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Abstract The signature file method is a popular indexing technique used in information
retrieval and databases. It excels in efficient index maintenance and lower space over-
head. Different approaches for organizing signature files have been proposed, such as
sequential signature files, bit-slice files, S-trees, and its different variants, as well as sig-
nature trees. In this paper, we extends the structure of signature trees by introducing
multiple-bit checkings. That is, during the searching of a signature tree against a query
signature sq, more than one bit in sq will be checked each time when a node is encoun-
tered. This does not only reduce significantly the size of a signature tree, but also in-
creases the filtering ability of the signature tree. We call such a structure a general
signature tree. Experiments have been made, showing that the general signature tree
uniformly outperforms the signature tree approach.
Keywords: index, signature file, signature identifier, signature tree, information re-
trieval 

1. Introduction
An important question in information retrieval is how to create a database index which
can be searched efficiently for the data one seeks. Today, one or more of the following
techniques have been frequently used: full text searching, B-trees [3], inversion [14, 23]
and the signature file [11, 12, 17]. Full text searching imposes no space overhead, but
requires long response time. In contrast, B-trees, inversion and the signature file work
quickly, but need a large intermediary representation structure (index), which provides
direct links to relevant data. In this paper, we concentrate on the techniques of signature
files and discuss a new approach for organizing signature files.
The signature file method was originally introduced as a text indexing methodology [11,
12]. Nowadays, however, it is utilized in a wide range of applications, such as office fil-
ing [7], hypertext systems [13], relational and object-oriented databases [6, 15, 18, 22],
as well as data mining [1]. In comparison with the other index structures, it has mainly
the following advantages:
- it can be used to efficiently evaluate set-oriented queries;
- it can handle insertion and update operations easily.
A typical query processing with the signature file is as follows: when a query is given,
a query signature (a bit string) is formed from the query values. Then each signature in
the signature file is examined over the query signature. If a signature in the file covers
the query signature, the corresponding data object becomes a candidate that may satisfy
the query. Such an object is called a drop. The next step of the query processing is the
false drop resolution. Each drop is accessed and examined whether it actually satisfies
the query condition. Drops that fail the test are called false drops while the qualified data
objects are called actual drops.
Different approaches for organizing signature files have been proposed, such as sequen-
tial signature files, bit-slice files [15], S-trees [9], and its different variants [20, 21], as
well as signature trees. In this paper, we introduce a new way to organize signature files
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by extending the structure of signature trees. Instead of checking only one bit in the query
signature each time when a node is encountered during the searching of a signature tree,
multiple bits will be checked. This enables us both to

(i) decrease the size of a signature tree, and
(ii)increase the filtering ability of a signature tree.

Experiments are made, which show that the general signature tree is really beneficial in
comparison with the signature tree approach.
The remainder of the paper is organized as follows. In Section 2, we show what is a sig-
nature file and what is a signature tree. In Section 3, we introduce the structure of general
signature trees and discuss how they can be constructed. Section 4 is devoted to the main-
tenance of general signature trees. In Section 5, we report the experiment results. Finally,
Section 6 is a short conclusion.

2. Signature files and signature trees
Intuitively, a signature file can be considered as a set of bit strings, which are called sig-
natures. Compared to the inverted index, the signature file is more efficient in handling
new insertions and queries on parts of words; and especially suitable for set-oriented que-
ry evaluation. But the scheme introduces information loss. More specifically, its output
usually involves a number of false drops, which may be identified only by means of a
full text scanning on every text block short-listed in the output. Also, for each query pro-
cessed, the entire signature file needs to be searched [11, 12]. Consequently, the signature
file method involves high processing and I/O cost. This problem is mitigated by parti-
tioning a signature file, by introducing an auxiliary data structure, as well as by exploit-
ing parallel computer architectures [8].

2.1 Signature files
Signature files are based on the inexact filter. They provide a quick test, which discards
many of the nonqualifying elements. But the qualifying elements definitely pass the test
although some elements which actually do not satisfy the search requirement may also
pass it accidentally, i.e., there may exist “false hits” or “false drops” [11, 12]. In an ob-
ject-oriented database, for instance, an object is represented by a set of attribute values.
The signature of an attribute value is a hash-coded bit string of length m with k bits set
to “1”. As an example, assume that we have an attribute value “professor”. Its signature
can be constructed as follows. In terms of [4], the letter triplets in a word (or an attribute
value) are the best choice for information carrying text segments in the construction of
the signature for that word. So we decompose “professor” into a series of triplets: “pro,”
“rof,” “ofe,” “fes,” “ess,” and “sor.” Using a hash function hash, we will map a triplet to
an integer p indicating that the pth bit in the string will be set to 1. For example, assume
that we have hash(pro) = 2, hash(rof) = 4, hash(ofe) = 8, and hash(fes) = 9. Then, we will
establish a bit string: 010 100 011 000 for “professor” as its word signature (see [10] for
a detailed discussion.) An object signature is formed by superimposing the signatures for
all its attribute values. (By ‘superimposing’, we mean a bit-wise OR operation.) Object
signatures of a class will be stored sequentially in a file, called a signature file. Fig. 1 de-
picts the signature generation and comparison process of an object having three attribute
values: “John”, “12345678”, and “professor”.  

When a query arrives, the object signatures are scanned and many nonqualifying objects
are discarded. The rest are either checked (so that the “false drops” are discarded) or they
are returned to the user as they are. Concretely, a query specifying certain values to be
searched for will be transformed into a query signature sq in the same way as for attribute
values. The query signature is then compared to every object signature in the signature
file. Three possible outcomes of the comparison are exemplified in Fig. 1: (1) the object
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matches the query; that is, for every bit set in sq, the corresponding bit in the object sig-
nature s is also set (i.e., s ∧ sq = sq) and the object contains really the query word; (2) the
object doesn’t match the query (i.e., s ∧ sq ≠ sq); and (3) the signature comparison indi-
cates a match but the object in fact doesn’t match the search criteria (false drop). In order
to eliminate false drops, the object must be examined after the object signature signifies
a successful match.
In addition, we can see that the signature matching is a kind of inexact matching. That is,
sq matches a signature s if for any bit set to 1 in sq, the corresponding bit in s is also set
to 1. However, for any bit set to 0 in sq, it doesn’t matter whether the corresponding bit
in s is set to 1 or 0.
The purpose of using a signature file is to screen out most of the nonqualifying objects.
A signature failing to match the query signature guarantees that the corresponding object
can be ignored. Therefore, unnecessary object access is prevented. 
To determine the size of a signature file, we use the following formula [4]:

m × ln2 = k × D,

where D is the average size of a block. (In a relational or an object-oriented database, D
can be considered to be the average number of attributes in a tuple or in an object.) 
In a signature file, a set of signatures is sequentially stored, which is easy to implement
and requires low storage space and low update cost. However, when a query is given, a
full scan of the signature file is required. Therefore, it is generally slow in retrieval. Fig.
2 is a quite simple signature file. If more than one objects share the same signature, that

signature will be associated with the identifiers of all those objects.

2.2 Signature trees
In [5], a new method was proposed to organize signature files to speed up a signature file
scanning. Using this method, a tree over a signature file S, called a signature tree, is con-
structed with the following properties.

(1) Each node v is associated with a number (denoted skip(v)) to tell which bit in sq
to check when v is encountered during the tree searching.

(2) For each node, its left outgoing edge is labeled with 0 and its right outgoing edge
is labeled with 1.

(3) Each path from the root to a leaf represents a signature identifier that uniquely
identifies a signature in S just as a position identifier used to identify a substring
[2]. A signature identifier is defined as follows. Let S = s1.s2 ... .sn denote a sig-
nature file. Let si[j] represent the jth bit in si. The signature identifier for an si is a
sequence of pairs: (j1, si[j1])(j2, si[j2])... (jh, si[jh]) (1 ≤ jk ≤ m; denoted si(j1, ..., jh))
such that for any k ≠ i (1 ≤ k ≤ n) we have si(j1, ..., jh) ≠ sk(j1, ..., jh).

For example, the tree shown in Fig. 3(b) is a signature tree for the signature file shown
in Fig. 3(a). 
In the tree shown in Fig. 3(b), each path represents an identifier for some signature. For
instance, the path from the root to the leaf labeled with s6 (see the dashed line) represents
the signature identifier for s6. It is because s6(1, 2, 7) = (1, 0)(2, 1)(7, 0) and for any i ≠
6 we have si(1, 2, 7) ≠ s6(1, 2, 7).
In addition, we point out that this signature tree is constructed using an algorithm differ-
ent from that discussed in [5], which generates a signature tree for a signature file like a
Pat-tree for a long bit string [16, 19] and needs O(n⋅min(m, logn)) time. However, the
algorithm used to generate the tree shown in Fig. 3(b) needs O(n⋅m⋅ logn) time, worse

Fig. 2. Illustration of sequential
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than the algorithm proposed in [5]. But it can create a more balanced tree. Below is the
formal description of this algorithm, in which we consider a signature file S = s1.s2 ... .sn
as a boolean matrix and use S[i] to represent the ith column of S. 
Algorithm balanced-tree-generation(file)
input: a signature file.
output: a signature tree.
begin
let S = file; n ← |S|;
if n > 1 then {

choose j such that |w(S[j]) - n| is minimum;
let g1 = { , , ..., } with each [j] = 0 (l = 1, ..., k);
let g2 = { , , ..., } with each [j] = 1 (h = k + 1, ..., n)
generate a tree containing a root r and two child nodes marked with g1 and g2, respectively;
skip(r) ← j; 
replace the node marked g1 with balanced-tree-generation(g1);
replace the node marked g2 with balanced-tree-generation(g2);}

else return;
end
The idea of the algorithm is simple. First, we calculate the weight of each S[i], i.e., the
number of 1s appearing in S[i], denoted w(S[i]). This needs O(n⋅m) time. Then, we

choose an j such that |w(S[i]) - n| is minimum. Here, the tie is resolved arbitrarily. Using

this j, we divide S into two groups g1 = { , , ..., } with each [j] = 0 (l = 1, ..., k)

and g2 = { , , ..., } with each [j] = 1 (h = k + 1, ..., n); and generate a tree

as shown in Fig. 4(a). In a next step, we consider each gi (i = 1, 2) as a single signature
file and perform the same operations as above, leading to two trees generated for g1 and
g2, respectively. Replacing g1 and g2 with the corresponding trees, we get another tree as
illustrated in Fig. 4(b). We repeat this process until the leaf nodes of a generated tree can-
not be divided any more. 

The searching of a signature tree against a query signature can be done in the same way
as discussed in [5], by means of which the behavior of a signature file as a filter is mod-
eled as below. Let sq be a query signature. The ith position of sq is denoted as sq[i]. During
the traversal of a signature tree, the inexact matching is done as follows:

(i) Let v be the node encountered and sq [i] be the position to be checked. 
(ii) If sq[i] = 1, we move to the right child of v.
(iii) If sq[i] = 0, both the right and left child of v will be explored.

3. On the general signature trees
In this section, we extend the above signature tree structure by assigning each internal
node v a sequence: i1, i2, ..., il for some l to tell that the i1th, i2th, ..., and ilth bits in sq will
be checked when v is encountered during the searching of a signature tree against sq. In
this way, the size of a signature tree can be significantly reduced.
3.1 Definition
Assume that S = s1.s2 ... .sn be a signature file. For each si, we denote it as si = si[1]si[2]
... si[m], where each si[j] ∈  {0, 1} (j = 1, ..., m).

Definition 1. (general signature tree) A general signature tree with respect to an integer
l for a signature file S = s1.s2 ... .sn, where si ≠ sj for i ≠ j and |sk| = m for k = 1, ..., n, is a
tree T(l) such that 

1. Each internal node v is associated with a sequence: i1, i2, ..., il for some l, denoted
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c(v), to tell that the i1th, i2th, ..., and ilth bits in the query signature will be checked
when v is encountered. 

2. For each internal node of T(l), the number of its outgoing edges is bounded by 2l.
Each edge e is labeled with a different bit string b1b2....bl, denoted label(e).

3. T(l) has n leaves labeled 1, 2, ..., n, used as pointers to n different positions of s1, s2
... and sn in S. Let v be a leaf node. Denote by p(v) the pointer to the corresponding
signature. 

4. Let v1, ..., vh be the nodes on a path from the root to a leaf v labeled i (then, this leaf

node is a pointer to the ith signature in S, i.e., p(v) = i). Let { , , ..., } be the
sequence associated with vj (1 ≤ j ≤ h - 1). Let e1, ..., eh-1 be the edges on the path

and let ...  be the bit string labeling ej (1 ≤ j ≤ h - 1). Then, ( , ) ... ( ,

) ... ( , ) ... ( , ) makes up a signature identifier for si, si( , ...,

, ..., , ..., ).
Example 1. In Fig. 5(a), we show a general signature tree with l = 2, generated for the
signature file shown in Fig. 3(a). It is easy to see that this tree contains less nodes than
the tree shown in Fig. 3(b). 

In addition, we notice that if the sequence associated with each node is contiguous, we
need to store only one integer for a sequence. For example, the tree shown in Fig. 5(a)
can be stored as shown in Fig. 5(b), in which a contiguous sequence is implicitly imple-
mented.
The searching of a general signature tree against a query signature sq can be done in a
way similar to that of a signature tree, but different in the label checkings as described
below:

(i) Let v be the node encountered. Assume that the sequence associated with it is i1,
i2, ..., il for some l. Then, sq[i1], ..., sq[il] will be checked. 

(ii) Let e be an edge outgoing from v and labeled with a bit string b1b2....bl. Then, if
b1b2...bl matches sq[i1], ..., sq[il], explore e. Recall that by “matching” we mean
that for every j (1 ≤ j ≤ l) if sq [j] = 1, we have bj = 1; if sq [j] = 0, bj can be 1 or 0.

Example 2. Consider the signature file shown in Fig. 3(a) once again. The general sig-
nature tree for it is shown in Fig. 6(a). Assume sq = 100 110 010 000. Then, only part of
the signature tree (marked with thick edges in Fig. 6(a)) will be searched. On reaching a
leaf node, the signature pointed to by the leaf node will be checked against sq.

We also notice that when we search the signature tree established for the same file, more
edges will be accessed. (See the dashed edges in Fig. 6(b).)
From the above example, we can see that in comparison with the signature trees, the gen-
eral signature trees have the following two advantages:
(1) A general signature tree tends to have fewer nodes.
(2) When searching a general signature tree, fewer edges will be visited.

3.2. Construction of general signature trees
Now we discuss how a general signature tree is constructed for a given signature file S. 
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Given an integer l, we choose, from S, the i1th, i2th, ..., and ilth columns to divide the

whole S into j (≤ 2l) groups: g1 = { , , ..., }, ..., gj = { , , ..., } such that

1. In each gk (1 ≤ k ≤j), for any two signatures  and  we have [i1] = [i1], ...,

and [il] = [il].

2. For any two different groups gx and gy, there exists at least an iz ∈ {i1, i2, ..., il} such
that for any s1 ∈ gx and s2 ∈ gy, we have s1[iz] ≠ s2[iz].

3. max{|g1|, ..., |gj|} - min{|g1|, ..., |gj|} is minimized, which guarantees that S is divided
as evenly as possible.

Then, we can generate a tree TS of two levels with the root labeled with a sequence {i1,
i2, ...,  il} and j leaf nodes with each labeled with a gk. For instance, for the signature file
shown in Fig. 3(a), we can generate a tree as shown in Fig. 7(a). In this tree, g1 = {s3, s5},
g2 = {s1, s6}, g3 = {s7, s8} and g2 = {s2, s4}. In a next step, we consider each gk (k = 1,
..., j) as a single signature file with i1th, i2th, ..., and ilth columns removed, and perform
the same operations as above. Assume that  (k = 1, ..., j) is the tree generated for gk.

Replacing gk with  for each k in TS, we get another tree which is three levels high. For
example, for the signature file shown Fig. 3(a), a tree as shown in Fig. 7(b) can be creat-
ed, in which g11 = {s3}, g12 = {s1}, g21 = {s6}, g22 = {s1}, g31 = {s8}, g32 = {s7}, g41 =
{s4}, and g42 = {s2}.

This process will be repeated until the leaf nodes of a generated tree cannot be divided
any more. 
Below is a formal description of the above process.
Algorithm general-tree-generation(file, l)
input: file - a signature file; l - an integer.
output: a general signature tree.
begin
let S = file; n ← |S|;
if n > 1 then {

choose the i1th, i2th, ..., and ilth columns to divide the whole S into j (≤ 2l) groups: g1

= { , , ..., }, ..., gj = { , , ..., } as described above;
generate a tree containing a root r and j child nodes marked with g1, ..., gj, respectively;
c(r) ← {i1, i2, ..., il};
for (i = 1 to j) do

{replace the node marked gi with general-tree-generation(gi, l);}
else return;
end
By applying this algorithm with l = 2 to the signature file shown in Fig. 3(a), a general

signature tree as shown in Fig. 5(a) will be created. Since O( ) time is need-

ed to generate the nodes at level i in the tree, the time complexity of the whole process is

on the order of .
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In the above discussion, a very important issue has not yet been addressed. That is, for a
file containing n signatures, what l should be chosen?
In the following, we discuss a heuristics for this task.
Consider a complete balanced signature tree T with the outdegree of each internal node
k = 2l, constructed for a signature file containing n signatures. Let v1, v2, ..., and vk be the
child nodes of a node v in T, and e1 = (v, v1), e2 = (v, v2), ..., and ek = (v, vk) be the outgoing
edges from v. If k is not so large, we can arrange an array A of size k to accommodate
these edges in such a way that each entry A[j] stores a link to a node vi iff label(ei) = j.
So when we meet v during the searching of T against sq, all those child nodes, which
should be further explored, can be easily located. Assume that c(v) = {i1, i2, ...,  il} and
sq[i1] ... sq[il] = b1... bl. Then, any entry A[j] with j equal to the value of a bit string b1’...
bl’ should be explored if for any i with bi = 1 we have bi’ = 1. Then, it is easy to show
that the average number of entries in A, which may be explored, is

= .

Therefore, the average number of the nodes, which must be visited during the searching

of T against a query signature, can be estimated by O( ).

However, if k is large, we can not store the children of a node in an array as above since
it can be quite sparsely populated, leading to a high space overhead. In this case, we need
to store them in a linked list to avoid wasting space. In this way, to locate the child nodes
to be explored, the linked list has to be scanned and at average O(2l-1) time is needed. So
in this case the average number of the nodes to be checked is estimated by

O( ).

Assume that when k ≤  for some l0, the child nodes are stored in arrays while when k

> , they are stored in linked lists. Then, the average number of the nodes to be checked
when searching a general signature tree is of the pattern shown in Fig. 8.

In practice, we can try different l’s with the child nodes stored in arrays until the size of
the general signature tree becomes larger than a given threshold. For instance, one of the
goals of the general signature tree approach is to reduce the tree size. However, if, due to
the sparse population of child links in the arrays, the size of a general signature tree with
respect to an integer l becomes larger than the corresponding signature tree for the same
signature file, we should set l0 to be an integer smaller than l. 

4. Maintenance of general signature trees
In this section, we consider the maintenance of general signature trees. Concretely, we
discuss how a general signature tree is changed when a new signature is inserted into the
signature file or when a signature is removed from it.

- inserting a signature

When a signature s is inserted into a signature file, we will first search the corresponding
signature tree as described in 3.1. The searching stops when one of the following two
conditions is satisfied:

(i) The searching meets a node v with c(v) = {i1, i2, ..., il} and none of its outgoing edge
matches s[i1]s[i2]...s[il].
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(ii)The searching reaches a leaf node u with p(u) = i.
In case (i), we simply generate a new leaf node v’ with p(v’) pointing to s and connect v
and v’ using an edge labeled with s[i1]s[i2]...s[il]. In case (ii), we will compare s and the
signature si pointed to by p(u) and find i1’, i2’, ..., il’such that s[i1’]s[i2’]...s[il’] ≠
si[i1’]si[i2’]...si[il’]. Then, we generate a new internal node v’ with c(v’) = {i1’, i2’, ..., il’},
and a new leaf node v’’ with p(v’’) pointing to s. In addition, we replace u with v’. By
“replace”, we mean that the position of u in the tree is occupied by v’ and u becomes one
of its children. v’’ is set to be another child node of v’. (See Fig. 9(a) for illustration.)

- deleting a signature
When a signature s is removed from a signature file, the corresponding signature tree
may be changed in one of the following two ways:

(i) Let v be leaf node with p(v) pointing to s. Let u be the parent of v. If u has more
than two child nodes, v will be simply removed.

(ii) If u has exactly two child nodes v (to be removed) and w, replace u with the subtree
rooted at w. (See Fig. 9(b) for illustration.)

After some insertions and deletions, a general signature tree may become unbalanced. So
a tree should be reconstructed using the algorithm discussed in 3.2 periodically. 

5. Experiments
We have implemented a test bed in C++, with our own buffer management (with first-in-
first-out replacement policy). The computer was Intel Pentium III, running standalone.
The capacity of the hard disk is 4.95 GB and the amount of the main memory available
is 46 MB.
We have tested the signature tree approach (ST) and the general signature tree approach
(GST). For the GST, only two versions are tested: two contiguous bit checking
(TwoCBC) and three contiguous bit checking (ThreeCBC). By the TwoCBC, each time
when a node in encountered, two contiguous bits in the query signature will be checked,
while by ThreeCBC, each time three contiguous bits in the query signature will be
checked. They are applied to different signature queries against the signature files of dif-
ferent sizes. All the signatures are created randomly using a uniform distribution for the
positions that will be set to 1. The performance measure was considered to be the number
of page accesses required to satisfy a query. For each query, an average of 20 measure-
ments was taken.
For the experiment purpose, all the trees are stored page-wise as illustrated in Fig. 10. 

The considered parameters and the tested values for each parameter are given in Table 1.

Fig. 9. Illustration for the maintenance of general signature trees
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number of signatures (×1024)
signature size/weight (in bits)
page size (in KB)

100
64/32
1

200
64/16
2

100
128/64
1

200
128/32
2

parameters
data groupI groupII groupIII groupIV

Tabel 1:



For all the methods implemented, an entry in a signature file contains two fields: a sig-
nature and an object identifier as shown in Fig. 11(a). Each internal node structure for a
signature tree contains three fields: an integer to indicate which bit of a query signature
will be checked, and two pointers to the left and the right child of a node, respectively.
(See Fig. 11(b) for illustration.) Similarly, each internal node of a general signature tree
with l = 2 has an integer to indicate a contiguous bit string of length 2 to be checked, and
4 pointers to its child nodes. (See Fig. 11(c) for illustration.)    

Fig. 12 shows the test results for group I. The query signatures are generated randomly
with all those positions to be set 1 uniformly distributed. Each of the queries is evaluated
by different strategies.
From this figure, we can see that TwoCBC is much better than ST. But ThreeCBC is not
much better than TwoCBC as we expect. It is because although the tree size of ThreeBCB
is smaller than that of TwoCBC, a tree generated by ThreeCBC may not be so balanced
as a tree generated by TwoCBC. However, as the length of signatures increases, we have
more chance to find a balanced tree for ThreeCBC. So the discrepancy between
ThreeCBC and TwoCBC increases as shown in Fig. 13. 

In Fig. 14 and Fig. 15, we show the results of Group III and Group IV, respectively. These
results also confirm the above analysis. 

In addition, the weight of a query signature (i.e., the percentage of 1-bits in a query sig-
nature) affects both signature trees and general signature trees greatly. Fig. 16 shows the
number of page access when the three methods are used to search a signature file con-
taining 100 ×  1024 signatures to locate query signatures with different weights.
From this, we can see that as the weight of a query signature increases, the searching time
of both the signature trees and the general signature trees reduces. It is because each bit
set to 1 in the query signature may cut off a subtree. However, more bits set to 1 in a query
signature impacts the general signature trees more than it does to the signature trees,
which shows that the filtering ability of a general signature tree is stronger than a signa-
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Fig. 11. Illustration for storing signature file entries and internal nodes in signature trees
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ture tree.

6. Conclusion
In this paper, we extend the structure of signature trees by checking more than one bits
in a query signature sq when encountering a node during the searching of a signature tree
against sq. In this way, we can not only reduce the size of a signature tree, but also in-
crease its filtering ability. Experiments have been done, which shows that the general sig-
nature tree uniformly outperforms the signature tree approach.
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