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Abstract—In this paper, we discuss the architecture of a 
system, the so-called Web and Document Databases (WDDBS 
for short), designed to explore the Internet effectively and 
efficiently. Abstractly, a WDDBS can be defined as a triple <����, 
����, ����>, where (1) ���� stands for a local document database to 
store XML documents, (2) ���� for a subsystem responsible for 
remote query evaluation, including resolution of semantic 
conflicts among heterogeneous databases, and (3) ���� for a Web 
crawler which should be able to find information sources 
related to the local database in some way. Then, each 
information source can be organized into a WDDB distributed 
over the Internet, which may be connected to others through 
URLs. A query submitted to a WDDBS will first be evaluated 
against the local document database, and then possibly  
switched over to some remote document databases if necessary, 
which is controlled by the ‘knowledge’ on how local WDDBSs 
are connected. In this way, the load of traffic over the Internet 
can effectively be decreased, but the information explored is 
more relevant. 

Keywords: XML document; Web; tree pattern queries; 
semantic conflict resolution; hash tabels, signature trees. 

I. INTRODUCTION 
With the expansion of the Web, more and more 

comprehensive information repositories can be now visited 
easily through network. A growing and challenging problem 
is how to quickly find information of interest to an 
individual in either a home or work setting. While 
navigating the Web, one may get lost in the maze of hyper-
links. A great deal of work has been done to mitigate this 
problem to some extent, including search engines such as 
Yahoo, AltaVista and Google, different web query languages 
such as W3QL [20], semistructured data management 
systems [1, 19] and document databases [18]. Our goal is to 
bring together all such mechanisms under one umbrella to 
guide the access of information resources distributed all 
over the world. 

Abstractly, a WDDBS can be defined as a triple <�, �, 
�>, where � stands for a local document database to store 
XML documents, � for a subsystem responsible for remote 
query evaluation, including resolution of semantic conflicts 
among heterogeneous databases, and � for a Web crawler 
which should be able to find information sources related to 
some data items in the local database. Then, each 
information source can be organized into a WDDBS which 
may be connected to others through URLs. In an applied 
scenario, consider a local database containing all the hotel 
information (�) in a city. Then, a query against it may get, 

for example, hotel prices, hotel living condition, etc. But a 
user may also want to know about auto rental, sightseeing 
and different cuisine flavors in that city, which may be 
distributed in different databases. In this case, one has to 
switch over to those databases and submit new queries, 
respectively. However, if some URL links to remote 
databases (�) are available and the relationships between 
them and the relevant local data items are specified, the 
system can manage to access those remote databases 
automatically. In addition, to obtain the URLs related to a 
piece of local data, a Web crawler (�) is desired to explore 
the Internet to find information resources of interest. The 
other task of it would be to extract relevant information from 
the data obtained by issuing remote queries. 

In Fig. 1, we give the architecture of WDDBS, showing 
how its main subcomponents are connected.  

 

II. LOCAL DATABASES 

The most important subcomponent of a WDDBS is the 
local XML database. It mainly contains three parts: 
document storage and maintenance, query evaluation, and 
integrity constrains, which are described below in detail. 

A. Document storage and maintenance 
There are different ways to store XML documents. A 

simple method is to decompose an XML document into 
elements and attributes and store them in four relations with 
the following structures: 

DocRoot(docID, rootElmentID), 
SubElement(parentID, childID, position), 
ElementAttribute(elementID, name, value), 
ElementValue(elementID, value) 
However, it supports neither any efficient algorithm for 

evaluating tree pattern queries, nor any effective index 
mechanism. The reason for this is that the parent-child, as 
well as ancestor-descendant relationships cannot be 
efficiently manipulated. Although using the indexes over 
paths individual elements can be quickly located, it needs 
costly path joins to check tree matchings. 

Another way is to store XML documents as data streams 
by using a kind of tree encoding, which can be used to 
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identify different relationships between the nodes of a tree. 
Let T be a document tree. We associate each node v in T 

with a quadruple (d, l, r, ln), denoted as α(v), where d = 
DocId, l = LeftPos, r = RightPos, and ln = LevelNum, 
defined to be the nesting depth of the element in the 
document. (See Fig. 2 for illustration.) By using such a data 
structure, the structural relationships between the nodes in 
an XML database can be simply determined [22]: 
(i) ancestor-descendant: a node v1 associated with (d1, l1, r1, 

ln1) is an ancestor of another node v2 with (d2, l2, r2, ln2) 
iff d1 = d2, l1 < l2, and r1 > r2. 

(ii) parent-child: a node v1 associated with (d1, l1, r1, ln1) is 
the parent of another node v2 with (d2, l2, r2, ln2) iff d1 = 
d2, l1 < l2, r1 > r2, and ln2 = ln1 + 1. 

(iii) left-to-right order: a node v1 associated with (d1, l1, r1, 
ln1) is to the left of another node v2 with (d2, l2, r2, ln2) iff 
d1 = d2, r1 < l2. 
In Fig. 2, v2 is an ancestor of v6 and we have v2.LeftPos = 

2 < v6.LeftPos = 6 and v2.RightPos = 9 > v6.RightPos = 6. In 
the same way, we can verify all the other relationships of 
the nodes in the tree. In addition, for each leaf node v, we 
set v.LeftPos = v.RightPos for simplicity, which still work 
without downgrading the ability of this mechanism. In the 
rest of the paper, if for two quadruples α1 = (d1, l1, r1, ln1) 
and α2 = (d2, l2, r2, ln2), we have d1 = d2, l1 ≤ l2, and r1 ≥ r2, 
we say that α2 is subsumed by α1. For convenience, a 
quadruple is considered to be subsumed by itself (i.e., a 
node is considered to be an ancestor of itself). In this way, 
we can store an XML document as several streams of 
quadruples with each associated with a different tag name 
and sorted by LeftPos or RightPos values. 

 
If no confusion is caused, we will used v and α(v) 

interchangeably. Also, as with DeweyIDs, we can leave gaps 
in the numbering space between consecutive labels to 
support dynamical changes of documents. 

B. Query evaluation 
In order to enquire an XML database, we use a language 

such as XQuery, XML-QL, or Quilt. 
Analogous to SQL select-from-where expressions, 

XQuery provides an FLWR structure to specify queries, as 
illustrated in the following example: 
let $p := doc(“publication.xml”), $q := $p//AuthorBook 
for  $s in $q[.//Author/@name = ‘D. Knuth’]//Book/Title 
where $q//Book/Title[@year = ‘1973’]   
return $s. 

Special attention should be paid to the for-clause in it, 
which is an XPath to represent, together with the where-
clause, a searching condition. Such an searching condition 

typically specify patterns of selection predicates on multiple 
elements that have some tree-structured relationships. For 
instance, the searching condition in the above FLWR 
expression can be represents as a tree structure shown in 
Fig. 3. 

 
Therefore, to answer a query, we need to find all 

occurrences of a tree pattern in a database. It is the so-called 
tree matching problem, for which different strategies for tree 
matching have been developed. 

Tree matching 
From the above discussion, we can see that to evaluate 

an XQuery query we need to do a tree matching. Formally, a 
tree matching is defined as follows. 
Definition 1 An embedding of a tree pattern Q into an XML 
document T is a mapping f: Q → T, from the nodes of Q to 
the nodes of T, which satisfies the following conditions: 
(i) Preserve node label: For each u ∈ Q, label(u) = 

label(f(u)) (or say, u matches f(u)). 
(ii) Preserve parent-child/ancestor-descendant relationship: 

If u → v in Q, then f(v) is a child of f(u) in T; if u � v in 
Q, then f(v) is a descendant of f(u) in T.   

If there exists a mapping from Q into T, we say, Q can be 
imbedded into T, or say, T contains Q. 

Almost all the existing strategies for evaluating tree 
patterns queries are designed according to this definition [2, 
3, 5, 7, 13, 14, 15, 18], which can roughly be divided into 
two categories. One is based on path indexes, and the other 
is based on the XB-tree structure. For example, the methods 
discussed in [18] are typically path-index-based, by which a 
document is decomposed into a set of binary relationships 
between pairs of nodes, such as parent-child and ancestor-
descendant relations, or into a set of paths. The sizes of 
intermediate relations tend to be very large, even when the 
input and final result sizes are much more manageable.  To 
make the matter worse, path joins are needed, which 
requires exponential cpu time in the worst case. 

The methods discussed in [2, 3, 4, 5] are all based on the 
XB-tree structure, which run in polynomial time and needs 
only a space linear in the size of documents. 

Definition 1 allows a path to match a tree as illustrated 
in Fig. 3(b). It is because by Definition 1 the left-to-right 
relationships between siblings are not taken into account. 
We call such a problem an unordered tree pattern matching. 

We may consider another problem, called an ordered 
tree pattern matching, defined below. 
Definition 2 An embedding of a tree pattern Q into an XML 
document T is a mapping f: Q → T, from the nodes of Q to 
the nodes of T, which satisfies the following conditions: 
(i) same as (i) in Definition 1. 
(ii) same as (ii) in Definition 1. 
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(iii) Preserve left-to-right order: For any two nodes v1 ∈ Q 
and v2 ∈ Q, if v1 is to the left of v2, then f(v1) is to the 
left of f(v2) in T.  

In general, a node u1 is said to be to the left of another 
node u2 in a tree T if they are not related by the ancestor-
descendant relationship and u2 follows u1 when we traverse 
T in preorder. 

This kind of tree mappings is useful in practice. For 
example, an XML data model was proposed by Catherine 
and Bird [6] for representing interlinear text for linguistic 
applications, used to demonstrate various linguistic 
principles in different languages. For the purpose of 
linguistic analysis, it is essential to preserve the linear order 
between the words in a text [6]. In addition to interlinear 
text, the syntactic structure of textual data should be 
considered, which breaks a sentence into syntactic units 
such as noun clauses, verb phrases, adjectives, and so on. 
These are used by the language TreeBank to provide a 
hierarchical representation of sentences. Therefore, by the 
evaluation of a tree pattern query against the TreeBank, the 
order between siblings should be considered. 

The method discussed in [4] needs only polynomial time 
for this problem and uses the XB-tree as its indexing 
structure. (The method described in [16] is also for the 
ordered tree matching, using a trie as the indexing structure. 
But its time complexity is exponential in the size of query 
nodes.) 

In the following, we discuss an enhanced version of  
XB-trees with an extra ability to cut off irrelevant 
documents by using the so-call signatures technique. 

XB-tree – an efficient index structure 
An XB-tree [2, 4] over an XML data stream is just a 

modification of the well-known B+-tree indexing structure, 
as illustrated in Fig. 4(a), which is an XB-tree built over the 
data stream shown in Fig. 4(b). 

Each entry in a page (a node) P of an XB-tree consists of 
a bounding segment [LeftPos, RightPos] and a pointer to its 
child page, which contains entries with bounding segments 
completely included in [LeftPos, RightPos]. The bounding 
segments may partially overlap, but their LeftPos positions 
are in increasing order. Besides, each page has two extra 
data fields: P.parent and P.parentIndex. P.parent is a 
pointer to the parent of P, and P.parentIndex is a number i 
to indicate that the ith pointer in P.parent points to P. For 
instance, in the XB-tree shown in Fig. 4(b), P3.parentIndex 
= 2 since the second pointer in P1 (the parent of P3) points to 
P3. 

 

By a method which uses XB-trees as indexes, each node 
q in a query Q will be associated with a data stream, 
denoted B(q), such that for each v ∈ B(q) label(q) = label(v). 
Over such a data stream, an XB-tree may be constructed. 
We notice that in a Q we may have more than one query 
nodes q1, ..., qk with the same label. So they will share the 
same data stream and then the same XB-tree. For each qj (j 
= 1, ..., k), we maintain a pair (P, i), denoted 

Jqβ , to indicate 
that the ith entry in the page P is currently accessed for qj. 
Thus, each (j = 1, ..., k) corresponds to a different searching 
of the same XB-tree as if we have a separate copy of that 
XB-tree over B(qj). 

In [2], two operations are defined to navigate an XB-
tree, which change the value of βq. 
1. advance(βq) (going up from a page to its parent): If 

βq = (P, i) does not point to the last entry of P, i ← i + 1. 
Otherwise, βq ← (P.parent, P.parentIndex + 1). 

2. drilldown(βq) (going down from a page to one of its chil-
dren): If βq = (P, i) and P is not a leaf page, βq ← (P’, 1), 
where P’ is the ith child page of P. 
Initially, for each q, βq points to (rootPage, 0), the first 

entry in the root page. We finish a traversal of the XB-tree 
for q when βq = (rootPage, last), where last points to the 
last entry in the root page, and we advance it (in this case, 
we set βq to φ, showing that the XB-tree over B(q) is 
exhausted.) As with TwigStackXB [2], the entries in B(q)’s 
will be taken from the corresponding XB-tree; and many 
entries can possibly be skipped Each time we determine a q 
(∈ Q), for which an entry from B(q) is taken, the following 
three conditions are satisfied: 
i) For q, there exists an entry vq in B(q) such that it has a 

descendant  in each of the streams B(qi) (where qi is a 
child of q.) 

ii) Each  recursively satisfies (i). 
iii) LeftPos(vq) is minimum. 

To determine which XB-tree will be accessed in a next 
step, we use the function getNext( ) given in [2], in which 
the following functions are used. 
isLeaf(q) - returns true if q is a leaf of Q; otherwise, false. 
isRoot(q) - returns true if q is the root of Q; otherwise, false. 
currL(βq) - returns the LeftPos of the entry pointed to by βq. 
currR(βq) - returns the RightPos of the entry pointed to by 
βq. 
isPlainValue(βq) - returns true if βq is pointing to a leaf 
node in the corresponding XB-tree. 
end(Q) - if for each leaf node q of Q βq = φ (i.e., B(q) is ex-
hausted), then returns true; otherwise, false. 
Function getNext(q) (*Initially, q is the root of Q.*) 
begin 
1. if (isLeaf(q)) then return q; 
2. for each child qi of q do 
3.  {ri ← getNext(qi); 
4.  if (ri ≠ qi ∨ ¬isPlainValue(βq)) then return q;} 
5. qmin ← q’ such that currL(βq’) = mini{currL(

iqβ )}; 

6. qmax ← q’’ such that currL(βq’’)  = maxi{currL(
iqβ )}; 

7. while (currR(βq) < currL(
minqβ ) do advance(βq); 
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(1, 2, 7, 2) 
(1, 3, 3, 3) 
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Fig. 4. A quadruple sequence and the XB-tree over it 



8. if (currL(βq) < currL(
maxqβ ) then return q; 

9. else return qmin; } 
end 

The goal of the above function is to figure out a query 
node to determine what entry from data streams will be 
checked in a next step, which has to satisfy the above condi-
tions (i) - (iii). Lines 7 - 9 are used to find a query node sat-
isfying condition (i) (see Fig. 5 for illustration of line 7.) 
The recursive call performed in line 3 shows that condition 
(ii) is met. Since each XB-tree is navigated top-down and 
the entries in each node is scanned from left to right, 
condition (iii) must be always satisfied. 

  
However, an XB-tree possesses no filtering mechanism 

to discard irrelevant documents as early as possible, which 
greatly delays response time. To address this problem, we 
will integrate the so-called signature file technique [8] into 
it to cut off irrelevant data. Intuitively, a signature for a key 
word is a hash-coded bit string of length m with k bits set to 
1 (k < m). Then, a signature for a single document can be 
created by superimposing together the signatures for all the 
key words appearing in it. (By ‘superimposing’ we mean a 
bitwise OR operation.) When a query arrives, a query 
signature can be generated by applying the same hash 
function, and used to discard irrelevant documents 
according to the following rules: (i) the document signature 
s matches the query signature sq; that is, for every bit set in 
sq , the corresponding bit in the document signature s is also 
set (i.e., s � sq = sq) and the document really contains the 
query words; (ii) the document does not match the query 
(i.e., s � sq ≠ sq ) and therefore can be discarded � and (iii) 
the signature comparison indicates a match but the 
document in fact does not match the search criteria (referred 
to as a false drop); so the document itself needs to be 
checked. 

Fig. 6 depicts the signature generation and comparison 
process of a document containing three key words: “John”, 
“12345678”, and “professor”. 

Fig. 6 depicts generation of a document signature and 
comparison process of an object having three attribute 
values: “John”, “12345678”, and “professor”. 

   
In order to equip an XB-tree with the ability of filtering 

irrelevant documents, we will associate each entry in a non-

leaf node of the XB-tree with a signature as illustrated in 
Fig. 7. 

We assume that the XB-tree shown in Fig. 7 is built over 
a data stream for tag name ‘name’. Then, each entry in a 
leaf node is associated with an author name, for which a 
signature can be created using a hash function. 
Superimposing all the signatures in a leaf node, we will 
generate a signature for the corresponding entry in its parent 
node. In the same way, we can superimposing all the 
signatures in the parent to create a new signature and put in 
a higher-level node, and so on. 

 
Thus, when searching an XB-tree, we can also use 
signatures to skip many nodes and discard irrelevant 
documents. 

C. Integrity constraints 
As in a relational database, integrity constrains can be 

specified in an XML database to keep data consistence. In 
addition, it can also be utilized to speed up query evaluation. 
For example, consider a query ‘find the title and author of 
books that have a publisher’. If we have specified a 
constraint such as ‘every book has a publisher’. Then, the 
query can be simplified to ‘find the title and author of 
books.’ In our research, four kinds of constraints are 
recognized: (i) co-occurrance: types A and B always occur 
together as children of another type, denoted by A ↓ B. (ii) 
subtype: every document node of type A is also of type B, 
denoted by A ≤ B. For example, in a document, there may 
exist some nodes labeled with the type “technician” while 
some other nodes with the type “employee”. Obviously, we 
have “technician” ≤ “employee”. (iii) required child: every 
document node of type A has a child of type B, denoted by A 
→ B. (vi) required descendant: every document node of 
type A has a descendant of type B, denoted by A � B. 

The goal of our research on the integrity constraints is to 
use them to simplify queries, and cut off searching space as 
well. 

D. Some other important issues 
In this section, we discuss some other important issues, 

such as IDREF/ID links and XPaths with complicated 
predicates. 

IDREF/ID links 
In an XML document, we can associate a set of 

attributes with an element. Especially, we can assign an 
identifier to it as an attribute value (referred to as an ID 
attribute), which can be referenced by another element by 
using this identifier as one of its attribute values (referred to 
as an IDREF attribute). In this sense, an XML document is 

Fig. 7. Integration of signatures into XB-trees 

 1, 9    3, 6  5, 8 
 (110 100 101 101) (… …)   (… …) 

1, 9  2, 7  3, 3 4, 6  5, 5 8, 8 

D. Knuth 
(110 000 100 101) 

D. Angela 
(110 100 101 101) 

T: 

βq 

qmin β 

q 
qmin 

Q: If currR(βq) < currL(      ), 
we have to advance βq. 
It is because in the subtree 
rooted at the entry pointed 
to by βq, we cannot find any 
node v such that T[v] covers 
Q[q]. 

qmin β 

Fig. 5. Illustration for advance(βq) 

 document: John … 12345678 … professor …  

Query signature: 
010 000 100  110 
011 000 100  100 
110 100 100  000 

queries: 
John 
Paul 
11223344 

key word: 
 John 010 000 100 110 
 12345678 100 010 010 100 
 Professor  ∨ 010 100 011 000 
document 
signature (DS): 110 110 111 110 

Fig. 6. Document signature generation and comparison 

matching results: 
match with DS 
not match with DS 
false drop 



considered to be a sparse directed graph: a tree plus some 
IDREF/ID links. Thus, in some cases, the tree matching 
method cannot be used to evaluate a query efficiently. To 
know this clearly, let’s have a look at the following XPath 
expression: 
/AuthorBook[.//Author/name = ‘D. Knuth’ ∧ 
.//Author/@AuthorID = .//Book/@authorOf]/ Book/Title, 

where @AuthorID refers to the ID attribute of element 
Author while @authorOf the IDREF attribute of element 
Book. This query asks for all the books authored by D. 
Knuth. However, it cannot be represented by a tree, but by a 
graph as shown in Fig. 8. 

 
Therefore, the evaluation of such kind of queries is a 

process to check subgraph isomorphism, which is in general 
NP-hard. But a document graph is a special kind of graphs; 
a tree plus IDREF/ID links. So we can first do a tree 
matching and then check links, which needs only 
polynomial time. For instance, the above XPath expression 
can be rewritten as follows: 
(/AuthorBook[.//Author/name = ‘D. Knuth’ ∧ 
.//Author/@AuthorID = x]/ Book[.//Book/@authorOf  = 
y]/Title) ∧ (x = y). 

In the above expression, the first part can be represented 
as a tree. Thus, it can be evaluated by using any strategy for 
this task. Then, for each answer obtained, we will check the 
values respectively for x and y to see whether they are equal. 

General XPath expressions) 
In a general XPath expression, predicates (such as ‘name 

= D. Knuth’) can be connected by both ∧ and ∨. One can 
even use a negated predicate (such as ‘¬(name = D. 
Knuth)’) in an expression. Our initial idea is to decompose 
an expression into several sub-expressions such that each of 
them only contains ∧. Then, each of them will separately be 
evaluated. Unifying their results, we will get the final 
answer. For example, an expression given below 

Book[Title = ‘XML’]//Author[name = ‘Jane’ ∨ 
name = ‘Doe’] 

can be transformed into two sub-expressions: 
Book[Title = ‘XML’]//Author[name = ‘Jane’], 
Book[Title = ‘XML’]//Author[name = ‘Doe’]. 

III. REMOTE QUERY EVALUATION 
In order to access remote databases when necessary, we 

maintain a matrix M with each entry M(i, j) being a 
structure: <descriptor; urla, urlb> to record how the 
databases DBi and DBj are connected, where urla and urlb 
are the URL addresses of DBi and DBj, respectively. If DBi 
and DBj are homogeneous, descriptor is simply a label (or a 

word) to indicate their relationship. For example, the 
descriptor for DBhotel and DBauto-rental can be tourism. 
However, if DBi and DBj are heterogeneous, descriptor will 
be a complex structure which provides a way to resolve the 
semantic conflict between DBi and DBj. Concretely, it is a 
structure containing three parts: ontology for DBi, ontology 
for DBj, and a mapping between the two ontologies. 

In general, an ontology can be represented as a graph, in 
which each node represents a concept or a relation, and an 
edge from node v to node u represents one of four 
relationships: v is a subclass of u, v is a subproperty of u, v 
is the domain of u, and v is the range of u. Such an ontology 
can be stored as an XML document following RDF/XML 
syntax, where RDF (Resource Description Framework) is a 
general-purpose language, developed by the W3C for 
representing information in the Web [17, 21]. 

The mapping between two ontologies can be established 
by using the so-called Description Logics (DL) [9], 
designed for representing knowledge and reasoning about it. 
Besides elementary descriptions for atomic concepts, atomic 
roles (properties or relationships), universal concept (�) and 
bottom concept (⊥), DL also provides four mapping 
assertions: equivalence, overlapping, disjoint, and 
subsumption (a concept C1 is subsumed by another concept 
C2 if the instances described by C2 can be described by C1 
but the inverse is not true).   

A WDDBS will provide all the above described 
functionalities. In addition, we will extend DL with a new 
mapping relation: derivation to indicate a concept in an 
ontology can be derived from some concepts in another 
ontology. For example, we may specify a mapping as shown 
below: 

 Ontology1(father, brother) → Ontology2(uncle). 
Such kind of mappings enables us to accommodate more 

heterogeneity [10]. 

IV. WEB CRAWLER 

As in any web search engine, WDDBS uses a web 
crawler to explore the internet to find web pages of interests 
or relevant document databases distributed all over the 
world. Theoretically, a crawler can be a single machine that 
is started with a set S, containing the URL’s of one or more 
web pages to crawl. There is a repository R of pages with 
the URL’s that have already been crawled. Initially, R is 
empty. In order to check whether a new page has already 
been in R at each step, a search engine typically maintains a 
hash table H containing all the hash-coded signatures for all 
the pages stored in R. Each time a page is found, the hash-
coded signature for it will be created and checked whether it 
is in H. We will change this process by maintaining a 
signature tree [8] for all the pages in R, instead of a hash 
table. In this way, we will replace a hash table searching 
with a signature tree searching, which should be a much 
more efficient process. 

As an example, consider a set H of signatures shown in 
Fig. 9(a). We can store it as a tree structure as shown in Fig. 
9(b).  Such a tree has the following properties [8]: 

authorOf 

AuthorBook 

Author Book 

name Title 

Output node 

Fig. 8. A query graph 
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i) Each node is labeled with a number 1 ≤ i ≤ l, where l is 
the length of a signature in the hash table. 

ii) Each left edge going out of a node is labeled with 0. 
Each right edge 1. 

iii) Each path from the root to a leaf node corresponds to the 
identifier of a signature sk in H, which is represented by 
a pair sequence: (i1, sk[i1]) … (ih, sk[ih]) such that the jth 
node on the path is labeled with ij and the jth edge 
labeled with sk[ij], where sk[i] is the ith bit of sk. There 
exists no p (≠ k) such that (i1, sp[i1]) … (ih, sp[ih]) = (i1, 
sk[i1]) … (ih, sk[ih]).  

 
Due to the address collision, the time for searching a 

hash table may be very long. But searching a signature tree 
needs only O(l) time. 

Another important issue concerning the web crawler is 
the page ranking. The current mechanism used in a search 
engine is based on the concept of ‘page importance’, which 
is calculated by counting the incoming links to a page. 
Concretely, the following recursive equation (established 
according to the theory of Markov Chain) will be used to 
estimate page importance [12]: 

 P = (1 - β)NP + βJ, 
where N is a k × k transition matrix with N(i, j) = 1/r if 

page j has a link to page i, and there are a total r ≥ 1 pages 
that j links to; otherwise, N(i, j) = 0. P is a vector of k 
fraction numbers with each representing a page-importance 
to be determined. J is also a vector but with initial values set 
by the system to escape spider traps, each of which is a set 
of pages without outgoing links, and β is the probability that 
a spider trap appears. 

The problem of the above method consists in the big size 
of N. So we need to store N in a compact way. For example, 
we can store N as a graph with each edge associated with an 
entry in N, and relax the exact solution to the equation to an 
approximate one by simulating random walk processes [11]. 

V. CONCLUSION 
In this paper, the architecture of WDDBS is discussed, 

which is designed to facilitate the internet navigation. The 
system mainly contains three parts: local XML document 
management, remote query evaluation, and web crawling. In 
the local document system, a set of XML documents is 
stored and maintained, including query evaluation, indexing, 
and specification of integrity constraints. In the subsystem 
for remote query evaluation, a set of ontologies for different 
connected document databases, as well as their mappings, is 
maintained to resolve semantic conflicts. Finally, the web 

crawler is used to explore the internet to find information of 
interest, or all those document databases connected to the 
local one in some way. 
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