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Abstract—In this paper, we discuss an efficient and effective 

index mechanism to support the matching of massive pattern 

strings in against a very long target string. It is very important to 

the next generation sequencing in the biological research. The 

main idea behind it is to construct an automaton over all the 

pattern strings, and search the automaton against a BWT-array 

L created for a target string s to locate all the occurrences of 

every pattern in s once for all. Experiments have been conducted, 

which show that our method for this problem is better than the 

existing approaches. 
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I. INTRODUCTION 

The recent development of next-generation sequencing has 
changed the way we carry out the molecular biology and 
genomic studies. It has allowed us to sequence a DNA 
(Deoxyribonucleic acid) sequence at a significantly increased 
base coverage, as well as at a much faster rate. This requires us 
considering all the string patterns as a whole, rather than 
separately check them one by one. Two kinds of string 
matching need to be handled: exact matching and inexact 
matching. By the exact matching, we will find all the 
occurrences of a pattern string r in a target string s, but by the 
inexact matching we allow each occurrence having up to k 
positions different between r and s. The inexact matching is 
important due to the polymorphisms or mutations among 
individuals or even sequencing errors, the pattern may 
disagree in some positions at an occurrence of r in the target s. 

The string matching is always an interesting and important 
research topic in the computer science and computer 
engineering. In the past several decades, a bunch of efficient 
strategies have been proposed to find all the occurrences of a 
pattern in a target very fast, such as those discussed in [2, 3, 7, 
8, 9, 11]. Roughly speaking, all these methods can be classified 
as illustrated in Fig. 1. 

 
From Fig. 1, we can see that for the exact matching problem 
we distinguish between two kinds of strategies: the single-
pattern oriented strategy and the multi-pattern oriented method. 

By the former, each time only one pattern string will be 
mapped to the target string, and for this we have both the on-
line methods such as Knuth-Morris-Pratt [8], Boyer-Moore 
[11], and Apostolico-Giancarlo [3], and the off-line (index-
based) methods like suffix trees [4], suffix arrays [14], and 
BWT-transformation (Burrows-Wheeler Transformation) [6]. 
However, by the latter, we have only one, which is the 
algorithm proposed by Aho and Corasick in 1975 [1], by 
which an automaton is established over all the patterns and 
search it against a target in one scan 

For the inexact matching problem, we also have both the 

on-line strategies, such as the methods discussed in [2, 7, 9], 

and the index-based method such as the method proposed in 

[12]. The methods of [7, 9] have the worst-case time 

complexities bounded by O(kn + mlogm), where n = |s| and m 

= |r|. By these two methods, the mismatch information among 

substrings of r is used to speed up the working process. The 

method discussed in [2] is with a slightly better time 

complexity O(n k logk). By this method, the periodicity 

within r is utilized.  In [12], and target string s is transformed 

to a BWT-array (denoted as BWT(s)) as an index [6]. In 

comparison with suffix trees [4], BWT(s) uses much less space 

[12]. However, its time complexity is bounded by O(mn + n), 

where n is the number of leaf nodes of a tree produced during 

the search of BWT(s). This time requirement can be much 

worse than the best on-line algorithm for large patterns. The 

reason for this is that by this method neither mismatch 

information nor periodicity within r is employed. 
In this paper, we address only the exact matching and 

present a holistic string matching algorithm to handle million-
billion pattern strings. Our experiment shows that it can be 
more than 40% faster than single-pattern oriented methods 
when multi-million patterns are checked. The main idea 
behind our method is: 
1. Constructing an automaton A over all the pattern strings, 

and check A against a BWT-array created as an index for a 
target string. This enables us to avoid repeated search of 
the same part of different patterns. 

2. Change a single-character checking to a multiple-character 
checking. (That is, each time a set of characters 
respectively from more than one pattern will be checked 
against a BWT-array in one scan, instead of checking them 
separately one by one in multiple scans.)  

In this way, high efficiency has been achieved. 
The remainder of the paper is organized as follows. In 

Section II, we briefly describe a string matching algorithm 
based on the BWT-transformation. In Section III, we discuss 

Figure 1. Classification of methods for string matching  
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our basic algorithm in great detail. In Section IV, we improve 
the basic method by using multiple-character checks. Section 
V is devoted to the test results. Finally, a short conclusion is 
set forth in Section VI.  

II. BWT-TRANSFORMATION 

In this section, we give a brief description of the BWT 
transformation to provide a discussion background. 

A. BWT Arrays 

We use s to denote a string that we would like to transform. 
Assume that s terminates with a special character $, which 
does not appear elsewhere in s and is alphabetically prior to all 
other characters. In the case of DNA sequences, we have $ < A 
< C < G < T. As an example, consider s = acagaca$. We can 
rotate s consecutively to create eight different strings as shown 
in Figure 2(a). 

 

By writing all these strings stacked vertically, we generate 

an n  n matrix, where n = |s| (see Fig. 2(a).) Here, special 

attention should be paid to the first column, denoted as F, and 

the last column, denoted as L. For them, the following 

equation, called the LF mapping, can be immediately observed: 

  F[i] = L[i]’s successor, (1) 

where F[i] (L[i]) is the ith element of F (resp. L). 

From this property, another property, the so-called rank 

correspondence can be derived, by which we mean that for 

each element, its ith
 
appearance (among all those elements 

with the same character) in F corresponds to its ith appearance 

in L, as demonstrated in Figure 1(b), in which the position of a 

character (in s) is represented by its subscript. (That is, we 

rewrite s as a1c1a2g1a3c2a4$.) For example, a2 (representing the 

2nd
 
appearance of a in s) is in the second place among all the 

a-characters in both F and L while c1 the first appearance in 

both F and L among all the c-characters. In the same way, we 

can check all the other appearances of different characters.  

Now we sort the rows of the matrix alphabetically. We 

will get another matrix, called the Burrow-Wheeler Matrix [6] 

and denoted as BWM(s), as demonstrated in Fig. 2(c). 

Especially, the last column of BWM(s), read from top to 

bottom, is called the BWT-transformation (or the BWT-array) 

and denoted as BWT(s). So for s = acagaca$, we have BWT(s) 

= acg$caaa. 

By the BWM matrix, the LF-mapping is obviously not 

changed. Surprisingly, the rank correspondence also remains. 

Even though the ranks of different appearances of a certain 

character (in F or in L) may be different from before, their 

rank correspondences are not changed as shown in Figure 3(a), 

in which a2 now appears in both F and L as the fourth element 

among all the a-characters, and c1 the second element among 

all the c-characters.  

 

Due to the LF-mapping and the rank correspondence, the 
BWT-transformation can be used to do efficient string 
matching, which will be discussed in the next subsection in 
great detail. We need this part of knowledge to develop our 
method. 

B. String Search Using BWT 

For the purpose of the string search, the character 

clustering in F has to be used. Especially, for any DNA 

sequence, the whole F can be divided into five or less 

segments: $-segment, A-segment, C-segment, G-segment, and 

T-segment, denoted as F$, FA, FC, FG, FT, respectively. In 

addition, for each segment in F, we will rank all its elements 

from top to bottom, as shown in Figure 3(a). $ is not ranked 

since it appears only once. 

From Fig. 3(a), we can see that the rank of a4, denoted as 

rkF(a4), is 1 since it is the first element in FA. For the same 

reason, we have rkF(a3) = 2, rkF(a1) = 3, rkF(a2) = 4, rkF(c2) = 

1, rkF(c1) = 2, and rkF(g1) = 1. 

It can also be seen that each segment for a certain     

{$} in F can be effectively represented as a pair of the form: 

<, [x, y]>, where x and y are the positions of the first and 

last appearance of  in F, respectively. So the whole F can be 

effectively compacted and represented as a set of || + 1 

triplets, as illustrated in Fig. 3(b).  

Now, we consider j (the jth
 
appearance of  in s.) 

Assume that rkF(j) = i. Then, the position where j appears in 

F can be easily determined: 

 F[x + i - 1] = j. (2) 

Besides, if we rank all the elements in L top-down in such a 

way that an j is assigned i if it is the ith appearance among all 

the appearances of  in L. Then, we will have 

 rkF(j) = rkL(j), (3) 

where rkL(j) is the rank assigned to j in L. 

This equation is due to the rank correspondence between F 

and L. (See [6, 10] for a detailed discussion. Also see Fig. 3(a) 

for ease of understanding. 

With the ranks established, a string matching can be very 

efficiently conducted by using the formulas (2) and (3). To see 

Figure 3. LF-mapping and tank-correspondence 

$  a4  

a4  c2  

c2  a3  

a3  g1  

g1  a2  

a2  c1  

c1  a1  

a1  $  

F  L 
 

(a) (b) 



1  

1  

2  

1 

4 

2 

3 

rkF 

 


1  

2  

1  

4 

2 

3 


 

By ranking the 

elements in F, 

each element in 
L is also ranked 

with the same 

number. 

rkL 

 
F$ = <$, [1, 1]> 

Fa = <a, [2, 5]> 

Fc = <c, [6, 7]> 

Fg = <g, [8, 8]> 

 
 

Figure 2. Rotation of a string 

$ a c a g a c a
  

a c a g a c a $ 
   
c a g a c a $ a 
   
a g a c a $ a c  

g a c a $ a c a
  a c a $ a c a g
  c a $ a c a g a
  
a $ a c a g a c  

$ a c a g a c a
  a $ a c a g a c 
  

c a $ a c a g a
  

a c a $ a c a g  

g a c a $ a c a
  

a g a c a $ a c
  

c a g a c a $ a
  

a c a g a c a $ 

(a) (c)
 

a

 

g

 

a

 

c

 

a

 

$

  

(b)
 

a

 

g

 

a

 

c

 

a

 

$

  

a1  $  

c1  a1  

c2  a3  

a2  c1  

$  a4  

a3  g1  

a4  c2  

g1  a2  

F  L 
 

F  L 
 



this, let us consider a pattern string p = aca and try to find all 

its occurrences in s = acagaca$.  

We work on the characters in p in the reverse order. 

First, we check p[3] = a in the pattern string p, and then 

figure out a segment in L, denoted as L, corresponding to Fa = 

<a; 2, 5>. So L = L[2 .. 5], as illustrated in Fig. 4(a), where 

we still use the non-compact F for explanation. In the second 

step, we check p[2] = c, and then search within L to find the 

first and last c in L. We will find rkL(c2) = 1 and rkL(c1) = 2. 

By using (3), we will get rkF(c2) = 1 and rkF(c1) = 2. Then, by 

using (2), we will figure out a sub-segment F in F: F[xc + 1 - 

1 .. xc + 2 - 1] = F[6 + 1 - 1 .. 6 + 2 - 1] = F[6 .. 7]. (Note that 

xc = 6. See Fig. 4(a) and Fig. 4(b).) In the third step, we check 

p[1] = a, and find L  = L[6 .. 7] corresponding to F = F[6 .. 

7]. Repeating the above operation, we will find rkL(a3) = 2 and 

rkL(a1) = 3. See Fig. 4(c). Since now we have exhausted all the 

characters in p and F[xa + 2 – 1, xa + 3 – 1] = F[3, 4] contains 

only two elements, two occurrences of p in s are found. They 

are a1 and a3 in s, respectively. 

 

In the following, we will use search(, Lz) to represent a 

search of Lz to find the first and the last rank of  (denoted 

respectively as i and j) within Lz, and return <, [i, j]> as the 

result, where z represents a subrange in Fβ for some character 

β and Lz represents a segment within L corresponding to z. 

 

C. Construction of BWT arrays 

It is not necessary to construct a BWT-array by rotating s, 
but by using a simple relationship between it and the 
corresponding suffix array [14] for s, as described below. 

Let s = a0a1 ... an−1, ended with $ (i.e., ai   for i = 0, …, n 
– 2, and an−1 = $). Let s[i] = ai (i = 0,1, …, n – 1) be the ith 
character of s, s[i.. j] = ai ... aj a substring and s[i .. n − 1] a 
suffix of s. Then, the suffix array J of s is a permutation of 
integers 0, ..., n − 1 such that J[i] is the start position of the ith 
smallest suffix. The relationship between J and the BWT-array 
L can be determined by formula (5). 

Once L is determined, F can be created immediately by 

using formula (1). 

 

III. MAIN ALGORITHM 

In this section, we present our algorithm to search a bunch 

of patterns against a target s. Its main idea is to organize all 

the pattern strings into an automaton A and search A against L 

to avoid any possible redundancy. First, we present the 

concept of automata in Subsection A. Then, in Subsection B, 

we discuss our basic algorithm for the task. We improve this 

algorithm in Section V.  

A. Automaton over Pattern Strings 

Let s be a target string, a very long string  
* 
(for a DNA 

database,  = {A, T, C, G}). Let R = {r1, …, rm} be a set of 

patterns with each rj being a short string  
*
. The problem is 

to find, for every rj’s (j = 1, …, m), all their occurrences in s. 

A simple way to do this is to check each rj against s one by 

one, for which different string searching methods can be used, 

such as suffix trees, BW-transformation [6], and so on. Each 

of them needs only a linear time (in the size of  jr ) to find 

all occurrences of rj in s. However, in the case of very large m, 

which is typical in the new genomic research, one-by-one 

search of patterns against s is no more acceptable in practice 

and some efforts should be spent on reducing the running time 

caused by huge m. 

Our general idea is to organize all rj’s into an automaton 

structure A and search A against s with the BW-transformation 

being used to check the string matching. For this purpose, we 

will first attach $ to the end of each s (i = 1, …, n) and 

construct BWT(s). Then, attach $ to the end of each rj (j = 

1, …, m) to construct a prefix tree T = pt(R) over R as below. 

If |R| = 0, pt(R) is, of course, empty. For |R| = 1, pt(R) is a 

single node. If |R| > 1, R is split into || = k (possibly empty) 

subsets R1, R2, …, Rk so that each Ri (i  {1, …, k}) contains 

all those strings with the same first character i    {$}. 

The prefix trees: pt(R1), pt(R2), …, pt(Rk) are constructed in 

the same way except that at the lth step, the splitting of sets is 

based on the lth characters in the sequences. They are then 

connected from their respective roots to a single node to create 

pt(R). 

Example 1 As an example, consider a set of four patterns: 

 r1: ACAGA 

 r2: AG 

 r3: ACAGC 

 r4: CA 

For these strings, a prefix tree T can be constructed as shown 

by the solid lines in Fig. 5(a). In T, v0 is a virtual root while 

any other node v corresponds to a real character, labelling the 

edge e from v’s parent to v and denoted l(e). Therefore, all the 

characters on a path from the root to a leaf spell a pattern. For 

instance, the path from v0 to v8 corresponds to the third pattern 

r3 = ACAGC$. Note that each leaf node v is labelled with $  

and associated with a pattern identifier, denoted as (v). 

<, [i, j]>, 
(4)
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In such a prefix tree, we define the label of a node v as the 

concatenation of edge labels on the path from the root to v, 

and denote it by P(v). Then, we define a failure function f(v) (v 

 T\{v0}), which gives the node entered at a mismatch. That 

is, f(v) is the node labeled by the longest proper suffix w of 

P(v) such that w is a prefix of some pattern, as illustrated by 

the dashed arrows in Fig. 5. For example, f(v3) = v12 is 

represented by the dashed arrow from v3 to v12. We have this 

since P(v12) = ‘CA’ is a suffix of P(v3). 

Then, T  {f(v) | v  T\{v0}} makes up an automaton. 

B. Integrating BWT Search with Automaton Search 

It is easy to see that exploring a path in a prefix tree T over 

a set of patterns R corresponds to scanning a pattern r  R. If 

we explore, at the same time, the array L = BWT( s ) 

established over a reversed target string s , we will find all the 

occurrences of r (without $ involved) in s (which is equivalent 

to searching r  against BWT(s).) Then, a depth-first searching 

of T against L will find all the occurrences of all patterns. In 

this process, the failure function can be used to speed up the 

computation as follows: 

1. Each encountered node in T will be marked. 

2. Let v be a node currently encountered in T. If f(v) = u is not 

marked, we will search along a path bottom-up in T, 

starting from u: u = u1  u2  …  uk such that ui is a 

child of ui-1 (i = 2, …, k) and uk is a direct child of the root 

or a node associated with a range by the following step. 

3. Let v = v1  v2  …  vk be the corresponding path 

starting from v. Let [xi, yi] be the range found for l(vi-1  

vi). We will attach it to ui, denoted as g(ui). 

The above process is denoted as rangeAttach(v, u). Its 

purpose is to avoid any repeated work. Each time we explore 

an edge u  v in T, we will search a segment L within L to 

find a subrange for  = l(u  v). If g(v) is available, we will 

not search the whole L, but part of it as follows: 

i) Let g(v) = [x, y]. Search L[x .. x – 1] to find the first 

appearance x of , where L[x] is the first element of L. If 

 cannot be found, x should be the beginning position of 

the subrange to be found. Otherwise, it is x. 

ii) Search L[y + 1 .. y] to find the last appearance y of , 

where L[y] is the last element y of L. If  cannot be 

found, y should be the ending position of the subrange to 

be found. Otherwise, it is y. 

This is the main benefit brought by the failure function. To 

show its difference from search( ), we denote the process as 

searchI(, L, g(v)). See Fig. 6 for illustration. 

 
According to the above discussion, we give the following 

algorithm, which is in essence a depth-first search of T by 

using a stack S to control the process. However, each entry in 

S is a pair <v, [a, b]> with v being a node in T and a  b, used 

to indicate a sub-segment to be searched to find the first and 

last appearances of l(u  v) in it. For example, when 

searching the tree shown by the solid lines in Fig. 5(a) against 

the L array shown in Fig. 3(a), we will have an entry like <v1, 

[1, 8]> in S to represent a sub-segment L[1 .. 8] to be searched 

to find a subrange for l(v0  v1) = A. In addition, for 

technical convenience, we use  to represent the empty 

character and set search(, L) = L for any sub-segment L 

within L. We also assume that the character associated with 

the edge from the root’s parent to the root is .   

ALGORITHM patternSearch(A, LF) 

begin 

1. v  root(A);   ; 

2. push(S, <v, [1, |s|]>); 

3. while S is not empty do { 

4. <v, [a, b]>  pop(S); let u be the parent of u;   l(u  v); 

5. if g(v) not available then [i, j]  search(, [a, b]);  
6. else [i, j]  searchI(, [a, b], g(v)); 

7. let v1, …, vk be the children of v; 

8. for l =  k  downto 1 do { 

9. if vl is the parent of a leaf then     {<(vl), , i, j>}; 

10. else{rangeAttach(vl, f(u)); push(S, <vi, [x + i - 1, x + j - 1]>); } 

11. } 

12. } 

end  

In the algorithm, we first push <root(A), [1, |s|]> into stack S 

(lines 1 – 2), and set the result  to be . Then, we go into the 

main while-loop (lines 3 – 12), in which we will first pop out 

the top element from S, stored as a pair <v, [a, b]> (line 4). 

Then, we will search L[a .. b] to find the subrange for l(u  v), 

where u is the parent of v, by executing searchI( ) or search( ), 

depending on whether g(v) is available (see lines 5 – 6). Next, 

for each child vl (l = 1, …, k for some k) of v, we will push <vl, 

[x + i - 1, x + j - 1]> into stack S if vl is not the parent of a leaf 

node, where [i, j] represents a subrange in F found by using 

searchI( ) or search( ). Otherwise, all the occurrences of (vl) 

have been found, which are represented by , i, and j, i.e., 

Figure 6. Illustration for use of g( ) 
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F[x + i - 1 .. x + j - 1], from which all those occurrences can 

be easily determined. 

IV. IMPROVEMENTS 

In the algorithm discussed in the previous section, each 

time only for a single character  part of L is searched to 

determine its sub-segment within it. However, we can manage 

to search the segment for multiple characters in one scan, i.e., 

for all the characters labeling the different edges going out a 

node. To this end, we need to make the following changes: 

- The characters in  will be represented as integers. For 

example, we can use 1, 2, 3, 4, 5 to represent A, C, G, T, 

$ in a DNA sequence. 

- Each entry in stack S is still a pair <v, [a, b]>. But [a, b] is 

now a sub-segment in L found for l(u  v), where u is the 

parent of v. 

Let v1, …, vk be the children of v. What we want is to find all 

the sub-segments in L for each l = l(v  vl) (l = 1, …, k) in 

one scan of L[a .. b]. For simplicity, however, only the process 

to find the first appearances of l’s is explained. For this, the 

following data structures will be used: 

- Bv: a Boolean array of size ||  {$} associated with node v 

in T, in which, for each i  , Bv[i] = 1 if there exists a child 

node vl of v such that l(v  vl) = i; otherwise, Bv[i] = 0. 

- ci: a variable associated with i   to record the first 

appearances of i during a search of L[a .. b]. 

By using the above data structures, the task to find the first 

appearance of all l’s can be done as follows: 

- Let g(vl) = [xl, yl] (l = 1, …, k). Denote x = max{x1, …, xk}. 

(If for any vl g(vl) is not available, x is set to be b.)  

- Search L[a .. x - 1] from the start to the end. For each 

encountered entry L[j] (a  j  x - 1), we will check whether 

Bv[L[j]] = 1. If it is the case, store j in cL[j] and change 

Bv[L[j]] to 0. 

See Fig. 7 for illustration. 

 

The last appearances of all l’s can be found in a similar 

way. In the algorithm below, these two procedures are referred 

to as firstAp (v) and lastAp (v), respectively.  

ALGORITHM pS(T, LF, ) 

begin 

1. v  root(T); 

2. push(S, <v, [1, |s|]>); 

3. while S is not empty do { 

4. <v, a, b>  pop(S);   l(u  v); c  rkL(a); d  rkL(b); 

5. let v1, …, vk be all those children of v, which are labeled with $; 

6. let u1, …, uj be all the rest children of v; 

7. for each i  {1, …, k} do {    {<(vi), , c, d>}; 

8. let l(v  ul) = l (l  {1, …, j}); 

9. call firstAp(v) to find the ranks of the first appearances 

of 1, …, j, respectively: r(u1), …, r(uj); 

10. call lastAp(v) to find the ranks of the last appearances 

of 1, …, j, respectively: r(u1), …, r(uj); 

11. for l = j downto 1 do 

12.  { push(S, <ul, [
j

x  + r(ul) - 1, 
j

x + r(uj) - 1]>) }; 

13. } 

end 

The main difference of the above algorithm from 

patternSearch( ) consists in the different ways to search L[a .. 

b]. Here, to find the ranks of the first appearances of all the 

labels of the children of v, firstAp(v) is called to scan part of L 

only once (while in patternSearch( ) this has to be done once 

for each different child.) See line 9. Similarly, to find the 

ranks of the last appearances of these labels, another part of L 

is also scanned only once by calling lastAp(v). See line 10. All 

the other operations are almost the same as in pattern-

Search( ). (For ease of understanding, the use of failure 

functions is not included.) 

V. EXPERIMENTS 

In our experiments, we have tested altogether five different 

methods: 

- Burrows Wheeler Transformation (BWT for short), 

- Suffix tree based (Suffix for short), 

- Hash table based (Hash for short), 

- Automaton-BWT (aBWT for short, discussed in this paper),  

- Improved Automaton-BWT (iaBWT for short, discussed in 

this paper).  

Among them, the codes for the suffix tree based and hash 

based methods are taken from the gsuffix package [4] while all 

the other three algorithms are implemented by ourselves. All 

of them are able to find all occurrences of every read (short 

DNA sequence) in a genome. The codes are written in C++, 

compiled by GNU make utility with optimization of level 2. In 

addition, all of our experiments are performed on a 64-bit 

Ubuntu operating system, run on a single core of a 2.40GHz 

Intel Xeon E5-2630 processor with 32GB RAM.  

For the tests, five reference genomes are used: 

 Table 1: Characteristics of genomes 

Genomes Genome sizes (bp) 

Rat chr1 (Rnor_6.0) 290,094,217 

C. merolae  (ASM9120v1) 16,728,967 

C. elegans  (WBcel235) 103,022,290 

Zebra fish (GRCz10) 1,464,443,456 

Rat (Rnor_6.0) 2,909,701,677 

 

Figure 7. Illustration for multi-character checking 

L[a .. b]: A C A T T G …  … … 

 

1 2 1 4 4 3 …    … … 

 

g(vl) 
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… … 

Bv[L[j]] = 1? If it is the case, the rank of j will be 
stored in cL[j] and Bv[L[j]] will be changed to 0.
  

Only this part will be searched.
  

x y 



All the pattern strings are created by simulating reads from 

the five genomes shown in Table 1, with varying lengths and 

amounts. It is done by using the wgsim program included in 

the SAMtools package [13] with default model for single read 

simulation. 

In this experiment, we vary the amount n of reads with n = 

5, 10, 15, … , 50 millions while the reads are 50 bps or 100 

bps in length extracted randomly from Rat chr1 and C. merlae 

genomes. In Fig. 8(a) and (b), we report the test results of 

searching the Rat chr1 for matching reads of 50 and 100 bps, 

respectively. From these two figures, it can be clearly seen 

that the hash based method has the worst performance while 

ours works best. For short reads (of length 50 bps) the suffix-

based is better than the BWT, but for long reads (of length 100 

bps) they are comparable. The poor performance of the hash-

based is due to its inefficient brute-force searching of genomes 

while for both the BWT and the suffix-based it is due to the 

huge amount of reads and each time only one read is checked.  

In the opposite, for both our methods aBWT and iaBWT, the 

use of tries enables us to avoid repeated checking for similar 

reads.  

 

In these two figures, the time for constructing automata 

over reads is not included. It is because in the biological 

research an automaton can be used repeatedly against different 

genomes, as well as often updated genomes. However, even 

with the time for constructing tries involved, our methods are 

still superior since the automaton can be established very fast 

as demonstrated in Table 2, in which we show the times for 

constructing automata over different amounts of read.  

 Table 2: Time for trie construction over reads of length 100 bps 

No. of reads 30M 35M 40M 45M 50M 

Time forAuto. Con. 51.9s 65s 83s 97s 113s 

The difference between tBWT and itBWT is due to the 

different number of BWT array accesses as shown in Table 3. 

By an access of a BWT array, we will scan a segment in the 

array to find the first and last appearance of a certain character 

from a read (by aBWT) or a set of characters from more than 

one read (by iaBWT). 

Table 3: No. of BWT array accesses 

No. of reads 30M 35M 40M 45M 50M 

tBWT  47856K 55531K 63120K 70631K 78062K 

itBWT 19105K 22177K 25261K 28227K 31204K 

 

VI. CONCLUSION 

In this paper, a new method to search a large volume of 

pattern strings against a single long target string has been 

proposed, aiming at efficient next-generation sequencing in 

DNA databases. The main idea is to combine the search of 

automata constructed over the patterns and the search of the 

BWT indexes over the target. By using the failure functions, 

the sizes of sub-segments of a BWT array to be searched can 

be dramatically decreased. In addition, the so-called multiple-

character checking has been introduced, which reduces the 

multiple scanning of a BWT array to a single search of it. 

Experiments have been conducted, which show that our 

method improves the running time of the traditional methods 

by an order of magnitude or more. 
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Figure 8: Test results on very amount of reads 
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