is
done in line 3, line 7, or in line 17 in top-down().

During a [t, p] of the second kind, we navigate to the
left-most child of p if p is not a leaf node (see line 6.)
First, we estimate the number of the calls of the first kind.
Without loss of generality, assume that the first [t, p] is
invoked by executing line 3 in bottom-up() to check <P1,
..., Pl> against <T1, ..., Tk>. It is possible for t to be involved
in a second subprocedure call [t, p’] (see line 13 in bottom-
up()). Obviously, p’ must be a descendant of p. Also, p’
cannot be a node on the left-most path in G[p] due to the
second-checking condition: j = 0 and if > 0, where <vf, if> is
the first highest non-zero point and j = 0 indicates that even
P1 cannot be embedded in <T1, ..., Tk>.

Since j = 0, vf must be a node on the left-most path in
G[p]. But its (if + 1)th right sibling is definitely not on such
a path (see line 10 in bottom-up()). So p’ is not on the left-
most path in G[p].

Now we consider a child tj of t. Clearly, during the exe-
cution of [t, p], tj can also be involved in two subprocedure
calls [tj, u1] and [tj, u2] while during the execution of [t, p’]

td(t1, <p1, 2>)

bu(<t11, 1>, <p1, 1

|T1| = |P1|
label(t1) ≠ label(p1)

td(t11, <p1, 1>)
|T11| < |P1|

td(t11, <p11, 2>)

bu(<t111, 2>, <p11, 2>)

|P11| < |T11| = |P11| + |P12|

td(t111, <p11, 2>)

label(t11) ≠ label(p11)

td(t111, <p111, 2>)
|T111| < |P11|

bu(<t1111, 1>, <p111, 2>)

|P111| < |T111|

label(t111) ≠ label(p111)

td(t1111, <p111, 2>)

t1111 is a leaf.

label(t1111) = label(p111) = f
return <p111, 1>

return <p111, 1>

return <p111, 1>
td(t112, <p11, 2>)

return <p111, 1>

T112 is a leaf.
label(t112) ≠ label(p111)
return <p111, 0>

return <p111, 2>

return <p111, 2>

return

return

|T111| = |P111| + |P112|

td() - top-down()
bu() - bottom-up()

return <p

SC

SC- second checking
tj can be involved in another two subprocedure calls [tj, u1’]
and [tj, u2’]. As discussed above, u2 cannot be on the left-
most path in G[u1], and u2’ cannot be on the left-most path
in G[u2]. Concerning u2 and u1’, we claim that

u1’ is a node appearing in a subtree to the right of u2.
Below we show this property.
Consider all the left siblings ts of t. Let <vs, is> be the

return value of the corresponding top-down(ts, <p, l>). Let
<v, i> be the return value of top-down(t, <p, l>). We distin-
guish among three cases:
i) For any <vs, is>, vs is a descendant of v.
ii) There is at least one non-zero point vs (i.e., is > 0),

which is an ancestor of v and not a descendant of any
other non-zero point.

iii) There is at least one non-zero point vs = v, which is not a
descendant of any other non-zero point.
In case (i), t will not be checked for a second time at all

since by the second checking it must be a forest (or a tree)
with the first subtree rooted a node to the right of t against a
forest (or a tree) in G.

In case (ii), p’ must be a node appearing in a subtree to
the right of vs while u2 is definitely a node in the subtree
rooted at v or at a jth right sibling of v with j ≤ i - 1, and
therefore a descendant of vs. Since u1’ is in the subtree
rooted at p’, it is to the right of u2. for illustration.)

In case (iii), we have vs = v. If is ≥ i, p’ is definitely to
the right of u2, and so is u1’. (See Fig. 10(b) for illustration.)
In the following, we analyze the case when is < i.

Let t1, ..., tj-1 be all the left sibling of tj. Consider v1 = v
and all its right siblings v2, ..., vl. If u2 is a node in a subtree
rooted at vq with q ≤ is, u1’ must be a node to the right of u2.
Otherwise, assume that u2 is a node in a subtree rooted at vq’
with is < q’ ≤ i. Then, we have <F[t1], ..., F[tj-1]> embed-
ding <G[v1], ..., F[vq’-1]>. Therefore, <F[t1], ..., F[tj-1]>
must embed <G[], ..., F[vq’-1]>. Thus, p’ can be vq’ or
to the right of vq’. If p’ is vq’ , u1’ can be an ancestor of u2,
equal to u2, or a descendant of u2. (Also, see Fig. 10(c) for
illustration.) In any case, the corresponding checking is
skipped by using κ(tj). If p’ is to the right of vq’, u1’ must be
to the right of u2.

The above discussion shows that the claim concerning
u2 and u1’ holds.

Mapping u1 (u1’) to a node on the left-most path in
G[u1] (G[u1’]), we think that tj is involved in four [t, v]’s
with each v on a different path in G. So we claim that the
number of the first kind of calls is bounded by
O(|T|⋅|leaves(G)|).

Now we consider the second kind of top-down calls. For
each t in T, corresponding to a checking of it against a node
in G, a downward segment in G may be searched; and for
any of its children a segment following that segment may
also be searched. So corresponding to a path in T, for all the
checkings of the nodes on that path with each checked once,
a path in G may be navigated. According to the above anal-
ysis, however, a node in T may be checked against different
nodes on different paths in G. So the number of the second
kind of calls is bounded by O(|leaves(T)|⋅|P|)|.
Proposition 3 The time complexity of the algorithm is
bounded by O(|T|⋅|leaves(G)| + |leaves(T)|⋅|P|)|).

Proof. See the above analysis.
Since in the working process no extra data structure is used,
we have the following proposition.
Proposition 3 The space complexity of the algorithm is
bounded by O(|T| + |G|).
 Proof. It is trivially true.

5 Conclusion
In this paper, a new algorithm is proposed to evaluate

XML queries based ordered tree matching, by which not
only the ancestor/descendant and parent/child relationships,
but also the left-to-right order of nodes are considered. The
algorithm mainly contains two functions: Top-down() and
Bottom-up(). Each of them returns a left corner to indicate a
subtree (subforest) embedding. This arrangement enables us
to use a simple data structure to record intermediate results
to avoid redundancy. The time complexity of the new algo-
rithm is bounded by O(|T|⋅|leaves(P)| + |P|⋅|leaves(T)|) while

vis 1+
the space requirement is bounded by O(|T| + |P|), where T
and P are a target and a pattern tree, respectively.

References
[1] N. Bruno, N. Koudas, and D. Srivastava, Holistic Twig Joins:

Optimal XML Pattern Matching, in Proc. SIGMOD Int. Conf.
on Management of Data, Madison, Wisconsin, June 2002, pp.
310-321.

[2] B. Catherine and S. Bird, Towards a general model of Inter-
linear text, in Proc. of EMELD Workshop, Lansing, MI, 2003.

[3] T. Chen, J. Lu, and T.W. Ling, On Boosting Holism in XML
Twig Pattern Matching, in: Proc. SIGMOD, 2005, pp. 455-
466.

[4] Y. Chen, A time optimal algorithm for evaluating tree pattern
queries, SAC 2010, ACM, 1638-1642.

[5] Y. Chen, Donovan Cooke: XPath query evaluation based on
the stack encoding, C3S2E 2009, IEEE, 43-57

[6] Y. Chen: Unordered Tree Matching and Tree Pattern Queries
in XML Databases, ICSOFT (2) 2009: 191-198.

[7] Y. Chen, An Efficient Streaming Algorithm for Evaluating
XPath Queries. in Proc. WEBIST, 2008, pp. 190-196.

[8] Y. Chen, S.B. Davison, Y. Zheng, An Efficient XPath Query
Processor for XML Streams, in Proc. ICDE, Atlanta, USA,
April 3-8, 2006.

[9] Sayyed Kamyar Izadi, Theo Härder, Mostafa S. Haghjoo, S3:
Evaluation of Tree-Pattern Queries Supported by Structural
Summaries, Data & Knowledge Engineering, 68, pp. 126-
145, Elsevier, Sept. 2008.

[10] D.E. Knuth, The Art of Computer Programming, Vol. 1 (1st
edition), Addison-Wesley, Reading, MA, 1969.

[11] R.B. Lyngs, M. Zuker & C.N.S. Pedersen, Internal loops in
RNA secondary structure prediction, in Proceedings of the
3rd annual international conference on computational molec-
ular biology (RECOMB), 260-267 (1999).

[12] Q. Li and B. Moon, Indexing and Querying XML data for
regular path expressions, in: Proc. VLDB, Sept. 2001, pp.
361-370.

[13] Y. Rui, T.S. Huang, and S. Mehrotra, Constructing table-of-
content for videos, ACM Multimedia Systems Journal, Spe-
cial Issue Multimedia Systems on Video Libraries, 7(5):359-
368, Sept 1999.

[14] L. Qin, J.X. Yu, and B. Ding, “TwigList: Make Twig Pattern
Matching Fast,” In Proc. 12th Int’l Conf. on Database Sys-
tems for Advanced Applications (DASFAA), pp. 850-862,
Apr. 2007.

[15] H. Wang, S. Park, W. Fan, and P.S. Yu, ViST: A Dynamic In-
dex Method for Querying XML Data by Tree Structures, SIG-
MOD Int. Conf. on Management of Data, San Diego, CA.,
June 2003.

[16] World Wide Web Consortium. XML Path Language (XPath),
W3C Recommendation, 2007. See http://www.w3.org/TR/
xpath20.

[17] World Wide Web Consortium. XQuery 1.0: An XML Query
Language, W3C Recommendation, Version 1.0, Jan. 2007.
See http://www.w3.org/TR/xquery.

[18] M. Zaki. Efficiently mining frequent trees in a forest. In Proc.
of KDD, 2002.

